101
|
Hinshaw SJH, Ogbeifun O, Wandu WS, Lyu C, Shi G, Li Y, Qian H, Gery I. Digoxin Inhibits Induction of Experimental Autoimmune Uveitis in Mice, but Causes Severe Retinal Degeneration. Invest Ophthalmol Vis Sci 2016; 57:1441-7. [PMID: 27028065 PMCID: PMC4821074 DOI: 10.1167/iovs.15-19040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/24/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Digoxin, a major medication for heart disease, was recently reported to have immunosuppressive capacity. Here, we determined the immunosuppressive capacity of digoxin on the development of experimental autoimmune uveitis (EAU) and on related immune responses. METHODS The B10.A mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) and were treated daily with digoxin or vehicle control. On postimmunization day 14, the mouse eyes were examined histologically, while spleen cells were tested for cytokine production in response to IRBP and purified protein derivative. The immunosuppressive activity of digoxin was also tested in vitro, by its capacity to inhibit development of Th1 or Th17 cells. To investigate the degenerative effect of digoxin on the retina, naïve (FVB/N × B10.BR)F1 mice were similarly treated with digoxin and tested histologically and by ERG. RESULTS Treatment with digoxin inhibited the development of EAU, as well as the cellular response to IRBP. Unexpectedly, treatment with digoxin suppressed the production of interferon-γ to a larger extent than the production of interleukin 17. Importantly, digoxin treatment induced severe retinal degeneration, determined by histologic analysis with thinning across all layers of the retina. Digoxin treatment also induced dose-dependent vision loss monitored by ERG on naïve mice without induction of EAU. CONCLUSIONS Treatment of mice with digoxin inhibited the development of EAU and cellular immune response to IRBP. However, the treatment induced severe damage to the retina. Thus, the use of digoxin in humans should be avoided due to its toxicity to the retina.
Collapse
Affiliation(s)
- Samuel J. H. Hinshaw
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Osato Ogbeifun
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Wambui S. Wandu
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Cancan Lyu
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Guangpu Shi
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Igal Gery
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
102
|
Grégoire S, Terrada C, Martin GH, Fourcade G, Baeyens A, Marodon G, Fisson S, Billiard F, Lucas B, Tadayoni R, Béhar-Cohen F, Levacher B, Galy A, LeHoang P, Klatzmann D, Bodaghi B, Salomon BL. Treatment of Uveitis by In Situ Administration of Ex Vivo–Activated Polyclonal Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:2109-18. [DOI: 10.4049/jimmunol.1501723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023]
|
103
|
Jiang Y, Wang H, Yu H, Li L, Xu D, Hou S, Kijlstra A, Yang P. Two Genetic Variations in the IRF8 region are associated with Behçet's disease in Han Chinese. Sci Rep 2016; 6:19651. [PMID: 26794091 PMCID: PMC4726413 DOI: 10.1038/srep19651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Several modulatory factors in the TLR signaling pathway including IRF3, IRF7, IRF8, TRIM20, MYD88 and NF-κB1 have been associated with autoimmune disease. In this study, we investigated the association of 13 SNPs for these genes with Behçet’s disease (BD) and Vogt-Koyanagi-Harada (VKH) syndrome using a polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay. Haplotype and linkage disequilibrium (LD) analysis were performed by Haploview4.2. IRF8 mRNA expression and cytokine production was tested by real-time PCR and ELISA. Two SNPs near IRF8 were associated with BD (for rs17445836 GG genotype, Pc = 9.56 × 10−8, OR = 2.044; for rs11642873 AA genotype, Pc = 9.24 × 10−7, OR = 1.776). No significant association was found for the 13 SNPs tested with VKH syndrome. Haplotype analysis of the two positive SNPs revealed that the AG haplotype was significantly increased in BD patients (Pc = 2.60 × 10−8, OR = 1.646). Functional studies revealed an increased mRNA expression of IRF8 and IFN-γ production and a decreased production of IL-10 in rs17445836 carriers with the GG genotype. Increased expression of IRF8 as well as IFN-γ production and a decreased production of IL-10 were found in individuals carrying the rs11642873/AA genotype. In conclusion, this study indicates that IRF8 may contribute to the genetic susceptibility of BD by regulating IRF8 expression and cytokine production.
Collapse
Affiliation(s)
- Yanni Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P R China
| | - Hong Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing Tongren Hospital, Capital Medical University, Beijing, P R China
| | - Hongsong Yu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P R China
| | - Lin Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P R China
| | - Dengfeng Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P R China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P R China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P R China
| |
Collapse
|
104
|
Hosokawa K, Muranski P, Feng X, Townsley DM, Liu B, Knickelbein J, Keyvanfar K, Dumitriu B, Ito S, Kajigaya S, Taylor JG, Kaplan MJ, Nussenblatt RB, Barrett AJ, O'Shea J, Young NS. Memory Stem T Cells in Autoimmune Disease: High Frequency of Circulating CD8+ Memory Stem Cells in Acquired Aplastic Anemia. THE JOURNAL OF IMMUNOLOGY 2016; 196:1568-78. [PMID: 26764034 DOI: 10.4049/jimmunol.1501739] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/08/2015] [Indexed: 11/19/2022]
Abstract
Memory stem T cells (TSCMs) constitute a long-lived, self-renewing lymphocyte population essential for the maintenance of functional immunity. Hallmarks of autoimmune disease pathogenesis are abnormal CD4(+) and CD8(+) T cell activation. We investigated the TSCM subset in 55, 34, 43, and 5 patients with acquired aplastic anemia (AA), autoimmune uveitis, systemic lupus erythematosus, and sickle cell disease, respectively, as well as in 41 age-matched healthy controls. CD8(+) TSCM frequency was significantly increased in AA compared with healthy controls. An increased CD8(+) TSCM frequency at diagnosis was associated with responsiveness to immunosuppressive therapy, and an elevated CD8(+) TSCM population after immunosuppressive therapy correlated with treatment failure or relapse in AA patients. IFN-γ and IL-2 production was significantly increased in various CD8(+) and CD4(+) T cell subsets in AA patients, including CD8(+) and CD4(+) TSCMs. CD8(+) TSCM frequency was also increased in patients with autoimmune uveitis or sickle cell disease. A positive correlation between CD4(+) and CD8(+) TSCM frequencies was found in AA, autoimmune uveitis, and systemic lupus erythematosus. Evaluation of PD-1, CD160, and CD244 expression revealed that TSCMs were less exhausted compared with other types of memory T cells. Our results suggest that the CD8(+) TSCM subset is a novel biomarker and a potential therapeutic target for AA.
Collapse
Affiliation(s)
- Kohei Hosokawa
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Pawel Muranski
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Danielle M Townsley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Baoying Liu
- Clinical Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jared Knickelbein
- Clinical Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Bogdan Dumitriu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sawa Ito
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - James G Taylor
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Robert B Nussenblatt
- Clinical Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - A John Barrett
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - John O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
105
|
Goldberg GL, Cornish AL, Murphy J, Pang ES, Lim LL, Campbell IK, Scalzo-Inguanti K, Chen X, McMenamin PG, Maraskovsky E, McKenzie BS, Wicks IP. G-CSF and Neutrophils Are Nonredundant Mediators of Murine Experimental Autoimmune Uveoretinitis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:172-84. [DOI: 10.1016/j.ajpath.2015.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
|
106
|
Salazar-Méndez R, Yilmaz T, Cordero-Coma M. Moving forward in uveitis therapy: preclinical to phase II clinical trial drug development. Expert Opin Investig Drugs 2015; 25:195-214. [DOI: 10.1517/13543784.2016.1128893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
107
|
Sim DA, Chu CJ, Selvam S, Powner MB, Liyanage S, Copland DA, Keane PA, Tufail A, Egan CA, Bainbridge JWB, Lee RW, Dick AD, Fruttiger M. A simple method for in vivo labelling of infiltrating leukocytes in the mouse retina using indocyanine green dye. Dis Model Mech 2015; 8:1479-87. [PMID: 26398933 PMCID: PMC4631782 DOI: 10.1242/dmm.019018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/09/2015] [Indexed: 01/20/2023] Open
Abstract
We have developed a method to label and image myeloid cells infiltrating the mouse retina and choroid in vivo, using a single depot injection of indocyanine green dye (ICG). This was demonstrated using the following ocular models of inflammation and angiogenesis: endotoxin-induced uveitis, experimental autoimmune uveoretinitis and laser-induced choroidal neovascularization model. A near-infrared scanning ophthalmoscope was used for in vivo imaging of the eye, and flow cytometry was used on blood and spleen to assess the number and phenotype of labelled cells. ICG was administered 72 h before the induction of inflammation to ensure clearance from the systemic circulation. We found that in vivo intravenous administration failed to label any leukocytes, whereas depot injection, either intraperitoneal or subcutaneous, was successful in labelling leukocytes infiltrating into the retina. Progression of inflammation in the retina could be traced over a period of 14 days following a single depot injection of ICG. Additionally, bright-field microscopy, spectrophotometry and flow cytometric analysis suggest that the predominant population of cells stained by ICG are circulating myeloid cells. The translation of this approach into clinical practice would enable visualization of immune cells in situ. This will not only provide a greater understanding of pathogenesis, monitoring and assessment of therapy in many human ocular diseases but might also open the ability to image immunity live for neurodegenerative disorders, cardiovascular disease and systemic immune-mediated disorders. Summary: We show here that peripheral leukocytes can be labelled with ICG in vivo and then directly imaged as they invade the retina after inflammatory stimuli.
Collapse
Affiliation(s)
- Dawn A Sim
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Colin J Chu
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Senthil Selvam
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Michael B Powner
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Sidath Liyanage
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - David A Copland
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Pearse A Keane
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Adnan Tufail
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Catherine A Egan
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - James W B Bainbridge
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Richard W Lee
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew D Dick
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Marcus Fruttiger
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| |
Collapse
|
108
|
Mérida S, Palacios E, Navea A, Bosch-Morell F. New Immunosuppressive Therapies in Uveitis Treatment. Int J Mol Sci 2015; 16:18778-95. [PMID: 26270662 PMCID: PMC4581271 DOI: 10.3390/ijms160818778] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022] Open
Abstract
Uveitis is an inflammatory process that initially starts in the uvea, but can also affect other adjacent eye structures, and is currently the fourth cause of blindness in developed countries. Corticoids are probably the most widespread treatment, but resorting to other immunosuppressive treatments is a frequent practice. Since the implication of different cytokines in uveitis has been well demonstrated, the majority of recent treatments for this disease include inhibitors or antibodies against these. Nevertheless, adequate treatment for each uveitis type entails a difficult therapeutic decision as no clear recommendations are found in the literature, despite the few protocolized clinical assays and many case-control studies done. This review aims to present, in order, the mechanisms and main indications of the most modern immunosuppressive drugs against cytokines.
Collapse
Affiliation(s)
- Salvador Mérida
- Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia 46113, Spain.
| | - Elena Palacios
- Oftalmología Médica, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia 46020, Spain.
| | - Amparo Navea
- Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia 46113, Spain.
- Oftalmología Médica, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia 46020, Spain.
| | - Francisco Bosch-Morell
- Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia 46113, Spain.
- Oftalmología Médica, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia 46020, Spain.
| |
Collapse
|
109
|
Boldison J, Khera TK, Copland DA, Stimpson ML, Crawford GL, Dick AD, Nicholson LB. A novel pathogenic RBP-3 peptide reveals epitope spreading in persistent experimental autoimmune uveoretinitis. Immunology 2015; 146:301-11. [PMID: 26152845 DOI: 10.1111/imm.12503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022] Open
Abstract
Experimental autoimmune uveoretinitis (EAU) in the C57BL/6J mouse is a model of non-infectious posterior segment intraocular inflammation that parallels clinical features of the human disease. The purpose of this study was to analyse the immune response to the four murine subunits of retinol binding protein-3 (RBP-3) to identify pathogenic epitopes to investigate the presence of intramolecular epitope spreading during the persistent inflammation phase observed in this model of EAU. Recombinant murine subunits of the RBP-3 protein were purified and used to immunize C57BL/6J mice to induce EAU. An overlapping peptide library was used to screen RBP-3 subunit 3 for immunogenicity and pathogenicity. Disease phenotype and characterization of pathogenic subunits and peptides was undertaken by topical endoscopic fundal imaging, immunohistochemistry, proliferation assays and flow cytometry. RBP-3 subunits 1, 2 and 3 induced EAU in the C57BL/6J mice, with subunit 3 eliciting the most destructive clinical disease. Within subunit 3 we identified a novel uveitogenic epitope, 629-643. The disease induced by this peptide was comparable to that produced by the uveitogenic 1-20 peptide. Following immunization, peptide-specific responses by CD4(+) and CD8(+) T-cell subsets were detected, and cells from both populations were present in the retinal inflammatory infiltrate. Intramolecular epitope spreading between 629-643 and 1-20 was detected in mice with clinical signs of disease. The 629-643 RBP-3 peptide is a major uveitogenic peptide for the induction of EAU in C57BL/6J mice and the persistent clinical disease induced with one peptide leads to epitope spreading.
Collapse
Affiliation(s)
- Joanne Boldison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Tarnjit K Khera
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - David A Copland
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Madeleine L Stimpson
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Gemma L Crawford
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Andrew D Dick
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Lindsay B Nicholson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
110
|
Quantitative analysis of peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography. Am J Ophthalmol 2015; 159:1161-1168.e1. [PMID: 25709064 DOI: 10.1016/j.ajo.2015.02.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the relationships between peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography (FA). DESIGN Cross-sectional, consecutive case series. METHODS Consecutive ultra-widefield FA images were collected from 82 uveitis patients (82 eyes) in a single center. The extent of peripheral vasculitis, capillary nonperfusion, and vessel leakage were quantified. Parameters included: (1) foveal avascular zone area and macular leakage, (2) peripheral diffuse capillary leakage and ischemia, (3) peripheral vasculitis, and (4) leakage from neovascularization. Central macular thickness measurements were derived with optical coherence tomography. Main outcome measures were correlations between central and peripheral fluorangiographic changes as well as associations between visual function, ultra-widefield FA-derived metrics, and central macular thickness. RESULTS Although central leakage was associated with peripheral leakage (r = 0.553, P = .001), there was no association between foveal avascular zone size and peripheral ischemia (r = 0.114, P = .324), regardless of the underlying uveitic diagnosis. Peripheral ischemia was, however, correlated to neovascularization-related leakage (r = 0.462, P = .001) and focal vasculitis (r = 0.441, P = .001). Stepwise multiple regression analysis revealed that a poor visual acuity was independently associated with foveal avascular zone size and central macular thickness (R(2)-adjusted = 0.45, P = .001). CONCLUSIONS We present a large cohort of patients with uveitis imaged with ultra-widefield FA and further describe novel methods for quantification of peripheral vascular pathology, in an attempt to identify visually significant parameters. Although we observed that relationships exist between peripheral vessel leakage, vasculitis, and ischemia, it was only macular ischemia and increased macular thickness that were independently associated with a reduced visual acuity.
Collapse
|
111
|
Perez VL, Caspi RR. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol 2015; 36:354-63. [PMID: 25981967 DOI: 10.1016/j.it.2015.04.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/14/2022]
Abstract
It has recently been recognized that pathology of age-associated degenerative eye diseases such as adult macular degeneration (AMD), glaucoma and diabetic retinopathy, have strong immunological underpinnings. Attempts have been made to extrapolate to age-related degenerative disease insights from inflammatory processes associated with non-infectious uveitis, but these have not yet been sufficiently informative. Here we review recent findings on the immune processes underlying uveitis and those that have been shown to contribute to AMD, discussing in this context parallels and differences between overt inflammation and para-inflammation in the eye. We propose that mechanisms associated with ocular immune privilege, in combination with paucity of age-related antigen(s) within the target tissue, dampen what could otherwise be overt inflammation and result in the para-inflammation that characterizes age-associated neurodegenerative disease.
Collapse
Affiliation(s)
- Victor L Perez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
112
|
Crawford GL, Boldison J, Copland DA, Adamson P, Gale D, Brandt M, Nicholson LB, Dick AD. The role of lipoprotein-associated phospholipase A2 in a murine model of experimental autoimmune uveoretinitis. PLoS One 2015; 10:e0122093. [PMID: 25874928 PMCID: PMC4398387 DOI: 10.1371/journal.pone.0122093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 02/21/2015] [Indexed: 12/22/2022] Open
Abstract
Macrophage activation is, in part, regulated via hydrolysis of oxidised low density lipoproteins by Lipoprotein-Associated phospholipase A2 (Lp-PLA2), resulting in increased macrophage migration, pro-inflammatory cytokine release and chemokine expression. In uveitis, tissue damage is mediated as a result of macrophage activation; hence inhibition of Lp-PLA2 may limit macrophage activation and protect the tissue. Utilising Lp-PLA2 gene-deficient (KO) mice and a pharmacological inhibitor of Lp-PLA2 (SB-435495) we aimed to determine the effect of Lp-PLA2 suppression in mediating retinal protection in a model of autoimmune retinal inflammation, experimental autoimmune uveoretinitis (EAU). Following immunisation with RBP-3 (IRBP) 1–20 or 161–180 peptides, clinical disease was monitored and severity assessed, infiltrating leukocytes were enumerated by flow cytometry and tissue destruction quantified by histology. Despite ablation of Lp-PLA2 enzyme activity in Lp-PLA2 KO mice or wild-type mice treated with SB-435495, the number of infiltrating CD45+ cells in the retina was equivalent to control EAU animals, and there was no reduction in disease severity. Thus, despite the reported beneficial effects of therapeutic Lp-PLA2 depletion in a variety of vascular inflammatory conditions, we were unable to attenuate disease, show delayed disease onset or prevent progression of EAU in Lp-PLA2 KO mice. Although EAU exhibits inflammatory vasculopathy there is no overt defect in lipid metabolism and given the lack of effect following Lp-PLA2 suppression, these data support the hypothesis that sub-acute autoimmune inflammatory disease progresses independently of Lp-PLA2 activity.
Collapse
Affiliation(s)
- G. L. Crawford
- Academic unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - J. Boldison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - D. A. Copland
- Academic unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - P. Adamson
- Ophthiris Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - D. Gale
- Ophthiris Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - M. Brandt
- Platform Technology Sciences, King of Prussia, Pennsylvania, United States of America
| | - L. B. Nicholson
- Academic unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - A. D. Dick
- Academic unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
113
|
Abstract
Uveitis is a potentially sight-threatening complication of juvenile idiopathic arthritis (JIA). JIA-associated uveitis is recognized to have an autoimmune aetiology characterized by activation of CD4(+) T cells, but the underlying mechanisms might overlap with those of autoinflammatory conditions involving activation of innate immunity. As no animal model recapitulates all the features of JIA-associated uveitis, questions remain regarding its pathogenesis. The most common form of JIA-associated uveitis is chronic anterior uveitis, which is usually asymptomatic initially. Effective screening is, therefore, essential to detect early disease and commence treatment before the development of visually disabling complications, such as cataracts, glaucoma, band keratopathy and cystoid macular oedema. Complications can result from uncontrolled intraocular inflammation as well as from its treatment, particularly prolonged use of high-dose topical corticosteroids. Accumulating evidence supports the early introduction of systemic immunosuppressive drugs, such as methotrexate, as steroid-sparing agents. Prospective randomized controlled trials of TNF inhibitors and other biologic therapies are underway or planned. Future research should aim to identify biomarkers to predict which children are at high risk of developing JIA-associated uveitis or have a poor prognosis. Such biomarkers could help to ensure that patients receive earlier interventions and more-potent therapy, with the ultimate aim of reducing loss of vision and ocular morbidity.
Collapse
|