101
|
Oddó D, Cisternas D, Méndez GP. Pseudodematiaceous Fungi in Rhinosinusal Biopsies: Report of 2 Cases With Light and Electron Microscopy Analysis. CLINICAL PATHOLOGY 2019; 12:2632010X19874766. [PMID: 31579897 PMCID: PMC6757491 DOI: 10.1177/2632010x19874766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022]
Abstract
The diagnosis of a mycosis is often established through a biopsy, which allows to differentiate invasive and non-invasive lesions, and also to identify hyaline and dematiaceous fungi. However, pigmented fungal elements that do not correspond to dematiaceous fungi, which we have called pseudodematiaceous, can occasionally be present in biopsies. Herein, we present 2 cases of mycosis caused by pseudodematiaceous fungi in rhinosinusal biopsies. A new classification for fungi identified in biopsies is proposed, dividing them into 3 groups: hyaline, dematiaceous, and pseudodematiaceous.
Collapse
Affiliation(s)
- David Oddó
- Department of Anatomic Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daisy Cisternas
- Department of Anatomic Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo P Méndez
- Department of Anatomic Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
102
|
Osmotolerance as a determinant of microbial ecology: A study of phylogenetically diverse fungi. Fungal Biol 2019; 124:273-288. [PMID: 32389289 DOI: 10.1016/j.funbio.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Osmotic stress induced by high solute concentration can prevent fungal metabolism and growth due to alterations in properties of the cytosol, changes in turgor, and the energy required to synthesize and retain compatible solutes. We used germination to quantify tolerance/sensitivity to the osmolyte KCl (0.1-4.5 M, in 0.1 M increments) for 71 strains (40 species) of ecologically diverse fungi. These include 11 saprotrophic species (17 strains, including two xerophilic species), five mycoparasitic species (five strains), six plant-pathogenic species (13 strains), and 19 entomopathogenic species (36 strains). A dendrogram obtained from cluster analyses, based on KCl inhibitory concentrations 50 % and 90 % calculated by Probit Analysis, revealed three groups of fungal isolates accordingly to their osmotolerance. The most-osmotolerant group (Group 3) contained the majority of saprotrophic fungi, and Aspergillus niger (F19) was the most tolerant. The highly xerophilic Aspergillus montevidense and Aspergillus pseudoglaucus were the second- and third-most tolerant species, respectively. All Aspergillus and Cladosporium species belonged to Group 3, followed by the entomopathogens Colletotrichum fioriniae, Simplicillium lanosoniveum, and Trichothecium roseum. Group 2 exhibited a moderate osmotolerance, and included plant-pathogens such as Colletotrichum and Fusarium, mycoparasites such as Clonostachys spp, some saprotrophs such as Mucor and Penicillium spp., and some entomopathogens such as Isaria, Lecanicillium, Mariannaea, Simplicillium, and Torrubiella. Group 1 contained the osmo-sensitive strains: the rest of the entomopathogens and the mycoparasitic Gliocladium and Trichoderma. Although stress tolerance did not correlate with their primary ecological niche, classification of these 71 fungal strains was more closely aligned with their ecology than with their phylogenetic relatedness. We discuss the implications for both microbial ecology and fungal taxonomy.
Collapse
|
103
|
Rauytanapanit M, Janchot K, Kusolkumbot P, Sirisattha S, Waditee-Sirisattha R, Praneenararat T. Nutrient Deprivation-Associated Changes in Green Microalga Coelastrum sp. TISTR 9501RE Enhanced Potent Antioxidant Carotenoids. Mar Drugs 2019; 17:E328. [PMID: 31159386 PMCID: PMC6627699 DOI: 10.3390/md17060328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
The utilization of microalgae as a source of carotenoid productions has gained increasing popularity due to its advantages, such as a relatively fast turnaround time. In this study, a newly discovered Coelastrum sp. TISTR 9501RE was characterized and investigated for its taxonomical identity and carotenoid profile. To the best of our knowledge, this report was the first to fully investigate the carotenoid profiles in a microalga of the genus Coelastrum. Upon use of limited nutrients as a stress condition, the strain was able to produce astaxanthin, canthaxanthin, and lutein, as the major carotenoid components. Additionally, the carotenoid esters were found to be all astaxanthin derivatives, and β-carotene was not significantly present under this stress condition. Importantly, we also demonstrated that this practical stress condition could be combined with simple growing factors, such as ambient sunlight and temperature, to achieve even more focused carotenoid profiles, i.e., increased overall amounts of the aforementioned carotenoids with fewer minor components and chlorophylls. In addition, this green microalga was capable of tolerating a wide range of salinity. Therefore, this study paved the way for more investigations and developments on this fascinating strain, which will be reported in due course.
Collapse
Affiliation(s)
- Monrawat Rauytanapanit
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Kantima Janchot
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Pokchut Kusolkumbot
- Thailand Institute of Scientific and Technological Research (TISTR), Khlong Luang, Pathum Thani 12120, Thailand.
| | - Sophon Sirisattha
- Thailand Institute of Scientific and Technological Research (TISTR), Khlong Luang, Pathum Thani 12120, Thailand.
| | - Rungaroon Waditee-Sirisattha
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| | - Thanit Praneenararat
- The Chemical Approaches for Food Applications Research Group, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
104
|
Dias LP, Pedrini N, Braga GUL, Ferreira PC, Pupin B, Araújo CAS, Corrochano LM, Rangel DEN. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Fungal Biol 2019; 124:263-272. [PMID: 32389288 DOI: 10.1016/j.funbio.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023]
Abstract
Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena, Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata), Facultad de Ciencias Médicas, La Plata, 1900, Argentina
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Paulo C Ferreira
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | - Breno Pupin
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | | | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, 41080, Seville, Spain
| | | |
Collapse
|
105
|
Saini RK, Keum YS. Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues. J Ind Microbiol Biotechnol 2019; 46:657-674. [PMID: 30415292 DOI: 10.1007/s10295-018-2104-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
Carotenoids are a diverse group of isoprenoid pigments that play crucial roles in plants, animals, and microorganisms, including body pigmentation, bio-communication, precursors for vitamin A, and potent antioxidant activities. With their potent antioxidant activities, carotenoids are emerging as molecules of vital importance in protecting against chronic degenerative disease, such as aging, cancer, cataract, cardiovascular, and neurodegenerative diseases. Due to countless functions in the cellular system, carotenoids are extensively used in dietary supplements, food colorants, aquaculture and poultry feed, nutraceuticals, and cosmetics. Moreover, the emerging demand for carotenoids in these vast areas has triggered their industrial-scale production. Currently, 80%-90% of carotenoids are produced synthetically by chemical synthesis. However, the demand for naturally produced carotenoids is increasing due to the health concern of synthetic counterparts. This article presents a review of the industrial production of carotenoids utilizing a number of diverse microbes, including microalgae, bacteria, and fungi, some of which have been genetically engineered to improve production titers.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, Konkuk University, Seoul, 143-701, Republic of Korea.
- Institute of Natural Science and Agriculture, Konkuk University, Seoul, 143-701, Republic of Korea.
- Department of Crop Science, Konkuk University, Seoul, 143-701, Republic of Korea.
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
106
|
Ruger-Herreros M, Parra-Rivero O, Pardo-Medina J, Romero-Campero FJ, Limón MC, Avalos J. Comparative transcriptomic analysis unveils interactions between the regulatory CarS protein and light response in Fusarium. BMC Genomics 2019; 20:67. [PMID: 30665350 PMCID: PMC6340186 DOI: 10.1186/s12864-019-5430-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The orange pigmentation of the agar cultures of many Fusarium species is due to the production of carotenoids, terpenoid pigments whose synthesis is stimulated by light. The genes of the carotenoid pathway and their regulation have been investigated in detail in Fusarium fujikuroi. In this and other Fusarium species, such as F. oxysporum, deep-pigmented mutants affected in the gene carS, which encodes a protein of the RING-finger family, overproduce carotenoids irrespective of light. The induction of carotenogenesis by light and its deregulation in carS mutants are achieved on the transcription of the structural genes of the pathway. We have carried out global RNA-seq transcriptomics analyses to investigate the relationship between the regulatory role of CarS and the control by light in these fungi. RESULTS The absence of a functional carS gene or the illumination exert wide effects on the transcriptome of F. fujikuroi, with predominance of genes activated over repressed and a greater functional diversity in the case of genes induced by light. The number of the latter decreases drastically in a carS mutant (1.1% vs. 4.8% in the wild-type), indicating that the deregulation produced by the carS mutation affects the light response of many genes. Moreover, approximately 27% of the genes activated at least 2-fold by light or by the carS mutation are coincident, raising to 40% for an 8-fold activation threshold. As expected, the genes with the highest changes under both regulatory conditions include those involved in carotenoid metabolism. In addition, light and CarS strongly influence the expression of some genes associated with stress responses, including three genes with catalase domains, consistent with roles in the control of oxidative stress. The effects of the CarS mutation or light in the transcriptome of F. oxysporum were partially coincident with those of F. fujikuroi, indicating the conservation of the objectives of their regulatory mechanisms. CONCLUSIONS The CarS RING finger protein down-regulates many genes whose expression is up-regulated by light in wild strains of the two investigated Fusarium species, indicating a regulatory interplay between the mechanism of action of the CarS protein and the control by light.
Collapse
Affiliation(s)
| | - Obdulia Parra-Rivero
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Javier Pardo-Medina
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Francisco J. Romero-Campero
- Department of Computer Science and artificial Intelligence, University of Seville, E-41012 Seville, Spain
- Plant Development Unit, Institute for Plant Biochemistry and Photosynthesis, University of Seville – CSIC, E-41012 Seville, Spain
| | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| |
Collapse
|
107
|
Venkatachalam M, Gérard L, Milhau C, Vinale F, Dufossé L, Fouillaud M. Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548. Microorganisms 2019; 7:microorganisms7010010. [PMID: 30626101 PMCID: PMC6352072 DOI: 10.3390/microorganisms7010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023] Open
Abstract
Marine-derived fungi that inhabit severe changing environments have gained increasing interest for their ability to produce structurally unique natural products. Fungi belonging to the Talaromyces and the close Penicillium genera are among the most promising microbes for bioactive compound production, including colored metabolites. Coupling pigment producing capability with bioactive effectiveness would be a valuable challenge in some specific fields such as dyeing, cosmeceutical, or food industries. In this sense, Talaromyces albobiverticillius 30548, a red pigment producing strain, has been isolated from the marine environment of Reunion Island, Indian Ocean. In this research, we analyzed the effect of temperatures (21⁻27 °C) and salinity levels (0⁻9%) on fungal growth and pigment production. Maximum pigment yield was obtained in non-salted media, when cultured at 27 °C after 10 days of submerged fermentation in PDB. However, maximum dry biomass production was achieved at stressed condition with 9% sea salts concentrated media at the same temperature. The results indicate that salinity of the culture media positively influences the growth of the biomass. Inversely, pigment production decreases with increase in salinity over 6%. Color coordinates of secreted pigments were expressed in CIELAB color system. The hue angles (h°) ranged from red to yellow colors. This indicated that the color distribution of fungal pigments depends on the salinity in the culture media. This study emphasizes the impact of abiotic stress (salt and temperature) on the growth and metabolome of marine-derived fungal strains.
Collapse
Affiliation(s)
- Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de la Réunion, France.
| | - Léa Gérard
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI Agroalimentaire, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
- Institut des Sciences et Industries du Vivant et de L'Environnement du Centre Paris Claude Bernard, 16, rue Claude Bernard, F-75231 Paris CEDEX 05, France.
| | - Cathie Milhau
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI Agroalimentaire, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Francesco Vinale
- Istituto per la Protezione Sostenibile delle Piante (IPSP-CNR/Dipartimento di Agraria, Università degli Studi di Napoli Federico II, IT-80055 Portici (NA), Italy.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI Agroalimentaire, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI Agroalimentaire, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|
108
|
Yang M, Wang Y, Liu Q, Liu Z, Jiang F, Wang H, Guo X, Zhang J, Kang L. A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts. eLife 2019; 8:e41362. [PMID: 30616714 PMCID: PMC6324882 DOI: 10.7554/elife.41362] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/17/2018] [Indexed: 02/01/2023] Open
Abstract
Changes of body color have important effects for animals in adapting to variable environments. The migratory locust exhibits body color polyphenism between solitary and gregarious individuals, with the former displaying a uniform green coloration and the latter having a prominent pattern of black dorsal and brown ventral surface. However, the molecular mechanism underlying the density-dependent body color changes of conspecific locusts remain largely unknown. Here, we found that upregulation of β-carotene-binding protein promotes the accumulation of red pigment, which added to the green color palette present in solitary locusts changes it from green to black, and that downregulation of this protein led to the reverse, changing the color of gregarious locusts from black to green. Our results provide insight that color changes of locusts are dependent on variation in the red β-carotene pigment binding to βCBP. This finding of animal coloration corresponds with trichromatic theory of color vision.
Collapse
Affiliation(s)
- Meiling Yang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yanli Wang
- Institute of Applied BiologyShanxi UniversityTaiyuanChina
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Sino-Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhikang Liu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| | - Huimin Wang
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| | - Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jianzhen Zhang
- Institute of Applied BiologyShanxi UniversityTaiyuanChina
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institutes of Life Science, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
109
|
Effects of Seawater on Carotenoid Production and Lipid Content of Engineered Saccharomyces cerevisiae. FERMENTATION 2019. [DOI: 10.3390/fermentation5010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The use of seawater in fermentation can potentially reduce the freshwater burden in the bio-based production of chemicals and fuels. We previously developed a Saccharomyces cerevisiae carotenoids hyperproducer SM14 capable of accumulating 18 mg g−1 DCW (DCW: dry cell weight) of β-carotene in rich media (YPD). In this work, the impacts of seawater on the carotenoid production of SM14 were investigated. When using nutrient-reduced media (0.1× YNB) in freshwater the β-carotene production of SM14 was 6.51 ± 0.37 mg g−1 DCW; however in synthetic seawater, the production was increased to 8.67 ± 0.62 mg g−1 DCW. We found that this improvement was partially due to the NaCl present in the synthetic seawater, since supplementation of 0.5 M NaCl in freshwater increased β-carotene production to 11.85 ± 0.77 mg g−1 DCW. The combination of synthetic seawater with higher carbon-to-nitrogen ratio (C:N = 50) further improved the β-carotene production to 10.44 ± 0.35 mg g−1 DCW. We further showed that the carotenoid production improvement in these conditions is related with lipid content and composition. These results demonstrated the benefit of using seawater to improve the production of carotenoids in S. cerevisiae, and have the potential to expand the utilization of seawater.
Collapse
|
110
|
Van Court RC, Robinson SC. Stimulating Production of Pigment-Type Secondary Metabolites from Soft Rotting Wood Decay Fungi ("Spalting" Fungi). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 169:109-124. [PMID: 30891625 DOI: 10.1007/10_2019_93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A small group of soft rotting wood decay fungi produce extracellular pigments as secondary metabolites in response to stress and as a means of resource capture. These fungi are collectively known as "spalting fungi" and have been used in wood art for centuries. The pigments produced by these fungi are finding increasing usage in industrial dye applications and green energy but remain problematic to grow in batch culture. Additionally problematic is that the pigments, especially the blue-green pigment known as xylindein, produced by Chlorociboria species, have yet to be fully synthesized. In order to further research development of these pigments and find success in areas such as textile and paint dyeing, wood UV protection, and organic photovoltaic cells, methods must be developed to mass produce the pigments. To date, three distinct methods have been developed, with varying degrees of success depending upon the fungal species (amended malt agar plates, shake liquid culture, and stationary liquid culture). This chapter details these three methods, their history, advantages and disadvantages, as well as their potential for industrial scale-up in the future. Graphical Abstract.
Collapse
Affiliation(s)
- R C Van Court
- Wood Science & Engineering, Oregon State University, Corvallis, OR, USA
| | - Seri C Robinson
- Wood Science & Engineering, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
111
|
Piekarczyk J, Ratajkiewicz H, Jasiewicz J, Sosnowska D, Wójtowicz A. An application of reflectance spectroscopy to differentiate of entomopathogenic fungi species. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 190:32-41. [DOI: 10.1016/j.jphotobiol.2018.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
|
112
|
Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB. Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biotechnol 2018; 103:1095-1114. [PMID: 30560452 DOI: 10.1007/s00253-018-9557-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Carotenoids are a group of isoprenoid pigments naturally synthesized by plants and microorganisms, which are applied industrially in food, cosmetic, and pharmaceutical product formulations. In addition to their use as coloring agents, carotenoids have been proposed as health additives, being able to prevent cancer, macular degradation, and cataracts. Moreover, carotenoids may also protect cells against oxidative damage, acting as an antioxidant agent. Considering the interest in greener and sustainable industrial processing, the search for natural carotenoids has increased over the last few decades. In particular, it has been suggested that the use of bioprocessing technologies can improve carotenoid production yields or, as a minimum, increase the efficiency of currently used production processes. Thus, this review provides a short but comprehensive overview of the recent biotechnological developments in carotenoid production using microorganisms. The hot topics in the field are properly addressed, from carotenoid biosynthesis to the current technologies involved in their extraction, and even highlighting the recent advances in the marketing and application of "microbial" carotenoids. It is expected that this review will improve the knowledge and understanding of the most appropriate and economic strategies for a biotechnological production of carotenoids.
Collapse
Affiliation(s)
- Cassamo Ussemane Mussagy
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - James Winterburn
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Valéria Carvalho Santos-Ebinuma
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil.
| | - Jorge Fernando Brandão Pereira
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
113
|
Flieger K, Knabe N, Toepel J. Development of an Improved Carotenoid Extraction Method to Characterize the Carotenoid Composition under Oxidative Stress and Cold Temperature in the Rock Inhabiting Fungus Knufia petricola A95. J Fungi (Basel) 2018; 4:E124. [PMID: 30424015 PMCID: PMC6308947 DOI: 10.3390/jof4040124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
Black yeasts are a highly specified group of fungi, which are characterized by a high resistance against stress factors. There are several factors enabling the cells to survive harsh environmental conditions. One aspect is the pigmentation, the melanin black yeasts often display a highly diverse carotenoid spectrum. Determination and characterization of carotenoids depend on an efficient extraction and separation, especially for black yeast, which is characterized by thick cell walls. Therefore, specific protocols are needed to ensure reliable analyses regarding stress responses in these fungi. Here we present both. First, we present a method to extract and analyze carotenoids and secondly we present the unusual carotenoid composition of the black yeast Knufia petricola A95. Mechanical treatment combined with an acetonitrile extraction gave us very good extraction rates with a high reproducibility. The presented extraction and elution protocol separates the main carotenoids (7) in K. petricola A95 and can be extended for the detection of additional carotenoids in other species. K. petricola A95 displays an unusual carotenoid composition, with mainly didehydrolycopene, torulene, and lycopene. The pigment composition varied in dependency to oxidative stress but remained relatively constant if the cells were cultivated under low temperature. Future experiments have to be carried out to determine if didehydrolycopene functions as a protective agent itself or if it serves as a precursor for antioxidative pigments like torulene and torularhodin, which could be produced after induction under stress conditions. Black yeasts are a promising source for carotenoid production and other substances. To unravel the potential of these fungi, new methods and studies are needed. The established protocol allows the determination of carotenoid composition in black yeasts.
Collapse
Affiliation(s)
- Kerstin Flieger
- Department of Plant Physiology, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany.
| | - Nicole Knabe
- Department of Materials & Environment, Bundesanstalt für Material-forschung und-prüfung, BAM, Unter den Eichen 87, 12205 Berlin, Germany.
| | - Jörg Toepel
- Department of Solar Materials, Applied Biocatalytics, Helmholtz Centre for Environmental Research, Permoser Strasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
114
|
Frisvad JC, Møller LLH, Larsen TO, Kumar R, Arnau J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 2018; 102:9481-9515. [PMID: 30293194 PMCID: PMC6208954 DOI: 10.1007/s00253-018-9354-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
This review presents an update on the current knowledge of the secondary metabolite potential of the major fungal species used in industrial biotechnology, i.e., Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. These species have a long history of safe use for enzyme production. Like most microorganisms that exist in a challenging environment in nature, these fungi can produce a large variety and number of secondary metabolites. Many of these compounds present several properties that make them attractive for different industrial and medical applications. A description of all known secondary metabolites produced by these species is presented here. Mycotoxins are a very limited group of secondary metabolites that can be produced by fungi and that pose health hazards in humans and other vertebrates when ingested in small amounts. Some mycotoxins are species-specific. Here, we present scientific basis for (1) the definition of mycotoxins including an update on their toxicity and (2) the clarity on misclassification of species and their mycotoxin potential reported in literature, e.g., A. oryzae has been wrongly reported as an aflatoxin producer, due to misclassification of Aspergillus flavus strains. It is therefore of paramount importance to accurately describe the mycotoxins that can potentially be produced by a fungal species that is to be used as a production organism and to ensure that production strains are not capable of producing mycotoxins during enzyme production. This review is intended as a reference paper for authorities, companies, and researchers dealing with secondary metabolite assessment, risk evaluation for food or feed enzyme production, or considerations on the use of these species as production hosts.
Collapse
Affiliation(s)
- Jens C Frisvad
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark.
| | - Lars L H Møller
- Department of Product Safety, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark
| | - Ravi Kumar
- Department of Genomics and Bioinformatics, Novozymes Inc., 1445 Drew Ave., Davis, CA, 95618, USA
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| |
Collapse
|
115
|
cis-carotene biosynthesis, evolution and regulation in plants: The emergence of novel signaling metabolites. Arch Biochem Biophys 2018; 654:172-184. [PMID: 30030998 DOI: 10.1016/j.abb.2018.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023]
Abstract
Carotenoids are isoprenoid pigments synthesised by plants, algae, photosynthetic bacteria as well as some non-photosynthetic bacteria, fungi and insects. Abundant carotenoids found in nature are synthesised via a linear route from phytoene to lycopene after which the pathway bifurcates into cyclised α- and β-carotenes. Plants evolved additional steps to generate a diversity of cis-carotene intermediates, which can accumulate in fruits or tissues exposed to an extended period of darkness. Enzymatic or oxidative cleavage, light-mediated photoisomerization and histone modifications can affect cis-carotene accumulation. cis-carotene accumulation has been linked to the production of signaling metabolites that feedback and forward to regulate nuclear gene expression. When cis-carotenes accumulate, plastid biogenesis and operational control can become impaired. Carotenoid derived metabolites and phytohormones such as abscisic acid and strigolactones can fine-tune cellular homeostasis. There is a hunt to identify a novel cis-carotene derived apocarotenoid signal and to elucidate the molecular mechanism by which it facilitates communication between the plastid and nucleus. In this review, we describe the biosynthesis and evolution of cis-carotenes and their links to regulatory switches, as well as highlight how cis-carotene derived apocarotenoid signals might control organelle communication, physiological and developmental processes in response to environmental change.
Collapse
|
116
|
Meir Z, Osherov N. Vitamin Biosynthesis as an Antifungal Target. J Fungi (Basel) 2018; 4:E72. [PMID: 29914189 PMCID: PMC6023522 DOI: 10.3390/jof4020072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
The large increase in the population of immunosuppressed patients, coupled with the limited efficacy of existing antifungals and rising resistance toward them, have dramatically highlighted the need to develop novel drugs for the treatment of invasive fungal infections. An attractive possibility is the identification of possible drug targets within essential fungal metabolic pathways not shared with humans. Here, we review the vitamin biosynthetic pathways (vitamins A⁻E, K) as candidates for the development of antifungals. We present a set of ranking criteria that identify the vitamin B2 (riboflavin), B5 (pantothenic acid), and B9 (folate) biosynthesis pathways as being particularly rich in new antifungal targets. We propose that recent scientific advances in the fields of drug design and fungal genomics have developed sufficiently to merit a renewed look at these pathways as promising sources for the development of novel classes of antifungals.
Collapse
Affiliation(s)
- Zohar Meir
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| |
Collapse
|
117
|
Dias LP, Araújo CA, Pupin B, Ferreira PC, Braga GÚ, Rangel DE. The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation. Fungal Biol 2018; 122:592-601. [DOI: 10.1016/j.funbio.2018.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 11/28/2022]
|
118
|
Wang E, Dong C, Park RF, Roberts TH. Carotenoid pigments in rust fungi: Extraction, separation, quantification and characterisation. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
119
|
Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 2018; 70:62-93. [PMID: 29679619 DOI: 10.1016/j.plipres.2018.04.004] [Citation(s) in RCA: 478] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits.
Collapse
Affiliation(s)
| | - Javier Avalos
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Albert Boronat
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lourdes Gomez-Gomez
- Instituto Botánico, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Damaso Hornero-Mendez
- Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain
| | - M Carmen Limon
- Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio J Meléndez-Martínez
- Food Color & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain
| | | | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07120 Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07120 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Maria J Rodrigo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Lorenzo Zacarias
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, Universitat de Lleida-Agrotecnio, 25198 Lleida, Spain
| |
Collapse
|
120
|
Wiemann P, Soukup AA, Folz JS, Wang PM, Noack A, Keller NP. CoIN: co-inducible nitrate expression system for secondary metabolites in Aspergillus nidulans. Fungal Biol Biotechnol 2018; 5:6. [PMID: 29564145 PMCID: PMC5851313 DOI: 10.1186/s40694-018-0049-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sequencing of fungal species has demonstrated the existence of thousands of putative secondary metabolite gene clusters, the majority of them harboring a unique set of genes thought to participate in production of distinct small molecules. Despite the ready identification of key enzymes and potential cluster genes by bioinformatics techniques in sequenced genomes, the expression and identification of fungal secondary metabolites in the native host is often hampered as the genes might not be expressed under laboratory conditions and the species might not be amenable to genetic manipulation. To overcome these restrictions, we developed an inducible expression system in the genetic model Aspergillus nidulans. RESULTS We genetically engineered a strain of A. nidulans devoid of producing eight of the most abundant endogenous secondary metabolites to express the sterigmatocystin Zn(II)2Cys6 transcription factor-encoding gene aflR and its cofactor aflS under control of the nitrate inducible niiA/niaD promoter. Furthermore, we identified a subset of promoters from the sterigmatocystin gene cluster that are under nitrate-inducible AflR/S control in our production strain in order to yield coordinated expression without the risks from reusing a single inducible promoter. As proof of concept, we used this system to produce β-carotene from the carotenoid gene cluster of Fusarium fujikuroi. CONCLUSION Utilizing one-step yeast recombinational cloning, we developed an inducible expression system in the genetic model A. nidulans and show that it can be successfully used to produce commercially valuable metabolites.
Collapse
Affiliation(s)
- Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Hexagon Bio, Menlo Park, CA 94025 USA
| | - Alexandra A. Soukup
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 USA
| | - Jacob S. Folz
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Davis Genome Center – Metabolomics, University of California, 451 Health Science Drive, Davis, CA 95616 USA
| | - Pin-Mei Wang
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Ocean College, Zhejiang University, Hangzhou, 310058 Zhejiang Province People’s Republic of China
| | - Andreas Noack
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
121
|
Pereira-Junior RA, Huarte-Bonnet C, Paixão FRS, Roberts DW, Luz C, Pedrini N, Fernandes ÉKK. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. J Appl Microbiol 2018; 125:159-171. [PMID: 29473986 DOI: 10.1111/jam.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/07/2018] [Accepted: 02/18/2018] [Indexed: 11/30/2022]
Abstract
AIMS The effect of nutritional supplementation of two Metarhizium species with riboflavin (Rb) during production of conidia was evaluated on (i) conidial tolerance (based on germination) to UV-B radiation and on (ii) conidial expression following UV-B irradiation, of enzymes known to be active in photoreactivation, viz., photolyase (Phr), laccase (Lac) and polyketide synthase (Pks). METHODS AND RESULTS Metarhizium acridum (ARSEF 324) and Metarhizium robertsii (ARSEF 2575) were grown either on (i) potato dextrose agar medium (PDA), (ii) PDA supplemented with 1% yeast extract (PDAY), (iii) PDA supplemented with Rb (PDA+Rb), or (iv) PDAY supplemented with Rb (PDAY+Rb). Resulting conidia were exposed to 866·7 mW m-2 of UV-B Quaite-weighted irradiance to total doses of 3·9 or 6·24 kJ m-2 . Some conidia also were exposed to 16 klux of white light (WL) after being irradiated, or not, with UV-B to investigate the role of possible photoreactivation. Relative germination of conidia produced on PDA+Rb (regardless Rb concentration) or on PDAY and exposed to UV-B was higher compared to conidia cultivated on PDA without Rb supplement, or to conidia suspended in Rb solution immediately prior to UV-B exposure. The expression of MaLac3 and MaPks2 for M. acridum, as well as MrPhr2, MrLac1, MrLac2 and MrLac3 for M. robertsii was higher when the isolates were cultivated on PDA+Rb and exposed to UV-B followed by exposure to WL, or exposed to WL only. CONCLUSIONS Rb in culture medium increases the UV-B tolerance of M. robertsii and M. acridum conidia, and which may be related to increased expression of Phr, Lac and Pks genes in these conidia. SIGNIFICANCE AND IMPACT OF THE STUDY The enhanced UV-B tolerance of Metarhizium spp. conidia produced on Rb-enriched media may improve the effectiveness of these fungi in biological control programs.
Collapse
Affiliation(s)
- R A Pereira-Junior
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata - CONICET, La Plata, Buenos Aires, Argentina
| | - C Huarte-Bonnet
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata - CONICET, La Plata, Buenos Aires, Argentina
| | - F R S Paixão
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata - CONICET, La Plata, Buenos Aires, Argentina
| | - D W Roberts
- Department of Biology, Utah State University, Logan, UT, USA
| | - C Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - N Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata - CONICET, La Plata, Buenos Aires, Argentina
| | - É K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
122
|
Píchová K, Pažoutová S, Kostovčík M, Chudíčková M, Stodůlková E, Novák P, Flieger M, van der Linde E, Kolařík M. Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps). Mol Phylogenet Evol 2018; 123:73-87. [PMID: 29481949 DOI: 10.1016/j.ympev.2018.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/12/2017] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
The ergot, genus Claviceps, comprises approximately 60 species of specialised ovarial grass parasites famous for the production of food toxins and pharmaceutics. Although the ergot has been known for centuries, its evolution have not been resolved yet. Our approach combining multilocus phylogeny, molecular dating and the study of ecological, morphological and metabolic features shows that Claviceps originated in South America in the Palaeocene on a common ancestor of BEP (subfamilies Bambusoideae, Ehrhartoideae, Pooideae) and PACMAD (subfamilies Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) grasses. Four clades described here as sections diverged during the Paleocene and Eocene. Since Claviceps are parasitic fungi with a close relationship with their host plants, their evolution is influenced by interactions with the new hosts, either by the spread to a new continent or the radiation of the host plants. Three of the sections possess very narrow host ranges and biogeographical distributions and have relatively low toxicity. On the contrary, the section Claviceps, comprising the rye ergot, C. purpurea, is unique in all aspects. Fungi in this section of North American origin have spread all over the world and infect grasses in all subfamilies as well as sedges, and it is the only section synthesising toxic ergopeptines and secalonic acids. The evolutionary success of the Claviceps section members can be explained by high toxin presence, serving as feeding deterrents and playing a role in their protective mutualism with host plants. Closely related taxa Neoclaviceps monostipa and Cepsiclava phalaridis were combined into the genus Aciculosporium.
Collapse
Affiliation(s)
- Kamila Píchová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12801 Prague, Czech Republic
| | - Sylvie Pažoutová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Martin Kostovčík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Milada Chudíčková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Eva Stodůlková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Miroslav Flieger
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Elna van der Linde
- Biosystematics Division, Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0121, South Africa
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| |
Collapse
|
123
|
Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY. Inhibition of Protein Glycation by Tiger Milk Mushroom [ Lignosus rhinocerus (Cooke) Ryvarden] and Search for Potential Anti-diabetic Activity-Related Metabolic Pathways by Genomic and Transcriptomic Data Mining. Front Pharmacol 2018; 9:103. [PMID: 29491836 PMCID: PMC5817425 DOI: 10.3389/fphar.2018.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Naturally occurring anti-glycation compounds have drawn much interest in recent years as they show potential in reducing or preventing the risk of chronic complications for diabetic patients. In this study, annotation of the genome–transcriptome data from tiger milk mushroom (Lignosus rhinocerus, syn. Lignosus rhinocerotis) to PlantCyc enzymes database identified transcripts that are related to anti-diabetic properties, and these include genes that are involved in carotenoid and abscisic acid biosynthesis as well as genes that code for glyoxalase I, catalase-peroxidases, and superoxide dismutases. The existence of these genes suggests that L. rhinocerus may contain bioactive compound(s) with anti-glycation properties that can be exploited for management of diabetic complications. A medium-molecular-weight (MMW) fraction which was obtained from a combination of cold water extraction and Sephadex® G-50 (fine) gel filtration chromatography of L. rhinocerus sclerotia powder was demonstrated to exhibit potent anti-glycation activity. The fraction specifically inhibited the formation of N𝜀-(carboxymethyl)lysine, pentosidine, and other advanced glycation end-product (AGE) structures in a human serum albumin-glucose system, with an IC50 value of 0.001 mg/ml, almost 520 times lower than that of the positive control, aminoguanidine hydrochloride (IC50 = 0.52 mg/ml). Its ability to suppress protein glycation may be partly associated with its strong superoxide anion radical scavenging activity (10.16 ± 0.12 mmol TE/g). Our results suggest that the MMW fraction of L. rhinocerus shows potential to be developed into a potent glycation inhibitor for preventing AGE-mediated diabetic complications.
Collapse
Affiliation(s)
- Hui-Yeng Y Yap
- Department of Oral Biology, Faculty of Dentistry, Mahsa University, Kuala Lumpur, Malaysia.,Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget-Hong Tan
- Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Szu-Ting Ng
- LiGNO Biotech Sdn Bhd, Balakong Jaya, Malaysia
| | | | - Shin-Yee Fung
- Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Center for Natural Products Research and Drug Discovery, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
124
|
Castrillo M, Luque EM, Pardo-Medina J, Limón MC, Corrochano LM, Avalos J. Transcriptional basis of enhanced photoinduction of carotenoid biosynthesis at low temperature in the fungus Neurospora crassa. Res Microbiol 2018; 169:78-89. [DOI: 10.1016/j.resmic.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/21/2023]
|
125
|
|
126
|
Oliveira AS, Braga GUL, Rangel DEN. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Fungal Biol 2017; 122:555-562. [PMID: 29801800 DOI: 10.1016/j.funbio.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022]
Abstract
Light conditions during fungal growth are well known to cause several physiological adaptations in the conidia produced. In this study, conidia of the entomopathogenic fungi Metarhizium robertsii were produced on: 1) potato dextrose agar (PDA) medium in the dark; 2) PDA medium under white light (4.98 W m-2); 3) PDA medium under blue light (4.8 W m-2); 4) PDA medium under red light (2.8 W m-2); and 5) minimum medium (Czapek medium without sucrose) supplemented with 3 % lactose (MML) in the dark. The conidial production, the speed of conidial germination, and the virulence to the insect Tenebrio molitor (Coleoptera: Tenebrionidae) were evaluated. Conidia produced on MML or PDA medium under white or blue light germinated faster than conidia produced on PDA medium in the dark. Conidia produced under red light germinated slower than conidia produced on PDA medium in the dark. Conidia produced on MML were the most virulent, followed by conidia produced on PDA medium under white light. The fungus grown under blue light produced more conidia than the fungus grown in the dark. The quantity of conidia produced for the fungus grown in the dark, under white, and red light was similar. The MML afforded the least conidial production. In conclusion, white light produced conidia that germinated faster and killed the insects faster; in addition, blue light afforded the highest conidial production.
Collapse
Affiliation(s)
- Ariel S Oliveira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil; Instituto de Ciências e Tecnologia, Universidade Brasil, São Paulo, SP 08230-030, Brazil.
| |
Collapse
|
127
|
Patiño-Medina JA, Maldonado-Herrera G, Pérez-Arques C, Alejandre-Castañeda V, Reyes-Mares NY, Valle-Maldonado MI, Campos-García J, Ortiz-Alvarado R, Jácome-Galarza IE, Ramírez-Díaz MI, Garre V, Meza-Carmen V. Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides. Curr Genet 2017; 64:853-869. [DOI: 10.1007/s00294-017-0798-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022]
|
128
|
Nagy G, Szebenyi C, Csernetics Á, Vaz AG, Tóth EJ, Vágvölgyi C, Papp T. Development of a plasmid free CRISPR-Cas9 system for the genetic modification of Mucor circinelloides. Sci Rep 2017; 7:16800. [PMID: 29196656 PMCID: PMC5711797 DOI: 10.1038/s41598-017-17118-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022] Open
Abstract
Mucor circinelloides and other members of Mucorales are filamentous fungi, widely used as model organisms in basic and applied studies. Although genetic manipulation methods have been described for some Mucoral fungi, construction of stable integrative transformants by homologous recombination has remained a great challenge in these organisms. In the present study, a plasmid free CRISPR-Cas9 system was firstly developed for the genetic modification of a Mucoral fungus. The described method offers a rapid but robust tool to obtain mitotically stable mutants of M. circinelloides via targeted integration of the desired DNA. It does not require plasmid construction and its expression in the recipient organism. Instead, it involves the direct introduction of the guide RNA and the Cas9 enzyme and, in case of homology directed repair (HDR), the template DNA into the recipient strain. Efficiency of the method for non-homologous end joining (NHEJ) and HDR was tested by disrupting two different genes, i.e. carB encoding phytoene dehydrogenase and hmgR2 encoding 3-hydroxy-3-methylglutaryl-CoA reductase, of M. circinelloides. Both NHEJ and HDR resulted in stable gene disruption mutants. While NHEJ caused extensive deletions upstream from the protospacer adjacent motif, HDR assured the integration of the deletion cassette at the targeted site.
Collapse
Affiliation(s)
- Gábor Nagy
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Csilla Szebenyi
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Árpád Csernetics
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Amanda Grace Vaz
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Eszter Judit Tóth
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Tamás Papp
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
129
|
Bignell E, Cairns TC, Throckmorton K, Nierman WC, Keller NP. Secondary metabolite arsenal of an opportunistic pathogenic fungus. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0023. [PMID: 28080993 DOI: 10.1098/rstb.2016.0023] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Aspergillus fumigatus is a versatile fungus able to successfully exploit diverse environments from mammalian lungs to agricultural waste products. Among its many fitness attributes are dozens of genetic loci containing biosynthetic gene clusters (BGCs) producing bioactive small molecules (often referred to as secondary metabolites or natural products) that provide growth advantages to the fungus dependent on environment. Here we summarize the current knowledge of these BGCs-18 of which can be named to product-their expression profiles in vivo, and which BGCs may enhance virulence of this opportunistic human pathogen. Furthermore, we find extensive evidence for the presence of many of these BGCs, or similar BGCs, in distantly related genera including the emerging pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, and suggest such BGCs may be predictive of pathogenic potential in other fungi.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Elaine Bignell
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, 2.24 Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Timothy C Cairns
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Kurt Throckmorton
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA, .,Department of Medical Microbiology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
130
|
Gan HM, Thomas BN, Cavanaugh NT, Morales GH, Mayers AN, Savka MA, Hudson AO. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick ( Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis. PeerJ 2017; 5:e4030. [PMID: 29158974 PMCID: PMC5691792 DOI: 10.7717/peerj.4030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Abstract
In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.
Collapse
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology-School of Life and Environmental Sciences, Deakin University, Victoria, Australia.,Genomics Facility, Monash University, Selangor, Malaysia.,School of Science, Monash University, Selangor, Malaysia
| | - Bolaji N Thomas
- College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Nicole T Cavanaugh
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Grace H Morales
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Ashley N Mayers
- College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Michael A Savka
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - André O Hudson
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
131
|
Bai X, Zhu S, Wang X, Zhang W, Liu C, Lu X. Identification of a fabZ gene essential for flexirubin synthesis in Cytophaga hutchinsonii. FEMS Microbiol Lett 2017; 364:4157787. [PMID: 28961729 DOI: 10.1093/femsle/fnx197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 09/12/2017] [Indexed: 01/11/2023] Open
Abstract
Cytophaga hutchinsonii, an aerobic soil bacterium which could degrade cellulose, produces yellow flexirubin pigments. In this study, fabZ, annotated as a putative β-hydroxyacyl-(acyl carrier protein) (ACP) dehydratase gene, was identified by insertional mutation and gene deletion as an essential gene for flexirubin pigment synthesis. The availability of a FabZ mutant that fails to produce flexirubin allowed us to investigate the biological role of the pigment in C. hutchinsonii. Loss of flexirubin made the FabZ mutant more sensitive to UV radiation, oxidative stress and alkaline stress than the wild type.
Collapse
Affiliation(s)
- Xinfeng Bai
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 250100 Jinan, China.,Biology Institute of Shandong Academy of Sciences/Key Laboratory for Biosensors of Shandong Province, 250014 Jinan, China
| | - Shibo Zhu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 250100 Jinan, China
| | - Xifeng Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 250100 Jinan, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 250100 Jinan, China
| | - Changheng Liu
- Biology Institute of Shandong Academy of Sciences/Key Laboratory for Biosensors of Shandong Province, 250014 Jinan, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 250100 Jinan, China
| |
Collapse
|
132
|
Hillman ET, Readnour LR, Solomon KV. Exploiting the natural product potential of fungi with integrated -omics and synthetic biology approaches. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
133
|
Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z, Zheng W. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Curr Genet 2017; 64:285-301. [PMID: 28918485 DOI: 10.1007/s00294-017-0747-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
In eukaryotic organisms, the 5-oxoprolinase is one of the six key enzymes in the γ-glutamyl cycle that is involved in the biosynthetic pathway of glutathione (GSH, an antioxidative tripeptide counteracting the oxidative stress). To date, little is known about the biological functions of the 5-oxoprolinase in filamentous phytopathogenic fungi. In this study, we investigated the 5-oxoprolinase in Fusarium graminearum for the first time. In F. graminearum, two paralogous genes (FgOXP1 and FgOXP2) were identified to encode the 5-oxoprolinase while only one homologous gene encoding the 5-oxoprolinase could be found in other filamentous phytopathogenic fungi or Saccharomyces cerevisiae. Deletion of FgOXP1 or FgOXP2 in F. graminearum led to significant defects in its virulence on wheat. This is likely caused by an observed decreased deoxynivalenol (DON, a mycotoxin) production in the gene deletion mutant strains as DON is one of the best characterized virulence factors of F. graminearum. The FgOXP2 deletion mutant strains were also defective in conidiation and sexual reproduction while the FgOXP1 deletion mutant strains were normal for those phenotypes. Double deletion of FgOXP1 and FgOXP2 led to more severe defects in conidiation, DON production and virulence on plants, suggesting that both FgOXP1 and FgOXP2 play a role in fungal development and plant colonization. Although transformation of MoOXP1into ΔFgoxp1 was able to complement ΔFgoxp1, transformation of MoOXP1 into ΔFgoxp2 failed to restore its defects in sexual development, DON production and pathogenicity. Taken together, these results suggest that FgOXP1 and FgOXP2 are likely to have been functionally diversified and play significant roles in fungal development and full virulence in F. graminearum.
Collapse
Affiliation(s)
- Piao Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunyun Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiming Wu
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenqin Fang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qifu Liang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yangling Zheng
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Stefan Olsson
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongmei Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Zhou
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Ocean College, Minjiang University, Fuzhou, 350108, China.
| | - Wenhui Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
134
|
|
135
|
Cairns T, Meyer V. In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici. BMC Genomics 2017; 18:631. [PMID: 28818040 PMCID: PMC5561558 DOI: 10.1186/s12864-017-3969-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Fungal pathogens of plants produce diverse repertoires of secondary metabolites, which have functions ranging from iron acquisition, defense against immune perturbation, to toxic assaults on the host. The wheat pathogen Zymoseptoria tritici causes Septoria tritici blotch, a foliar disease which is a significant threat to global food security. Currently, there is limited knowledge of the secondary metabolite arsenal produced by Z. tritici, which significantly restricts mechanistic understanding of infection. In this study, we analyzed the genome of Z. tritici isolate IP0323 to identify putative secondary metabolite biosynthetic gene clusters, and used comparative genomics to predict their encoded products. RESULTS We identified 32 putative secondary metabolite clusters. These were physically enriched at subtelomeric regions, which may facilitate diversification of cognate products by rapid gene rearrangement or mutations. Comparative genomics revealed a four gene cluster with significant similarity to the ferrichrome-A biosynthetic locus of the maize pathogen Ustilago maydis, suggesting this siderophore is deployed by Z. tritici to acquire iron. The Z. tritici genome also contains several isoprenoid biosynthetic gene clusters, including one with high similarity to a carotenoid/opsin producing locus in several fungi. Furthermore, we identify putative phytotoxin biosynthetic clusters, suggesting Z. tritici can produce an epipolythiodioxopiperazine, and a polyketide and non-ribosomal peptide with predicted structural similarities to fumonisin and the Alternaria alternata AM-toxin, respectively. Interrogation of an existing transcriptional dataset suggests stage specific deployment of numerous predicted loci during infection, indicating an important role of these secondary metabolites in Z. tritici disease. CONCLUSIONS We were able to assign putative biosynthetic products to numerous clusters based on conservation amongst other fungi. However, analysis of the majority of secondary metabolite loci did not enable prediction of a cluster product, and consequently the capacity of these loci to play as yet undetermined roles in disease or other stages of the Z. tritici lifecycle is significant. These data will drive future experimentation for determining the role of these clusters and cognate secondary metabolite products in Z. tritici virulence, and may lead to discovery of novel bioactive molecules.
Collapse
Affiliation(s)
- Timothy Cairns
- Institute of Biotechnology, Department of Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| | - Vera Meyer
- Institute of Biotechnology, Department of Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
136
|
Kang L, Ji CY, Kim SH, Ke Q, Park SC, Kim HS, Lee HU, Lee JS, Park WS, Ahn MJ, Lee HS, Deng X, Kwak SS. Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 117:24-33. [PMID: 28587990 DOI: 10.1016/j.plaphy.2017.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 05/13/2023]
Abstract
β-carotene, a carotenoid that plays a key photo-protective role in plants is converted into zeaxanthin by β-carotene hydroxylase (CHY-β). Previous work showed that down-regulation of IbCHY-β by RNA interference (RNAi) results in higher levels of β-carotene and total carotenoids, as well as salt stress tolerance, in cultured transgenic sweetpotato cells. In this study, we introduced the RNAi-IbCHY-β construct into a white-fleshed sweetpotato cultivar (cv. Yulmi) by Agrobacterium-mediated transformation. Among the 13 resultant transgenic sweetpotato plants (referred to as RC plants), three lines were selected for further characterization on the basis of IbCHY-β transcript levels. The RC plants had orange flesh, total carotenoid and β-carotene contents in storage roots were 2-fold and 16-fold higher, respectively, than those of non-transgenic (NT) plants. Unlike storage roots, total carotenoid and β-carotene levels in the leaves of RC plants were slightly increased compared to NT plants. The leaves of RC plants also exhibited tolerance to methyl viologen (MV)-mediated oxidative stress, which was associated with higher 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical-scavenging activity. In addition, RC plants maintained higher levels of chlorophyll and higher photosystem II efficiency than NT plants after 250 mM NaCl stress. Yield of storage roots did not differ significantly between RC and NT plants. These observations suggest that RC plants might be useful as a nutritious and environmental stress-tolerant crop on marginal lands around the world.
Collapse
Affiliation(s)
- Le Kang
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| | - Sun Ha Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Hyeong-Un Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, 199 Muan-ro, Muan-gun 58545, South Korea
| | - Joon Seol Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, 199 Muan-ro, Muan-gun 58545, South Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, South Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, South Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Shaanxi, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea.
| |
Collapse
|
137
|
Iquebal MA, Tomar RS, Parakhia MV, Singla D, Jaiswal S, Rathod VM, Padhiyar SM, Kumar N, Rai A, Kumar D. Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence. Sci Rep 2017; 7:5299. [PMID: 28706242 PMCID: PMC5509663 DOI: 10.1038/s41598-017-05478-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Groundnut (Arachis hypogaea L.) is an important oil seed crop having major biotic constraint in production due to stem rot disease caused by fungus, Athelia rolfsii causing 25–80% loss in productivity. As chemical and biological combating strategies of this fungus are not very effective, thus genome sequencing can reveal virulence and pathogenicity related genes for better understanding of the host-parasite interaction. We report draft assembly of Athelia rolfsii genome of ~73 Mb having 8919 contigs. Annotation analysis revealed 16830 genes which are involved in fungicide resistance, virulence and pathogenicity along with putative effector and lethal genes. Secretome analysis revealed CAZY genes representing 1085 enzymatic genes, glycoside hydrolases, carbohydrate esterases, carbohydrate-binding modules, auxillary activities, glycosyl transferases and polysaccharide lyases. Repeat analysis revealed 11171 SSRs, LTR, GYPSY and COPIA elements. Comparative analysis with other existing ascomycotina genome predicted conserved domain family of WD40, CYP450, Pkinase and ABC transporter revealing insight of evolution of pathogenicity and virulence. This study would help in understanding pathogenicity and virulence at molecular level and development of new combating strategies. Such approach is imperative in endeavour of genome based solution in stem rot disease management leading to better productivity of groundnut crop in tropical region of world.
Collapse
Affiliation(s)
- M A Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Rukam S Tomar
- Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - M V Parakhia
- Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - Deepak Singla
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - V M Rathod
- Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - S M Padhiyar
- Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - Neeraj Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India.
| |
Collapse
|
138
|
Avalos J, Pardo-Medina J, Parra-Rivero O, Ruger-Herreros M, Rodríguez-Ortiz R, Hornero-Méndez D, Limón MC. Carotenoid Biosynthesis in Fusarium. J Fungi (Basel) 2017; 3:E39. [PMID: 29371556 PMCID: PMC5715946 DOI: 10.3390/jof3030039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023] Open
Abstract
Many fungi of the genus Fusarium stand out for the complexity of their secondary metabolism. Individual species may differ in their metabolic capacities, but they usually share the ability to synthesize carotenoids, a family of hydrophobic terpenoid pigments widely distributed in nature. Early studies on carotenoid biosynthesis in Fusariumaquaeductuum have been recently extended in Fusarium fujikuroi and Fusarium oxysporum, well-known biotechnological and phytopathogenic models, respectively. The major Fusarium carotenoid is neurosporaxanthin, a carboxylic xanthophyll synthesized from geranylgeranyl pyrophosphate through the activity of four enzymes, encoded by the genes carRA, carB, carT and carD. These fungi produce also minor amounts of β-carotene, which may be cleaved by the CarX oxygenase to produce retinal, the rhodopsin's chromophore. The genes needed to produce retinal are organized in a gene cluster with a rhodopsin gene, while other carotenoid genes are not linked. In the investigated Fusarium species, the synthesis of carotenoids is induced by light through the transcriptional induction of the structural genes. In some species, deep-pigmented mutants with up-regulated expression of these genes are affected in the regulatory gene carS. The molecular mechanisms underlying the control by light and by the CarS protein are currently under investigation.
Collapse
Affiliation(s)
- Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Javier Pardo-Medina
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Obdulia Parra-Rivero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Macarena Ruger-Herreros
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Roberto Rodríguez-Ortiz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
- Present Address: CONACYT-Instituto de Neurobiología-UNAM, Juriquilla, Querétaro 076230, Mexico.
| | - Dámaso Hornero-Méndez
- Departamento de Fitoquímica de los Alimentos, Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | - María Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
139
|
Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae. Proc Natl Acad Sci U S A 2017; 114:E5871-E5880. [PMID: 28674017 DOI: 10.1073/pnas.1706865114] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Carotenoids underlie many of the vibrant yellow, orange, and red colors in animals, and are involved in processes ranging from vision to protection from stresses. Most animals acquire carotenoids from their diets because de novo synthesis of carotenoids is primarily limited to plants and some bacteria and fungi. Recently, sequencing projects in aphids and adelgids, spider mites, and gall midges identified genes with homology to fungal sequences encoding de novo carotenoid biosynthetic proteins like phytoene desaturase. The finding of horizontal gene transfers of carotenoid biosynthetic genes to three arthropod lineages was unprecedented; however, the relevance of the transfers for the arthropods that acquired them has remained largely speculative, which is especially true for spider mites that feed on plant cell contents, a known source of carotenoids. Pigmentation in spider mites results solely from carotenoids. Using a combination of genetic approaches, we show that mutations in a single horizontally transferred phytoene desaturase result in complete albinism in the two-spotted spider mite, Tetranychus urticae, as well as in the citrus red mite, Panonychus citri Further, we show that phytoene desaturase activity is essential for photoperiodic induction of diapause in an overwintering strain of T. urticae, consistent with a role for this enzyme in provisioning provitamin A carotenoids required for light perception. Carotenoid biosynthetic genes of fungal origin have therefore enabled some mites to forgo dietary carotenoids, with endogenous synthesis underlying their intense pigmentation and ability to enter diapause, a key to the global distribution of major spider mite pests of agriculture.
Collapse
|
140
|
Narsing Rao MP, Xiao M, Li WJ. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications. Front Microbiol 2017; 8:1113. [PMID: 28690593 PMCID: PMC5479939 DOI: 10.3389/fmicb.2017.01113] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications.
Collapse
Affiliation(s)
- Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesÛrúmqi, China
| |
Collapse
|
141
|
Zhang P, Wang X, Fan A, Zheng Y, Liu X, Wang S, Zou H, Oakley BR, Keller NP, Yin WB. A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development inPestalotiopsis fici. Mol Microbiol 2017; 105:469-483. [DOI: 10.1111/mmi.13711] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xiuna Wang
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou People's Republic of China
| | - Aili Fan
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Yanjing Zheng
- Zhejiang Provincial (Wenzhou) Key Lab for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science; Wenzhou University; Wenzhou People's Republic of China
| | - Xingzhong Liu
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou People's Republic of China
| | - Huixi Zou
- Zhejiang Provincial (Wenzhou) Key Lab for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science; Wenzhou University; Wenzhou People's Republic of China
| | - Berl R. Oakley
- Department of Molecular Biosciences; University of Kansas; Lawrence KS USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology; University of Wisconsin-Madison; Madison Wisconsin, WI USA
| | - Wen-Bing Yin
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences; Beijing People's Republic of China
| |
Collapse
|
142
|
Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol 2017; 4:4. [PMID: 28955473 PMCID: PMC5611665 DOI: 10.1186/s40694-017-0033-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 01/14/2023] Open
Abstract
Filamentous fungi, including the ascomycetes Monascus, Fusarium, Penicillium and Neurospora, are being explored as novel sources of natural pigments with biological functionality for food, feed and cosmetic applications. Such edible fungi can be used in biorefineries for the production of ethanol, animal feed and pigments from waste sources. The present review gathers insights on fungal pigment production covering biosynthetic pathways and stimulatory factors (oxidative stress, light, pH, nitrogen and carbon sources, temperature, co-factors, surfactants, oxygen, tricarboxylic acid intermediates and morphology) in addition to pigment extraction, analysis and identification methods. Pigmentation is commonly regarded as the output of secondary protective mechanisms against oxidative stress and light. Although several studies have examined pigmentation in Monascus spp., research gaps exist in the investigation of interactions among factors as well as process development on larger scales under submerged and solid-state fermentation. Currently, research on pigmentation in Neurospora spp. is at its infancy, but the increasing interest for biorefineries shows potential for booming research in this area.
Collapse
Affiliation(s)
- Rebecca Gmoser
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden.,University of Borås, Allégatan 1, 503 32 Borås, Sweden
| | - Jorge A Ferreira
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | | | | |
Collapse
|
143
|
Soukup AA, Fischer GJ, Luo J, Keller NP. The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism. Fungal Genet Biol 2017; 100:13-21. [PMID: 28089630 PMCID: PMC5337145 DOI: 10.1016/j.fgb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 01/18/2023]
Abstract
P bodies and stress granules are RNA-containing structures governing mRNA degradation and translational arrest, respectively. Saccharomyces cerevisiae Pbp1 protein localizes to stress granules and promotes their formation and is involved in proper polyadenylation, suppression of RNA-DNA hybrids, and preventing aberrant rDNA recombination. A genetic screen for Aspergillus nidulans mutants aberrant in secondary metabolism identified the Pbp1 homolog, PbpA. Using Dcp1 (mRNA decapping) as a marker for P-body formation and FabM (Pab1, poly-A binding protein) to track stress granule accumulation, we examine the dynamics of RNA granule formation in A. nidulans cells lacking pub1, edc3, and pbpA. Although PbpA acts as a functional homolog of yeast PBP1, PbpA had little impact on either P-body or stress granule formation in A. nidulans in contrast to Pub1 and Edc3. However, we find that PbpA is critical for sexual development and its loss increases the production of some secondary metabolites including the carcinogen sterigmatocystin.
Collapse
Affiliation(s)
- Alexandra A Soukup
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Jerry Luo
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, WI, United States.
| |
Collapse
|
144
|
Looi HK, Toh YF, Yew SM, Na SL, Tan YC, Chong PS, Khoo JS, Yee WY, Ng KP, Kuan CS. Genomic insight into pathogenicity of dematiaceous fungus Corynespora cassiicola. PeerJ 2017; 5:e2841. [PMID: 28149676 PMCID: PMC5274520 DOI: 10.7717/peerj.2841] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023] Open
Abstract
Corynespora cassiicola is a common plant pathogen that causes leaf spot disease in a broad range of crop, and it heavily affect rubber trees in Malaysia (Hsueh, 2011; Nghia et al., 2008). The isolation of UM 591 from a patient's contact lens indicates the pathogenic potential of this dematiaceous fungus in human. However, the underlying factors that contribute to the opportunistic cross-infection have not been fully studied. We employed genome sequencing and gene homology annotations in attempt to identify these factors in UM 591 using data obtained from publicly available bioinformatics databases. The assembly size of UM 591 genome is 41.8 Mbp, and a total of 13,531 (≥99 bp) genes have been predicted. UM 591 is enriched with genes that encode for glycoside hydrolases, carbohydrate esterases, auxiliary activity enzymes and cell wall degrading enzymes. Virulent genes comprising of CAZymes, peptidases, and hypervirulence-associated cutinases were found to be present in the fungal genome. Comparative analysis result shows that UM 591 possesses higher number of carbohydrate esterases family 10 (CE10) CAZymes compared to other species of fungi in this study, and these enzymes hydrolyses wide range of carbohydrate and non-carbohydrate substrates. Putative melanin, siderophore, ent-kaurene, and lycopene biosynthesis gene clusters are predicted, and these gene clusters denote that UM 591 are capable of protecting itself from the UV and chemical stresses, allowing it to adapt to different environment. Putative sterigmatocystin, HC-toxin, cercosporin, and gliotoxin biosynthesis gene cluster are predicted. This finding have highlighted the necrotrophic and invasive nature of UM 591.
Collapse
Affiliation(s)
- Hong Keat Looi
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Yue Fen Toh
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Su Mei Yew
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Shiang Ling Na
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Yung-Chie Tan
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Pei-Sin Chong
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Jia-Shiun Khoo
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Wai-Yan Yee
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Sian Kuan
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
145
|
Morin-Sardin S, Nodet P, Coton E, Jany JL. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2016.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
146
|
Urista CM, Rodríguez JG, Corona AA, Cuenca AA, Jurado AT. Pigments from fungi, an opportunity of production for diverse applications. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
147
|
Nguyen Van Long N, Vasseur V, Coroller L, Dantigny P, Le Panse S, Weill A, Mounier J, Rigalma K. Temperature, water activity and pH during conidia production affect the physiological state and germination time of Penicillium species. Int J Food Microbiol 2016; 241:151-160. [PMID: 27780083 DOI: 10.1016/j.ijfoodmicro.2016.10.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/28/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022]
Abstract
Conidial germination and mycelial growth are generally studied with conidia produced under optimal conditions to increase conidial yield. Nonetheless, the physiological state of such conidia most likely differs from those involved in spoilage of naturally contaminated food. The present study aimed at investigating the impact of temperature, pH and water activity (aw) during production of conidia on the germination parameters and compatible solutes of conidia of Penicillium roqueforti and Penicillium expansum. Low temperature (5°C) and reduced aw (0.900 aw) during sporulation significantly reduced conidial germination times whereas the pH of the sporulation medium only had a slight effect at the tested values (2.5, 8.0). Conidia of P. roqueforti produced at 5°C germinated up to 45h earlier than those produced at 20°C. Conidia of P. roqueforti and P. expansum produced at 0.900 aw germinated respectively up to 8h and 3h earlier than conidia produced at 0.980 aw. Furthermore, trehalose and mannitol assessments suggested that earlier germination might be related to delayed conidial maturation even though no ultra-structural modifications were observed by transmission electron microscopy. Taken together, these results highlight the importance of considering environmental conditions during sporulation in mycological studies. The physiological state of fungal conidia should be taken into account to design challenge tests or predictive mycology studies. This knowledge may also be of interest to improve the germination capacity of fungal cultures commonly used in fermented foods.
Collapse
Affiliation(s)
- Nicolas Nguyen Van Long
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Valérie Vasseur
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Louis Coroller
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, UMT Spore Risk, IUT Quimper, 6 rue de l'Université, 29334 Quimper, France
| | - Philippe Dantigny
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Sophie Le Panse
- Plateforme Merimage, Station Biologique de Roscoff, CNRS-UPMC, Place Georges Teissier, CS90074, 29688 Roscoff, Cedex, France
| | - Amélie Weill
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Mounier
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Karim Rigalma
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
148
|
Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content. Curr Microbiol 2016; 72:94-101. [PMID: 26483082 DOI: 10.1007/s00284-015-0928-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
Yeasts colonizing the Antarctic region are exposed to a high ultraviolet radiation evolving mechanisms to minimize the UV radiation damages, such as the production of UV-absorbing or antioxidant compounds like carotenoid pigments and mycosporines. Ergosterol has also been suggested to play a role in this response. These compounds are also economically attractive for several industries such as pharmaceutical and food, leading to a continuous search for biological sources of them. In this work, the UV-C radiation tolerance of yeast species isolated from the sub-Antarctic region and their production of carotenoids, mycosporines, and ergosterol were evaluated. Dioszegia sp., Leuconeurospora sp. (T27Cd2), Rhodotorula laryngis, Rhodotorula mucilaginosa, and Cryptococcus gastricus showed the highest UV-C radiation tolerance. The yeasts with the highest content of carotenoids were Dioszegia sp. (OHK torulene), Rh. laryngis (torulene and lycopene), Rh. mucilaginosa, (torulene, gamma carotene, and lycopene), and Cr. gastricus (2-gamma carotene). Probable mycosporine molecules and biosynthesis intermediates were found in Rh. laryngis, Dioszegia sp., Mrakia sp., Le. creatinivora, and Leuconeurospora sp. (T27Cd2). Ergosterol was the only sterol detected in all yeasts, and M. robertii and Le. creatinivora showed amounts higher than 4 mg g−1. Although there was not a well-defined relation between UV-C tolerance and the production of these three kinds of compounds, the majority of the yeasts with lower amounts of carotenoids showed lower UV-C tolerance. Dioszegia sp., M. robertii, and Le. creatinivora were the greatest producers of carotenoids, ergosterol, and mycosporines, respectively, representing good candidates for future studies intended to increase their production for large-scale applications.
Collapse
|
149
|
Hernández-Almanza A, Montañez J, Martínez G, Aguilar-Jiménez A, Contreras-Esquivel JC, Aguilar CN. Lycopene: Progress in microbial production. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
150
|
A single desaturase gene from red yeast Sporidiobolus pararoseus is responsible for both four- and five-step dehydrogenation of phytoene. Gene 2016; 590:169-76. [DOI: 10.1016/j.gene.2016.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 01/28/2023]
|