101
|
Franceschini A, Strammiello R, Capellari S, Giese A, Parchi P. Regional pattern of microgliosis in sporadic Creutzfeldt-Jakob disease in relation to phenotypic variants and disease progression. Neuropathol Appl Neurobiol 2018; 44:574-589. [PMID: 29345730 DOI: 10.1111/nan.12461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022]
Abstract
AIMS The aim of this study was to describe the regional profiles of microglial activation in sporadic Creutzfeldt-Jakob disease (sCJD) subtypes and analyse the influence of prion strain, disease duration and codon 129 genotype. METHODS We studied the amount/severity and distribution of activated microglia, protease-resistant prion protein (PrPSc ) spongiform change, and astrogliosis in eight regions of 57 brains, representative of the entire spectrum of sCJD subtypes. RESULTS In each individual subtype, the regional extent and distribution of microgliosis significantly correlated with PrPSc deposition and spongiform change, leading to subtype-specific 'lesion profiles'. However, large differences in the ratio between PrPSc load or the score of spongiform change and microglial activation were seen among disease subtypes. Most significantly, atypical sCJD subtypes such as VV1 and MM2T showed a degree of microglial activation comparable to other disease variants despite the relatively low PrPSc deposition and the less severe spongiform change. Moreover, the mean microglial total load was significantly higher in subtype MM1 than in MM2C, whereas the opposite was true for the PrPSc and spongiform change total loads. Finally, some sCJD subtypes showed distinctive regional cerebellar profiles of microgliosis characterized by a high granular/molecular layer ratio (MV2K) and/or a predominant involvement of white matter (MVK and MM2T). CONCLUSIONS Microglial activation is an early event in sCJD pathogenesis and is strongly influenced by prion strain, PRNP codon 129 genotype and disease duration. Microglial lesion profiling, by highlighting strain-specific properties of prions, contributes to prion strain characterization and classification of human prion diseases, and represents a valid support to molecular and histopathologic typing.
Collapse
Affiliation(s)
- A Franceschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - R Strammiello
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - S Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Institute of Neurological Sciences, Bologna, Italy
| | - A Giese
- Institut für Neuropathologie und Prion Forschung, Ludwig-Maximilians-Universität München, Munich, Germany
| | - P Parchi
- IRCCS, Institute of Neurological Sciences, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
102
|
Abu Rumeileh S, Lattanzio F, Stanzani Maserati M, Rizzi R, Capellari S, Parchi P. Diagnostic Accuracy of a Combined Analysis of Cerebrospinal Fluid t-PrP, t-tau, p-tau, and Aβ42 in the Differential Diagnosis of Creutzfeldt-Jakob Disease from Alzheimer's Disease with Emphasis on Atypical Disease Variants. J Alzheimers Dis 2018; 55:1471-1480. [PMID: 27886009 PMCID: PMC5181677 DOI: 10.3233/jad-160740] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to recent studies, the determination of cerebrospinal fluid (CSF) total tau (t-tau)/phosphorylated tau (p-tau) ratio and total prion protein (t-PrP) levels significantly improves the accuracy of the diagnosis of Alzheimer’s disease (AD) in atypical cases with clinical or laboratory features mimicking Creutzfeldt-Jakob disease (CJD). However, this has neither been validated nor tested in series including atypical CJD variants. Furthermore, the added diagnostic value of amyloid-β (Aβ)42 remains unclear. To address these issues, we measured t-PrP, 14-3-3, t-tau, p-tau, and Aβ42 CSF levels in 45 typical and 44 atypical/rapidly progressive AD patients, 54 typical and 54 atypical CJD patients, and 33 controls. CJD patients showed significantly lower CSF t-PrP levels than controls and AD patients. Furthermore, atypical CJD was associated with lower t-PrP levels in comparison to typical CJD. T-tau, 14-3-3, or t-PrP alone yielded, respectively, 80.6, 63.0, and 73.0% sensitivity and 75.3, 92.1, and 75% specificity in distinguishing AD from CJD. On receiver operating characteristic (ROC) curve analyses of biomarker combinations, the (t-tau×Aβ42)/(p-tau×t-PrP) ratio achieved the best accuracy, with 98.1% sensitivity and 97.7% specificity overall, and 96.2% sensitivity and 95.5% specificity for the “atypical” disease groups. Our results show that the combined analysis of CSF t-PrP, t-tau, p-tau, and Aβ42 is clinically useful in the differential diagnosis between CJD and AD. Furthermore, the finding of reduced CSF t-PrP levels in CJD patients suggest that, likewise Aβ42 in AD, CSF t-PrP levels reflect the extent of PrPc conversion into abnormal PrP (PrPSc) and the burden of PrPSc deposition in CJD.
Collapse
Affiliation(s)
- Samir Abu Rumeileh
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Lattanzio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Romana Rizzi
- Department of Neurology, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| |
Collapse
|
103
|
Grau-Rivera O, Calvo A, Bargalló N, Monté GC, Nos C, Lladó A, Molinuevo JL, Gelpi E, Sánchez-Valle R. Quantitative Magnetic Resonance Abnormalities in Creutzfeldt-Jakob Disease and Fatal Insomnia. J Alzheimers Dis 2018; 55:431-443. [PMID: 27662320 DOI: 10.3233/jad-160750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Quantitative neuroimaging might unveil abnormalities in prion diseases that are not perceivable at visual inspection. On the other hand, scarce studies have quantified volumetric changes in prion diseases. OBJECTIVES We aim to characterize volumetric and diffusion tensor imaging (DTI) changes in patients with prion diseases who presented with either Creutzfeldt-Jakob disease (CJD) or fatal insomnia (FI) phenotype. METHODS Twenty patients with prion diseases- 15 with CJD and 5 with fatal insomnia (FI)- and 40 healthy controls were examined with a 3-Tesla magnetic resonance imaging scanner. Images were segmented and normalized with SPM12. DTI maps were obtained with FMRIB Software Library. Whole-brain voxel-wise and region-of-interest analyses of volumetric and DTI changes were performed with SPM12. White matter (WM) changes were also analyzed with tract-based spatial statistics. Semiquantitive assessment of neuropathological parameters was compared with DTI metrics in thalamus from 11 patients. RESULTS Patients with CJD and FI presented significant atrophy in thalamus and cerebellum. In CJD, mean diffusivity (MD) was decreased in striatum and increased in subcortical WM, while both increased and decreased values were observed across different thalamic nuclei. In FI, MD was increased in thalamus and cerebellum. Spongiform change and PrPSc deposition were more intense in thalamus in CJD than in FI, although no significant correlations arose with MD values in the nuclei studied. CONCLUSION Volumetric and DTI abnormalities suggest a central common role of the thalamus in prion diseases. We report, for the first time, quantitative MRI changes in FI, and provide further evidence of WM involvement in prion diseases.
Collapse
Affiliation(s)
- Oriol Grau-Rivera
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Calvo
- Magnetic Resonance Image core facility of IDIBAPS, Barcelona, Spain
| | - Núria Bargalló
- Magnetic Resonance Image core facility of IDIBAPS, Barcelona, Spain.,Radiology Department, Image Diagnosis Center, Hospital Clínic, Barcelona, Spain
| | - Gemma C Monté
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Carlos Nos
- General Subdirectorate of Surveillance and Response to Emergencies in Public Health, Department of Public Health in Catalonia, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - José Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Sánchez-Valle
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| |
Collapse
|
104
|
Zerr I, Schmitz M, Karch A, Villar-Piqué A, Kanata E, Golanska E, Díaz-Lucena D, Karsanidou A, Hermann P, Knipper T, Goebel S, Varges D, Sklaviadis T, Sikorska B, Liberski PP, Santana I, Ferrer I, Zetterberg H, Blennow K, Calero O, Calero M, Ladogana A, Sánchez-Valle R, Baldeiras I, Llorens F. Cerebrospinal fluid neurofilament light levels in neurodegenerative dementia: Evaluation of diagnostic accuracy in the differential diagnosis of prion diseases. Alzheimers Dement 2018; 14:751-763. [PMID: 29391125 DOI: 10.1016/j.jalz.2017.12.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurofilament light (NFL) levels in the cerebrospinal fluid are increased in several neurodegenerative dementias. However, their diagnostic accuracy in the differential diagnostic context is unknown. METHODS Cerebrospinal fluid NFL levels were quantified in nonprimarily neurodegenerative neurological and psychiatric diseases (n = 122), mild cognitive impairment (n = 48), Alzheimer's disease (n = 108), dementia with Lewy bodies/Parkinson's disease dementia (n = 53), vascular dementia (n = 46), frontotemporal dementia (n = 41), sporadic Creutzfeldt-Jakob disease (sCJD, n = 132), and genetic prion diseases (n = 182). RESULTS The highest NFL levels were detected in sCJD, followed by vascular dementia, frontotemporal dementia, dementia with Lewy bodies/Parkinson's disease dementia, Alzheimer's disease, and mild cognitive impairment. In sCJD, NFL levels correlated with cerebrospinal fluid tau and disease duration. NFL levels were able to differentiate sCJD from nonprimarily neurodegenerative neurological and psychiatric diseases (area under the curve = 0.99, 95% confidence interval: 0.99-1) and from the other diagnostic groups showing cognitive impairment/dementia of a non-CJD etiology (area under the curve = 0.90, 95% confidence interval: 0.87-0.92). Compared to nonprimarily neurodegenerative neurological and psychiatric diseases, NFL was also elevated in genetic prion diseases associated with the E200K, V210I, P102L, and D178N prion protein gene mutations. DISCUSSION Increased NFL levels are a common feature in neurodegenerative dementias.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - André Karch
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anna Villar-Piqué
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Daniela Díaz-Lucena
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain
| | - Aikaterini Karsanidou
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Peter Hermann
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Tobias Knipper
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Stefan Goebel
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Daniela Varges
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Isabel Santana
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, CNC- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isidro Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain; Senior Consultant, Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Olga Calero
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain; Alzheimer Disease Research Unit, CIEN Foundation; Queen Sofia Foundation Alzheimer Center; Chronic Disease Programme Carlos III Institute of Health, Madrid, Spain
| | - Miguel Calero
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain; Alzheimer Disease Research Unit, CIEN Foundation; Queen Sofia Foundation Alzheimer Center; Chronic Disease Programme Carlos III Institute of Health, Madrid, Spain
| | - Anna Ladogana
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Inês Baldeiras
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, CNC- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Franc Llorens
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
105
|
Duyckaerts C, Sazdovitch V, Ando K, Seilhean D, Privat N, Yilmaz Z, Peckeu L, Amar E, Comoy E, Maceski A, Lehmann S, Brion JP, Brandel JP, Haïk S. Neuropathology of iatrogenic Creutzfeldt-Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology. Acta Neuropathol 2018; 135:201-212. [PMID: 29209767 DOI: 10.1007/s00401-017-1791-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022]
Abstract
Abeta deposits and tau pathology were investigated in 24 French patients that died from iatrogenic Creutzfeldt-Jakob disease after exposure to cadaver-derived human growth hormone (c-hGH) in the 1980s. Abeta deposits were found only in one case that had experienced one of the longest incubation periods. Three cases had also intracellular tau accumulation. The analysis of 24 batches of c-hGH, produced between 1974 and 1988, demonstrated for the first time the presence of Abeta and tau contaminants in c-hGH (in 17 and 6 batches, respectively). The incubation of prion disease was shorter in the French patients than the incubation times reported in two previously published British series. We interpreted the low incidence of Abeta in this French series as a consequence of the shorter incubation period observed in France, as compared to that observed in the United Kingdom. This concept suggested that a mean incubation period for the development of detectable Abeta deposits would be longer than 18 years after the first exposure. Moreover, we hypothesized that tau pathology might also be transmissible in humans.
Collapse
Affiliation(s)
- Charles Duyckaerts
- Inserm U1127, CNRS UMR 7225, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, 47 boulevard de l'Hôpital, 75013, Paris, France.
- Laboratoire de Neuropathologie R. Escourolle, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France.
| | - Véronique Sazdovitch
- Inserm U1127, CNRS UMR 7225, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, 47 boulevard de l'Hôpital, 75013, Paris, France
- Laboratoire de Neuropathologie R. Escourolle, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Danielle Seilhean
- Inserm U1127, CNRS UMR 7225, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, 47 boulevard de l'Hôpital, 75013, Paris, France
- Laboratoire de Neuropathologie R. Escourolle, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Nicolas Privat
- Inserm U1127, CNRS UMR 7225, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurène Peckeu
- Inserm U1127, CNRS UMR 7225, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Elodie Amar
- Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, AP-HP, Paris, France
| | - Emmanuel Comoy
- Commissariat à l'Energie Atomique, DRF/iMETI/SEPIA, Fontenay-aux-Roses, France
| | - Aleksandra Maceski
- Laboratoire de Biochimie Protéomique Clinique, CHU de Montpellier, CRB, INSERM U1183, Université de Montpellier, Montpellier, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie Protéomique Clinique, CHU de Montpellier, CRB, INSERM U1183, Université de Montpellier, Montpellier, France
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Philippe Brandel
- Inserm U1127, CNRS UMR 7225, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, 47 boulevard de l'Hôpital, 75013, Paris, France
- Hôpital de la Pitié-Salpêtrière, Cellule nationale de référence des MCJ, AP-HP, Paris, France
| | - Stéphane Haïk
- Inserm U1127, CNRS UMR 7225, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, 47 boulevard de l'Hôpital, 75013, Paris, France.
- Laboratoire de Neuropathologie R. Escourolle, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France.
- Hôpital de la Pitié-Salpêtrière, Cellule nationale de référence des MCJ, AP-HP, Paris, France.
| |
Collapse
|
106
|
Mercer RCC, Daude N, Dorosh L, Fu ZL, Mays CE, Gapeshina H, Wohlgemuth SL, Acevedo-Morantes CY, Yang J, Cashman NR, Coulthart MB, Pearson DM, Joseph JT, Wille H, Safar JG, Jansen GH, Stepanova M, Sykes BD, Westaway D. A novel Gerstmann-Sträussler-Scheinker disease mutation defines a precursor for amyloidogenic 8 kDa PrP fragments and reveals N-terminal structural changes shared by other GSS alleles. PLoS Pathog 2018; 14:e1006826. [PMID: 29338055 PMCID: PMC5786331 DOI: 10.1371/journal.ppat.1006826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/26/2018] [Accepted: 12/18/2017] [Indexed: 11/29/2022] Open
Abstract
To explore pathogenesis in a young Gerstmann-Sträussler-Scheinker Disease (GSS) patient, the corresponding mutation, an eight-residue duplication in the hydrophobic region (HR), was inserted into the wild type mouse PrP gene. Transgenic (Tg) mouse lines expressing this mutation (Tg.HRdup) developed spontaneous neurologic syndromes and brain extracts hastened disease in low-expressor Tg.HRdup mice, suggesting de novo formation of prions. While Tg.HRdup mice exhibited spongiform change, PrP aggregates and the anticipated GSS hallmark of a proteinase K (PK)-resistant 8 kDa fragment deriving from the center of PrP, the LGGLGGYV insertion also imparted alterations in PrP's unstructured N-terminus, resulting in a 16 kDa species following thermolysin exposure. This species comprises a plausible precursor to the 8 kDa PK-resistant fragment and its detection in adolescent Tg.HRdup mice suggests that an early start to accumulation could account for early disease of the index case. A 16 kDa thermolysin-resistant signature was also found in GSS patients with P102L, A117V, H187R and F198S alleles and has coordinates similar to GSS stop codon mutations. Our data suggest a novel shared pathway of GSS pathogenesis that is fundamentally distinct from that producing structural alterations in the C-terminus of PrP, as observed in other prion diseases such as Creutzfeldt-Jakob Disease and scrapie. Prion diseases can be sporadic, infectious or genetic. The central event of all prion diseases is the structural conversion of the cellular prion protein (PrPC) to its disease associated conformer, PrPSc. Gerstmann-Sträussler-Scheinker Disease (GSS) is a genetic prion disease presenting as a multi-systemic neurological syndrome. A novel mutation, an eight amino acid insertion, was discovered in a young GSS patient. We created transgenic mice expressing this mutation and found that they recapitulate key features of the disease; namely PrP deposition in the brain and a low molecular weight proteinase K (PK) resistant internal PrP fragment. While structural investigations did not reveal a gross alteration in the conformation of this mutant PrP, the insertion lying at the boundary of the globular domain causes alterations in the unstructured amino terminal portion of the protein such that it becomes resistant to digestion by the enzyme thermolysin. We demonstrate by kinetic analysis and sequential digestion that this novel thermolysin resistant species is a precursor to the pathognomonic PK resistant fragment. Analysis of samples from other GSS patients revealed this same signature, suggesting a common molecular pathway.
Collapse
Affiliation(s)
- Robert C. C. Mercer
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Lyudmyla Dorosh
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ze-Lin Fu
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Charles E. Mays
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Hristina Gapeshina
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene L. Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Neil R. Cashman
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael B. Coulthart
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Dawn M. Pearson
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey T. Joseph
- Hotchkiss Brain Institute and Calgary Laboratory Services, University of Calgary, Calgary, Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiri G. Safar
- Departments of Pathology and Neurology, School of Medicine Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gerard H. Jansen
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
- Division of Anatomical Pathology, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Stepanova
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Brian D. Sykes
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
107
|
Abu-Rumeileh S, Capellari S, Stanzani-Maserati M, Polischi B, Martinelli P, Caroppo P, Ladogana A, Parchi P. The CSF neurofilament light signature in rapidly progressive neurodegenerative dementias. ALZHEIMERS RESEARCH & THERAPY 2018; 10:3. [PMID: 29368621 PMCID: PMC5784714 DOI: 10.1186/s13195-017-0331-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
Background Neurofilament light chain protein (NfL) is a surrogate biomarker of neurodegeneration that has never been systematically tested, either alone or in combination with other biomarkers, in atypical/rapidly progressive neurodegenerative dementias (NDs). Methods Using validated, commercially available enzyme-linked immunosorbent assay kits, we measured cerebrospinal fluid (CSF) NfL, total tau (t-tau), phosphorylated tau, and β-amyloid 42 in subjects with a neuropathological or clinical diagnosis of prion disease (n = 141), Alzheimer’s disease (AD) (n = 73), dementia with Lewy bodies (DLB) (n = 35), or frontotemporal lobar degeneration (FTLD) (n = 44). Several cases with an atypical/rapidly progressive course were included in each group. We evaluated the diagnostic accuracy of every CSF biomarker and their combinations by ROC curve analyses. Results In each patient group CSF NfL showed higher levels than in control subjects, reaching the highest values in those with Creutzfeldt-Jakob disease (CJD). In the latter, NfL showed a divergent, subtype-specific correlation with t-tau, depending on the degree of subcortical involvement and disease duration. Most significantly, patients with classic sporadic CJD (sCJD) MM1 showed a significantly lower concentration of CSF NfL than those with sCJD MV2, despite the much higher t-tau levels and the more rapid clinical course. High NfL levels were also detected in most atypical CJD cases, showing a disease duration longer than 2 years and/or borderline/negative results in other CSF assays (e.g., 14-3-3, t-tau, and prion real-time quaking-induced conversion). Rapidly progressive/atypical cases showed higher NfL levels than typical patients in FTLD, but not in AD or DLB. NfL showed accuracy similar to that of t-tau in discriminating CJD from other NDs, but it had higher efficacy in differentiating atypical forms, especially in regard to Alzheimer’s disease. Conclusions The present data indicate that CSF NfL and t-tau levels reflect distinct pathophysiological mechanisms of neurodegeneration and support the clinical use of NfL as a fast screening biomarker for the differential diagnosis of atypical/rapidly progressive NDs. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0331-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40123, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40123, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Michelangelo Stanzani-Maserati
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Barbara Polischi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139, Bologna, Italy
| | - Paolo Martinelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40123, Bologna, Italy
| | - Paola Caroppo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation "Carlo Besta" Neurological Institute, 20133, Milan, Italy
| | - Anna Ladogana
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139, Bologna, Italy. .,Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy.
| |
Collapse
|
108
|
Pocchiari M, Manson J. Concluding remarks. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:485-488. [PMID: 29887155 DOI: 10.1016/b978-0-444-63945-5.00028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This is the first volume of the Handbook of Clinical Neurology totally devoted to prion diseases. The reason for this choice is to inform neurologists and neuroscientists about the remarkable advances that this field has made in the diagnosis of human and animal prion diseases, understanding the pathogenesis of disease, and in the development of novel in vivo and in vitro models. In recent years, the knowledge of prion replication and mechanisms of prion spreading within the brain and peripheral organs of infected people has also become important for understanding other protein misfolded diseases of the brain, such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Researchers in these diseases have recognized that the process within an individual leading to the deposition of misfolded proteins within the central nervous system shares remarkable common mechanisms with prion diseases, leading to the terminology of "prion-like diseases."
Collapse
Affiliation(s)
| | - Jean Manson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
109
|
Zerr I, Zafar S, Schmitz M, Llorens F. Cerebrospinal fluid in Creutzfeldt–Jakob disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:115-124. [DOI: 10.1016/b978-0-12-804279-3.00008-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
110
|
Ferrer I. Sisyphus in Neverland. J Alzheimers Dis 2018; 62:1023-1047. [PMID: 29154280 PMCID: PMC5870014 DOI: 10.3233/jad-170609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
The study of life and living organisms and the way in which these interact and organize to form social communities have been central to my career. I have been fascinated by biology, neurology, and neuropathology, but also by history, sociology, and art. Certain current historical, political, and social events, some occurring proximally but others affecting people in apparently distant places, have had an impact on me. Epicurus, Seneca, and Camus shared their philosophical positions which I learned from. Many scientists from various disciplines have been exciting sources of knowledge as well. I have created a world of hypothesis and experiments but I have also got carried away by serendipity following unexpected observations. It has not been an easy path; errors and wanderings are not uncommon, and opponents close to home much more abundant than one might imagine. Ambition, imagination, resilience, and endurance have been useful in moving ahead in response to setbacks. In the end, I have enjoyed my dedication to science and I am grateful to have glimpsed beauty in it. These are brief memories of a Spanish neuropathologist born and raised in Barcelona, EU.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Service of Pathological Anatomy, Bellvitge University Hospital; CIBERNED; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
111
|
Llorens F, Thüne K, Martí E, Kanata E, Dafou D, Díaz-Lucena D, Vivancos A, Shomroni O, Zafar S, Schmitz M, Michel U, Fernández-Borges N, Andréoletti O, del Río JA, Díez J, Fischer A, Bonn S, Sklaviadis T, Torres JM, Ferrer I, Zerr I. Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis. PLoS Pathog 2018; 14:e1006802. [PMID: 29357384 PMCID: PMC5794191 DOI: 10.1371/journal.ppat.1006802] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/01/2018] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer's disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, University Medical School, Göttingen, Germany
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Katrin Thüne
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Translational Studies and Biomarkers, Göttingen, Germany
| | | | - Eirini Kanata
- Prion Diseases Research Group, School of Health Sciences, Department Of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniela Díaz-Lucena
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Orr Shomroni
- German Center for Neurodegenerative Diseases (DZNE), Computational Systems Biology, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Translational Studies and Biomarkers, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Translational Studies and Biomarkers, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medical School, Göttingen, Germany
| | | | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | - José Antonio del Río
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | - Juana Díez
- Molecular Virology group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andre Fischer
- German Center for Neurodegenerative Diseases (DZNE), Epigenetics and Systems Medicine in Neurodegenerative Diseases, Göttingen, Germany
| | - Stefan Bonn
- German Center for Neurodegenerative Diseases (DZNE), Computational Systems Biology, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Center for Molecular Neurobiology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodoros Sklaviadis
- Prion Diseases Research Group, School of Health Sciences, Department Of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Senior consultant, Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Translational Studies and Biomarkers, Göttingen, Germany
| |
Collapse
|
112
|
Rossi M, Saverioni D, Di Bari M, Baiardi S, Lemstra AW, Pirisinu L, Capellari S, Rozemuller A, Nonno R, Parchi P. Atypical Creutzfeldt-Jakob disease with PrP-amyloid plaques in white matter: molecular characterization and transmission to bank voles show the M1 strain signature. Acta Neuropathol Commun 2017; 5:87. [PMID: 29169405 PMCID: PMC5701371 DOI: 10.1186/s40478-017-0496-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/14/2017] [Indexed: 11/10/2022] Open
Abstract
Amyloid plaques formed by abnormal prion protein (PrPSc) aggregates occur with low frequency in Creutzfeldt-Jakob disease, but represent a pathological hallmark of three relatively rare disease histotypes, namely variant CJD, sporadic CJDMV2K (methionine/valine at PRNP codon 129, PrPSc type 2 and kuru-type amyloid plaques) and iatrogenic CJDMMiK (MM at codon 129, PrPSc of intermediate type and kuru plaques). According to recent studies, however, PrP-amyloid plaques involving the subcortical and deep nuclei white matter may also rarely occur in CJDMM1 (MM at codon 129 and PrPSc type 1), the most common CJD histotype.To further characterize the phenotype of atypical CJDMM1 with white matter plaques (p-CJDMM1) and unravel the basis of amyloid plaque formation in such cases, we compared clinical and histopathological features and PrPSc physico-chemical properties between 5 p-CJDMM1 and 8 typical CJDMM1 brains lacking plaques. Furthermore, transmission properties after bioassay in two genetic lines of bank voles were also explored in the two groups.All 5 p-CJDMM1 cases had a disease duration longer than one year. Three cases were classified as sporadic CJDMM1, one as sporadic CJDMM1 + 2C and one as genetic CJDE200K-MM1. Molecular mass, protease sensitivity and thermo-solubilization of PrPSc aggregates did not differ between p-CJDMM1 and classical CJDMM1 cases. Likewise, transmission properties such as incubation time, lesion profile and PrPSc properties in bank voles also matched in the two groups.The present data further define the clinical-pathologic phenotype of p-CJDMM1, definitely establish it as a distinctive CJD histotype and demonstrate that PrP-plaque formation in this histotype is not a strain-specific feature. Since cases lacking amyloid plaques may also manifest a prolonged (i.e. > than one year) disease course, unidentified, host-specific factors likely play a significant role, in addition to disease duration, in generating white matter PrP-amyloid plaques in p-CJDMM1.
Collapse
|
113
|
Miguelez-Rodriguez A, Santos-Juanes J, Vicente-Etxenausia I, Perez de Heredia-Goñi K, Garcia B, Quiros LM, Lorente-Gea L, Guerra-Merino I, Aguirre JJ, Fernandez-Vega I. Brains with sporadic Creutzfeldt-Jakob disease and copathology showed a prolonged end-stage of disease. J Clin Pathol 2017; 71:446-450. [PMID: 29097599 DOI: 10.1136/jclinpath-2017-204794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/28/2023]
Abstract
AIMS To investigate the expression of major proteins related to primary neurodegenerative diseases and their prognostic significance in brains with Creutzfeldt-Jakob disease (CJD). MATERIALS AND METHODS Thirty consecutive cases of confirmed CJD during the period 2010-2015 at Basque Brain bank were retrospectively reviewed. Moreover, major neurodegenerative-associated proteins (phosphorylated Tau, 4R tau, 3R tau, alpha-synuclein, TDP43, amyloid beta) were tested. Clinical data were reviewed. Cases were divided according to the presence or absence of copathology. Survival curves were also determined. RESULTS Copathology was significantly associated with survival in brains with CJD (4.2±1.2 vs 9.2±1.9; P=0.019) and in brains with MM1/MV1 CJD (2.1±1.0 vs 6.7±2.8; P=0.012). Besides, the presence of more than one major neurodegenerative-associated protein was significantly associated with survival (4.2±1.2 vs 10.7±2.6; P=0.017). Thus, univariate analyses further pointed out variables significantly associated with better survival: copathology in CJD (HR=0.430; P=0.033); more than one neurodegenerative-associated protein in CJD (HR=0.369; P=0.036) and copathology in MM1/MV1 CJD (HR=0.525; P=0.032). CONCLUSION The existence of copathology significantly prolongs survival in patients with rapidly progressive dementia due to CJD. The study of major neurodegenerative-associated proteins in brains with CJD could allow us to further understand the molecular mechanisms behind prion diseases.
Collapse
Affiliation(s)
| | - Jorge Santos-Juanes
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ikerne Vicente-Etxenausia
- Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Katty Perez de Heredia-Goñi
- Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Beatriz Garcia
- Scientific Department, Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Luis M Quiros
- Scientific Department, Instituto Universitario Fernández-Vega, Oviedo, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Laura Lorente-Gea
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Isabel Guerra-Merino
- Faculty of Medicine, University of Basque Country, Vitoria, Spain.,Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Vitoria-Gasteiz, Spain.,Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Jose J Aguirre
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Ivan Fernandez-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Vitoria-Gasteiz, Spain.,Scientific Department, Instituto Universitario Fernández-Vega, Oviedo, Spain.,Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| |
Collapse
|
114
|
High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions. Sci Rep 2017; 7:10655. [PMID: 28878311 PMCID: PMC5587608 DOI: 10.1038/s41598-017-10922-w] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
An early and accurate in vivo diagnosis of rapidly progressive dementia remains challenging, despite its critical importance for the outcome of treatable forms, and the formulation of prognosis. Real-Time Quaking-Induced Conversion (RT-QuIC) is an in vitro assay that, for the first time, specifically discriminates patients with prion disease. Here, using cerebrospinal fluid (CSF) samples from 239 patients with definite or probable prion disease and 100 patients with a definite alternative diagnosis, we compared the performance of the first (PQ-CSF) and second generation (IQ-CSF) RT-QuIC assays, and investigated the diagnostic value of IQ-CSF across the broad spectrum of human prions. Our results confirm the high sensitivity of IQ-CSF for detecting human prions with a sub-optimal sensitivity for the sporadic CJD subtypes MM2C and MM2T, and a low sensitivity limited to variant CJD, Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia. While we found no difference in specificity between PQ-CSF and IQ-CSF, the latter showed a significant improvement in sensitivity, allowing prion detection in about 80% of PQ-CSF negative CJD samples. Our results strongly support the implementation of IQ-CSF in clinical practice. By rapidly confirming or excluding CJD with high accuracy the assay is expected to improve the outcome for patients and their enrollment in therapeutic trials.
Collapse
|
115
|
Kovacs GG, Andreasson U, Liman V, Regelsberger G, Lutz MI, Danics K, Keller E, Zetterberg H, Blennow K. Plasma and cerebrospinal fluid tau and neurofilament concentrations in rapidly progressive neurological syndromes: a neuropathology-based cohort. Eur J Neurol 2017; 24:1326-e77. [PMID: 28816001 DOI: 10.1111/ene.13389] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/27/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Cerebrospinal fluid (CSF) tau and neurofilament light chain (NF-L) proteins have proved to be reliable biomarkers for neuronal damage; however, there is a strong need for blood-based tests. METHODS The present study included 132 autopsy cases with rapidly progressive neurological syndromes, including Alzheimer disease (AD) (21), sporadic (65) and genetic (21) Creutzfeldt-Jakob disease (CJD), 25 cases with vascular, neoplastic and inflammatory alterations, and additionally 18 healthy control individuals. CSF tau and NF-L concentrations were measured by enzyme-linked immunosorbent assay. Plasma tau and NF-L concentrations were measured using ultra-sensitive single molecule array technology. RESULTS Plasma and CSF tau (R = 0.59, P < 0.001) and NF-L (R = 0.69, P < 0.001) levels correlated significantly (Spearman test). Plasma tau and NF-L levels were significantly higher in all disease groups compared to healthy controls (P < 0.001). Receiver operating characteristic curves were used and area under the curve values for comparisons with controls were 0.82 (AD), 0.94 (sporadic CJD), 0.92 (genetic CJD) and 0.83 (other neurological disorders) for plasma tau and 0.99, 0.99, 1.00 and 0.96 for plasma NF-L, respectively. Molecular subtyping of sporadic CJD showed a strong effect (linear logistic regression) on plasma tau (P < 0.001) but not NF-L levels (P = 0.19). CONCLUSION Plasma tau and NF-L concentrations are strongly increased in CJD and show similar diagnostic performance to the corresponding CSF measure. Molecular subtypes of sporadic CJD show different levels of plasma tau. Although not disease-specific, these findings support the use of plasma tau and NF-L as tools to identify, or to rule out, neurodegeneration.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Prion Disease and Neuropathology Reference Center, Semmelweis University, Budapest, Hungary
| | - U Andreasson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - V Liman
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - G Regelsberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - M I Lutz
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - K Danics
- Prion Disease and Neuropathology Reference Center, Semmelweis University, Budapest, Hungary.,Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - E Keller
- Prion Disease and Neuropathology Reference Center, Semmelweis University, Budapest, Hungary.,Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - K Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
116
|
Ritchie DL, Adlard P, Peden AH, Lowrie S, Le Grice M, Burns K, Jackson RJ, Yull H, Keogh MJ, Wei W, Chinnery PF, Head MW, Ironside JW. Amyloid-β accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol 2017; 134:221-240. [PMID: 28349199 PMCID: PMC5508038 DOI: 10.1007/s00401-017-1703-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022]
Abstract
Human-to-human transmission of Creutzfeldt-Jakob disease (CJD) has occurred through medical procedures resulting in iatrogenic CJD (iCJD). One of the commonest causes of iCJD was the use of human pituitary-derived growth hormone (hGH) to treat primary or secondary growth hormone deficiency. As part of a comprehensive tissue-based analysis of the largest cohort yet collected (35 cases) of UK hGH-iCJD cases, we describe the clinicopathological phenotype of hGH-iCJD in the UK. In the 33/35 hGH-iCJD cases with sufficient paraffin-embedded tissue for full pathological examination, we report the accumulation of the amyloid beta (Aβ) protein associated with Alzheimer's disease (AD) in the brains and cerebral blood vessels in 18/33 hGH-iCJD patients and for the first time in 5/12 hGH recipients who died from causes other than CJD. Aβ accumulation was markedly less prevalent in age-matched patients who died from sporadic CJD and variant CJD. These results are consistent with the hypothesis that Aβ, which can accumulate in the pituitary gland, was present in the inoculated hGH preparations and had a seeding effect in the brains of around 50% of all hGH recipients, producing an AD-like neuropathology and cerebral amyloid angiopathy (CAA), regardless of whether CJD neuropathology had occurred. These findings indicate that Aβ seeding can occur independently and in the absence of the abnormal prion protein in the human brain. Our findings provide further evidence for the prion-like seeding properties of Aβ and give insights into the possibility of iatrogenic transmission of AD and CAA.
Collapse
Affiliation(s)
- Diane L Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Peter Adlard
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Alexander H Peden
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Suzanne Lowrie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Margaret Le Grice
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Kimberley Burns
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Rosemary J Jackson
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Helen Yull
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael J Keogh
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Wei Wei
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Mark W Head
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - James W Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
117
|
Llorens F, Thüne K, Sikorska B, Schmitz M, Tahir W, Fernández-Borges N, Cramm M, Gotzmann N, Carmona M, Streichenberger N, Michel U, Zafar S, Schuetz AL, Rajput A, Andréoletti O, Bonn S, Fischer A, Liberski PP, Torres JM, Ferrer I, Zerr I. Altered Ca 2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun 2017; 5:35. [PMID: 28449707 PMCID: PMC5408381 DOI: 10.1186/s40478-017-0431-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/25/2022] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrPSc). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca2+) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis. Here we describe the presence of massive regulation of Ca2+ responsive genes in sCJD brain tissue, accompanied by two Ca2+-dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrPSc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model. Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.
Collapse
|
118
|
UK Iatrogenic Creutzfeldt-Jakob disease: investigating human prion transmission across genotypic barriers using human tissue-based and molecular approaches. Acta Neuropathol 2017; 133:579-595. [PMID: 27812793 PMCID: PMC5348565 DOI: 10.1007/s00401-016-1638-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022]
Abstract
Creutzfeldt–Jakob disease (CJD) is the prototypic human prion disease that occurs most commonly in sporadic and genetic forms, but it is also transmissible and can be acquired through medical procedures, resulting in iatrogenic CJD (iCJD). The largest numbers of iCJD cases that have occurred worldwide have resulted from contaminated cadaveric pituitary-derived human growth hormone (hGH) and its use to treat primary and secondary growth hormone deficiency. We report a comprehensive, tissue-based and molecular genetic analysis of the largest series of UK hGH-iCJD cases reported to date, including in vitro kinetic molecular modelling of genotypic factors influencing prion transmission. The results show the interplay of prion strain and host genotype in governing the molecular, pathological and temporal characteristics of the UK hGH-iCJD epidemic and provide insights into the adaptive mechanisms involved when prions cross genotypic barriers. We conclude that all of the available evidence is consistent with the hypothesis that the UK hGH-iCJD epidemic resulted from transmission of the V2 human prion strain, which is associated with the second most common form of sporadic CJD.
Collapse
|
119
|
Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol 2017; 133:559-578. [PMID: 28205010 PMCID: PMC5348556 DOI: 10.1007/s00401-017-1683-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 01/28/2023]
Abstract
The differential diagnosis of Creutzfeldt-Jakob disease (CJD) from other, sometimes treatable, neurological disorders is challenging, owing to the wide phenotypic heterogeneity of the disease. Real-time quaking-induced prion conversion (RT-QuIC) is a novel ultrasensitive in vitro assay, which, at variance with surrogate neurodegenerative biomarker assays, specifically targets the pathological prion protein (PrPSc). In the studies conducted to date in CJD, cerebrospinal fluid (CSF) RT-QuIC showed good diagnostic sensitivity (82–96%) and virtually full specificity. In the present study, we investigated the diagnostic value of both prion RT-QuIC and surrogate protein markers in a large patient population with suspected CJD and then evaluated the influence on CSF findings of the CJD type, and the associated amyloid-β (Aβ) and tau neuropathology. RT-QuIC showed an overall diagnostic sensitivity of 82.1% and a specificity of 99.4%. However, sensitivity was lower in CJD types linked to abnormal prion protein (PrPSc) type 2 (VV2, MV2K and MM2C) than in typical CJD (MM1). Among surrogate proteins markers (14-3-3, total (t)-tau, and t-tau/phosphorylated (p)-tau ratio) t-tau performed best in terms of both specificity and sensitivity for all sCJD types. Sporadic CJD VV2 and MV2K types demonstrated higher CSF levels of p-tau when compared to other sCJD types and this positively correlated with the amount of tiny tau deposits in brain areas showing spongiform change. CJD patients showed moderately reduced median Aβ42 CSF levels, with 38% of cases having significantly decreased protein levels in the absence of Aβ brain deposits. Our results: (1) support the use of both RT-QuIC and t-tau assays as first line laboratory investigations for the clinical diagnosis of CJD; (2) demonstrate a secondary tauopathy in CJD subtypes VV2 and MV2K, correlating with increased p-tau levels in the CSF and (3) provide novel insight into the issue of the accuracy of CSF p-tau and Aβ42 as markers of brain tauopathy and β-amyloidosis.
Collapse
|
120
|
Llorens F, Kruse N, Karch A, Schmitz M, Zafar S, Gotzmann N, Sun T, Köchy S, Knipper T, Cramm M, Golanska E, Sikorska B, Liberski PP, Sánchez-Valle R, Fischer A, Mollenhauer B, Zerr I. Validation of α-Synuclein as a CSF Biomarker for Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2017; 55:2249-2257. [PMID: 28321768 PMCID: PMC5840235 DOI: 10.1007/s12035-017-0479-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
The analysis of cerebrospinal fluid (CSF) biomarkers gains importance in the differential diagnosis of prion diseases. However, no single diagnostic tool or combination of them can unequivocally confirm prion disease diagnosis. Electrochemiluminescence (ECL)-based immunoassays have demonstrated to achieve high diagnostic accuracy in a variety of sample types due to their high sensitivity and dynamic range. Quantification of CSF α-synuclein (a-syn) by an in-house ECL-based ELISA assay has been recently reported as an excellent approach for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD), the most prevalent form of human prion disease. In the present study, we validated a commercially available ECL-based a-syn ELISA platform as a diagnostic test for correct classification of sCJD cases. CSF a-syn was analysed in 203 sCJD cases with definite diagnosis and in 445 non-CJD cases. We investigated reproducibility and stability of CSF a-syn and made recommendations for its analysis in the sCJD diagnostic workup. A sensitivity of 98% and a specificity of 97% were achieved when using an optimal cut-off of 820 pg/mL a-syn. Moreover, we were able to show a negative correlation between a-syn levels and disease duration suggesting that CSF a-syn may be a good prognostic marker for sCJD patients. The present study validates the use of a-syn as a CSF biomarker of sCJD and establishes the clinical and pre-analytical parameters for its use in differential diagnosis in clinical routine. Additionally, the current test presents some advantages compared to other diagnostic approaches: it is fast, economic, requires minimal amount of CSF and a-syn levels are stable along disease progression.
Collapse
Affiliation(s)
- Franc Llorens
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.
| | - Niels Kruse
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - André Karch
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Schmitz
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Saima Zafar
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Nadine Gotzmann
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Ting Sun
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Silja Köchy
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Tobias Knipper
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Maria Cramm
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Raquel Sánchez-Valle
- Creutzfeldt-Jakob disease unit. Alzheimer's disease and other cognitive disorders unit. Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Andre Fischer
- German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Brit Mollenhauer
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena Klinik, Center for Parkinsonism and Movement Disorders, Kassel, Germany.,Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| |
Collapse
|
121
|
How can we increase the number of autopsies for prion diseases? A model system in Japan. J Neurol Sci 2017; 373:58-59. [PMID: 28131228 DOI: 10.1016/j.jns.2016.11.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022]
|
122
|
Nuvolone M, Schmid N, Miele G, Sorce S, Moos R, Schori C, Beerli RR, Bauer M, Saudan P, Dietmeier K, Lachmann I, Linnebank M, Martin R, Kallweit U, Kana V, Rushing EJ, Budka H, Aguzzi A. Cystatin F is a biomarker of prion pathogenesis in mice. PLoS One 2017; 12:e0171923. [PMID: 28178353 PMCID: PMC5298286 DOI: 10.1371/journal.pone.0171923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/29/2017] [Indexed: 01/21/2023] Open
Abstract
Misfolding of the cellular prion protein (PrPC) into the scrapie prion protein (PrPSc) results in progressive, fatal, transmissible neurodegenerative conditions termed prion diseases. Experimental and epidemiological evidence point toward a protracted, clinically silent phase in prion diseases, yet there is no diagnostic test capable of identifying asymptomatic individuals incubating prions. In an effort to identify early biomarkers of prion diseases, we have compared global transcriptional profiles in brains from pre-symptomatic prion-infected mice and controls. We identified Cst7, which encodes cystatin F, as the most strongly upregulated transcript in this model. Early and robust upregulation of Cst7 mRNA levels and of its cognate protein was validated in additional mouse models of prion disease. Surprisingly, we found no significant increase in cystatin F levels in both cerebrospinal fluid or brain parenchyma of patients with Creutzfeldt-Jakob disease compared to Alzheimer’s disease or non-demented controls. Our results validate cystatin F as a useful biomarker of early pathogenesis in experimental models of prion disease, and point to unexpected species-specific differences in the transcriptional responses to prion infections.
Collapse
Affiliation(s)
- Mario Nuvolone
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Nicolas Schmid
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Gino Miele
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | - Monika Bauer
- Cytos Biotechnology AG, Zurich-Schlieren, Switzerland
| | | | | | | | - Michael Linnebank
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Ulf Kallweit
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology; Bern University Hospital and University of Bern, Bern, Switzerland
| | - Veronika Kana
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Herbert Budka
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
123
|
Gaudino S, Gangemi E, Colantonio R, Botto A, Ruberto E, Calandrelli R, Martucci M, Vita MG, Masullo C, Cerase A, Colosimo C. Neuroradiology of human prion diseases, diagnosis and differential diagnosis. Radiol Med 2017; 122:369-385. [PMID: 28110369 DOI: 10.1007/s11547-017-0725-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/03/2017] [Indexed: 01/14/2023]
Abstract
Human transmissible spongiform encephalopathies (TSEs), or prion diseases, are invariably fatal conditions associated with a range of clinical presentations. TSEs are classified as sporadic [e.g. sporadic Creutzfeldt-Jakob disease (sCJD), which is the most frequent form], genetic (e.g. Gerstmann-Straussler-Scheinker disease, fatal familial insomnia, and inherited CJD), and acquired or infectious (e.g. Kuru, iatrogenic CJD, and variant CJD). In the past, brain imaging played a supporting role in the diagnosis of TSEs, whereas nowadays magnetic resonance imaging (MRI) plays such a prominent role that MRI findings have been included in the diagnostic criteria for sCJD. Currently, MRI is required for all patients with a clinical suspicion of TSEs. Thus, MRI semeiotics of TSEs should become part of the cultural baggage of any radiologist. The purposes of this update on the neuroradiology of CJD are to (i) review the pathophysiology and clinical presentation of TSEs, (ii) describe both typical and atypical MRI findings of CJD, and (iii) illustrate diseases mimicking CJD, underlining the MRI key findings useful in the differential diagnosis.
Collapse
Affiliation(s)
- Simona Gaudino
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | - Emma Gangemi
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Raffaella Colantonio
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Annibale Botto
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Emanuela Ruberto
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Rosalinda Calandrelli
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Matia Martucci
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Maria Gabriella Vita
- Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Carlo Masullo
- Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Alfonso Cerase
- Unit of Neuroimaging and Neurointervention, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Università Senese, "Santa Maria alle Scotte" University and NHS Hospital, Viale Mario Bracci, 16, 53100, Siena, Italy
| | - Cesare Colosimo
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, School of Medicine, Catholic University, Largo A. Gemelli, 8, 00168, Rome, Italy
| |
Collapse
|
124
|
Foutz A, Appleby BS, Hamlin C, Liu X, Yang S, Cohen Y, Chen W, Blevins J, Fausett C, Wang H, Gambetti P, Zhang S, Hughson A, Tatsuoka C, Schonberger LB, Cohen ML, Caughey B, Safar JG. Diagnostic and prognostic value of human prion detection in cerebrospinal fluid. Ann Neurol 2017; 81:79-92. [PMID: 27893164 PMCID: PMC5266667 DOI: 10.1002/ana.24833] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Several prion amplification systems have been proposed for detection of prions in cerebrospinal fluid (CSF), most recently, the measurements of prion seeding activity with second-generation real-time quaking-induced conversion (RT-QuIC). The objective of this study was to investigate the diagnostic performance of the RT-QuIC prion test in the broad phenotypic spectrum of prion diseases. METHODS We performed CSF RT-QuIC testing in 2,141 patients who had rapidly progressive neurological disorders, determined diagnostic sensitivity and specificity in 272 cases that were autopsied, and evaluated the impact of mutations and polymorphisms in the PRNP gene, and type 1 or type 2 human prions on diagnostic performance. RESULTS The 98.5% diagnostic specificity and 92% sensitivity of CSF RT-QuIC in a blinded retrospective analysis matched the 100% specificity and 95% sensitivity of a blind prospective study. The CSF RT-QuIC differentiated 94% of cases of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 from the sCJD MM2 phenotype, and 80% of sCJD VV2 from sCJD VV1. The mixed prion type 1-2 and cases heterozygous for codon 129 generated intermediate CSF RT-QuIC patterns, whereas genetic prion diseases revealed distinct profiles for each PRNP gene mutation. INTERPRETATION The diagnostic performance of the improved CSF RT-QuIC is superior to surrogate marker tests for prion diseases such as 14-3-3 and tau proteins, and together with PRNP gene sequencing the test allows the major prion subtypes to be differentiated in vivo. This differentiation facilitates prediction of the clinicopathological phenotype and duration of the disease-two important considerations for envisioned therapeutic interventions. ANN NEUROL 2017;81:79-92.
Collapse
Affiliation(s)
- Aaron Foutz
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
| | - Brian S. Appleby
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Clive Hamlin
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xiaoqin Liu
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
| | - Sheng Yang
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Yvonne Cohen
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
| | - Wei Chen
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
| | - Janis Blevins
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
| | - Cameron Fausett
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Han Wang
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Pierluigi Gambetti
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
| | - Shulin Zhang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Andrew Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Curtis Tatsuoka
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Lawrence B. Schonberger
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Mark L. Cohen
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Jiri G. Safar
- National Prion Disease Pathology Surveillance Center; Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
125
|
Llorens F, Kruse N, Schmitz M, Gotzmann N, Golanska E, Thüne K, Zejneli O, Kanata E, Knipper T, Cramm M, Lange P, Zafar S, Sikorska B, Liberski PP, Mitrova E, Varges D, Schmidt C, Sklaviadis T, Mollenhauer B, Zerr I. Evaluation of α‐synuclein as a novel cerebrospinal fluid biomarker in different forms of prion diseases. Alzheimers Dement 2016; 13:710-719. [DOI: 10.1016/j.jalz.2016.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/15/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Franc Llorens
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Niels Kruse
- Institute for Neuropathology University Medical Center Göttingen Göttingen Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Nadine Gotzmann
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology Medical University of Lodz Lodz Poland
| | - Katrin Thüne
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Orgeta Zejneli
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy Aristotle University of Thessaloniki Thessaloniki Greece
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy Aristotle University of Thessaloniki Thessaloniki Greece
| | - Tobias Knipper
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Maria Cramm
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Peter Lange
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology Medical University of Lodz Lodz Poland
| | - Pawel P. Liberski
- Department of Molecular Pathology and Neuropathology Medical University of Lodz Lodz Poland
| | - Eva Mitrova
- Department of Prion Diseases Slovak Medical University Bratislava Bratislava Slovakia
| | - Daniela Varges
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Christian Schmidt
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy Aristotle University of Thessaloniki Thessaloniki Greece
| | - Brit Mollenhauer
- Institute for Neuropathology University Medical Center Göttingen Göttingen Germany
- Paracelsus‐Elena Klinik Center for Parkinsonism and Movement Disorders Kassel Germany
- Department of Neurosurgery University Medical Center Göttingen Göttingen Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| |
Collapse
|
126
|
Iwasaki Y, Saito Y, Aiba I, Kobayashi A, Mimuro M, Kitamoto T, Yoshida M. An autopsied case of MV2K + C-type sporadic Creutzfeldt-Jakob disease presenting with widespread cerebral cortical involvement and Kuru plaques. Neuropathology 2016; 37:241-248. [DOI: 10.1111/neup.12350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging; Aichi Medical University; Nagakute Japan
| | - Yufuko Saito
- Department of Neurology; National Hospital Organization Higashinagoya National Hospital; Nagoya Japan
| | - Ikuko Aiba
- Department of Neurology; National Hospital Organization Higashinagoya National Hospital; Nagoya Japan
| | - Atsushi Kobayashi
- Department of Neurological Science; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Maya Mimuro
- Department of Neuropathology, Institute for Medical Science of Aging; Aichi Medical University; Nagakute Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging; Aichi Medical University; Nagakute Japan
| |
Collapse
|
127
|
Baiardi S, Capellari S, Ladogana A, Strumia S, Santangelo M, Pocchiari M, Parchi P. Revisiting the Heidenhain Variant of Creutzfeldt-Jakob Disease: Evidence for Prion Type Variability Influencing Clinical Course and Laboratory Findings. J Alzheimers Dis 2016; 50:465-76. [PMID: 26682685 PMCID: PMC4927903 DOI: 10.3233/jad-150668] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Heidenhain variant defines a peculiar clinical presentation of sporadic Creutzfeldt-Jakob disease (sCJD) characterized by isolated visual disturbances at disease onset and reflecting the early targeting of prions to the occipital cortex. Molecular and histopathological typing, thus far performed in 23 cases, has linked the Heidenhain variant to the MM1 sCJD type. To contribute a comprehensive characterization of cases with the Heidenhain variant, we reviewed a series of 370 definite sCJD cases. Eighteen patients (4.9%) fulfilled the selection criteria. Fourteen of them belonging to sCJD types MM1 or MM1+2C had a short duration of isolated visual symptoms and overall clinical disease, a high prevalence of periodic sharp-wave complexes in EEG, and a marked increase of cerebrospinal fluid proteins t-tau and 14-3-3 levels. In contrast, three cases of the MM 2C or MM 2+1C types showed a longer duration of isolated visual symptoms and overall clinical disease, non-specific EEG findings, and cerebrospinal fluid concentration below threshold for the diagnosis of "probable" CJD of both 14-3-3 and t-tau. However, a brain DWI-MRI disclosed an occipital cortical hyperintensity in the majority of examined cases of both groups. While confirming the strong linkage with the methionine genotype at the polymorphic codon 129 of the prion protein gene, our results definitely establish that the Heidenhain variant can also be associated with the MM 2C sCJD type in addition to the more common MM1 type. Likewise, our results highlight the significant differences in clinical evolution and laboratory findings between cases according to the dominant PrPSc type (type 1 versus type 2).
Collapse
Affiliation(s)
- Simone Baiardi
- Dipartimento di Scienze Biomediche e Neuromotorie (DiBiNeM), Università di Bologna, Bologna, Italy
| | - Sabina Capellari
- Dipartimento di Scienze Biomediche e Neuromotorie (DiBiNeM), Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Anna Ladogana
- Dipartimento di Biologica Cellulare e Neuroscienze, Istituto Superiore di Sanità, Roma, Italy
| | - Silvia Strumia
- UOC di Neurologia, Ospedale Morgagni-Pierantoni, Forlì, Italy
| | | | - Maurizio Pocchiari
- Dipartimento di Biologica Cellulare e Neuroscienze, Istituto Superiore di Sanità, Roma, Italy
| | - Piero Parchi
- Dipartimento di Scienze Biomediche e Neuromotorie (DiBiNeM), Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| |
Collapse
|
128
|
Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid. PLoS Pathog 2016; 12:e1005914. [PMID: 27685252 PMCID: PMC5042475 DOI: 10.1371/journal.ppat.1005914] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/04/2016] [Indexed: 11/19/2022] Open
Abstract
Hypochlorous acid (HOCl) is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12) sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl) that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC) assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion protein. BrioHOCl treatments had similar effects on amyloids composed of human α-synuclein and a fragment of human tau. These results indicate that HOCl can block the self-propagating activity of prions and other amyloids. Many serious diseases have been linked to pathogenic states of various proteins. These naturally occurring proteins can be corrupted to form aggregates such as prions and amyloids that propagate in and between tissues by acting as seeds that convert the normal form of the protein into more of the pathological form. For example, corrupted prion protein can cause fatal transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease in humans, chronic wasting disease in cervids and bovine spongiform encephalopathy. Other amyloid-forming protein aggregates are pathogenic in Parkinson’s, Alzheimer’s, and other diseases. The fact that prions and amyloids are composed predominantly of tough, tightly packed proteins makes them unusually resistant to conventional microbial disinfection procedures. Infectious prions can persist indefinitely in, or on, a variety of materials such as tissues, fluids, tools, instruments, and environmental surfaces, making it important to identify decontaminants that are effective without being dangerous or damaging. Here we show that hypochlorous acid, a disinfectant that is produced naturally by certain cells within the body, has strong anti-prion and anti-amyloid activity. We find that a non-irritating and broadly applicable hypochlorous acid preparation can disinfect prions in tissue homogenates and on stainless steel wires serving as surrogates for surgical instruments.
Collapse
|
129
|
Frontzek K, Moos R, Schaper E, Jann L, Herfs G, Zimmermann DR, Aguzzi A, Budka H. Iatrogenic and sporadic Creutzfeldt-Jakob disease in 2 sisters without mutation in the prion protein gene. Prion 2016; 9:444-8. [PMID: 26634863 DOI: 10.1080/19336896.2015.1121356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Human genetic prion diseases have invariably been linked to alterations of the prion protein (PrP) gene PRNP. Two sisters died from probable Creutzfeldt-Jakob disease (CJD) in Switzerland within 14 y. At autopsy, both patients had typical spongiform change in their brains accompanied by punctuate deposits of PrP. Biochemical analyses demonstrated proteinase K-resistant PrP. Sequencing of PRNP showed 2 wild-type alleles in both siblings. Retrospectively, clinical data revealed a history of dural transplantation in the initially deceased sister, compatible with a diagnosis of iatrogenic CJD. Clinical and familial histories provided no evidence for potential horizontal transmission. This observation of 2 siblings suffering from CJD without mutations in the PRNP gene suggests potential involvement of non-PRNP genes in prion disease etiology.
Collapse
Affiliation(s)
- Karl Frontzek
- a Institute of Neuropathology; University Hospital of Zurich ; Zurich , Switzerland
| | - Rita Moos
- a Institute of Neuropathology; University Hospital of Zurich ; Zurich , Switzerland
| | - Elke Schaper
- a Institute of Neuropathology; University Hospital of Zurich ; Zurich , Switzerland;,b Vital-IT group; SIB Swiss Institute of Bioinformatics ; Lausanne , Switzerland
| | - Lukas Jann
- c University Hospital of Psychiatry; Geriatric Psychiatry Clinic; University of Zurich ; Zurich , Switzerland
| | - Gregor Herfs
- d Department of Internal Medicine ; University Hospital of Zurich ; Zurich , Switzerland
| | - Dieter R Zimmermann
- e Institute of Clinical Pathology; University Hospital of Zurich ; Zurich , Switzerland
| | - Adriano Aguzzi
- a Institute of Neuropathology; University Hospital of Zurich ; Zurich , Switzerland
| | - Herbert Budka
- a Institute of Neuropathology; University Hospital of Zurich ; Zurich , Switzerland
| |
Collapse
|
130
|
Kovacs GG, Rahimi J, Ströbel T, Lutz MI, Regelsberger G, Streichenberger N, Perret-Liaudet A, Höftberger R, Liberski PP, Budka H, Sikorska B. Tau pathology in Creutzfeldt-Jakob disease revisited. Brain Pathol 2016; 27:332-344. [PMID: 27377321 PMCID: PMC8028936 DOI: 10.1111/bpa.12411] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/17/2016] [Indexed: 01/05/2023] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is a human prion disease with different etiologies. To determine the spectrum of tau pathologies in CJD, we assessed phospho-Tau (pTau) immunoreactivities in 75 sporadic CJD cases including an evaluation of the entorhinal cortex and six hippocampal subregions. Twelve cases (16%) showed only small tau-immunoreactive neuritic profiles. Fifty-two (69.3%) showed additional tau pathology in the medial temporal lobe compatible with primary age related tauopathy (PART). In 22/52 cases the lower pTau immunoreactivity load in the entorhinal cortex as compared to subiculum, dentate gyrus or CA4 region of the hippocampus was significantly different from the typical distribution of the Braak staging. A further 11 cases (14.7%) showed widespread tau pathologies compatible with features of primary tauopathies or the gray matter type of ageing-related tau astrogliopathy (ARTAG). Prominent gray matter ARTAG was also observed in two out of three additionally examined V203I genetic CJD cases. Analysis of cerebrospinal fluid revealed prominent increase of total tau protein in cases with widespread tau pathology, while pTau (T181) level was increased only in four. This correlated with immunohistochemical observations showing less pathology with anti-pTau T181 antibody when compared to anti-pTau S202/T205, T212/S214 and T231. The frequency of tau pathologies is not unusually high in sporadic CJD and does not precisely relate to PrP deposition. However, the pattern of hippocampal tau pathology often deviates from the stages of Braak. Currently applied examination of cerebrospinal fluid pTau (T181) level does not reliably reflect primary tauopathies, PART and ARTAG seen in CJD brains.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Jasmin Rahimi
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Thomas Ströbel
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Mirjam I Lutz
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Günther Regelsberger
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Nathalie Streichenberger
- Prion Disease Laboratory, Pathology and Biochemistry, Groupement Hospitalier Est, Hospices Civils de Lyon/Claude Bernard University, Lyon, France.,Institut NeuroMyogène CNRS UMR 5310 - INSERM U1217, Lyon, France
| | - Armand Perret-Liaudet
- Prion Disease Laboratory, Pathology and Biochemistry, Groupement Hospitalier Est, Hospices Civils de Lyon/Claude Bernard University, Lyon, France.,Centre de Recherche en Neurosciences de Lyon (Laboratoire BioRaN), Université Claude Bernard Lyon 1 - CNRS UMR5292 - INSERM U1028, Lyon, France
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Herbert Budka
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
131
|
Iwasaki Y, Mori K, Ito M, Mimuro M, Kitamoto T, Yoshida M. An autopsied case of MM1 + MM2-cortical with thalamic-type sporadic Creutzfeldt-Jakob disease presenting with hyperintensities on diffusion-weighted MRI before clinical onset. Neuropathology 2016; 37:78-85. [PMID: 27436355 DOI: 10.1111/neup.12327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 11/27/2022]
Abstract
A 78-year-old Japanese man presented with rapidly progressive dementia and gait disturbances. Eight months before the onset of clinical symptoms, diffusion-weighted magnetic resonance imaging (DWI) demonstrated hyperintensities in the right temporal, right parietal and left medial occipital cortices. Two weeks after symptom onset, DWI showed extensive hyperintensity in the bilateral cerebral cortex, with regions of higher brightness that existed prior to symptom onset still present. Four weeks after clinical onset, periodic sharp wave complexes were identified on an electroencephalogram. Myoclonus was observed 8 weeks after clinical onset. The patient reached an akinetic mutism state and died 5 months after onset. Neuropathological examination showed widespread cerebral neocortical involvement of fine vacuole-type spongiform changes with large confluent vacuole-type spongiform changes. Spongiform degeneration with neuron loss and hypertrophic astrocytosis was also observed in the striatum and medial thalamus. The inferior olivary nucleus showed severe neuron loss with hypertrophic astrocytosis. Prion protein (PrP) immunostaining showed widespread synaptic-type PrP deposition with perivacuolar-type PrP deposition in the cerebral neocortex. Mild to moderate PrP deposition was also observed extensively in the basal ganglia, thalamus, cerebellum and brainstem, but it was not apparent in the inferior olivary nucleus. PrP gene analysis showed no mutations, and polymorphic codon 129 showed methionine homozygosity. Western blot analysis of protease-resistant PrP showed both type 1 scrapie type PrP (PrPSc ) and type 2 PrPSc . Based on the relationship between the neuroimaging and pathological findings, we speculated that cerebral cortical lesions with large confluent vacuoles and type 2 PrPSc would show higher brightness and continuous hyperintensity on DWI than those with fine vacuoles and type 1 PrPSc . We believe the present patient had a combined form of MM1 + MM2-cortical with thalamic-type sporadic Creutzfeldt-Jakob disease (sCJD), which suggests a broader spectrum of sCJD clinicopathological findings.
Collapse
Affiliation(s)
- Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Keiko Mori
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Japan
| | - Masumi Ito
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Japan
| | - Maya Mimuro
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
132
|
Ansoleaga B, Garcia-Esparcia P, Llorens F, Hernández-Ortega K, Carmona Tech M, Antonio Del Rio J, Zerr I, Ferrer I. Altered Mitochondria, Protein Synthesis Machinery, and Purine Metabolism Are Molecular Contributors to the Pathogenesis of Creutzfeldt-Jakob Disease. J Neuropathol Exp Neurol 2016; 75:755-769. [PMID: 27297670 DOI: 10.1093/jnen/nlw048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt-Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD.
Collapse
Affiliation(s)
- Belén Ansoleaga
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Paula Garcia-Esparcia
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Franc Llorens
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Karina Hernández-Ortega
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Margarita Carmona Tech
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - José Antonio Del Rio
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Inga Zerr
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Isidro Ferrer
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF).
| |
Collapse
|
133
|
Kovacs GG, Lutz MI, Ricken G, Ströbel T, Höftberger R, Preusser M, Regelsberger G, Hönigschnabl S, Reiner A, Fischer P, Budka H, Hainfellner JA. Dura mater is a potential source of Aβ seeds. Acta Neuropathol 2016; 131:911-23. [PMID: 27016065 PMCID: PMC4865536 DOI: 10.1007/s00401-016-1565-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/14/2022]
Abstract
Deposition of amyloid-β (Aβ) in the brain parenchyma and vessels is one of the hallmarks of Alzheimer disease (AD). Recent observations of Aβ deposition in iatrogenic Creutzfeldt-Jakob disease (iCJD) after dural grafting or treatment with pituitary extracts raised concerns whether Aβ is capable of transmitting disease as seen in prion diseases by the disease-associated prion protein. To address this issue, we re-sampled and re-evaluated archival material, including the grafted dura mater of two cases with iCJD (28 and 33-years-old) without mutations in the AβPP, PSEN1 and PSEN2 genes, and carrying ε3/ε3 alleles of the APOE gene. In addition, we evaluated 84 dura mater samples obtained at autopsy (mean age 84.9 ± 0.3) in the community-based VITA study for the presence of Aβ deposition. We show that the dura mater may harbor Aβ deposits (13 %) in the form of cerebral amyloid angiopathy or amorphous aggregates. In both iCJD cases, the grafted dura mater had accumulated Aβ. The morphology and distribution pattern of cerebral Aβ deposition together with the lack of tau pathology distinguishes the Aβ proteinopathy in iCJD from AD, from that seen in young individuals without cognitive decline carrying one or two APOE4 alleles, and from that related to traumatic brain injury. Our novel findings of Aβ deposits in the dura mater, including the grafted dura, and the distinct cerebral Aβ distribution in iCJD support the seeding properties of Aβ. However, in contrast to prion diseases, our study suggests that such Aβ seeding is unable to reproduce the full clinicopathological phenotype of AD.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria.
| | - Mirjam I Lutz
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Gerda Ricken
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Thomas Ströbel
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Center CNS Unit, Medical University Vienna, Vienna, Austria
| | - Günther Regelsberger
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | | | - Angelika Reiner
- Institute of Pathology, Danube Hospital Vienna, Vienna, Austria
| | - Peter Fischer
- Psychiatric Department, Medical Research Society Vienna, D.C., Danube Hospital, Vienna, Austria
| | - Herbert Budka
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Johannes A Hainfellner
- Institute of Neurology, Medical University Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| |
Collapse
|
134
|
Gelpi E. How neuropathology can contribute to the understanding of dementia. Neurodegener Dis Manag 2016; 6:183-6. [PMID: 27230123 DOI: 10.2217/nmt-2016-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ellen Gelpi
- Neurological Tissue Bank of the Biobank-Hospital Clinic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
135
|
Abstract
Early and accurate diagnosis of Creutzfeldt-Jakob disease (CJD) is a necessary to distinguish this untreatable disease from treatable rapidly progressive dementias, and to prevent iatrogenic transmission. Currently, definitive diagnosis of CJD requires detection of the abnormally folded, CJD-specific form of protease-resistant prion protein (PrP(CJD)) in brain tissue obtained postmortem or via biopsy; therefore, diagnosis of sporadic CJD in clinical practice is often challenging. Supporting investigations, including MRI, EEG and conventional analyses of cerebrospinal fluid (CSF) biomarkers, are helpful in the diagnostic work-up, but do not allow definitive diagnosis. Recently, novel ultrasensitive seeding assays, based on the amplified detection of PrP(CJD), have improved the diagnostic process; for example, real-time quaking-induced conversion (RT-QuIC) is a sensitive method to detect prion-seeding activity in brain homogenate from humans with any subtype of sporadic CJD. RT-QuIC can also be used for in vivo diagnosis of CJD: its diagnostic sensitivity in detecting PrP(CJD) in CSF samples is 96%, and its specificity is 100%. Recently, we provided evidence that RT-QuIC of olfactory mucosa brushings is a 97% sensitive and 100% specific for sporadic CJD. These assays provide a basis for definitive antemortem diagnosis of prion diseases and, in doing so, improve prospects for reducing the risk of prion transmission. Moreover, they can be used to evaluate outcome measures in therapeutic trials for these as yet untreatable infections.
Collapse
|
136
|
Requena JR, Kristensson K, Korth C, Zurzolo C, Simmons M, Aguilar-Calvo P, Aguzzi A, Andreoletti O, Benestad SL, Böhm R, Brown K, Calgua B, del Río JA, Espinosa JC, Girones R, Godsave S, Hoelzle LE, Knittler MR, Kuhn F, Legname G, Laeven P, Mabbott N, Mitrova E, Müller-Schiffmann A, Nuvolone M, Peters PJ, Raeber A, Roth K, Schmitz M, Schroeder B, Sonati T, Stitz L, Taraboulos A, Torres JM, Yan ZX, Zerr I. The Priority position paper: Protecting Europe's food chain from prions. Prion 2016; 10:165-81. [PMID: 27220820 PMCID: PMC4981192 DOI: 10.1080/19336896.2016.1175801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies.
Collapse
Affiliation(s)
- Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sue Godsave
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | - Paul Laeven
- University of Maastricht, Maastricht, The Netherlands
| | | | - Eva Mitrova
- Medical University of Slovakia, Bratislava, Slovakia
| | | | | | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | - Lothar Stitz
- Friedrich Löffler Institut, Insel Reims, Germany
| | | | | | | | - Inga Zerr
- Universitätmedizin Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
137
|
Gmitterová K, Heinemann U, Krasnianski A, Gawinecka J, Zerr I. Cerebrospinal fluid markers in the differentiation of molecular subtypes of sporadic Creutzfeldt-Jakob disease. Eur J Neurol 2016; 23:1126-33. [PMID: 27029507 DOI: 10.1111/ene.12991] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Cerebrospinal fluid (CSF) analysis supports the clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) when applied within an adequate clinical context. A diagnostic potential has been attributed to CSF proteins such as 14-3-3, but also tau protein, phosphorylated tau (181P) (p-tau) protein, amyloid β1-42 , S100B and neuron-specific enolase (NSE). There has been only limited information available about the contribution of CSF analysis in the differentiation of various molecular sCJD subtypes. METHODS The CSF levels of the aforementioned proteins from 73 sCJD patients with distinct molecular subtypes were determined. RESULTS Differences in tau values were significant amongst the homozygous patients (MM and VV genotype) compared to the heterozygous group (P = 0.07 and P = 0.02 respectively). Significantly higher CSF tau levels (P = 0.003) and NSE (P = 0.02) but lower p-tau/tau ratio (P = 0.01) were observed in MM1 compared to MM2 patients. The p-tau/tau ratio enabled the differentiation of MV genotype with higher levels in PrP(sc) type 2 (P = 0.04). Elevation of S100B (P < 0.001) and NSE (P = 0.03) was observed in VV2 compared to VV1 subtype. PRNP codon 129 genotype, PrP(sc) isotype, disease duration and clinical stage influenced the test sensitivity in all proteins. CONCLUSIONS Cerebrospinal fluid protein levels might be useful in the pre-mortem differentiation of molecular sCJD subtypes when the codon 129 genotype is known.
Collapse
Affiliation(s)
- K Gmitterová
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany.,Second Department of Neurology, Comenius University, Bratislava, Slovakia
| | - U Heinemann
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| | - A Krasnianski
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany.,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
| | - J Gawinecka
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany.,Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - I Zerr
- Department of Neurology, Clinical Dementia Centre and DZNE, University Medical School, Georg-August University, Göttingen, Germany
| |
Collapse
|
138
|
Moore RA, Head MW, Ironside JW, Ritchie DL, Zanusso G, Pyo Choi Y, Priola SA. The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients. PLoS Pathog 2016; 12:e1005416. [PMID: 26840342 PMCID: PMC4740439 DOI: 10.1371/journal.ppat.1005416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent of the human prion diseases, which are fatal and transmissible neurodegenerative diseases caused by the infectious prion protein (PrPSc). The origin of sCJD is unknown, although the initiating event is thought to be the stochastic misfolding of endogenous prion protein (PrPC) into infectious PrPSc. By contrast, human growth hormone-associated cases of iatrogenic CJD (iCJD) in the United Kingdom (UK) are associated with exposure to an exogenous source of PrPSc. In both forms of CJD, heterozygosity at residue 129 for methionine (M) or valine (V) in the prion protein gene may affect disease phenotype, onset and progression. However, the relative contribution of each PrPC allotype to PrPSc in heterozygous cases of CJD is unknown. Using mass spectrometry, we determined that the relative abundance of PrPSc with M or V at residue 129 in brain specimens from MV cases of sCJD was highly variable. This result is consistent with PrPC containing an M or V at residue 129 having a similar propensity to misfold into PrPSc thus causing sCJD. By contrast, PrPSc with V at residue 129 predominated in the majority of the UK human growth hormone associated iCJD cases, consistent with exposure to infectious PrPSc containing V at residue 129. In both types of CJD, the PrPSc allotype ratio had no correlation with CJD type, age at clinical onset, or disease duration. Therefore, factors other than PrPSc allotype abundance must influence the clinical progression and phenotype of heterozygous cases of CJD. In Creutzfeldt-Jakob disease (CJD), heterozygosity at residue 129 for methionine or valine in normal prion protein may affect disease phenotype, onset and progression. However, the relative contribution of each prion protein allotype to the infectious, disease associated form of prion protein (PrPSc) is unknown. Here we report the novel observation that in heterozygous cases of sporadic CJD the PrPSc allotype ratio is highly variable. This case-by-case variability is consistent with the origin of sporadic CJD being the spontaneous, but random, misfolding of either host prion protein allotype into infectious PrPSc. By contrast, in heterozygous cases of iatrogenic CJD in the United Kingdom resulting from exposure to contaminated human growth hormone, the PrPSc allotype ratio is much more homogeneous and consistent with exposure to infectious PrPSc containing valine at residue 129. Surprisingly, the PrPSc allotype ratio did not correlate with disease onset or duration in either disease type. Thus, factors other than PrPSc allotype ratio likely influence the clinical progression of heterozygous cases of CJD. Moreover, our results suggest that the ratio of methionine to valine in PrPSc may be a means of determining the origin of prion infection.
Collapse
Affiliation(s)
- Roger A. Moore
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Mark W. Head
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James W. Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Diane L. Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Gianluigi Zanusso
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Young Pyo Choi
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Suzette A. Priola
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
139
|
Kovacs GG. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int J Mol Sci 2016; 17:ijms17020189. [PMID: 26848654 PMCID: PMC4783923 DOI: 10.3390/ijms17020189] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
140
|
Mitochondrial DNA differentiates Alzheimer's disease from Creutzfeldt-Jakob disease. Alzheimers Dement 2016; 12:546-55. [PMID: 26806388 DOI: 10.1016/j.jalz.2015.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Low content of cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) is a biomarker of early stage Alzheimer's disease (AD), but whether mtDNA is altered in a rapid neurodegenerative dementia such as Creutzfeldt-Jakob disease is unknown. METHODS CSF mtDNA was measured using digital polymerase chain reaction (dPCR) in two independent cohorts comprising a total of 112 patients diagnosed with sporadic Creutzfeldt-Jakob disease (sCJD), probable AD, or non-Alzheimer's type dementia. RESULTS Patients with AD exhibit low mtDNA content in CSF compared with patients diagnosed with sCJD or with non-Alzheimer's type dementias. The CSF concentration of mtDNA does not correlate with Aβ, t-tau, p-tau, and 14-3-3 protein levels in CSF. DISCUSSION Low-CSF mtDNA is not a consequence of brain damage and allows the differential diagnosis of AD from sCJD and other dementias. These results support the hypothesis that mtDNA in CSF is a pathophysiological biomarker of AD.
Collapse
|
141
|
Detection of Atypical H-Type Bovine Spongiform Encephalopathy and Discrimination of Bovine Prion Strains by Real-Time Quaking-Induced Conversion. J Clin Microbiol 2016; 54:676-86. [PMID: 26739160 DOI: 10.1128/jcm.02731-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022] Open
Abstract
Prion diseases of cattle include the classical bovine spongiform encephalopathy (C-BSE) and the atypical H-type BSE (H-BSE) and L-type BSE (L-BSE) strains. Although the C- and L-BSE strains can be detected and discriminated by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays, no such test has yet been described for the detection of H-BSE or the discrimination of each of the major bovine prion strains. Here, we demonstrate an RT-QuIC assay for H-BSE that can detect as little as 10(-9) dilutions of brain tissue and neat cerebrospinal fluid samples from clinically affected cattle. Moreover, comparisons of the reactivities with different recombinant prion protein substrates and/or immunoblot band profiles of proteinase K-treated RT-QuIC reaction products indicated that H-, L-, and C-BSE have distinctive prion seeding activities and can be discriminated by RT-QuIC on this basis.
Collapse
|
142
|
Grau-Rivera O, Gelpi E, Nos C, Gaig C, Ferrer I, Saiz A, Lladó A, Molinuevo JL, Graus F, Sánchez-Valle R. Clinicopathological Correlations and Concomitant Pathologies in Rapidly Progressive Dementia: A Brain Bank Series. NEURODEGENER DIS 2015; 15:350-60. [PMID: 26523804 DOI: 10.1159/000439251] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rapidly progressive dementia (RPD) is caused by a heterogeneous group of both neurodegenerative and non-neurodegenerative disorders. The presence of concomitant pathologies, mainly Alzheimer's disease (AD), may act as a confounding variable in the diagnostic process of this group of diseases. OBJECTIVES We aimed to describe clinicopathological features, including Alzheimer's co-pathology, and diagnostic accuracy in a postmortem series of RPD. METHODS Retrospective analysis of 160 brain donors with RPD (defined as 2 years of disease duration from the first symptom to death) registered at the Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, from 2001 to 2011. RESULTS Prion diseases were the most frequent neuropathological diagnosis (67%), followed by non-prion neurodegenerative pathologies (17%), mostly AD and dementia with Lewy bodies, and non-neurodegenerative diseases (16%). We observed clinicopathological diagnostic agreement in 94% of the patients with prion RPD but only in 21% of those with non-prion RPD. Four patients with potentially treatable disorders were diagnosed, while still alive, as having Creutzfeldt-Jakob disease. Concomitant pathologies were detected in 117 (73%). Among all RPD cases, 51 presented moderate or frequent mature β-amyloid plaques (neuritic plaques), which are considered to be associated with positive amyloid biomarkers in vivo. CONCLUSIONS Prion diseases were accurately identified in our series. In contrast, non-prion RPD diagnosis was poor while the patients were still alive, supporting the need for better diagnostic tools and confirmatory neuropathological studies. The presence of concomitant AD pathology in RPD should be taken into account in the interpretation of amyloid biomarkers.
Collapse
Affiliation(s)
- Oriol Grau-Rivera
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clx00ED;nic, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Jaunmuktane Z, Mead S, Ellis M, Wadsworth JDF, Nicoll AJ, Kenny J, Launchbury F, Linehan J, Richard-Loendt A, Walker AS, Rudge P, Collinge J, Brandner S. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 2015; 525:247-50. [PMID: 26354483 DOI: 10.1038/nature15369] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/14/2015] [Indexed: 12/18/2022]
Abstract
More than two hundred individuals developed Creutzfeldt-Jakob disease (CJD) worldwide as a result of treatment, typically in childhood, with human cadaveric pituitary-derived growth hormone contaminated with prions. Although such treatment ceased in 1985, iatrogenic CJD (iCJD) continues to emerge because of the prolonged incubation periods seen in human prion infections. Unexpectedly, in an autopsy study of eight individuals with iCJD, aged 36-51 years, in four we found moderate to severe grey matter and vascular amyloid-β (Aβ) pathology. The Aβ deposition in the grey matter was typical of that seen in Alzheimer's disease and Aβ in the blood vessel walls was characteristic of cerebral amyloid angiopathy and did not co-localize with prion protein deposition. None of these patients had pathogenic mutations, APOE ε4 or other high-risk alleles associated with early-onset Alzheimer's disease. Examination of a series of 116 patients with other prion diseases from a prospective observational cohort study showed minimal or no Aβ pathology in cases of similar age range, or a decade older, without APOE ε4 risk alleles. We also analysed pituitary glands from individuals with Aβ pathology and found marked Aβ deposition in multiple cases. Experimental seeding of Aβ pathology has been previously demonstrated in primates and transgenic mice by central nervous system or peripheral inoculation with Alzheimer's disease brain homogenate. The marked deposition of parenchymal and vascular Aβ in these relatively young patients with iCJD, in contrast with other prion disease patients and population controls, is consistent with iatrogenic transmission of Aβ pathology in addition to CJD and suggests that healthy exposed individuals may also be at risk of iatrogenic Alzheimer's disease and cerebral amyloid angiopathy. These findings should also prompt investigation of whether other known iatrogenic routes of prion transmission may also be relevant to Aβ and other proteopathic seeds associated with neurodegenerative and other human diseases.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Matthew Ellis
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrew J Nicoll
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Joanna Kenny
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Francesca Launchbury
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - A Sarah Walker
- MRC Clinical Trials Unit at University College London, 125 Kingsway, London WC2B 6NH, UK
| | - Peter Rudge
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,National Prion Clinic, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.,Medical Research Council Prion Unit, Queen Square, London WC1N 3BG, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
144
|
Salmelin J, Vuori KM, Hämäläinen H. Inconsistency in the analysis of morphological deformities in chironomidae (Insecta: Diptera) larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1891-8. [PMID: 26061223 DOI: 10.1002/etc.3010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/02/2015] [Accepted: 04/03/2015] [Indexed: 05/07/2023]
Abstract
The incidence of morphological deformities of chironomid larvae as an indicator of sediment toxicity has been studied for decades. However, standards for deformity analysis are lacking. The authors evaluated whether 25 experts diagnosed larval deformities in a similar manner. Based on high-quality digital images, the experts rated 211 menta of Chironomus spp. larvae as normal or deformed. The larvae were from a site with polluted sediments or from a reference site. The authors revealed this to a random half of the experts, and the rest conducted the assessment blind. The authors quantified the interrater agreement by kappa coefficient, tested whether open and blind assessments differed in deformity incidence and in differentiation between the sites, and identified those deformity types rated most consistently or inconsistently. The total deformity incidence varied greatly, from 10.9% to 66.4% among experts. Kappa coefficient across rater pairs averaged 0.52, indicating insufficient agreement. The deformity types rated most consistently were those missing teeth or with extra teeth. The open and blind assessments did not differ, but differentiation between sites was clearest for raters who counted primarily absolute deformities such as missing and extra teeth and excluded apparent mechanical aberrations or deviations in tooth size or symmetry. The highly differing criteria in deformity assignment have likely led to inconsistent results in midge larval deformity studies and indicate an urgent need for standardization of the analysis.
Collapse
Affiliation(s)
- Johanna Salmelin
- Department of Biological and Environmental Science, University of Jyväskylaä, Jyväskylä, Finland
| | - Kari-Matti Vuori
- Laboratory Centre/Ecotoxicology and Risk Assessment, Finnish Environment Institute, Jyväskylä, Finland
- South Karelia Institute, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Heikki Hämäläinen
- Department of Biological and Environmental Science, University of Jyväskylaä, Jyväskylä, Finland
| |
Collapse
|
145
|
Structural determinants of phenotypic diversity and replication rate of human prions. PLoS Pathog 2015; 11:e1004832. [PMID: 25875953 PMCID: PMC4397081 DOI: 10.1371/journal.ppat.1004832] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/24/2015] [Indexed: 11/19/2022] Open
Abstract
The infectious pathogen responsible for prion diseases is the misfolded, aggregated form of the prion protein, PrPSc. In contrast to recent progress in studies of laboratory rodent-adapted prions, current understanding of the molecular basis of human prion diseases and, especially, their vast phenotypic diversity is very limited. Here, we have purified proteinase resistant PrPSc aggregates from two major phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD), determined their conformational stability and replication tempo in vitro, as well as characterized structural organization using recently emerged approaches based on hydrogen/deuterium (H/D) exchange coupled with mass spectrometry. Our data clearly demonstrate that these phenotypically distant prions differ in a major way with regard to their structural organization, both at the level of the polypeptide backbone (as indicated by backbone amide H/D exchange data) as well as the quaternary packing arrangements (as indicated by H/D exchange kinetics for histidine side chains). Furthermore, these data indicate that, in contrast to previous observations on yeast and some murine prion strains, the replication rate of sCJD prions is primarily determined not by conformational stability but by specific structural features that control the growth rate of prion protein aggregates. Sporadic Creutzfeldt-Jakob disease (sCJD) represents ~90% of all human prion diseases worldwide. This neurodegenerative disease, which is transmissible and invariably fatal, is characterized by variable progression rates and remarkable diversity of clinical and pathological traits. The infectious sCJD prions propagating the pathology mainly in the brain are assemblies of abnormally folded isoform (PrPSc) of a host-encoded prion protein (PrPC). The structure and replication mechanisms of human prions are unknown, and whether the PrPSc subtypes identified by proteolytic fragmentation represent distinct strains of sCJD prions has been debated. Here, we isolated sCJD prions from patients with two very distant phenotypes of the disease, compared their structural organization using recently developed biophysical techniques, and investigated their replication in vitro. Our data indicate that these sCJD prions are characterized by different secondary structure organization and quaternary packing arrangements, and that these structural differences are responsible for distinct prion replication rates and unique phenotypic characteristics of the disease. Furthermore, our analysis reveals that, contrary to previous observations for yeast prions, the replication tempo of sCJD prions is determined not so much by their conformational stability but by specific structural features that control the growth speed of prion particles.
Collapse
|
146
|
Berghoff AS, Trummert A, Unterberger U, Ströbel T, Hortobágyi T, Kovacs GG. Atypical sporadic CJD-MM phenotype with white matter kuru plaques associated with intranuclear inclusion body and argyrophilic grain disease. Neuropathology 2015; 35:336-42. [PMID: 25783686 DOI: 10.1111/neup.12192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/14/2022]
Abstract
We describe an atypical neuropathological phenotype of sporadic Creutzfeldt-Jakob disease in a 76-year-old man. The clinical symptoms were characterized by progressive dementia, gait ataxia, rigidity and urinary incontinence. The disease duration was 6 weeks. MRI did not show prominent atrophy or hyperintensities in cortical areas, striatum or thalamus. Biomarker examination of the cerebrospinal fluid deviated from that seen in pure Alzheimer's disease. Triphasic waves in the EEG were detected only later in the disease course, while 14-3-3 assay was positive. PRNP genotyping revealed methionine homozygosity (MM) at codon 129. Neuropathology showed classical CJD changes corresponding to the MM type 1 cases. However, a striking feature was the presence of abundant kuru-type plaques in the white matter. This rare morphology was associated with neuropathological signs of intranuclear inclusion body disease and advanced stage of argyrophilic grain disease. These alterations did not show correlation with each other, thus seemed to develop independently. This case further highlights the complexity of neuropathological alterations in the ageing brain.
Collapse
Affiliation(s)
- Anna S Berghoff
- Institute of Neurology and Austrian Reference Center for Human Prion Diseases, Medical University of Vienna, Vienna, Austria
| | - Anita Trummert
- Landesklinikum Weinviertel, Mistelbach-Gänserndorf, Austria
| | - Ursula Unterberger
- Institute of Neurology and Austrian Reference Center for Human Prion Diseases, Medical University of Vienna, Vienna, Austria
| | - Thomas Ströbel
- Institute of Neurology and Austrian Reference Center for Human Prion Diseases, Medical University of Vienna, Vienna, Austria
| | - Tibor Hortobágyi
- Department of Neuropathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor G Kovacs
- Institute of Neurology and Austrian Reference Center for Human Prion Diseases, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
147
|
Kabir ME, Safar JG. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases. Prion 2015; 8:111-6. [PMID: 24401672 PMCID: PMC7030914 DOI: 10.4161/pri.27661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrPC) to a misfolded pathogenic conformer (PrPSc). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrPSc. Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrPSc particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrPSc conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrPSc. Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and adapt by a prion-like mechanism calls for the reevaluation of therapeutic strategies that target aggregates of misfolded proteins, and argues for new therapeutic approaches that will focus on prior pathogenetic steps.
Collapse
|
148
|
Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. mBio 2015; 6:mBio.02451-14. [PMID: 25604790 PMCID: PMC4313917 DOI: 10.1128/mbio.02451-14] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fast, definitive diagnosis of Creutzfeldt-Jakob disease (CJD) is important in assessing patient care options and transmission risks. Real-time quaking-induced conversion (RT-QuIC) assays of cerebrospinal fluid (CSF) and nasal-brushing specimens are valuable in distinguishing CJD from non-CJD conditions but have required 2.5 to 5 days. Here, an improved RT-QuIC assay is described which identified positive CSF samples within 4 to 14 h with better analytical sensitivity. Moreover, analysis of 11 CJD patients demonstrated that while 7 were RT-QuIC positive using the previous conditions, 10 were positive using the new assay. In these and further analyses, a total of 46 of 48 CSF samples from sporadic CJD patients were positive, while all 39 non-CJD patients were negative, giving 95.8% diagnostic sensitivity and 100% specificity. This second-generation RT-QuIC assay markedly improved the speed and sensitivity of detecting prion seeds in CSF specimens from CJD patients. This should enhance prospects for rapid and accurate ante mortem CJD diagnosis. A long-standing problem in dealing with various neurodegenerative protein misfolding diseases is early and accurate diagnosis. This issue is particularly important with human prion diseases, such as CJD, because prions are deadly, transmissible, and unusually resistant to decontamination. The recently developed RT-QuIC test allows for highly sensitive and specific detection of CJD in human cerebrospinal fluid and is being broadly implemented as a key diagnostic tool. However, as currently applied, RT-QuIC takes 2.5 to 5 days and misses 11 to 23% of CJD cases. Now, we have markedly improved RT-QuIC analysis of human CSF such that CJD and non-CJD patients can be discriminated in a matter of hours rather than days with enhanced sensitivity. These improvements should allow for much faster, more accurate, and practical testing for CJD. In broader terms, our study provides a prototype for tests for misfolded protein aggregates that cause many important amyloid diseases, such as Alzheimer’s, Parkinson’s, and tauopathies.
Collapse
|
149
|
Löffler J, Krasemann S, Zerr I, Matschke J, Glatzel M. No reactivation of JCV and CMV infections in the temporal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease patients. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2014; 3:152-157. [PMID: 25628966 PMCID: PMC4299723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is characterized by great phenotypic variability regarding clinical course and neuropathology. The most prominent disease modifiers are a polymorphism in Codon 129 of the prion protein gene and conformational variations of the misfolded prion protein. The cellular form of the prion protein restricts replication of viruses and may be involved in viral host defense, and viral infections influence the presentation and neuropathology in prion diseased mice. We investigated the occurrence of reactivated persistent viral infections of the brain in brain tissue samples of 25 sCJD patients. No evidence of reactivated JCV and CMV infections could be detected. This suggests that JCV and CMV infections are not reactivated as consequence of prion disease and do not act as disease modifiers in sCJD.
Collapse
Affiliation(s)
- Judith Löffler
- Institute of Neuropathology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Inga Zerr
- National Reference Center for TSE, Medical Center Georg-August UniversityGoettingen, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-EppendorfHamburg, Germany
| |
Collapse
|
150
|
Figini M, Alexander DC, Redaelli V, Fasano F, Grisoli M, Baselli G, Gambetti P, Tagliavini F, Bizzi A. Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases. NEUROIMAGE-CLINICAL 2014; 7:142-54. [PMID: 25610776 PMCID: PMC4300005 DOI: 10.1016/j.nicl.2014.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/26/2014] [Accepted: 11/23/2014] [Indexed: 11/29/2022]
Abstract
In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm2 and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD. An advanced DWI acquisition scheme was applied to 15 patients with suspected sCJD. Data fitting with two bi-compartment models outperformed the classic ADC model. In affected GM T2 values were increased, diffusion was more hindered or restricted. For the first time an estimate of the restricted compartment radius was provided. The radius may reflect vacuole size, which is a key discriminator of sCJD subtypes.
Collapse
Key Words
- ADC, apparent diffusion coefficient
- BIC, Bayesian information criterion
- Biophysical models
- CJD, Creutzfeldt–Jakob disease
- CNR, contrast to noise ratio
- Creutzfeldt–Jakob disease
- DWI, diffusion weighted imaging
- Diffusion MRI
- EEG, electroencephalogram
- EPI, echo-planar imaging
- FOV, field of view
- GSS, Gerstmann–Sträussler–Scheinker syndrome
- MPRAGE, magnetization-prepared rapid acquisition gradient-echo
- PrPC, prion protein cellular
- PrPSc, prion protein scrapie
- Prion disease
- ROI, region of interest
- RPE, rapidly progressive encephalopathy
- SS-SE, single shot spin-echo
- Spongiform degeneration
- TE, echo time
- TI, inversion time
- TR, repetition time
- sCJD, sporadic Creutzfeldt–Jakob disease
Collapse
Affiliation(s)
- Matteo Figini
- Neuroradiology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy ; Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | | | - Fabrizio Fasano
- Department of Neuroscience, Università degli Studi di Parma, Parma, Italy
| | - Marina Grisoli
- Neuroradiology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy
| | - Giuseppe Baselli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Pierluigi Gambetti
- National Prion Disease Pathology Surveillance Center, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Alberto Bizzi
- Neuroradiology, Humanitas Research Hospital IRCCS, Rozzano, Milano, Italy
| |
Collapse
|