101
|
Melentev PA, Ryabova EV, Surina NV, Zhmujdina DR, Komissarov AE, Ivanova EA, Boltneva NP, Makhaeva GF, Sliusarenko MI, Yatsenko AS, Mohylyak II, Matiytsiv NP, Shcherbata HR, Sarantseva SV. Loss of swiss cheese in Neurons Contributes to Neurodegeneration with Mitochondria Abnormalities, Reactive Oxygen Species Acceleration and Accumulation of Lipid Droplets in Drosophila Brain. Int J Mol Sci 2021; 22:8275. [PMID: 34361042 PMCID: PMC8347196 DOI: 10.3390/ijms22158275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Various neurodegenerative disorders are associated with human NTE/PNPLA6 dysfunction. Mechanisms of neuropathogenesis in these diseases are far from clearly elucidated. Hereditary spastic paraplegia belongs to a type of neurodegeneration associated with NTE/PNLPLA6 and is implicated in neuron death. In this study, we used Drosophila melanogaster to investigate the consequences of neuronal knockdown of swiss cheese (sws)-the evolutionarily conserved ortholog of human NTE/PNPLA6-in vivo. Adult flies with the knockdown show longevity decline, locomotor and memory deficits, severe neurodegeneration progression in the brain, reactive oxygen species level acceleration, mitochondria abnormalities and lipid droplet accumulation. Our results suggest that SWS/NTE/PNPLA6 dysfunction in neurons induces oxidative stress and lipid metabolism alterations, involving mitochondria dynamics and lipid droplet turnover in neurodegeneration pathogenesis. We propose that there is a complex mechanism in neurological diseases such as hereditary spastic paraplegia, which includes a stress reaction, engaging mitochondria, lipid droplets and endoplasmic reticulum interplay.
Collapse
Affiliation(s)
- Pavel A. Melentev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Nina V. Surina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Darya R. Zhmujdina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Artem E. Komissarov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Mariana I. Sliusarenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Andriy S. Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Iryna I. Mohylyak
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Nataliya P. Matiytsiv
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Halyna R. Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| |
Collapse
|
102
|
Sánchez Marco SB, Peña Segura JL, López Lafuente A, López Pisón J, Lafuente Hidalgo M, Pérez Delgado R. Spastic Paraplegia Type 57: A Cerebral Palsy Mimic. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1732483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | | | | | - Raquel Pérez Delgado
- Department of Paediatric Neurology, Hospital Infantil Universitario Miguel Servet, Zaragoza, Spain
| |
Collapse
|
103
|
The Upper Motor Neuron-Improved Knowledge from ALS and Related Clinical Disorders. Brain Sci 2021; 11:brainsci11080958. [PMID: 34439577 PMCID: PMC8392624 DOI: 10.3390/brainsci11080958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Upper motor neuron (UMN) is a term traditionally used for the corticospinal or pyramidal tract neuron synapsing with the lower motor neuron (LMN) in the anterior horns of the spinal cord. The upper motor neuron controls resting muscle tone and helps initiate voluntary movement of the musculoskeletal system by pathways which are not completely understood. Dysfunction of the upper motor neuron causes the classical clinical signs of spasticity, weakness, brisk tendon reflexes and extensor plantar response, which are associated with clinically well-recognised, inherited and acquired disorders of the nervous system. Understanding the pathophysiology of motor system dysfunction in neurological disease has helped promote a greater understanding of the motor system and its complex cortical connections. This review will focus on the pathophysiology underlying progressive dysfunction of the UMN in amyotrophic lateral sclerosis and three other related adult-onset, progressive neurological disorders with prominent UMN signs, namely, primary lateral sclerosis, hereditary spastic paraplegia and primary progressive multiple sclerosis, to help promote better understanding of the human motor system and, by extension, related cortical systems.
Collapse
|
104
|
Genetic, clinical and neuroimaging profiles of sporadic and autosomal recessive hereditary spastic paraplegia cases in Chinese. Neurosci Lett 2021; 761:136108. [PMID: 34256108 DOI: 10.1016/j.neulet.2021.136108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
Spastic paraplegias (SPGs) are a group of clinically and genetically heterogeneous neurodegenerative diseases. Mutations in 78 genes have been identified in autosomal dominant hereditary SPG (AD-HSP) and autosomal recessive hereditary SPG (AR-HSP). Compared to familial HSP, much less is known about the genetic and clinical profiles of sporadic SPGs. In this study, we have screened mutations for 18 sporadic SPGs or AR-HSP patients (mainly Northern Chinese) by whole-exome sequencing. We identified 12 mutations in five genes in 9 (50%) patients, including 9 novel ones: SPG5A/CYP7B1 (c.851C > A; c.122 + 2 T > G), SPG11/KIAA1840 (c.1735 + 3_ 1735 + 6del AAGT); SPG7/SPG7 (c.1454G > A; c.1892_ 1906dup GAGGACGGGCCTCGG); SPG39/PNPLA6 (c.1591G > A; c. 2990C > T); SPG15/ ZFYVE26 (c. 4804C > T; c. 4278 G > A). Among all the mutations, 7 were detected in the SPG5A and SPG11. Age at onset was significantly younger in cases with mutations (15.45 ± 6.78 years) than those without mutations (25.56 ± 10.90 years) (P = 0.03). Except for two cases with the SPG5A mutations, all cases presented with complicated SPGs. Three cases carrying mutations in SPG7, SPG15, SPG39 showed symptoms and signs of ataxia. One case carrying the homozygous c.259 + 2 T > C mutation in CYP7B1 showed serum parameters indicating liver impairment. Magnetic resonance imaging showed significantly thinned corpus callosum in cases with SPG11 and SPG15, but not in those with SPG5A, SPG7 or SPG39. In contrast, cerebellar atrophy was prominent in the SPG7 and SPG39 cases. These findings expand the spectrum of genetic, clinical and imaging features of sporadic SPG and AR-HSP, and have important implications in genetic counselling, molecular mechanisms and precise diagnosis of the disease.
Collapse
|
105
|
Bian X, Cheng G, Sun X, Liu H, Zhang X, Han Y, Li B, Li N. Two novel truncating variants in UBAP1 are responsible for hereditary spastic paraplegia. PLoS One 2021; 16:e0253871. [PMID: 34191852 PMCID: PMC8244911 DOI: 10.1371/journal.pone.0253871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of rare neurodegenerative disorders. HSPs are complex disorders and are clinically and genetically heterogeneous. To date, more than 80 genes or genetic loci have been reported to be responsible for HSPs in a Mendelian-dependent manner. Most recently, ubiquitin-associated protein 1 (UBAP1) has been recognized to be involved in HSP. Here, we identified novel protein truncating variants in two families with pure form of HSP. A novel deletion (c.468_469delTG) in the UBAP1 gene was found in the first family, whereas a nonsense variant (c.512T>G) was ascertained in the second family. The variants were confirmed in all patients but were not detected in unaffected family members. The mutations resulted in truncated proteins of UBAP1. The variants did not result in different subcellular localizations in neuro-2a cells. However, each of the two variants impaired neurite outgrowth. Taken together, our findings expand the pathogenic spectrum of UBAP1 variants in HSP.
Collapse
Affiliation(s)
- Xinchao Bian
- Department of Neurosurgery, Zibo Central Hospital, Shandong University, Zibo, China
| | - Guangying Cheng
- Department of Gynecology, Zibo Central Hospital, Shandong University, Zibo, China
| | - Xinbo Sun
- Department of Neurosurgery, Zibo Central Hospital, Shandong University, Zibo, China
| | - Hongkun Liu
- Department of Integrated Traditional Chinese and Western Medicine Orthopedics, Zibo Central Hospital, Shandong University, Zibo, China
| | - Xiangmao Zhang
- Department of Neurosurgery, Zibo Central Hospital, Shandong University, Zibo, China
| | - Yu Han
- Department of Neurosurgery, Zibo Central Hospital, Shandong University, Zibo, China
| | - Bo Li
- Department of Integrated Traditional Chinese and Western Medicine Orthopedics, Zibo Central Hospital, Shandong University, Zibo, China
| | - Ning Li
- Department of Integrated Traditional Chinese and Western Medicine Orthopedics, Zibo Central Hospital, Shandong University, Zibo, China
- * E-mail:
| |
Collapse
|
106
|
Kerstens HCJW, Van Lith BJH, Nijkrake MJ, De Swart BJM, Van den Bemd LAC, Smeets RJEM, Klemens F, Van de Warrenburg BPC, Van der Wees PJ, Geurts ACH. Healthcare needs, expectations, utilization, and experienced treatment effects in patients with hereditary spastic paraplegia: a web-based survey in the Netherlands. Orphanet J Rare Dis 2021; 16:283. [PMID: 34167574 PMCID: PMC8223283 DOI: 10.1186/s13023-021-01915-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to identify healthcare needs, expectations, utilization, and the experienced treatment effects in a population of Dutch patients with hereditary spastic paraplegia (HSP). METHODS We distributed an online questionnaire among 194 adult persons with HSP in the Netherlands, of which 166 returned a fully completed version. After applying predefined exclusion criteria, 109 questionnaires from persons with pure HSP were analysed. RESULTS Healthcare needs and expectations were primarily focused on the relief of muscle stiffness and reduction of balance and gait impairments (65-80%), but many participants also expressed needs regarding relief of non-motor symptoms (e.g. pain, fatigue), emotional problems, impaired sleep and self-care capacity, and participation problems (> 60%). Remarkably, despite these frequent needs, relatively few participants (< 33%) expected to be able to improve in these additional domains. Rehabilitation physicians and physiotherapists were more frequently consulted than neurologists and occupational therapists, respectively. Physiotherapy was the most often proposed non-pharmacological intervention (85%), followed by orthopedic footwear (55%) and splints (28%). Approximately one third of the participants was never offered any pharmacological (spasmolytic) treatment. Spasmolytic oral drugs, injections, and intrathecal baclofen were given to 41%, 26%, and 5% of the participants, respectively. Independent of the type of pharmacological intervention, 35-46% of these participants experienced decreased spastiticy and improved general fitness. Other experienced effects differed per type of intervention. CONCLUSIONS Based on this web-based survey in the Netherlands, there seems to be ample room for improvement to meet and attune the healthcare needs and expectations of people with HSP concerning both their motor and non-motor symptoms and functional limitations. In addition, the provision of adequate information about non-pharmacological and pharmacological interventions seems to be insufficient for many patients to allow shared decision making. These conclusions warrant a more pro-active attitude of healthcare providers as well as an interdisciplinary approach for a substantial proportion of the HSP population, also involving professionals with a primary occupational and/or psychosocial orientation.
Collapse
Affiliation(s)
- Hans C J W Kerstens
- IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. .,HAN University of Applied Sciences, Nijmegen, The Netherlands.
| | - Bas J H Van Lith
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten J Nijkrake
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert J M De Swart
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,HAN University of Applied Sciences, Nijmegen, The Netherlands
| | | | - Rob J E M Smeets
- Department of Rehabilitation Medicine, Maastricht University, Research School CAPHRI, Maastricht, The Netherlands.,CIR Revalidatie, Eindhoven, The Netherlands
| | | | - Bart P C Van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philip J Van der Wees
- IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander C H Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
107
|
Fabbro D, Mio C, Fogolari F, Damante G. A novel de novo NIPA1 missense mutation associated to hereditary spastic paraplegia. J Hum Genet 2021; 66:1177-1180. [PMID: 34108639 DOI: 10.1038/s10038-021-00941-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
SPG6 accounts for 1% of autosomal dominant Hereditary Spastic Paraplegia (HSP) and is caused by pathogenic variants in NIPA1, which encodes a magnesium transporter located in plasma membrane and early endosomes, implicated in neuronal development and maintenance. Here we report a 39-year-old woman affected by progressive gait disturbance associated to absence seizures episodes within childhood. Clinical exome sequencing identified a likely pathogenic de novo heterozygous variant in NIPA1 (NM_144599.5 c.249 C > G; p.Asn83Lys). Molecular modelling was performed to evaluate putative functional consequence of the NIPA1 protein. Indeed, the Asn83Lys modification is predicted to induce a significant perturbation of the protein structure, altering signal transduction or small-molecule transport by modulating the length of the second transmembrane domain. This is the first study reporting a SPG6-affected patient harbouring the NIPA1 p.Asn83Lys mutation.
Collapse
Affiliation(s)
- Dora Fabbro
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Catia Mio
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine, Italy.
| | - Federico Fogolari
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, Udine, Italy
| | - Giuseppe Damante
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy.,Dipartimento di Area Medica, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
108
|
A Japanese hereditary spastic paraplegia family with a rare nonsynonymous variant in the SPAST gene. Hum Genome Var 2021; 8:21. [PMID: 34035234 PMCID: PMC8149642 DOI: 10.1038/s41439-021-00153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/19/2021] [Accepted: 04/25/2021] [Indexed: 11/08/2022] Open
Abstract
Spastic paraplegia (SPG) type 4 is an autosomal dominant SPG caused by functional variants in the SPAST gene. We examined a Japanese family with three autosomal dominant SPG patients. These patients presented with typical symptoms of SPG, such as spasticity of the lower limbs. We identified a rare nonsynonymous variant, NM_014946.4:c.1252G>A [p.Glu418Lys], in all three family members. This variant has previously been reported in a Russian SPG family as a "likely pathogenic" variant.5 Ascertainment of additional patients carrying this variant in an unrelated Japanese SPG family further supports its pathogenicity. Molecular diagnosis of SPG4 in this family with hereditary spastic paraplegia is confirmed.
Collapse
|
109
|
Vavouraki N, Tomkins JE, Kara E, Houlden H, Hardy J, Tindall MJ, Lewis PA, Manzoni C. Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias. iScience 2021; 24:102484. [PMID: 34113825 PMCID: PMC8169945 DOI: 10.1016/j.isci.2021.102484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Owing to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes. In this study, experimentally validated human data were used to create a protein-protein interaction network based on the causative genes. Network evaluation as a combination of topological analysis and functional annotation led to the identification of core proteins in putative shared biological processes, such as intracellular transport and vesicle trafficking. The application of machine learning techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, indicating that there is scope to further classify conditions currently described under the same umbrella-term of Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease.
Collapse
Affiliation(s)
- Nikoleta Vavouraki
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
| | | | - Eleanna Kara
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL IoN, UCL London, W1T 7NF UK
- Reta Lila Weston Institute, UCL IoN, 1 Wakefield Street, London, WC1N 1PJ, UK
- UCL Movement Disorders Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marcus J. Tindall
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
- Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, UK
| | - Patrick A. Lewis
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| |
Collapse
|
110
|
Chen YJ, Zhang ZQ, Wang MW, Qiu YS, Yuan RY, Dong EL, Zhao Z, Zhou HT, Wang N, Chen WJ, Lin X. Novel Compound Missense and Intronic Splicing Mutation in ALDH18A1 Causes Autosomal Recessive Spastic Paraplegia. Front Neurol 2021; 12:627531. [PMID: 34093392 PMCID: PMC8170465 DOI: 10.3389/fneur.2021.627531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Hereditary spastic paraplegia (HSP) caused by mutations in ALDH18A1 have been reported as spastic paraplegia 9 (SPG9), with autosomal dominant and autosomal recessive transmission (SPG9A and SPG9B). SPG9 is rare and has shown phenotypic and genotypic heterogeneity in previous reports. Methods: This study screened ALDH18A1 mutations in autosomal recessive HSP patients using combined whole exome sequencing and RNA splicing analysis. We conducted in silico investigations, co-segregation analysis, and ELISA-based analysis of P5CS (Δ1-pyrroline-5-carboxylate synthetase; encoded by ALDH18A1) concentration to validate the pathogenicity of the detected ALDH18A1 variants. All previously reported bi-allelic ALDH18A1 mutations and cases were reviewed to summarize the genetic and clinical features of ALDH18A1-related HSP. Results: A novel missense mutation c.880T>C, p.S294P and an intronic splicing mutation c.-28-13A>G were both detected in ALDH18A1 in an autosomal recessive family presenting with a complicated form HSP. ELISA assays revealed significantly decreased P5CS concentration in the proband's plasma compared with that in the healthy controls. Moreover, review of previously reported recessive cases showed that SPG9B patients in our cohort presented with milder symptoms, i.e., later age at onset and without cognitive impairment. Conclusion: The present study expands the genetic and clinical spectrum of SPG9B caused by ALDH18A1 mutation. Our work defines new genetic variants to facilitate future diagnoses, in addition to demonstrating the highly informative value of splicing mutation prediction in the characterization of disease-related intronic variants.
Collapse
Affiliation(s)
- Yi-Jun Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zai-Qiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng-Wen Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - En-Lin Dong
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hai-Tao Zhou
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
111
|
Fullam T, Statland J. Upper Motor Neuron Disorders: Primary Lateral Sclerosis, Upper Motor Neuron Dominant Amyotrophic Lateral Sclerosis, and Hereditary Spastic Paraplegia. Brain Sci 2021; 11:brainsci11050611. [PMID: 34064596 PMCID: PMC8151104 DOI: 10.3390/brainsci11050611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Following the exclusion of potentially reversible causes, the differential for those patients presenting with a predominant upper motor neuron syndrome includes primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), or upper motor neuron dominant ALS (UMNdALS). Differentiation of these disorders in the early phases of disease remains challenging. While no single clinical or diagnostic tests is specific, there are several developing biomarkers and neuroimaging technologies which may help distinguish PLS from HSP and UMNdALS. Recent consensus diagnostic criteria and use of evolving technologies will allow more precise delineation of PLS from other upper motor neuron disorders and aid in the targeting of potentially disease-modifying therapeutics.
Collapse
|
112
|
Mutations and Protein Interaction Landscape Reveal Key Cellular Events Perturbed in Upper Motor Neurons with HSP and PLS. Brain Sci 2021; 11:brainsci11050578. [PMID: 33947096 PMCID: PMC8146506 DOI: 10.3390/brainsci11050578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are rare motor neuron diseases, which affect mostly the upper motor neurons (UMNs) in patients. The UMNs display early vulnerability and progressive degeneration, while other cortical neurons mostly remain functional. Identification of numerous mutations either directly linked or associated with HSP and PLS begins to reveal the genetic component of UMN diseases. Since each of these mutations are identified on genes that code for a protein, and because cellular functions mostly depend on protein-protein interactions, we hypothesized that the mutations detected in patients and the alterations in protein interaction domains would hold the key to unravel the underlying causes of their vulnerability. In an effort to bring a mechanistic insight, we utilized computational analyses to identify interaction partners of proteins and developed the protein-protein interaction landscape with respect to HSP and PLS. Protein-protein interaction domains, upstream regulators and canonical pathways begin to highlight key cellular events. Here we report that proteins involved in maintaining lipid homeostasis and cytoarchitectural dynamics and their interactions are of great importance for UMN health and stability. Their perturbation may result in neuronal vulnerability, and thus maintaining their balance could offer therapeutic interventions.
Collapse
|
113
|
Zeigelboim BS, José MR, dos Santos GJB, Severiano MIR, Teive HAG, Stechman-Neto J, Santos RS, de Araújo CM, Cavalcante-Leão BL. Balance rehabilitation with a virtual reality protocol for patients with hereditary spastic paraplegia: Protocol for a clinical trial. PLoS One 2021; 16:e0249095. [PMID: 33793609 PMCID: PMC8016341 DOI: 10.1371/journal.pone.0249095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases are sporadic hereditary conditions characterized by progressive dysfunction of the nervous system. Among the symptoms, vestibulopathy is one of the causes of discomfort and a decrease in quality of life. Hereditary spastic paraplegia is a heterogeneous group of hereditary degenerative diseases involving the disorder of a single gene and is characterized by the progressive retrograde degeneration of fibers in the spinal cord. OBJECTIVE To determine the benefits of vestibular rehabilitation involving virtual reality by comparing pre intervention and post intervention assessments in individuals with hereditary spastic paraplegia. METHODS In this randomized controlled clinical trial from the Rebec platform RBR-3jmx67 in which allocation concealment was performed and the evaluators be blinded will be included. The participants will include 40 patients diagnosed with hereditary spastic paraplegia. The interventions will include vestibular rehabilitation with virtual reality using the Wii® console, Wii-Remote and Wii Balance Board (Nintendo), and the studies will include pre- and post intervention assessments. Group I will include twenty volunteers who performed balance games. Group II will include twenty volunteers who performed balance games and muscle strength games. The games lasted from 30 minutes to an hour, and the sessions were performed twice a week for 10 weeks (total: 20 sessions). RESULTS This study provides a definitive assessment of the effectiveness of a virtual reality vestibular rehabilitation program in halting the progression of hereditary spastic paraplegia, and this treatment can be personalized and affordable. CONCLUSION The study will determine whether a vestibular rehabilitation program with the Nintendo Wii® involving virtual reality can reduce the progressive effect of hereditary spastic paraplegia and serve as an alternative treatment option that is accessible and inexpensive. Rebec platform trial: RBR-3JMX67.
Collapse
|
114
|
Pashaei M, Davarzani A, Hajati R, Zamani B, Nafissi S, Larti F, Nilipour Y, Rohani M, Alavi A. Description of clinical features and genetic analysis of one ultra-rare (SPG64) and two common forms (SPG5A and SPG15) of hereditary spastic paraplegia families. J Neurogenet 2021; 35:84-94. [PMID: 33771085 DOI: 10.1080/01677063.2021.1895146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous neurodegenerative disorder, characterized by lower-limb spasticity and weakness. To date, more than 82 loci/genes (SPG1-SPG82) have been identified that contribute to the cause of HSP. Despite the use of next-generation sequencing-based methods, genetic-analysis has failed in the finding of causative genes in more than 50% of HSP patients, indicating a more significant heterogeneity and absence of a given phenotype-genotype correlation. Here, we performed whole-exome sequencing (WES) to identify HSP-causing genes in three unrelated-Iranian probands. Candidate variants were detected and confirmed in the probands and co-segregated in the family members. The phenotypic data gathered and compared with earlier cases with the same sub-types of disease. Three novel homozygous variants, c.978delT; p.Q327Kfs*39, c.A1208G; p.D403G and c.3811delT; p.S1271Lfs*44, in known HSP-causing genes including ENTPD1, CYP7B1, and ZFYVE26 were identified, respectively. Intra and interfamilial clinical variability were observed among affected individuals. Mutations in CYP7B1 and ZFYVE26 are relatively common causes of HSP and associated with SPG5A and SPG15, respectively. However, mutations in ENTPD1 are related to SPG64 which is an ultra-rare form of HSP. The research affirmed more complexities of phenotypic manifestations and allelic heterogeneity in HSP. Due to these complexities, it is not feasible to show a clear phenotype-genotype correlation in HSP cases. Identification of more families with mutations in HSP-causing genes may help the establishment of this correlation, further understanding of the molecular basis of the disease, and would provide an opportunity for genetic-counseling in these families.
Collapse
Affiliation(s)
- Mahdieh Pashaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Atefeh Davarzani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Hajati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Babak Zamani
- Neurology Department, Firoozgar hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital., Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Larti
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
115
|
Mackay-Sim A. Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. Brain Sci 2021; 11:brainsci11030403. [PMID: 33810178 PMCID: PMC8004882 DOI: 10.3390/brainsci11030403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a diverse group of Mendelian genetic disorders affecting the upper motor neurons, specifically degeneration of their distal axons in the corticospinal tract. Currently, there are 80 genes or genomic loci (genomic regions for which the causative gene has not been identified) associated with HSP diagnosis. HSP is therefore genetically very heterogeneous. Finding treatments for the HSPs is a daunting task: a rare disease made rarer by so many causative genes and many potential mutations in those genes in individual patients. Personalized medicine through genetic correction may be possible, but impractical as a generalized treatment strategy. The ideal treatments would be small molecules that are effective for people with different causative mutations. This requires identification of disease-associated cell dysfunctions shared across genotypes despite the large number of HSP genes that suggest a wide diversity of molecular and cellular mechanisms. This review highlights the shared dysfunctional phenotypes in patient-derived cells from patients with different causative mutations and uses bioinformatic analyses of the HSP genes to identify novel cell functions as potential targets for future drug treatments for multiple genotypes.
Collapse
Affiliation(s)
- Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
116
|
Abstract
Hereditary myelopathies are an important and likely underappreciated component of neurogenetic disease. While previously distinctions have been made by age of onset, the growing power and availability of high-quality neuroimaging and next-generation sequencing are increasingly expanding classical phenotypes and diminishing the utility of age-based classifications. Increasingly, cases of "atypical" disease presentations are challenging past assumptions regarding the age of onset and survival in many disorders and identifying allelic syndromes in others. Despite this, there is poor awareness of the potential for spinal involvement in many diseases that typically affect the brain. Broadly speaking, congenital myelopathies can be neuroanatomically grouped into motor neuron, axonopathy, spinocerebellar, cerebroleukodystrophy, and pan-neuraxis (generally central nervous system predominant with associated axonopathy) disorders.Here, we review hereditary causes of myelopathy, organized by neuroanatomy, and highlight atypical presentations. We discuss findings concerning an underlying genetic etiology for myelopathy, as well as practical, technical, and ethical considerations of diagnostic genetic testing.
Collapse
Affiliation(s)
- Melissa A Walker
- Division of Child Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
117
|
Li Y, Kang J, Fu J, Luo H, Liu Y, Li Y, Sun L. PGC1α Promotes Cisplatin Resistance in Ovarian Cancer by Regulating the HSP70/HK2/VDAC1 Signaling Pathway. Int J Mol Sci 2021; 22:ijms22052537. [PMID: 33802591 PMCID: PMC7961780 DOI: 10.3390/ijms22052537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial apoptosis is one of the main mechanisms for cancer cells to overcome chemoresistance. Hexokinase 2 (HK2) can resist cancer cell apoptosis by expressing on mitochondria and binding to voltage-dependent anion channel 1 (VDAC1). We previously reported that peroxisome proliferator-activated receptor coactivator 1 α (PGC1α) is highly expressed in ovarian cancer cisplatin-resistant cells. However, the underlying mechanism remains unclear. Therefore, we evaluated the interaction between PGC1α and HK2 in ovarian cancer cisplatin-resistant cells. We found that the knockdown of PGC1α promotes the apoptosis of ovarian cancer cisplatin-resistant cells and increases their sensitivity to cisplatin. In addition, we found that the knockdown of PGC1α affects the mitochondrial membrane potential and the binding of HK2 and VDAC1. As the heat shock protein 70 (HSP70) family can help protein transport, we detected it and found that PGC1α can promote HSP70 gene transcription. Furthermore, HSP70 can promote an increase of HK2 expression on mitochondria and an increase of binding to VDAC1. Based on these results, PGC1α may reduce apoptosis through the HSP70/HK2/VDAC1 signaling pathway, thus promoting cisplatin resistance of ovarian cancer. These findings provide strong theoretical support for PGC1α as a potential therapeutic target of cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Li
- Correspondence: (Y.L.); (L.S.); Tel.: +86-431-8561-9101 (Y.L.)
| | - Liankun Sun
- Correspondence: (Y.L.); (L.S.); Tel.: +86-431-8561-9101 (Y.L.)
| |
Collapse
|
118
|
Saputra L, Kumar KR. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Curr Neurol Neurosci Rep 2021; 21:15. [PMID: 33646413 PMCID: PMC7921051 DOI: 10.1007/s11910-021-01099-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review The hereditary spastic paraplegias (HSPs) are a group of disorders characterised by progressive lower limb weakness and spasticity. We address the challenges and controversies involved in the genetic diagnosis of HSP. Recent Findings There is a large and rapidly expanding list of genes implicated in HSP, making it difficult to keep gene testing panels updated. There is also a high degree of phenotypic overlap between HSP and other disorders, leading to problems in choosing the right panel to analyse. We discuss genetic testing strategies for overcoming these diagnostic hurdles, including the use of targeted sequencing gene panels, whole-exome sequencing and whole-genome sequencing. Personalised treatments for HSP are on the horizon, and a genetic diagnosis may hold the key to access these treatments. Summary Developing strategies to overcome the challenges and controversies in HSP may hold the key to a rapid and accurate genetic diagnosis.
Collapse
Affiliation(s)
- Lydia Saputra
- Northern Beaches Hospital, Frenchs Forest, New South Wales, Australia
| | - Kishore Raj Kumar
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, Sydney, New South Wales, Australia. .,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. .,Institute of Precision Medicine & Bioinformatics, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| |
Collapse
|
119
|
De Beukelaer N, Bar-On L, Hanssen B, Peeters N, Prinsen S, Ortibus E, Desloovere K, Van Campenhout A. Muscle Characteristics in Pediatric Hereditary Spastic Paraplegia vs. Bilateral Spastic Cerebral Palsy: An Exploratory Study. Front Neurol 2021; 12:635032. [PMID: 33716937 PMCID: PMC7952873 DOI: 10.3389/fneur.2021.635032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 01/14/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a neurological, genetic disorder that predominantly presents with lower limb spasticity and muscle weakness. Pediatric pure HSP types with infancy or childhood symptom onset resemble in clinical presentation to children with bilateral spastic cerebral palsy (SCP). Hence, treatment approaches in these patient groups are analogous. Altered muscle characteristics, including reduced medial gastrocnemius (MG) muscle growth and hyperreflexia have been quantified in children with SCP, using 3D-freehand ultrasound (3DfUS) and instrumented assessments of hyperreflexia, respectively. However, these muscle data have not yet been studied in children with HSP. Therefore, we aimed to explore these MG muscle characteristics in HSP and to test the hypothesis that these data differ from those of children with SCP and typically developing (TD) children. A total of 41 children were retrospectively enrolled including (1) nine children with HSP (ages of 9–17 years with gross motor function levels I and II), (2) 17 age-and severity-matched SCP children, and (3) 15 age-matched typically developing children (TD). Clinically, children with HSP showed significantly increased presence and severity of ankle clonus compared with SCP (p = 0.009). Compared with TD, both HSP and SCP had significantly smaller MG muscle volume normalized to body mass (p ≤ 0.001). Hyperreflexia did not significantly differ between the HSP and SCP group. In addition to the observed pathological muscle activity for both the low-velocity and the change in high-velocity and low-velocity stretches in the two groups, children with HSP tended to present higher muscle activity in response to increased stretch velocity compared with those with SCP. This exploratory study is the first to reveal MG muscle volume deficits in children with HSP. Moreover, high-velocity-dependent hyperreflexia and ankle clonus is observed in children with HSP. Instrumented impairment assessments suggested similar altered MG muscle characteristics in pure HSP type with pediatric onset compared to bilateral SCP. This finding needs to be confirmed in larger sample sizes. Hence, the study results might indicate analogous treatment approaches in these two patient groups.
Collapse
Affiliation(s)
- Nathalie De Beukelaer
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Britta Hanssen
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Nicky Peeters
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Sandra Prinsen
- Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Els Ortibus
- KU Leuven Department of Development and Regeneration, Leuven, Belgium
| | - Kaat Desloovere
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium.,Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium.,KU Leuven Department of Development and Regeneration, Leuven, Belgium
| |
Collapse
|
120
|
Hüsler D, Steiner B, Welin A, Striednig B, Swart AL, Molle V, Hilbi H, Letourneur F. Dictyostelium lacking the single atlastin homolog Sey1 shows aberrant ER architecture, proteolytic processes and expansion of the Legionella-containing vacuole. Cell Microbiol 2021; 23:e13318. [PMID: 33583106 DOI: 10.1111/cmi.13318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Bernhard Steiner
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - A Leoni Swart
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
121
|
Application of a Clinical Workflow May Lead to Increased Diagnostic Precision in Hereditary Spastic Paraplegias and Cerebellar Ataxias: A Single Center Experience. Brain Sci 2021; 11:brainsci11020246. [PMID: 33669240 PMCID: PMC7919782 DOI: 10.3390/brainsci11020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular characterization of Hereditary Spastic Paraplegias (HSP) and inherited cerebellar ataxias (CA) is challenged by their clinical and molecular heterogeneity. The recent application of Next Generation Sequencing (NGS) technologies is increasing the diagnostic rate, which can be influenced by patients’ selection. To assess if a clinical diagnosis of CA/HSP received in a third-level reference center might impact the molecular diagnostic yield, we retrospectively evaluated the molecular diagnostic rate reached in our center on 192 unrelated families (90 HSP and 102 CA) (i) before NGS and (ii) with the use of NGS gene panels. Overall, 46.3% of families received a genetic diagnosis by first-tier individual gene screening: 43.3% HSP and 50% spinocerebellar ataxias (SCA). The diagnostic rate was 56.7% in AD-HSP, 55.5% in AR-HSP, and 21.2% in sporadic HSP. On the other hand, 75% AD-, 52% AR- and 33% sporadic CA were diagnosed. So far, 32 patients (24 CA and 8 HSP) were further assessed by NGS gene panels, and 34.4% were diagnosed, including 29.2% CA and 50% HSP patients. Eleven novel gene variants classified as (likely) pathogenic were identified. Our results support the role of experienced clinicians in the diagnostic assessment and the clinical research of CA and HSP even in the next generation era.
Collapse
|
122
|
Moreno-De-Luca A, Millan F, Pesacreta DR, Elloumi HZ, Oetjens MT, Teigen C, Wain KE, Scuffins J, Myers SM, Torene RI, Gainullin VG, Arvai K, Kirchner HL, Ledbetter DH, Retterer K, Martin CL. Molecular Diagnostic Yield of Exome Sequencing in Patients With Cerebral Palsy. JAMA 2021; 325:467-475. [PMID: 33528536 PMCID: PMC7856544 DOI: 10.1001/jama.2020.26148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Cerebral palsy is a common neurodevelopmental disorder affecting movement and posture that often co-occurs with other neurodevelopmental disorders. Individual cases of cerebral palsy are often attributed to birth asphyxia; however, recent studies indicate that asphyxia accounts for less than 10% of cerebral palsy cases. OBJECTIVE To determine the molecular diagnostic yield of exome sequencing (prevalence of pathogenic and likely pathogenic variants) in individuals with cerebral palsy. DESIGN, SETTING, AND PARTICIPANTS A retrospective cohort study of patients with cerebral palsy that included a clinical laboratory referral cohort with data accrued between 2012 and 2018 and a health care-based cohort with data accrued between 2007 and 2017. EXPOSURES Exome sequencing with copy number variant detection. MAIN OUTCOMES AND MEASURES The primary outcome was the molecular diagnostic yield of exome sequencing. RESULTS Among 1345 patients from the clinical laboratory referral cohort, the median age was 8.8 years (interquartile range, 4.4-14.7 years; range, 0.1-66 years) and 601 (45%) were female. Among 181 patients in the health care-based cohort, the median age was 41.9 years (interquartile range, 28.0-59.6 years; range, 4.8-89 years) and 96 (53%) were female. The molecular diagnostic yield of exome sequencing was 32.7% (95% CI, 30.2%-35.2%) in the clinical laboratory referral cohort and 10.5% (95% CI, 6.0%-15.0%) in the health care-based cohort. The molecular diagnostic yield ranged from 11.2% (95% CI, 6.4%-16.2%) for patients without intellectual disability, epilepsy, or autism spectrum disorder to 32.9% (95% CI, 25.7%-40.1%) for patients with all 3 comorbidities. Pathogenic and likely pathogenic variants were identified in 229 genes (29.5% of 1526 patients); 86 genes were mutated in 2 or more patients (20.1% of 1526 patients) and 10 genes with mutations were independently identified in both cohorts (2.9% of 1526 patients). CONCLUSIONS AND RELEVANCE Among 2 cohorts of patients with cerebral palsy who underwent exome sequencing, the prevalence of pathogenic and likely pathogenic variants was 32.7% in a cohort that predominantly consisted of pediatric patients and 10.5% in a cohort that predominantly consisted of adult patients. Further research is needed to understand the clinical implications of these findings.
Collapse
Affiliation(s)
- Andrés Moreno-De-Luca
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
- Department of Radiology, Geisinger, Danville, Pennsylvania
- Diagnostic Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Denis R. Pesacreta
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Matthew T. Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Karen E. Wain
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Scott M. Myers
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | | | | | - H. Lester Kirchner
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - David H. Ledbetter
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Christa L. Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| |
Collapse
|
123
|
Genç B, Gautam M, Gözütok Ö, Dervishi I, Sanchez S, Goshu GM, Koçak N, Xie E, Silverman RB, Özdinler PH. Improving mitochondria and ER stability helps eliminate upper motor neuron degeneration that occurs due to mSOD1 toxicity and TDP-43 pathology. Clin Transl Med 2021; 11:e336. [PMID: 33634973 PMCID: PMC7898037 DOI: 10.1002/ctm2.336] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Upper motor neurons (UMNs) are a key component of motor neuron circuitry. Their degeneration is a hallmark for diseases, such as hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), and amyotrophic lateral sclerosis (ALS). Currently there are no preclinical assays investigating cellular responses of UMNs to compound treatment, even for diseases of the UMNs. The basis of UMN vulnerability is not fully understood, and no compound has yet been identified to improve the health of diseased UMNs: two major roadblocks for building effective treatment strategies. METHODS Novel UMN reporter models, in which UMNs that are diseased because of misfolded superoxide dismutase protein (mSOD1) toxicity and TDP-43 pathology are labeled with eGFP expression, allow direct assessment of UMN response to compound treatment. Electron microscopy reveals very precise aspects of endoplasmic reticulum (ER) and mitochondrial damage. Administration of NU-9, a compound initially identified based on its ability to reduce mSOD1 toxicity, has profound impact on improving the health and stability of UMNs, as identified by detailed cellular and ultrastructural analyses. RESULTS Problems with mitochondria and ER are conserved in diseased UMNs among different species. NU-9 has drug-like pharmacokinetic properties. It lacks toxicity and crosses the blood brain barrier. NU-9 improves the structural integrity of mitochondria and ER, reduces levels of mSOD1, stabilizes degenerating UMN apical dendrites, improves motor behavior measured by the hanging wire test, and eliminates ongoing degeneration of UMNs that become diseased both because of mSOD1 toxicity and TDP-43 pathology, two distinct and important overarching causes of motor neuron degeneration. CONCLUSIONS Mechanism-focused and cell-based drug discovery approaches not only addressed key cellular defects responsible for UMN loss, but also identified NU-9, the first compound to improve the health of diseased UMNs, neurons that degenerate in ALS, HSP, PLS, and ALS/FTLD patients.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mukesh Gautam
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Öge Gözütok
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ina Dervishi
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Santana Sanchez
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Gashaw M. Goshu
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
| | - Nuran Koçak
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Edward Xie
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Richard B. Silverman
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
| | - P. Hande Özdinler
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental TherapeuticsNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208
- Mesulam Center for Cognitive Neurology and Alzheimer's DiseaseNorthwestern University, Feinberg School of MedicineChicagoIL60611
- Les Turner ALS CenterNorthwestern University, Feinberg School of MedicineChicagoIL60611
| |
Collapse
|
124
|
Navas-Sánchez FJ, Fernández-Pena A, Martín de Blas D, Alemán-Gómez Y, Marcos-Vidal L, Guzmán-de-Villoria JA, Fernández-García P, Romero J, Catalina I, Lillo L, Muñoz-Blanco JL, Ordoñez-Ugalde A, Quintáns B, Pardo J, Sobrido MJ, Carmona S, Grandas F, Desco M. Thalamic atrophy in patients with pure hereditary spastic paraplegia type 4. J Neurol 2021; 268:2429-2440. [PMID: 33507371 DOI: 10.1007/s00415-020-10387-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/18/2023]
Abstract
SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive spasticity and weakness of the lower limbs caused by degeneration of the corticospinal tract. In other neurodegenerative motor disorders, the thalamus and basal ganglia are affected, with a considerable impact on disease progression. However, only a few works have studied these brain structures in HSP, mainly in complex forms of this disease. Our research aims to detect potential alterations in the volume and shape of the thalamus and various basal ganglia structures by comparing 12 patients with pure HSP and 18 healthy controls. We used two neuroimaging procedures: automated segmentation of the subcortical structures (thalamus, hippocampus, caudate nucleus, globus pallidus, and putamen) in native space and shape analysis of the structures. We found a significant reduction in thalamic volume bilaterally, as well as an inward deformation, mainly in the sensory-motor thalamic regions in patients with pure HSP and a mutation in SPG4. We also observed a significant negative correlation between the shape of the thalamus and clinical scores (the Spastic Paraplegia Rating Scale score and disease duration). Moreover, we found a 'Group × Age' interaction that was closely related to the severity of the disease. No differences in volume or in shape were found in the remaining subcortical structures studied. Our results suggest that changes in structure of the thalamus could be an imaging biomarker of disease progression in pHSP.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | | | | | - Yasser Alemán-Gómez
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre D'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Luís Marcos-Vidal
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Medical Image Analysis Laboratory (MIAL), Centre D'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Juan A Guzmán-de-Villoria
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Julia Romero
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Catalina
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Lillo
- Hospital Ruber Internacional, Servicio de Neurología, Madrid, Spain.,Hospital Universitario Fundación Alcorcón, Servicio de Neurología Alcorcón, Madrid, Spain
| | - José L Muñoz-Blanco
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Ordoñez-Ugalde
- Laboratorio Biomolecular, Cuenca, Ecuador.,Unidad de Genética y Molecular, Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador.,Neurogenetics Group, FPGMX-IDIS, Santiago de Compostela, Spain
| | - Beatriz Quintáns
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-U711), Madrid, Spain.,Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Julio Pardo
- Departamento de Neurología, Hospital Clínico Universitario de Santiago de Compostela, A Coruña, Santiago de Compostela, Spain
| | - María-Jesús Sobrido
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Hospital Clínico Universitario de A Coruña, SERGAS, Santiago de Compostela, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Francisco Grandas
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
125
|
Tozawa T, Nishimura A, Ueno T, Shikata A, Taura Y, Yoshida T, Nakagawa N, Wada T, Kosugi S, Uehara T, Takenouchi T, Kosaki K, Chiyonobu T. Complex hereditary spastic paraplegia associated with episodic visual loss caused by ACO2 variants. Hum Genome Var 2021; 8:4. [PMID: 33500398 PMCID: PMC7838304 DOI: 10.1038/s41439-021-00136-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/09/2022] Open
Abstract
Most patients with homozygous or compound heterozygous pathogenic ACO2 variants present with muscular hypotonia features, namely, infantile cerebellar-retinal degeneration. Recently, two studies reported rare familial cases of ACO2 variants presenting as complex hereditary spastic paraplegia (HSP) with broad clinical spectra. Here, we report the case of a 20-year-old Japanese woman with complex HSP caused by compound heterozygous ACO2 variants, revealing a new phenotype of episodic visual loss during febrile illness.
Collapse
Affiliation(s)
- Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Department of Pediatrics, Ayabe City Hospital, Ayabe, Japan.
| | - Akira Nishimura
- Department of Neonatology, Japanese Red Cross Society Kyoto Daiichi Hospital, Kyoto, Japan
| | - Tamaki Ueno
- Department of Pediatrics, Ayabe City Hospital, Ayabe, Japan.,Department of Pediatrics, Tokai Central Hospital, Kakamigahara, Japan
| | - Akane Shikata
- Kyoto Prefectural Maizuru Rehabilitation Center for Children, Maizuru, Japan
| | - Yoshihiro Taura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Yoshida
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoko Nakagawa
- Department of Medical Ethics/Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Takahito Wada
- Department of Medical Ethics/Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Shinji Kosugi
- Department of Medical Ethics/Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
126
|
Murala S, Nagarajan E, Bollu PC. Hereditary spastic paraplegia. Neurol Sci 2021; 42:883-894. [DOI: 10.1007/s10072-020-04981-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
|
127
|
Nakamura T, Kawarabayashi T, Koh K, Takiyama Y, Ikeda Y, Shoji M. Spastic Paraplegia with Paget's Disease of Bone due to a VCP Gene Mutation. Intern Med 2021; 60:141-144. [PMID: 32893227 PMCID: PMC7835475 DOI: 10.2169/internalmedicine.4617-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder clinically characterized by slowly progressing spastic paraparesis. We herein report a 50-year-old Japanese woman who presented with slowly progressing spastic paraplegia and a history of Paget's disease of bone (PDB). Genetic testing revealed a mutation of the Valosin-containing protein (VCP) gene (p.Arg155Cys; c.436C>T). This mutation has not been reported to cause HSP with PDB.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | | | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | - Mikio Shoji
- Dementia Center, Geriatrics Research Institute Hospital, Japan
| |
Collapse
|
128
|
Abbas S, Brugger B, Zubair M, Gul S, Blatterer J, Wenninger J, Rehman K, Tatrai B, Khan MA, Windpassinger C. Exome sequencing of a Pakistani family with spastic paraplegia identified an 18 bp deletion in the cytochrome B5 domain of FA2H. Neurol Res 2020; 43:133-140. [PMID: 33246395 DOI: 10.1080/01616412.2020.1831329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse class of neurodegenerative disorders that mainly affect the corticospinal tract of the body and result in various clinical conditions such as lower limb spasticity and muscle weakness in the lower extremities. Worldwide, more than 70 chromosomal loci/genes have been reported to be associated with HSPs, out of which, six genes viz., ATL1, FA2H, GJC2, AP4E1, ALDH18A1 and ATP13A2 have been mapped in Pakistani families. In the present genetic study, we report on a large consanguineous Pakistani family with a complex form of HSP segregating with a 18 bp deletion in the first exon of the Fatty Acid 2-Hydroxylase (FA2H) gene (NM_024306.5:c.159_176del). The identified in-frame deletion results in loss of six amino acids (p.Arg53_Ile58del) within the cytochrome B5 domain of the protein. FA2H is required for alpha-hydroxylation of free fatty acids to form alpha-hydroxylated sphingolipids. Its cytochrome b5-like heme-binding domain, which spans from residues 15 to 85, imparts the redox activity to FA2H. This mutation has previously been reported in a Pakistani family presenting with a similar form of complex HSP. Together with our findings the pathogenic role of the observed variant is further supported. Mutation studies on additional Pakistani families for FA2H will further elucidate its mutational spectrum, which may help in developing a prenatal diagnostic test for Khyber Pakhtunkhwa resident Pakistani families.
Collapse
Affiliation(s)
- Safdar Abbas
- Gomal Center of Biochemistry and Biotechnology, Gomal University , D.I.Khan, Pakistan
| | - Beatrice Brugger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| | - Muhammad Zubair
- Gomal Center of Biochemistry and Biotechnology, Gomal University , D.I.Khan, Pakistan.,Department of Cell and Developmental Biology, School of Life Sciences, University of Science and Technology , Hefei, China
| | - Sana Gul
- Gomal Center of Biochemistry and Biotechnology, Gomal University , D.I.Khan, Pakistan
| | - Jasmin Blatterer
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| | - Julian Wenninger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| | - Khurram Rehman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gomal University , D.I.Khan, Pakistan
| | - Benjamin Tatrai
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| | - Muzammil Ahmad Khan
- Gomal Center of Biochemistry and Biotechnology, Gomal University , D.I.Khan, Pakistan
| | - Christian Windpassinger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| |
Collapse
|
129
|
Hardt R, Jordans S, Winter D, Gieselmann V, Wang-Eckhardt L, Eckhardt M. Decreased turnover of the CNS myelin protein Opalin in a mouse model of hereditary spastic paraplegia 35. Hum Mol Genet 2020; 29:3616-3630. [PMID: 33215680 DOI: 10.1093/hmg/ddaa246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Spastic paraplegia 35 (SPG35) (OMIM: 612319) or fatty acid hydroxylase-associated neurodegeneration (FAHN) is caused by deficiency of fatty acid 2-hydroxylase (FA2H). This enzyme synthesizes sphingolipids containing 2-hydroxylated fatty acids, which are particularly abundant in myelin. Fa2h-deficient (Fa2h-/-) mice develop symptoms reminiscent of the human disease and therefore serve as animal model of SPG35. In order to understand further the pathogenesis of SPG35, we compared the proteome of purified CNS myelin isolated from wild type and Fa2h-/- mice at different time points of disease progression using tandem mass tag labeling. Data analysis with a focus on myelin membrane proteins revealed a significant increase of the oligodendrocytic myelin paranodal and inner loop protein (Opalin) in Fa2h-/- mice, whereas the concentration of other major myelin proteins was not significantly changed. Western blot analysis revealed an almost 6-fold increase of Opalin in myelin of Fa2h-/- mice aged 21-23 months. A concurrent unaltered Opalin gene expression suggested a decreased turnover of the Opalin protein in Fa2h-/- mice. Supporting this hypothesis, Opalin protein half-life was reduced significantly when expressed in CHO cells synthesizing 2-hydroxylated sulfatide, compared to cells synthesizing only non-hydroxylated sulfatide. Degradation of Opalin was inhibited by inhibitors of lysosomal degradation but unaffected by proteasome inhibitors. Taken together, these results reveal a new function of 2-hydroxylated sphingolipids namely affecting the turnover of a myelin membrane protein. This may play a role in the pathogenesis of SPG35.
Collapse
Affiliation(s)
- Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Silvia Jordans
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
130
|
Araujo FMM, Junior WM, Tomaselli PJ, Pimentel ÂV, Macruz Brito MC, Tumas V. SPG15: A Rare Correlation with Atypical Juvenile Parkinsonism Responsive to Levodopa. Mov Disord Clin Pract 2020; 7:842-844. [PMID: 33033739 PMCID: PMC7533969 DOI: 10.1002/mdc3.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Wilson Marques Junior
- Neurogenetics Section, Department of Neurosciences and Behavioral Sciences Ribeirão Preto Medical School Hospital, University of São Paulo (USP) Ribeirão Preto Brazil
| | - Pedro José Tomaselli
- Neurogenetics Section, Department of Neurosciences and Behavioral Sciences Ribeirão Preto Medical School Hospital, University of São Paulo (USP) Ribeirão Preto Brazil
| | - Ângela V Pimentel
- Movement Disorders and Behavioral Neurology Section University of São Paulo Ribeirão Preto Brazil
| | - Manuelina C Macruz Brito
- Movement Disorders and Behavioral Neurology Section University of São Paulo Ribeirão Preto Brazil
| | - Vitor Tumas
- Movement Disorders and Behavioral Neurology Section University of São Paulo Ribeirão Preto Brazil
| |
Collapse
|
131
|
Lagrand TJ, Hageman G. A Pyramidal Cause of a Cerebellar Ataxia: HSP-7. Case Rep Neurol 2020; 12:329-333. [PMID: 33173492 PMCID: PMC7590769 DOI: 10.1159/000509346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
A 43-year-old man presented with a slowly progressive fatigue and coordination problems, coupled with a radiological appearance of diffuse atrophy, especially in the cerebellar hemispheres. The diagnostic process was challenging because initially the additional investigations were focused on a cerebellar ataxia. In the following months, his ataxic gait developed in a more spastic pattern and whole exome sequencing revealed mutations in the SPG7 gene, confirming a diagnosis of hereditary spastic paraplegia. Therefore, the authors call for an extension of genetic panels in ataxia patients.
Collapse
Affiliation(s)
- Tjerk Joppe Lagrand
- Department of Neurology, University Medical Centre Groningen, Groningen, The Netherlands
- *Tjerk Joppe Lagrand, Department of Neurology, University Medical Center Groningen, Hanzeplein 1, NL–Groningen, 9700 RB (The Netherlands), ,
| | - Gerard Hageman
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands
| |
Collapse
|
132
|
Wang B, Yu Y, Wei L, Zhang Y. Inhibition of ER stress improves progressive motor deficits in a REEP1-null mouse model of hereditary spastic paraplegia. Biol Open 2020; 9:bio054296. [PMID: 32878877 PMCID: PMC7541344 DOI: 10.1242/bio.054296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetic neurodegenerative diseases. HSPs are characterized by lower-extremity weakness and spasticity. However, there is no specific clinical treatment strategy to prevent or reverse nerve degeneration in HSPs. Mutations in receptor expression-enhancing protein 1 (REEP1) are well-recognized and relatively common causes of autosomal dominant HSPs. REEP1 modifies the endoplasmic reticulum (ER) shape, and is implicated in the ER stress response. Defects in the ER stress response seem to be crucial mechanisms underlying HSP neurodegeneration. Here, we report that REEP1-/- mice exhibit progressive motor deficits, along with denervation of neuromuscular junctions and increased ER stress. Moreover, marked axonal degeneration and morphological abnormalities are observed. In this study, we treated both REEP1-/- and wild-type (WT) mice with salubrinal, which is a specific inhibitor of ER stress, and we observed increased nerve-muscle connections and enhanced motor functions. Our data highlight the importance of ER homeostasis in HSPs, providing new opportunities for HSP treatment.
Collapse
Affiliation(s)
- Bingjie Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - You Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lai Wei
- State Key Laboratory of Membrane Biology, School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
133
|
Wieters F, Weiss Lucas C, Gruhn M, Büschges A, Fink GR, Aswendt M. Introduction to spasticity and related mouse models. Exp Neurol 2020; 335:113491. [PMID: 33007294 DOI: 10.1016/j.expneurol.2020.113491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
Although spasticity is one of the most common causes of motor disability worldwide, its precise definition and pathophysiology remain elusive, which to date renders its experimental targeting tricky. At least in part, this difficulty is caused by heterogeneous phenotypes of spasticity-causing neurological disorders, all causing spasticity by involving upper motor neurons. The most common clinical symptoms are a series of rapid muscle contractions (clonus), an increased muscle tone (hypertonia), and augmented tendon reflex activity (hyperreflexia). This muscle overactivity is due to disturbed inhibition of spinal reflexes following upper motor neuron dysfunction. Despite a range of physical and pharmacological therapies ameliorating the symptoms, their targeted application remains difficult. Therefore, to date, spasticity impacts rehabilitative therapy, and no therapy exists that reverses the pathology completely. In contrast to the incidence and importance of spasticity, only very little pre-clinical work in animal models exists, and this research is focused on the cat or the rat spastic tail model to decipher altered reflexes and excitability of the motor neurons in the spinal cord. Meanwhile, the characterization of spasticity in clinically more relevant mouse models of neurological disorders, such as stroke, remains understudied. Here, we provide a brief introduction into the clinical knowledge and therapy of spasticity and an in-depth review of pre-clinical studies of spasticity in mice including the current experimental challenges for clinical translation.
Collapse
Affiliation(s)
- Frederique Wieters
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Carolin Weiss Lucas
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Center of Neurosurgery, Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne
| | - Ansgar Büschges
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Neurology, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Markus Aswendt
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Neurology, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany.
| |
Collapse
|
134
|
A novel REEP1 splicing mutation with broad clinical variability in a family with hereditary spastic paraplegia. Gene 2020; 765:145129. [PMID: 32905827 DOI: 10.1016/j.gene.2020.145129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of genetic disorders characterized by lower-limb spastic paralysis. We report on a family with three generations of autosomal dominant inheritance of HSP caused by a novel heterozygous splice-site mutation (c.303 + 2 T > C) in REEP1 that was confirmed by RFLP analysis. Carriers of the mutation, including one asymptomatic individual, showed a mild HSP phenotype with a wide range of intrafamilial variation. All symptomatic carriers had ankle contractures in addition to other classical clinical symptoms of HSP. Clinicians should suspect REEP1-related HSP in patients who show ankle contractures with other symptoms of HSP and should consider that these patients have asymptomatic carriers within their family.
Collapse
|
135
|
Chakor RT, Patil NS. Case Series of Autosomal Recessive Hereditary Spastic Paraplegia in Adults. Ann Indian Acad Neurol 2020; 24:272-275. [PMID: 34220084 PMCID: PMC8232467 DOI: 10.4103/aian.aian_315_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rahul T Chakor
- Department of Neurology, TNMC and BYL Nair Hospital, Mumbai, Maharashtra, India
| | - Neelam S Patil
- Department of Neurology, TNMC and BYL Nair Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
136
|
Schiavoni S, Spagnoli C, Rizzi S, Salerno GG, Frattini D, Pisani F, Fusco C. Paediatric-onset hereditary spastic paraplegias: a retrospective cohort study. Dev Med Child Neurol 2020; 62:1068-1074. [PMID: 32277485 DOI: 10.1111/dmcn.14547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
AIM To describe the clinical and neurogenetic spectrum of paediatric-onset hereditary spastic paraplegias (HSPs) diagnosed in our unit. METHOD We report on 47 patients (30 males, 17 females; mean [SD] age 12y 7mo [6y 2mo], range 4-34y) clinically diagnosed with an HSP at the Child Neurology Unit, IRCCS-ASMN (Reggio Emilia, Italy) between 1990 and 2018, who were genetically investigated by means of single-gene direct sequencing and/or next-generation sequencing technologies (targeted panels, whole-exome sequencing [WES]). RESULTS Complex forms prevailed slightly (n=26), autosomal dominant being the main inheritance pattern (n=11), followed by recessive (n=5) and X-linked (n=1). A definite genetic diagnosis was achieved in 17 patients. Spastic paraplegia 3A (n=4) was the most frequent cause of autosomal dominant HSP in our cohort, while no genetic variant prevailed in autosomal recessive forms and pathogenic/likely pathogenic variants were disclosed in a wide range of different genes. INTERPRETATION We found wide phenotypic and genetic heterogeneity. With increasing accessibility to WES, a higher number of patients receive a diagnosis, allowing detection of variants in ultra-rare disease-causing genes and refining genotype-phenotype correlations. WHAT THIS PAPER ADDS A genetic diagnosis of paediatric-onset hereditary spastic paraplegia was achieved in one-third of patients. Pathogenic/likely pathogenic variants in rare genes were found. Genotypic and phenotypic heterogeneity favours targeted panel/whole-exome sequencing for diagnosis.
Collapse
Affiliation(s)
- Silvia Schiavoni
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Susanna Rizzi
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Grazia G Salerno
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Frattini
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Neuroscience Division, Medicine & Surgery Department, University of Parma, Parma, Italy
| | - Carlo Fusco
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Paediatric Neurophysiology Laboratory, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
137
|
Lai LL, Chen YJ, Li YL, Lin XH, Wang MW, Dong EL, Wang N, Chen WJ, Lin X. Novel CAPN1 mutations extend the phenotypic heterogeneity in combined spastic paraplegia and ataxia. Ann Clin Transl Neurol 2020; 7:1862-1869. [PMID: 32860341 PMCID: PMC7545613 DOI: 10.1002/acn3.51169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Recessive mutations in the CAPN1 gene have recently been identified in spastic paraplegia 76 (SPG76), a complex hereditary spastic paraplegia (HSP) that is combined with cerebellar ataxia, resulting in an ataxia-spasticity disease spectrum. This study aims to assess the influence of CAPN1 variants on the occurrence of SPG76 and identify factors potentially contributing to phenotypic heterogeneity. METHODS We screened a cohort of 240 unrelated HSP families for variants in CAPN1 using high-throughput sequencing analysis. We described in detail the clinical and genetic features of the SPG76 patients in our cohort and summarized all reported cases. RESULTS Six unreported CAPN1-associated families containing eight patients with or without cerebellar ataxia were found in our cohort of HSP cases. These patients carried three previously reported homozygous truncating mutations (p.V64Gfs* 103, c.759+1G>A, and p.R285* ), and three additional novel compound heterozygous missense mutations (p.R481Q, p.P498L, and p.R618W). Lower limbs spasticity, hyperreflexia, and Babinski signs developed in about 94% of patients, with ataxia developing in 63% of cases. In total, 33 pathogenic mutations were distributed along the three reported functional domains of calpain-1 protein, encoded by CAPN1, with no hotspot region. A comparison of gender distribution between the two groups indicated that female SPG76 patients were significantly more likely to present with complicated HSP than male patients (P = 0.015). INTERPRETATION Our study supports the clinically heterogeneous inter- and intra-family variability of SPG76 patients, and demonstrates that gender and calpain-1 linker structure may contribute to clinical heterogeneity in SPG76 cases.
Collapse
Affiliation(s)
- Lu-Lu Lai
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Yi-Jun Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Yun-Lu Li
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Hong Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Meng-Wen Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - En-Lin Dong
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
138
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
139
|
Rickman OJ, Baple EL, Crosby AH. Lipid metabolic pathways converge in motor neuron degenerative diseases. Brain 2020; 143:1073-1087. [PMID: 31848577 PMCID: PMC7174042 DOI: 10.1093/brain/awz382] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) encompass an extensive and heterogeneous group of upper and/or lower motor neuron degenerative disorders, in which the particular clinical outcomes stem from the specific neuronal component involved in each condition. While mutations in a large number of molecules associated with lipid metabolism are known to be implicated in MNDs, there remains a lack of clarity regarding the key functional pathways involved, and their inter-relationships. This review highlights evidence that defines defects within two specific lipid (cholesterol/oxysterol and phosphatidylethanolamine) biosynthetic cascades as being centrally involved in MND, particularly hereditary spastic paraplegia. We also identify how other MND-associated molecules may impact these cascades, in particular through impaired organellar interfacing, to propose ‘subcellular lipidome imbalance’ as a likely common pathomolecular theme in MND. Further exploration of this mechanism has the potential to identify new therapeutic targets and management strategies for modulation of disease progression in hereditary spastic paraplegias and other MNDs.
Collapse
Affiliation(s)
- Olivia J Rickman
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma L Baple
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
140
|
Vavla M, Montanaro D, Pizzighello S, Frijia F, Arrigoni F, Baratto A, Piccoli G, Paparella G, Martinuzzi A. Brain Magnetic Spectroscopy Imaging and Hereditary Spastic Paraplegia: A Focused Systematic Review on Current Landmarks and Future Perspectives. Front Neurol 2020; 11:515. [PMID: 32765386 PMCID: PMC7381200 DOI: 10.3389/fneur.2020.00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive neuroimaging technique used to investigate in vivo brain metabolites. MRS could provide a sensitive tool for the study of hereditary spastic paraplegia (HSP) by helping to unveil the underlying biochemical mechanisms and monitoring response to treatment. This focused systematic review aimed to summarize the brain metabolite findings in studies performed in genetically determined HSP. The second aim was to provide a critical analysis and recommendations for well-designed protocols for future studies. Fourteen MRS studies have been analyzed with overall 61 HSP patients, falling within a wide range of age at onset, disease duration, and age at the MRS scan, including children and adults. The genetic diagnosis included several subtypes (SPG2/3/4/5/10/11/28/31/54). SPG11 and SPG54 have been more frequently investigated. The MRS methodology included different MR field strength, not easily comparable spectra areas varying from whole brain to various cortical areas, brain stem and cerebellum sampling. No consistency in disease severity and other outcome measures was observed. The main MRS findings corresponded to the white matter metabolite abnormalities in the corticospinal tracts. In summary, this focused review provides insights on the current knowledge of brain metabolites in HSP and, in particular, in SPG11 and SPG54. Despite the inhomogeneity of the studies to date reported, brain metabolites as assessed by MRS could represent potentially useful diagnostic markers and prognostic indicators of disease progression in HSP. Specific recommendations regarding the MRS technical protocol, CNS area sampling, study design, and applicability of findings are given.
Collapse
Affiliation(s)
- Marinela Vavla
- SOS Neuromotor Unit, Department of Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Treviso, Italy
- SOS Neuromotor Unit, Department of Conegliano, Scientific Institute, IRCCS E. Medea, Treviso, Italy
- Department of Women's and Children's Health, University of Padova, Padua, Italy
- *Correspondence: Marinela Vavla ;
| | - Domenico Montanaro
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Silvia Pizzighello
- SOS Neuromotor Unit, Department of Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Treviso, Italy
| | - Francesca Frijia
- U.O.C Bioengineering and Clinical Technology, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Alessandra Baratto
- Department of Radiology S. Maria dei Battuti Hospital-Conegliano, Treviso, Italy
| | - Gianluca Piccoli
- Department of Radiology S. Maria dei Battuti Hospital-Conegliano, Treviso, Italy
| | - Gabriella Paparella
- SOS Neuromotor Unit, Department of Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Treviso, Italy
| | - Andrea Martinuzzi
- SOS Neuromotor Unit, Department of Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Treviso, Italy
- SOS Neuromotor Unit, Department of Conegliano, Scientific Institute, IRCCS E. Medea, Treviso, Italy
| |
Collapse
|
141
|
Magalhães Rebelo AP, Dal Bello F, Knedlik T, Kaar N, Volpin F, Shin SH, Giacomello M. Chemical Modulation of Mitochondria-Endoplasmic Reticulum Contact Sites. Cells 2020; 9:cells9071637. [PMID: 32646031 PMCID: PMC7408517 DOI: 10.3390/cells9071637] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Contact sites between mitochondria and endoplasmic reticulum (ER) are points in which the two organelles are in close proximity. Due to their structural and functional complexity, their exploitation as pharmacological targets has never been considered so far. Notwithstanding, the number of compounds described to target proteins residing at these interfaces either directly or indirectly is rising. Here we provide original insight into mitochondria–ER contact sites (MERCs), with a comprehensive overview of the current MERCs pharmacology. Importantly, we discuss the considerable potential of MERCs to become a druggable target for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ana Paula Magalhães Rebelo
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Federica Dal Bello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Tomas Knedlik
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Natasha Kaar
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Fabio Volpin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Sang Hun Shin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
| | - Marta Giacomello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; (A.P.M.R.); (F.D.B.); (T.K.); (N.K.); (F.V.); (S.H.S.)
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Correspondence: ; Tel.: +39-049-827-6300
| |
Collapse
|
142
|
Sen K, Finau M, Ghosh P. Bi-allelic variants in PNPLA6 possibly associated with Parkinsonian features in addition to spastic paraplegia phenotype. J Neurol 2020; 267:2749-2753. [PMID: 32623594 DOI: 10.1007/s00415-020-10028-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023]
Abstract
Variants in the PNPLA6 gene are known to cause 4 distinct phenotypes. One known phenotype is Hereditary Spastic Paraplegia type 39 (HSP 39), a rare neurodegenerative condition characterized by variable onset of lower limb spasticity, weakness and ataxia. Little is known about complications of HSP 39 in adulthood. Here, we report a family of three siblings who presented with bilateral lower limb spasticity in childhood, consistent with HSP, with confirmed bi-allellic PNPLA6 mutations. Two siblings developed parkinsonian features in middle age, a novel finding in this sibship. The proband had a positive dopamine transporter scan, indicating degeneration in dopaminergic neurons, and dopa-responsive extrapyramidal symptoms. Testing for known genetic causes of Parkinsonism was negative. The PNPLA6 gene encodes neuropathy target esterase, an enzyme involved in lipid metabolism that is critical to the stability of cell membranes. We hypothesize that the development of Parkinsonism in these patients may be related to the PNPLA6 mutations, as lipid dysregulation has been implicated in the pathogenesis of Parkinson disease.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Developmental Pediatrics, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA.
| | - Melesilika Finau
- Parkinson Disease and Movement Disorders Program, Department of Neurology, Medical Faculty Associates, George Washington University, Washington, DC, USA
| | - Pritha Ghosh
- Parkinson Disease and Movement Disorders Program, Department of Neurology, Medical Faculty Associates, George Washington University, Washington, DC, USA
| |
Collapse
|
143
|
Cui F, Sun L, Qiao J, Li J, Li M, Chen S, Sun B, Huang X. Genetic mutation analysis of hereditary spastic paraplegia: A retrospective study. Medicine (Baltimore) 2020; 99:e20193. [PMID: 32501971 PMCID: PMC7306340 DOI: 10.1097/md.0000000000020193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hereditary spastic paraplegias are heterogeneous disorders with diversified clinical manifestations, and genetic testing is important for the diagnosis and typing of hereditary spastic paraplegias.Gene panel sequencing containing 55 hereditary spastic paraplegias-related genes was performed to screen the pathogenic genes for hereditary spastic paraplegias. Sanger sequencing was adopted to validate if the family member carried the same pathogenic gene as the proband.Fifteen out of 53 patients carried mutation(s) in the screened hereditary spastic paraplegias-related genes. Among the 23 identified mutations, only one mutation had been previously reported as a pathogenic mutation. In the pedigree of case 6, the proband, his mother and uncle all carried the same novel deletion mutation (c.1459delA) at SPAST gene. Based on the pedigree, the disease was inherited in an AD pattern. In the pedigree of case 53, the family disease may be in an X-linked recessive inheritance pattern. The proband (case 53) carried two novel mutations in ALT1 gene and L1CAM gene (c.2511C>A), respectively. The L1CAM gene is the causative gene for the SPG1 X-linked recessive-hereditary spastic paraplegias.Our data confirm the genetic heterogeneity of hereditary spastic paraplegias, and SPG4/SPAST were the most frequent forms. The pathogenicity of the novel mutations is worth to be further investigated.
Collapse
Affiliation(s)
- Fang Cui
- Department of Neurology, Hainan Branch of Chinese PLA General Hospital
| | - LiuQing Sun
- Department of Neurology, Hainan Branch of Chinese PLA General Hospital
| | - Jie Qiao
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - JianYong Li
- Department of Neurology, Hainan Branch of Chinese PLA General Hospital
| | - Mao Li
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - SiYu Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Bo Sun
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - XuSheng Huang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
144
|
Montanaro D, Vavla M, Frijia F, Aghakhanyan G, Baratto A, Coi A, Stefan C, Girardi G, Paparella G, De Cori S, Totaro P, Lombardo F, Piccoli G, Martinuzzi A. Multimodal MRI Longitudinal Assessment of White and Gray Matter in Different SPG Types of Hereditary Spastic Paraparesis. Front Neurosci 2020; 14:325. [PMID: 32581663 PMCID: PMC7287014 DOI: 10.3389/fnins.2020.00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/19/2020] [Indexed: 01/18/2023] Open
Abstract
Hereditary spastic paraplegias (HSP) are a group of genetically and clinically heterogeneous neurologic disorders. Hereby we describe a relatively large group of patients (pts) affected by HSP studied at baseline (31 pts) and at follow-up (mean period 28.9 ± 8.4 months; 23 pts) with multimodal advanced MRI: high-resolution T1 images for voxel-based morphometry (VBM) analysis, magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI). An age-matched healthy control (HC) group underwent the same neuroimaging protocol in a time schedule matched with the HSP patients. At baseline, VBM showed gray matter (GM) reduction in HSP in the right pre-frontal cortex and bilaterally in the thalami. MRS at baseline depicted in HSP patients compared to the HC group reduction of NAA/Cr ratio in the right pre-frontal region, increase of Cho/Cr ratio in the right pre-central regions, and increase of mI/Cr ratio on the left pre-central area. At cross-sectional follow-up analysis and longitudinal evaluation, no VBM and MRS statistically significant results were obtained. Tract-based spatial statistics (TBSS) analysis showed widespread DTI brain white matter (WM) alterations in patients compared to HC at baseline, which are characterized by reduction of fractional anisotropy (FA) and increase of mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity, as confirmed on cross-analysis of the follow-up dataset. A longitudinal analysis with TBSS in HSP patients did not show significant variations, while upon applying region-based analysis we found increased FA and decreased MD and AD in specific brain WM fiber complex during follow-up. The changes were not correlated with the clinical presentation (pure vs complicated HSP), motor function, and motility indexes or history of specific treatments (botulinum toxin). In conclusion, the cross-sectional analysis of the multiparametric MRI data in our HSP patients confirmed the non-prominent involvement of the cortex in the primary motor regions but rather of other more associative areas. On the contrary, DTI demonstrated a widespread involvement of the brain WM, including the primary motor regions, which was confirmed at follow-up. The longitudinal analysis revealed an apparent inversion of tendency when considering the expected evolution of a neurodegenerative process: we detected an increase of FA and a decrease of MD and AD. These time-related modifications may suggest a repair attempt by the residual central WM fibers, which requires confirmation with a larger group of patients and with a longer time interval.
Collapse
Affiliation(s)
- Domenico Montanaro
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - M Vavla
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Italy
| | - F Frijia
- U.O.C Bioengineering and Clinical Technology, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - G Aghakhanyan
- Department of Translational Research on New Technologies in Medicine and Surgery, Regional Center of Nuclear Medicine, University of Pisa, Pisa, Italy
| | - A Baratto
- Department of Radiology S. Maria dei Battuti Hospital - Conegliano, ULSS2-Marca Trevigiana, Conegliano, Italy
| | - A Coi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - C Stefan
- Acquired Neuropsychological Disease Rehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Pieve di Soligo, Italy
| | - G Girardi
- Acquired Neuropsychological Disease Rehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Pieve di Soligo, Italy
| | - G Paparella
- Acquired Neuropsychological Disease Rehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Pieve di Soligo, Italy
| | - S De Cori
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - P Totaro
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - F Lombardo
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - G Piccoli
- Department of Radiology S. Maria dei Battuti Hospital - Conegliano, ULSS2-Marca Trevigiana, Conegliano, Italy
| | - Andrea Martinuzzi
- Severe Developmental Disabilities Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Italy
| |
Collapse
|
145
|
Lin JZ, Zheng HH, Ma QL, Wang C, Fan LP, Wu HM, Wang DN, Zhang JX, Zhan YH. Cortical Damage Associated With Cognitive and Motor Impairment in Hereditary Spastic Paraplegia: Evidence of a Novel SPAST Mutation. Front Neurol 2020; 11:399. [PMID: 32536902 PMCID: PMC7267220 DOI: 10.3389/fneur.2020.00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/17/2020] [Indexed: 01/12/2023] Open
Abstract
To determine the cortical mechanism that underlies the cognitive impairment and motor disability in hereditary spastic paraplegia (HSP), nine HSP patients from a Chinese family were examined using clinical evaluation, cognitive screening, and genetic testing. Controls were matched healthy subjects. White-matter fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD; tract-based spatial statistics), cortical thickness (FreeSurfer), and subcortical gray matter (FIRST) based on T1-weighted MRI and diffusion tensor imaging were analyzed. A novel mutation in the SPAST gene (NM_014946.3, c.1321+2T>C) was detected. Patients had motor disability and low Montreal Cognitive Assessment (MoCA) scores. Patients showed significantly decreased total gray- and white-matter volumes, corpus callosum volume, cortical thickness, and subcortical gray-matter volume as well as significantly lower FA and AD values and significantly higher MD and RD values in the corpus callosum and corticospinal tract. Cortical thickness, subcortical gray-matter volume, and MoCA score were negatively correlated with disease duration. Cortical thickness in the right inferior frontal cortex was negatively correlated with Spastic Paraplegia Rating Scale score. Cortical thickness and right hippocampus volume were positively correlated with the MoCA score and subscores. In conclusion, brain damage is not restricted to the white matter in SPG4-HSP patients, and widespread gray-matter damage may account for the disease progression, cognitive impairment, and disease severity in SPG4-HSP.
Collapse
Affiliation(s)
- Jian-Zhong Lin
- Magnetic Resonance Center, The Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Hong-Hua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Qi-Lin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chen Wang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Li-Ping Fan
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Han-Ming Wu
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Dan-Ni Wang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jia-Xing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, China
| | - Yi-Hong Zhan
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
146
|
Lin X, Su HZ, Dong EL, Lin XH, Zhao M, Yang C, Wang C, Wang J, Chen YJ, Yu H, Xu J, Ma LX, Xiong ZQ, Wang N, Chen WJ. Stop-gain mutations in UBAP1 cause pure autosomal-dominant spastic paraplegia. Brain 2020; 142:2238-2252. [PMID: 31203368 DOI: 10.1093/brain/awz158] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/14/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Hereditary spastic paraplegias refer to a heterogeneous group of neurodegenerative disorders resulting from degeneration of the corticospinal tract. Clinical characterization of patients with hereditary spastic paraplegias represents progressive spasticity, exaggerated reflexes and muscular weakness. Here, to expand on the increasingly broad pools of previously unknown hereditary spastic paraplegia causative genes and subtypes, we performed whole exome sequencing for six affected and two unaffected individuals from two unrelated Chinese families with an autosomal dominant hereditary spastic paraplegia and lacking mutations in known hereditary spastic paraplegia implicated genes. The exome sequencing revealed two stop-gain mutations, c.247_248insGTGAATTC (p.I83Sfs*11) and c.526G>T (p.E176*), in the ubiquitin-associated protein 1 (UBAP1) gene, which co-segregated with the spastic paraplegia. We also identified two UBAP1 frameshift mutations, c.324_325delCA (p.H108Qfs*10) and c.425_426delAG (p.K143Sfs*15), in two unrelated families from an additional 38 Chinese pedigrees with autosomal dominant hereditary spastic paraplegias and lacking mutations in known causative genes. The primary disease presentation was a pure lower limb predominant spastic paraplegia. In vivo downregulation of Ubap1 in zebrafish causes abnormal organismal morphology, inhibited motor neuron outgrowth, decreased mobility, and shorter lifespan. UBAP1 is incorporated into endosomal sorting complexes required for transport complex I and binds ubiquitin to function in endosome sorting. Patient-derived truncated form(s) of UBAP1 cause aberrant endosome clustering, pronounced endosome enlargement, and cytoplasmic accumulation of ubiquitinated proteins in HeLa cells and wild-type mouse cortical neuron cultures. Biochemical and immunocytochemical experiments in cultured cortical neurons derived from transgenic Ubap1flox mice confirmed that disruption of UBAP1 leads to dysregulation of both early endosome processing and ubiquitinated protein sorting. Strikingly, deletion of Ubap1 promotes neurodegeneration, potentially mediated by apoptosis. Our study provides genetic and biochemical evidence that mutations in UBAP1 can cause pure autosomal dominant spastic paraplegia.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui-Zhen Su
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - En-Lin Dong
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xiao-Hong Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Miao Zhao
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Can Yang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chong Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jie Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Jun Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hongjie Yu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Li-Xiang Ma
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
147
|
Guglielmi A. A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration. Rev Neurosci 2020; 31:351-362. [PMID: 31913854 DOI: 10.1515/revneuro-2019-0083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
At the end of 19th century, Adolf von Strümpell and Sigmund Freud independently described the symptoms of a new pathology now known as hereditary spastic paraplegia (HSP). HSP is part of the group of genetic neurodegenerative diseases usually associated with slow progressive pyramidal syndrome, spasticity, weakness of the lower limbs, and distal-end degeneration of motor neuron long axons. Patients are typically characterized by gait symptoms (with or without other neurological disorders), which can appear both in young and adult ages depending on the different HSP forms. The disease prevalence is at 1.3-9.6 in 100 000 individuals in different areas of the world, making HSP part of the group of rare neurodegenerative diseases. Thus far, there are no specific clinical and paraclinical tests, and DNA analysis is still the only strategy to obtain a certain diagnosis. For these reasons, it is mandatory to extend the knowledge on genetic causes, pathology mechanism, and disease progression to give clinicians more tools to obtain early diagnosis, better therapeutic strategies, and examination tests. This review gives an overview of HSP pathologies and general insights to a specific HSP subtype called spastic paraplegia 31 (SPG31), which rises after mutation of REEP1 gene. In fact, recent findings discovered an interesting endoplasmic reticulum antistress function of REEP1 and a role of this protein in preventing τ accumulation in animal models. For this reason, this work tries to elucidate the main aspects of REEP1, which are described in the literature, to better understand its role in SPG31 HSP and other pathologies.
Collapse
Affiliation(s)
- Alessio Guglielmi
- Neurobiology Laboratory, International Centre of Genetic Engineering and Biotechnology, I-34149 Trieste, Italy
| |
Collapse
|
148
|
Freua F, Ripa BD, IMacedo-Souza L, B Paiva AR, Kok F. Brain or spinal cord MRI in the investigation of hereditary spastic paraplegia? Brain first! Neurol India 2020; 68:524. [PMID: 32415041 DOI: 10.4103/0028-3886.284384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- F Freua
- Department of Neurology, School of Medicine, University of São Paulo; A Beneficência Portuguesa de São Paulo, Department of Neurology, São Paulo, Brazil
| | - B D Ripa
- Department of Neurology, School of Medicine, University of São Paulo; A Beneficência Portuguesa de São Paulo, Department of Neurology, São Paulo, Brazil
| | - L IMacedo-Souza
- Department of Neurology, School of Medicine, University of São Paulo; Human Genome and Stem Cell Study Center, University of São Paulo, São Paulo, Brazil
| | - A R B Paiva
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - F Kok
- Department of Neurology, School of Medicine, University of São Paulo; Human Genome and Stem Cell Study Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
149
|
Rahimi Bidgoli MM, Javanparast L, Rohani M, Najmabadi H, Zamani B, Alavi A. CAPN1 and hereditary spastic paraplegia: a novel variant in an Iranian family and overview of the genotype-phenotype correlation. Int J Neurosci 2020; 131:962-974. [PMID: 32352326 DOI: 10.1080/00207454.2020.1763344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE SPG76 is one of the rare forms of hereditary spastic paraplegia (HSP) which causes by mutations in the CAPN1 gene. The mode of inheritance of SPG76 is autosomal recessive (AR) and so far, only 24 families and 25 mutations in this gene have been reported worldwide. These mutations have been associated with a spectrum of disorders from pure HSP to spastic ataxia. HSP genetically is one of the most heterogeneous neurological disorders and to date, 79 types of HSP (SPG1-SPG79) have been identified, however, it has been suggested that many HSP-genes, particularly in AR-HSPs, remained unknown. AR-HSPs clinically overlap with other neurodegenerative disorders, making an accurate diagnosis of the disease difficult. Therefore, in addition to clinical examination, a high throughout genetic method like whole exome sequencing (WES) may be necessary for the diagnosis of this type of neurodegenerative disorders. METHODS AND RESULTS Herein, we present the clinical features and results of WES in the first Iranian family with a novel CAPN1 variant, c.C853T:p.R285* and pure HSP. CONCLUSION Some of the previous studies have mentioned that the "spasticity-ataxia phenotype might be conducted to the diagnosis of SPG76" but recently the number of pure HSP patients with CAPN1 mutation is increasing. The present study also expands the mutation spectrum of pure CAPN1-related SPG76; emphasizing that CAPN1 screening is required in both pure HSP and spasticity-ataxia phenotypes. As noted in some other literature, we suggest the clinical spectrum of this disorder to be considered as "CAPN1-associated neurodegeneration".
Collapse
Affiliation(s)
| | - Leila Javanparast
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Babak Zamani
- Neurology Department, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
150
|
Cruz-Camino H, Vázquez-Cantú M, Vázquez-Cantú DL, Santos-Guzmán J, Bandala-Jacques A, Gómez-Gutiérrez R, Cantú-Reyna C. Clinical Characterization of 2 Siblings with a Homozygous SPAST Variant. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e919463. [PMID: 32389998 PMCID: PMC7249741 DOI: 10.12659/ajcr.919463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Case series Patients: — Final Diagnosis: Hereditary spastic paraplegia type 4 Symptoms: Progressive psychomotor deterioration • mixed seizure patterns • corneal opacity • dysostotic bones • limb spasticity with extensor plantar responses • axial hypotonia Medication: — Clinical Procedure: Phenotype-genotype correlation Specialty: Genetics • Neurology
Collapse
Affiliation(s)
| | | | | | - Jesús Santos-Guzmán
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | | | | | - Consuelo Cantú-Reyna
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|