101
|
Georgiadou DN, Avramidis P, Ioannou E, Hatzinikolaou DG. Microbial bioprospecting for lignocellulose degradation at a unique Greek environment. Heliyon 2021; 7:e07122. [PMID: 34141913 PMCID: PMC8187967 DOI: 10.1016/j.heliyon.2021.e07122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/24/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial systems have gained wide attention for depolymerization of lignocellulosic biomass, due to their high functional diversity and adaptability. To achieve the full microbial exploitation of lignocellulosic residues and the cost-effective production of bioproducts within a biorefinery, multiple metabolic pathways and enzymes of various specificities are required. In this work, highly diverse aerobic, mesophilic bacteria enriched from Keri Lake, a pristine marsh of increased biomass degradation and natural underground oil leaks, were explored for their metabolic versatility and enzymatic potential towards lignocellulosic substrates. A high number of Pseudomonas species, obtained from enrichment cultures where organosolv lignin served as the sole carbon and energy source, were able to assimilate a range of lignin-associated aromatic compounds. Comparatively more complex bacterial consortia, including members of Actinobacteria, Proteobacteria, Bacilli, Sphingobacteria, and Flavobacteria, were also enriched from cultures with xylan or carboxymethyl cellulose as sole carbon sources. Numerous individual isolates could target diverse structural lignocellulose polysaccharides by expressing hydrolytic activities on crystalline or amorphous cellulose and xylan. Specific isolates showed increased potential for growth in lignin hydrolysates prepared from alkali pretreated agricultural wastes. The results suggest that Keri isolates represent a pool of effective lignocellulose degraders with significant potential for industrial applications in a lignocellulose biorefinery.
Collapse
Affiliation(s)
- Daphne N. Georgiadou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece
| | - Pavlos Avramidis
- Laboratory of Sedimentology, Department of Geology, University of Patras, 26504, Rio-Patra, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece
- Corresponding author.
| |
Collapse
|
102
|
Synthesis of lignin-based hydrogels and their applications in agriculture: A review. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01712-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
103
|
Zafar A, Aftab MN, Saleem MA. Pilot scale production of recombinant hemicellulases and their saccharification potential. Prep Biochem Biotechnol 2021; 50:1063-1075. [PMID: 32594842 DOI: 10.1080/10826068.2020.1783679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Synergistic saccharification ability of hemicellulases (endo-xylanase and β-xylosidase) was evaluated in this study for the bioethanol production from plant biomass. Endo-xylanase and β-xylosidase genes from Bacillus licheniformis were cloned and expressed in Escherichia coli BL21 (DE3). Maximum endo-xylanase production was obtained at 200 rpm agitation speed, air supply rate 2.0 vvm, 70% volume of the medium, 20% dissolved oxygen level and with 3% inoculum size. The optimal conditions for maximum production of recombinant β-xylosidase enzyme at pilot scale were 200 rpm agitation speed, 25% dissolved oxygen level, 2.5 vvm aeration rate, 70% volume of the medium with 2% inoculum size. Furthermore, the saccharification potential of these recombinant enzymes was checked for the production of xylose sugar by bioconversion of plant biomass by optimizing individually as well as synergistically by optimizing various parameters. Maximum saccharification (93%) of plant biomass was observed when both enzymes were used at a time with 8% sugarcane bagasse as a substrate and 200 units of each enzyme after incubation of 6 hr at 50 °C and 120 rpm. The results obtained in this study suggested these recombinant hemicellulases as potential candidates for the conversion of complex agricultural residues into simple sugars for ultimate use in the biofuel industry.
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
104
|
Galanopoulou AP, Haimala I, Georgiadou DN, Mamma D, Hatzinikolaou DG. Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys spectabilis ATHUM 8891 ( Paecilomyces variotii ATHUM 8891). J Fungi (Basel) 2021; 7:jof7060430. [PMID: 34072339 PMCID: PMC8228849 DOI: 10.3390/jof7060430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Two novel xylanolytic enzymes, a xylanase and a β-xylosidase, were simultaneously isolated and characterized from the extracellular medium of Byssochlamys spectabilis ATHUM 8891 (anamorph Paecilomyces variotii ATHUM 8891), grown on Brewer’s Spent Grain as a sole carbon source. They represent the first pair of characterized xylanolytic enzymes of the genus Byssochlamys and the first extensively characterized xylanolytic enzymes of the family Thermoascaceae. In contrast to other xylanolytic enzymes isolated from the same family, both enzymes are characterized by exceptional thermostability and stability at low pH values, in addition to activity optima at temperatures around 65 °C and acidic pH values. Applying nano-LC-ESI-MS/MS analysis of the purified SDS-PAGE bands, we sequenced fragments of both proteins. Based on sequence-comparison methods, both proteins appeared conserved within the genus Byssochlamys. Xylanase was classified within Glycoside Hydrolase family 11 (GH 11), while β-xylosidase in Glycoside Hydrolase family 3 (GH 3). The two enzymes showed a synergistic action against xylan by rapidly transforming almost 40% of birchwood xylan to xylose. The biochemical profile of both enzymes renders them an efficient set of biocatalysts for the hydrolysis of xylan in demanding biorefinery applications.
Collapse
Affiliation(s)
- Anastasia P. Galanopoulou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Irini Haimala
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Daphne N. Georgiadou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
- Correspondence: (D.M.); (D.G.H.)
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
- Correspondence: (D.M.); (D.G.H.)
| |
Collapse
|
105
|
Li X. Plant cell wall chemistry: implications for ruminant utilisation. JOURNAL OF APPLIED ANIMAL NUTRITION 2021. [DOI: 10.3920/jaan2020.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruminants have adapted to cope with bulky, fibrous forage diets by accommodating a large, diverse microbial population in the reticulo-rumen. Ruminants are dependent on forages as their main sources of energy and other nutrients. Forages are comprised of a complex matrix of cellulose, hemicellulose, protein, minerals and phenolic compounds (including lignin and tannins) with various linkages; many of which are poorly defined. The composition and characteristics of polysaccharides vary greatly among forages and plant cell walls. Plant cell walls are linked and packed together in tight configurations to resist degradation, and hence their nutritional value to animals varies considerably, depending on composition, structure and degradability. An understanding of the inter-relationship between the chemical composition and the degradation of plant cell walls by rumen microorganisms is of major economic importance to ruminant production. Increasing the efficiency of fibre degradation in the rumen has been the subject of extensive research for many decades. This review summarises current knowledge of forage chemistry in order to develop strategies to increase efficiency of forage utilisation by ruminants.
Collapse
Affiliation(s)
- X. Li
- The University of Queensland, School of Agriculture and Food Sciences, Gatton, Qld 4343, Australia
| |
Collapse
|
106
|
Sándor E, Kolláth IS, Fekete E, Bíró V, Flipphi M, Kovács B, Kubicek CP, Karaffa L. Carbon-Source Dependent Interplay of Copper and Manganese Ions Modulates the Morphology and Itaconic Acid Production in Aspergillus terreus. Front Microbiol 2021; 12:680420. [PMID: 34093503 PMCID: PMC8173074 DOI: 10.3389/fmicb.2021.680420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of the interplay of copper(II) and manganese(II) ions on growth, morphology and itaconic acid formation was investigated in a high-producing strain of Aspergillus terreus (NRRL1960), using carbon sources metabolized either mainly via glycolysis (D-glucose, D-fructose) or primarily via the pentose phosphate shunt (D-xylose, L-arabinose). Limiting Mn2+ concentration in the culture broth is indispensable to obtain high itaconic acid yields, while in the presence of higher Mn2+ concentrations yield decreases and biomass formation is favored. However, this low yield in the presence of high Mn2+ ion concentrations can be mitigated by increasing the Cu2+ concentration in the medium when D-glucose or D-fructose is the growth substrate, whereas this effect was at best modest during growth on D-xylose or L-arabinose. A. terreus displays a high tolerance to Cu2+ which decreased when Mn2+ availability became increasingly limiting. Under such conditions biomass formation on D-glucose or D-fructose could be sustained at concentrations up to 250 mg L–1 Cu2+, while on D-xylose- or L-arabinose biomass formation was completely inhibited at 100 mg L–1. High (>75%) specific molar itaconic acid yields always coincided with an “overflow-associated” morphology, characterized by small compact pellets (<250 μm diameter) and short chains of “yeast-like” cells that exhibit increased diameters relative to the elongated cells in growing filamentous hyphae. At low concentrations (≤1 mg L–1) of Cu2+ ions, manganese deficiency did not prevent filamentous growth. Mycelial- and cellular morphology progressively transformed into the typical overflow-associated one when external Cu2+ concentrations increased, irrespective of the available Mn2+. Our results indicate that copper ions are relevant for overflow metabolism and should be considered when optimizing itaconic acid fermentation in A. terreus.
Collapse
Affiliation(s)
- Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - István S Kolláth
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Doctoral School of Chemistry, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Vivien Bíró
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
107
|
Mothe S, Polisetty VR. Review on anaerobic digestion of rice straw for biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24455-24469. [PMID: 32335832 DOI: 10.1007/s11356-020-08762-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
India is an agrarian country producing a large amount of rice straw as an agricultural residue. These residues are burnt openly leading to severe environmental pollution and health hazards. Among several options available, anaerobic digestion of rice straw into biomethane gas and digestate is a promising technology. The current paper reviews the characteristics, principles of rice straw and the process variables (temperature, volatile fatty acids, and pH, carbon to nitrogen ratio, metal elements and organic loading rate) that affect the performance of the rice straw digestion and process strategies which may alleviate the barriers and may improve the biomethane yield. Co-digestion of rice straw with nitrogen-rich substrates is proven to be an effective way to balance the carbon to nitrogen ratio, in turn, leads to nutrient balance and enhance the biomethane yields of anaerobic co-digestion system. Moreover, pretreatment is another effective strategy; physical, chemical and biological pretreatments are reviewed in the article which improved the performance of digester. The utilisation of rice straw along with other co-substrates and appropriate pretreatment may be a recommended sustainable solution for preventing environmental and health hazards.
Collapse
Affiliation(s)
- Sagarika Mothe
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, India.
| | | |
Collapse
|
108
|
Current status of xylooligosaccharides: Production, characterization, health benefits and food application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
109
|
Liguori F, Moreno-Marrodan C, Barbaro P. Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chem Soc Rev 2021; 49:6329-6363. [PMID: 32749443 DOI: 10.1039/d0cs00179a] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol A is an oil-derived, large market volume chemical with a wide spectrum of applications in plastics, adhesives and thermal papers. However, bisphenol A is not considered safe due to its endocrine disrupting properties and reproductive toxicity. Several functional substitutes of bisphenol A have been proposed in the literature, produced from plant biomass. Unless otherwise specified, the present review covers the most significant contributions that appeared in the time span January 2015-August 2019, describing the sustainable catalytic synthesis of rigid diols from biomass derivatives. The focus is thereupon on heterogeneous catalysis, use of green solvents and mild conditions, cascade processes in one-pot, and continuous flow setups. More than 500 up-to-date references describe the various substitutes proposed and the catalytic methods for their manufacture, broken down according to the main biomass types from which they originate.
Collapse
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
110
|
Draft genome of the glucose tolerant β-glucosidase producing rare Aspergillus unguis reveals complete cellulolytic machinery with multiple beta-glucosidase genes. Fungal Genet Biol 2021; 151:103551. [PMID: 33737204 DOI: 10.1016/j.fgb.2021.103551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022]
Abstract
Draft genome sequence of the glucose tolerant beta glucosidase (GT-BGL) producing rare fungus Aspergillus unguis NII 08,123 was generated through Next Generation Sequencing (NGS). The genome size of the fungus was estimated to be 37.1 Mb. A total of 3116 contigs were assembled using SPades, and 15,161 proteins were predicted using AUGUSTUS 3.1. Among them, 13,850 proteins were annotated using UniProt. Distribution of CAZyme genes specifically those encoding lignocellulose degrading enzymes were analyzed and compared with those from the industrial cellulase producer Trichoderma reesei in view of the huge differences in detectable enzyme activities between the fungi, despite the ability of A. unguis to grow on lignocellulose as sole carbon source. Full length gene sequence of the inducible GT-BGL could be identified through tracing back from peptide mass fingerprint. A total of 403 CAZymes were predicted from the genome, which includes 232 glycoside hydrolases (GHs), 12 carbohydrate esterases (CEs), 109 glycosyl transferases (GTs), 15 polysaccharide lyases (PLs), and 35 genes with auxiliary activities (AAs). The high level of zinc finger motif containing transcription factors could possibly hint a tight regulation of the cellulolytic machinery, which may also explain the low cellulase activities even when a complete repertoire of cellulase degrading enzyme genes are present in the fungus.
Collapse
|
111
|
Chen M, Wang J, Lin L, Wei W, Shen Y, Wei D. High-level expression of a β-mannanase (manB) in Pichia pastoris GS115 for mannose production with Penicillium brevicompactum fermentation pretreatment of soybean meal. Bioprocess Biosyst Eng 2021; 44:549-561. [PMID: 33200291 DOI: 10.1007/s00449-020-02467-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022]
Abstract
An endo-1,4-β-mannanase gene (manB) from a Bacillus pumilus Nsic-2 grown in a stinky tofu emulsion was cloned and expressed in Pichia pastoris GS115. After characterized, the endo-1,4-β-mannanase (manB) show maximum activity at pH 6.0 and 50 °C with LBG as substrate and perform high stability at a range of pH 6-8. After applying for a shake flask fermentation, the specific activity of manB reached 3462 U/mg. To produce mannose, the soybean meal (SBM) was pretreated by biological fermentation for 11 days with Penicillium brevicompactum, and then hydrolyzed by manB. As a result, mannose yield reached 3.58 g per 1 kg SBM which indicated that 0.358% SBM was converted into mannose after hydrolyzation, and mean a total 20% mannan of SBM converting into mannose, while the control group demonstrated only 1.78% conversion. An effective β-mannanase for the bioconversion of mannan-rich biomasses and an efficient method to produce mannose with soybean meal were introduced.
Collapse
Affiliation(s)
- Mianhui Chen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jingjing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Lin Lin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
112
|
Park TH, Choi CY, Kim HJ, Song JR, Park D, Kang HA, Kim TJ. Arabinoxylo- and Arabino-Oligosaccharides-Specific α-L-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera. J Microbiol Biotechnol 2021; 31:272-279. [PMID: 33397826 PMCID: PMC9705838 DOI: 10.4014/jmb.2012.12038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
Two genes encoding probable α-L-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45°C and pH 7.0 in sodium phosphate buffer and at 50°C and pH 6.0 in sodium acetate buffer, respectively. These exo-acting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only L-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)-and α-(1,3)-L-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)-and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.
Collapse
Affiliation(s)
- Tae Hyeon Park
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chang-Yun Choi
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyeon Jin Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong-Rok Song
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Damee Park
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea,H.A. Kang Phone: +82-2-820-5863 E-mail:
| | - Tae-Jip Kim
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea,Corresponding authors T.J. Kim Phone: +82-43-261-3354 Fax: +82-43-271-4412 E-mail:
| |
Collapse
|
113
|
Saati-Santamaría Z, Rivas R, Kolařik M, García-Fraile P. A New Perspective of Pseudomonas-Host Interactions: Distribution and Potential Ecological Functions of the Genus Pseudomonas within the Bark Beetle Holobiont. BIOLOGY 2021; 10:biology10020164. [PMID: 33669823 PMCID: PMC7922261 DOI: 10.3390/biology10020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Symbiosis between microbes and insects has been raised as a promising area for understanding biological implications of microbe-host interactions. Among them, the association between fungi and bark beetles has been generally recognized as essential for the bark beetle ecology. However, many works investigating bark beetle bacterial communities and their functions usually meet in a common finding: Pseudomonas is a broadly represented genus within this holobiont and it may provide beneficial roles to its host. Thus, we aimed to review available research on this microbe-host interaction and point out the probable relevance of Pseudomonas strains for these insects, in order to guide future research toward a deeper analysis of the importance of these bacteria for the beetle's life cycle.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain;
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, 37185 Salamanca, Spain
- Correspondence: (Z.S.-S.); (P.G.-F.)
| | - Raúl Rivas
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain;
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), 37008 Salamanca, Spain
| | - Miroslav Kolařik
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic;
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain;
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), 37008 Salamanca, Spain
- Correspondence: (Z.S.-S.); (P.G.-F.)
| |
Collapse
|
114
|
Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 2021; 26:molecules26030753. [PMID: 33535536 PMCID: PMC7867074 DOI: 10.3390/molecules26030753] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
As the need for non-renewable sources such as fossil fuels has increased during the last few decades, the search for sustainable and renewable alternative sources has gained growing interest. Enzymatic hydrolysis in bioethanol production presents an important step, where sugars that are fermented are obtained in the final fermentation process. In the process of enzymatic hydrolysis, more and more new effective enzymes are being researched to ensure a more cost-effective process. There are many different enzyme strategies implemented in hydrolysis protocols, where different lignocellulosic biomass, such as wood feedstocks, different agricultural wastes, and marine algae are being used as substrates for an efficient bioethanol production. This review investigates the very recent enzymatic hydrolysis pathways in bioethanol production from lignocellulosic biomass.
Collapse
|
115
|
Ward NE. Debranching enzymes in corn/soybean meal-based poultry feeds: a review. Poult Sci 2021; 100:765-775. [PMID: 33518131 PMCID: PMC7858153 DOI: 10.1016/j.psj.2020.10.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
This review discusses the complex nature of the primary nonstarch polysaccharide (NSP) in corn with respect to the merit of debranching enzymes. Celluloses, hemicelluloses, and pectins comprise the 3 major categories of NSP that make up nearly 90% of plant cell walls. Across cereals, the hemicellulose arabinoxylan exists as the primary NSP, followed by cellulose, glucans, and others. Differences in arabinoxylan structure among cereals and cereal fractions are facilitated by cereal type, degree and pattern of substitution along the xylan backbone, phenol content, and cross-linkages. In particular, arabinoxylan (also called glucuronoarabinoxylan) in corn is heavily fortified with substituents, being more populated than in wheat and other cereal grains. Feed-grade xylanases - almost solely of the glycoside hydrolase (GH) 10 and GH 11 families - require at least 2 or 3 contiguous xylose units to be free of attachments to effectively attack the xylan chain. This canopy of attachments, along with a high phenol content and the insoluble nature of corn glucuronoarabinoxylan, confers a significant resistance to xylanase attack. Both in vitro and in vivo studies demonstrate that debranching enzymes appreciably increase xylanase access and fiber degradability by removing these attachments and breaking phenolic linkages. The enzymatic degradation of the highly branched arabinoxylan can facilitate disassembly of other fibers by increasing exposure to pertinent carbohydrases. For cereals, the arabinofuranosidases, α-glucuronidases, and esterases are some of the more germane debranching enzymes. Enzyme composites beyond the simple core mixes of xylanases, cellulases, and glucanases can exploit synergistic benefits generated by this class of enzymes. A broad scope of enzymatic activity in customized mixes can more effectively target the resilient NSP construct of cereal grains in commercial poultry diets, particularly those in corn-based feeds.
Collapse
Affiliation(s)
- Nelson E Ward
- Animal Nutrition and Health Group, DSM Nutritional Products Inc., Ringoes, NJ 08551, USA.
| |
Collapse
|
116
|
Lopes AMM, Martins M, Goldbeck R. Heterologous Expression of Lignocellulose-Modifying Enzymes in Microorganisms: Current Status. Mol Biotechnol 2021; 63:184-199. [PMID: 33484441 DOI: 10.1007/s12033-020-00288-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Heterologous expression of the carbohydrate-active enzymes in microorganisms is a promising approach to produce bio-based compounds, such as fuels, nutraceuticals and other value-added products from sustainable lignocellulosic sources. Several microorganisms, including Saccharomyces cerevisiae, Escherichia coli, and the filamentous fungi Aspergillus nidulans, have unique characteristics desirable for a biorefinery production approach like well-known genetic tools, thermotolerance, high fermentative capacity and product tolerance, and high amount of recombinant enzyme secretion. These microbial factories are already stablished in the heterologous production of the carbohydrate-active enzymes to produce, among others, ethanol, xylooligosaccharides and the valuable coniferol. A complete biocatalyst able to heterologous express the CAZymes of glycoside hydrolases, carbohydrate esterases and auxiliary activities families could release these compounds faster, with higher yield and specificity. Recent advances in the synthetic biology tools could expand the number and diversity of enzymes integrated in these microorganisms, and also modify those already integrated. This review outlines the heterologous expression of carbohydrate-active enzymes in microorganisms, as well as recent updates in synthetic biology.
Collapse
Affiliation(s)
- Alberto Moura Mendes Lopes
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| | - Manoela Martins
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
117
|
Bacterial valorization of pulp and paper industry process streams and waste. Appl Microbiol Biotechnol 2021; 105:1345-1363. [PMID: 33481067 DOI: 10.1007/s00253-021-11107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
The pulp and paper industry is a major source of lignocellulose-containing streams. The components of lignocellulose material are lignin, hemicellulose, and cellulose that may be hydrolyzed into their smaller components and used as feedstocks for valorization efforts. Much of this material is contained in underutilized streams and waste products, such as black liquor, pulp and paper sludge, and wastewater. Bacterial fermentation strategies have suitable potential to upgrade lignocellulosic biomass contained in these streams to value-added chemicals. Bacterial conversion allows for a sustainable and economically feasible approach to valorizing these streams, which can bolster and expand applications of the pulp and paper industry. This review discusses the composition of pulp and paper streams, bacterial isolates from process streams that can be used for lignocellulose biotransformations, and technological approaches for improving valorization efforts. KEY POINTS: • Reviews the conversion of pulp and paper industry waste by bacterial isolates. • Metabolic pathways for the breakdown of lignocellulose components. • Methods for isolating bacteria, determining value-added products, and increasing product yields.
Collapse
|
118
|
Souto BDM, de Araújo ACB, Hamann PRV, Bastos ADR, Cunha IDS, Peixoto J, Kruger RH, Noronha EF, Quirino BF. Functional screening of a Caatinga goat (Capra hircus) rumen metagenomic library reveals a novel GH3 β-xylosidase. PLoS One 2021; 16:e0245118. [PMID: 33449963 PMCID: PMC7810302 DOI: 10.1371/journal.pone.0245118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022] Open
Abstract
Functional screening of metagenomic libraries is an effective approach for identification of novel enzymes. A Caatinga biome goat rumen metagenomic library was screened using esculin as a substrate, and a gene from an unknown bacterium encoding a novel GH3 enzyme, BGL11, was identified. None of the BGL11 closely related genes have been previously characterized. Recombinant BGL11 was obtained and kinetically characterized. Substrate specificity of the purified protein was assessed using seven synthetic aryl substrates. Activity towards nitrophenyl-β-D-glucopyranoside (pNPG), 4-nitrophenyl-β-D-xylopyranoside (pNPX) and 4-nitrophenyl-β-D-cellobioside (pNPC) suggested that BGL11 is a multifunctional enzyme with β-glucosidase, β-xylosidase, and cellobiohydrolase activities. However, further testing with five natural substrates revealed that, although BGL11 has multiple substrate specificity, it is most active towards xylobiose. Thus, in its native goat rumen environment, BGL11 most likely functions as an extracellular β-xylosidase acting on hemicellulose. Biochemical characterization of BGL11 showed an optimal pH of 5.6, and an optimal temperature of 50°C. Enzyme stability, an important parameter for industrial application, was also investigated. At 40°C purified BGL11 remained active for more than 15 hours without reduction in activity, and at 50°C, after 7 hours of incubation, BGL11 remained 60% active. The enzyme kinetic parameters of Km and Vmax using xylobiose were determined to be 3.88 mM and 38.53 μmol.min-1.mg-1, respectively, and the Kcat was 57.79 s-1. In contrast to BLG11, most β-xylosidases kinetically studied belong to the GH43 family and have been characterized only using synthetic substrates. In industry, β-xylosidases can be used for plant biomass deconstruction, and the released sugars can be fermented into valuable bio-products, ranging from the biofuel ethanol to the sugar substitute xylitol.
Collapse
Affiliation(s)
| | | | | | | | - Isabel de Souza Cunha
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Julianna Peixoto
- Department of Cellular Biology, Laboratory of Enzymology, Universidade de Brasília, Brasília, DF, Brazil
| | - Ricardo Henrique Kruger
- Department of Cellular Biology, Laboratory of Enzymology, Universidade de Brasília, Brasília, DF, Brazil
| | - Eliane Ferreira Noronha
- Department of Cellular Biology, Laboratory of Enzymology, Universidade de Brasília, Brasília, DF, Brazil
| | | |
Collapse
|
119
|
Pabbathi NPP, Velidandi A, Tavarna T, Gupta S, Raj RS, Gandam PK, Baadhe RR. Role of metagenomics in prospecting novel endoglucanases, accentuating functional metagenomics approach in second-generation biofuel production: a review. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:1371-1398. [PMID: 33437563 PMCID: PMC7790359 DOI: 10.1007/s13399-020-01186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 05/02/2023]
Abstract
As the fossil fuel reserves are depleting rapidly, there is a need for alternate fuels to meet the day to day mounting energy demands. As fossil fuel started depleting, a quest for alternate forms of fuel was initiated and biofuel is one of its promising outcomes. First-generation biofuels are made from edible sources like vegetable oils, starch, and sugars. Second-generation biofuels (SGB) are derived from lignocellulosic crops and the third-generation involves algae for biofuel production. Technical challenges in the production of SGB are hampering its commercialization. Advanced molecular technologies like metagenomics can help in the discovery of novel lignocellulosic biomass-degrading enzymes for commercialization and industrial production of SGB. This review discusses the metagenomic outcomes to enlighten the importance of unexplored habitats for novel cellulolytic gene mining. It also emphasizes the potential of different metagenomic approaches to explore the uncultivable cellulose-degrading microbiome as well as cellulolytic enzymes associated with them. This review also includes effective pre-treatment technology and consolidated bioprocessing for efficient biofuel production.
Collapse
Affiliation(s)
- Ninian Prem Prashanth Pabbathi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Aditya Velidandi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Tanvi Tavarna
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Shreyash Gupta
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Ram Sarvesh Raj
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Pradeep Kumar Gandam
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Rama Raju Baadhe
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| |
Collapse
|
120
|
Teramoto K, Tsutsui S, Sato T, Fujimoto Z, Kaneko S. Substrate Specificities of GH8, GH39, and GH52 β-xylosidases from Bacillus halodurans C-125 Toward Substituted Xylooligosaccharides. Appl Biochem Biotechnol 2021; 193:1042-1055. [PMID: 33394289 DOI: 10.1007/s12010-020-03451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022]
Abstract
Substrate specificities of glycoside hydrolase families 8 (Rex), 39 (BhXyl39), and 52 (BhXyl52) β-xylosidases from Bacillus halodurans C-125 were investigated. BhXyl39 hydrolyzed xylotriose most efficiently among the linear xylooligosaccharides. The activity decreased in the order of xylohexaose > xylopentaose > xylotetraose and it had little effect on xylobiose. In contrast, BhXyl52 hydrolyzed xylobiose and xylotriose most efficiently, and its activity decreased when the main chain became longer as follows: xylotetraose > xylopentaose > xylohexaose. Rex produced O-β-D-xylopyranosyl-(1 → 4)-[O-α-L-arabinofuranosyl-(1 → 3)]-O-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (Ara2Xyl3) and O-β-D-xylopyranosyl-(1 → 4)-[O-4-O-methyl-α-D-glucuronopyranosyl-(l → 2)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (MeGlcA2Xyl3), which lost a xylose residue from the reducing end of O-β-D-xylopyranosyl-(1 → 4)-[O-α-L-arabinofuranosyl-(1 → 3)]-O-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (Ara3Xyl4) and O-β-D-xylopyranosyl-(1 → 4)-[O-4-O-methyl-α-D-glucuronopyranosyl-(1 → 2)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (MeGlcA3Xyl4). It was considered that there is no space to accommodate side chains at subsite -1. BhXyl39 rapidly hydrolyzes the non-reducing-end xylose linkages of MeGlcA3Xyl4, while the arabinose branch does not significantly affect the enzyme activity because it degrades Ara3Xyl4 as rapidly as unmodified xylotetraose. The model structure suggested that BhXyl39 enhanced the activity for MeGlcA3Xyl4 by forming a hydrogen bond between glucuronic acid and Lys265. BhXyl52 did not hydrolyze Ara3Xyl4 and MeGlcA3Xyl4 because it has a narrow substrate binding pocket and 2- and 3-hydroxyl groups of xylose at subsite +1 hydrogen bond to the enzyme.
Collapse
Affiliation(s)
- Koji Teramoto
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Sosyu Tsutsui
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan
| | - Tomoko Sato
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8602, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8602, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
121
|
Santibáñez L, Henríquez C, Corro-Tejeda R, Bernal S, Armijo B, Salazar O. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydr Polym 2021; 251:117118. [DOI: 10.1016/j.carbpol.2020.117118] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
|
122
|
Gönen Ç, Deveci EÜ, Akter Önal N. Evaluation of biomass pretreatment to optimize process factors for different organic acids via Box-Behnken RSM method. JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2021; 23:2016-2027. [PMID: 35194402 PMCID: PMC8295973 DOI: 10.1007/s10163-021-01276-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
UNLABELLED Biomass, as renewable energy source, is of importance to investigate to extend the conversion yield by microorganism. Because of lignocellulosic structure, biomass must be pretreated with a process, frequently inorganic acid has to be used with a problem of hazardous byproducts. Organic acid pretreatment is an efficient alternative to be investigated. Sugar beet pulp, as an agro-industrial residue of microorganism, can be utilized by pretreatment, which is usually a costly process. Pretreatment with organic acids creates a great opportunity to convert the process into more economic and effective. Moreover, pressure conditions significantly increase the yield of biodegradable sugar content. In this study, different organic acids of maleic, fumaric, oxalic, and acetic acid pretreatment was investigated to pretreatment of sugar beet pulp, which came vast amount from factories, under pressure and non-pressure conditions via Box-Behnken method to estimate optimum point of acid ratio (1, 3, 5%), time (10, 27.5, 45 min), and solid ratio factors (3, 6.5, 10%) for highest degradation. Results were also evaluated economically. As a result of the experiments, it was observed that acetic acid gave the best result with 409.16 g/L total sugar concentration than the other organic acids. The highest TS concentration of maleic, oxalic, and fumaric acid were 97.26, 97.85, and 91.37 g/L, respectively, under pressure. According to economical evaluation, owing to lower market price and highest TS formation yield, pretreatment cost of acetic acid pretreatment was found averagely 1.51 $/gTS under pressure conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10163-021-01276-7.
Collapse
Affiliation(s)
- Çağdaş Gönen
- Department of Environmental Engineering, Engineering Faculty, Niğde Ömer Halisdemir University Campus, 51240 Niğde, Turkey
| | - Ece Ümmü Deveci
- Department of Environmental Engineering, Engineering Faculty, Niğde Ömer Halisdemir University Campus, 51240 Niğde, Turkey
| | - Nagehan Akter Önal
- Department of Environmental Engineering, Engineering Faculty, Niğde Ömer Halisdemir University Campus, 51240 Niğde, Turkey
| |
Collapse
|
123
|
Lyu Q, Chen X, Zhang Y, Yu H, Han L, Xiao W. One-pot fractionation of corn stover with peracetic acid and maleic acid. BIORESOURCE TECHNOLOGY 2021; 320:124306. [PMID: 33157440 DOI: 10.1016/j.biortech.2020.124306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulose fractionation is a primary treatment to enhance cellulose accessibility and multi-component use. Herein, the development of a one-step fractionation is reported for cellulose enrichment from corn stover using a low concentration of peracetic acid combined with maleic acid (PAM). The effects of pretreatment parameters on the contents of cellulose, hemicellulose, and lignin were investigated. After cooking for 1 h at 130 °C with 1.5 wt% peracetic acid and 3 wt% maleic acid, 86.83% of corn stover cellulose remained in the solid residue while 88.21% of hemicellulose and 87.77% of lignin dissolved into the aqueous liquid. Hemicellulose was primarily hydrolyzed into xylose with 84.58% recovered during the PAM process. The cellulose-rich residue was enzymatically hydrolyzed with a glucose yield of 89.65%, which was two to three times that of untreated substrate. Generally, the proposed process offers a promising approach for efficient fractionation of lignocellulose under mild and environmental-friendly conditions.
Collapse
Affiliation(s)
- Qian Lyu
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Xueli Chen
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Yuxuan Zhang
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Haitao Yu
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Lujia Han
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Weihua Xiao
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| |
Collapse
|
124
|
Bioprospecting for Biomolecules from Different Fungal Communities: An Introduction. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
125
|
Fungal Biorefineries for Biofuel Production for Sustainable Future Energy Systems. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
126
|
Lai Z, Zhou C, Ma X, Xue Y, Ma Y. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. Int J Biol Macromol 2020; 170:164-177. [PMID: 33352153 DOI: 10.1016/j.ijbiomac.2020.12.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022]
Abstract
Thermo-alkaline xylanases are widely applied in paper pulping industry. In this study, a novel thermostable and alkaline tolerant GH10 xylanase (Xyn30Y5) gene from alkaliphilic Bacillus sp. 30Y5 was cloned and the surface-layer homology (SLH) domains truncated enzyme (Xyn30Y5-SLH) was expressed in Escherichia coli. The purified Xyn30Y5-SLH was most active at 70 °C and pH 7.0 and showed the highest specific activity of 349.4 U mg-1. It retained more than 90% activity between pH 6.0 to 9.5 and was stable at pH 6.0-10.0. To improve the activity, 47 mutants were designed based on eight rational strategies and 21 mutants showed higher activity. By combinatorial mutagenesis, the best mutant 3B demonstrated specific activity of 1016.8 U mg-1 with a doubled catalytic efficiency (kcat/Km) and RA601/2h value, accompanied by optimal pH shift to 8.0. The molecular dynamics simulation analysis indicated that the increase of flexibility of α5 helix and loop7 located near to the catalytic residues is likely responsible for its activity improvement. And the decrease of flexibility of the most unstable regions is vital for the thermostablity improvement. This work provided not only a novel thermostable and alkaline tolerant xylanase with industrial application potential but also an effective mutagenesis strategy for xylanase activity improvement.
Collapse
Affiliation(s)
- Zhihua Lai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaochen Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
127
|
Saha BC, Kennedy GJ. Optimization of xylitol production from xylose by a novel arabitol limited co-producing Barnettozyma populi NRRL Y-12728. Prep Biochem Biotechnol 2020; 51:761-768. [PMID: 33305654 DOI: 10.1080/10826068.2020.1855443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Xylitol is a widely marketed sweetener with good functionality and health-promoting properties. It can be synthetized by many yeast species in a one-step reduction of xylose. Arabinose is a common contaminant found in xylose and there is ongoing interest in finding biocatalysts that selectively produce xyltiol. From a screen of 99 yeasts, Barnettozyma populi Y-12728 was found to selectively produce xylitol from both mixed sugars and corn stover hemicellulosic hydrolysate. Here, fermentation conditions for xylitol production from xylose by B. populi were optimized. The medium for xylitol production was optimized through response surface methodology. The yeast produced 31.2 ± 0.4 g xylitol from xylose (50 g L-1) in 62 h using the optimized medium. The optimal pH for xylitol production was 6.0. Glucose (10 g L-1), acetic acid (6.0 g L-1), HMF (4 mM) and ethanol (2.0 g L-1) inhibited the xylitol production. The glucose inhibition was entirely mitigated by using a 2-stage aeration strategy, indicating that the yeast was inhibited by ethanol produced from glucose under low aeration. This culture strategy will greatly benefit xylitol production from hemicellulosic hydrolysates, which often contain glucose. This is the first report on optimization of xylitol production by a Barnettozyma species.
Collapse
Affiliation(s)
- Badal C Saha
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U. S. Department of Agriculture, Peoria, IL, USA
| | - Gregory J Kennedy
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U. S. Department of Agriculture, Peoria, IL, USA
| |
Collapse
|
128
|
Farmanbordar S, Amiri H, Karimi K. Synergy of municipal solid waste co-processing with lignocellulosic waste for improved biobutanol production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:45-54. [PMID: 32889233 DOI: 10.1016/j.wasman.2020.07.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Co-processing of lignocellulosic wastes, e.g., garden and paper wastes, and the organic matters fraction of municipal solid waste (OMSW) in an integrated bioprocess is a possible approach to realize the potential of wastes for biobutanol production. Dilute acid pretreatment is a multi-functional stage for breaking the recalcitrant lignocellulose's structure, hydrolyzing hemicellulose, and hydrolyzing/solubilizing starch, leading to a pretreated solid and a rich hydrolysate. In this study, dilute-acid pretreatment of the combination of wastepaper and OMSW, composite I, as well as garden waste and OMSW, composite II, at severe conditions resulted in "pretreatment hydrolysates" containing 33.7 and 19.4 g/L sugar along with 18.9 and 33.2 g/L soluble starch, respectively. In addition, the hydrolysis of solid remained after the pretreatment of composite I and II resulted in "enzymatic hydrolysates" comprising 19.4 and 33 g/L sugar, respectively. The fermentation of the pretreatment hydrolysates and enzymatic hydrolysates resulted in 3.5 and 6.4 g/L ABE from composite I and 15 and 5.2 g/L ABE from composite II, respectively. In this process, 148 and 173 g ABE (60 and 100 g gasoline equivalent/kg) was obtained from each kg composite I and composite II, respectively, where co-processing of OMSW with lignocellulosic wastes resulted in 10 and 49% higher ABE than that produced from the individual substrates.
Collapse
Affiliation(s)
- Sara Farmanbordar
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
129
|
El Saidy NR, El-Habashi N, Saied MM, Abdel-Razek MAS, Mohamed RA, Abozeid AM, El-Midany SA, Abouelenien FA. Wastewater remediation of heavy metals and pesticides using rice straw and/or zeolite as bioadsorbents and assessment of treated wastewater reuse in the culture of Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:779. [PMID: 33230706 DOI: 10.1007/s10661-020-08760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
The remediation of wastewater (WW) is a promising solution for limited water sources. This study aimed to evaluate rice straw (RS) and zeolite (Z) as bioadsorbents for the removal of pollutants, including heavy metals (HMs) (cadmium [Cd], nickel [Ni], and lead [Pb]) and malathion (PC), from WW and to assess the suitability of reusing remediated WW in fish rearing units. A total of 11 treatment groups with 3 replicates each were designed with different combinations of RS and/or Z for the treatment of real WW contaminated with HMs and malathion, where the WW remained in contact with the adsorbents for 24 h. Different remediated WWs were used for rearing Nile tilapia (Oreochromis niloticus), which were randomly allocated into 33 glass aquaria representing 11 treatments with 3 replicates each for 30 days. The best remediation efficiency was achieved using a mixture of whole RS (WRS), chopped RS (CRS), and Z (HM-PC-WRS-CRS-Z group), with removal percentages of 92%, 95%, 96%, and 99% for Cd, Ni, Pb, and malathion, respectively. The health status of the aquatic ecosystems was assessed through blood tests to characterize biochemical parameters and through pathological changes of cultured O. niloticus reared in treated WW. A significant (P ˂ 0.05) effect on the blood biochemistry of fish reared in treated WW was found and better biochemical and histologic architecture was observed than that of fish reared in untreated WW. A novel mixture of WRS, CRS, and Z could possibly be a promising low-cost adsorbent for wastewater treatment. Graphical abstract.
Collapse
Affiliation(s)
- Nagham R El Saidy
- Department of Hygiene and Preventative Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt.
| | - Nagwan El-Habashi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Mary M Saied
- Department of Hygiene and Preventative Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Mohamed A S Abdel-Razek
- Department of Chemistry and Toxicity of Pesticides, Faculty of Agriculture, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Sheikh, 33 516, Egypt
| | - Ahmed M Abozeid
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Sheikh, 33 516, Egypt
| | - Sami A El-Midany
- Department of Hygiene and Preventative Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Fatma A Abouelenien
- Department of Hygiene and Preventative Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| |
Collapse
|
130
|
High-Throughput Generation of Product Profiles for Arabinoxylan-Active Enzymes from Metagenomes. Appl Environ Microbiol 2020; 86:AEM.01505-20. [PMID: 32948521 DOI: 10.1128/aem.01505-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022] Open
Abstract
Metagenomics is an exciting alternative to seek carbohydrate-active enzymes from a range of sources. Typically, metagenomics reveals dozens of putative catalysts that require functional characterization for further application in industrial processes. High-throughput screening methods compatible with adequate natural substrates are crucial for an accurate functional elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic-reaction products, we generated product profiles to consequently infer substrate cleavage positions, resulting in the generation of enzymatic-degradation maps. Product profiles were produced in high throughput for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43 (subfamilies 2 [MG432], 7 [MG437], and 28 [MG4328]) and GH8 (MG8) starting from 12 (arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic studies of feces from the North American beaver (Castor canadensis). This work shows how enzyme loading alters the product profiles of all enzymes studied and gives insight into AX degradation patterns, revealing sequential substrate preferences of AX-active enzymes.IMPORTANCE Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs, and rice husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added-value products that can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for the biorefinery industries. Efficient and profitable AX degradation requires a set of enzymes with particular characteristics. Therefore, enzyme discovery and the study of substrate preferences are of utmost importance. Beavers, as consumers of woody biomass, are a promising source of a repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-throughput analysis of the oligosaccharide profiles produced by these enzymes will assist in the selection of the most appropriate enzymes for the biorefinery.
Collapse
|
131
|
Improvement of PersiXyn2 activity and stability in presence of Trehalose and proline as a natural osmolyte. Int J Biol Macromol 2020; 163:348-357. [DOI: 10.1016/j.ijbiomac.2020.06.288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/04/2023]
|
132
|
Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production. Int J Biol Macromol 2020; 163:260-269. [DOI: 10.1016/j.ijbiomac.2020.06.276] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022]
|
133
|
Corrêa CL, Midorikawa GEO, Filho EXF, Noronha EF, Alves GSC, Togawa RC, Silva-Junior OB, Costa MMDC, Grynberg P, Miller RNG. Transcriptome Profiling-Based Analysis of Carbohydrate-Active Enzymes in Aspergillus terreus Involved in Plant Biomass Degradation. Front Bioeng Biotechnol 2020; 8:564527. [PMID: 33123513 PMCID: PMC7573219 DOI: 10.3389/fbioe.2020.564527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Given the global abundance of plant biomass residues, potential exists in biorefinery-based applications with lignocellulolytic fungi. Frequently isolated from agricultural cellulosic materials, Aspergillus terreus is a fungus efficient in secretion of commercial enzymes such as cellulases, xylanases and phytases. In the context of biomass saccharification, lignocellulolytic enzyme secretion was analyzed in a strain of A. terreus following liquid culture with sugarcane bagasse (SB) (1% w/v) and soybean hulls (SH) (1% w/v) as sole carbon source, in comparison to glucose (G) (1% w/v). Analysis of the fungal secretome revealed a maximum of 1.017 UI.mL–1 xylanases after growth in minimal medium with SB, and 1.019 UI.mL–1 after incubation with SH as carbon source. The fungal transcriptome was characterized on SB and SH, with gene expression examined in comparison to equivalent growth on G as carbon source. Over 8000 genes were identified, including numerous encoding enzymes and transcription factors involved in the degradation of the plant cell wall, with significant expression modulation according to carbon source. Eighty-nine carbohydrate-active enzyme (CAZyme)-encoding genes were identified following growth on SB, of which 77 were differentially expressed. These comprised 78% glycoside hydrolases, 8% carbohydrate esterases, 2.5% polysaccharide lyases, and 11.5% auxiliary activities. Analysis of the glycoside hydrolase family revealed significant up-regulation for genes encoding 25 different GH family proteins, with predominance for families GH3, 5, 7, 10, and 43. For SH, from a total of 91 CAZyme-encoding genes, 83 were also significantly up-regulated in comparison to G. These comprised 80% glycoside hydrolases, 7% carbohydrate esterases, 5% polysaccharide lyases, 7% auxiliary activities (AA), and 1% glycosyltransferases. Similarly, within the glycoside hydrolases, significant up-regulation was observed for genes encoding 26 different GH family proteins, with predominance again for families GH3, 5, 10, 31, and 43. A. terreus is a promising species for production of enzymes involved in the degradation of plant biomass. Given that this fungus is also able to produce thermophilic enzymes, this first global analysis of the transcriptome following cultivation on lignocellulosic carbon sources offers considerable potential for the application of candidate genes in biorefinery applications.
Collapse
Affiliation(s)
- Camila L Corrêa
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Glaucia E O Midorikawa
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | | | - Eliane Ferreira Noronha
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Gabriel S C Alves
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica - PqEB, Brasília, Brazil
| | | | | | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica - PqEB, Brasília, Brazil
| | - Robert N G Miller
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| |
Collapse
|
134
|
Tiwari S, Avchar R, Arora R, Lanjekar V, Dhakephalkar PK, Dagar SS, Baghela A. Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India. MYCOBIOLOGY 2020; 48:501-511. [PMID: 33312017 PMCID: PMC7717550 DOI: 10.1080/12298093.2020.1830742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 06/12/2023]
Abstract
Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 °C, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.
Collapse
Affiliation(s)
- Snigdha Tiwari
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Rameshwar Avchar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Riya Arora
- Savitribai Phule Pune University, Pune, India
| | - Vikram Lanjekar
- Bioenergy Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Prashant K. Dhakephalkar
- Bioenergy Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Sumit S. Dagar
- Bioenergy Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Abhishek Baghela
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| |
Collapse
|
135
|
Sharma B, Larroche C, Dussap CG. Comprehensive assessment of 2G bioethanol production. BIORESOURCE TECHNOLOGY 2020; 313:123630. [PMID: 32561105 DOI: 10.1016/j.biortech.2020.123630] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 05/06/2023]
Abstract
The advancements in second-generation bioethanol produced from lignocellulosic biomass, such as crops residues, woody crops or energy grasses are gaining momentum. Though, they are still representing less than 3% of total bioethanol production, the GHG reduction potential is higher than for 1G-bioethanol. The environmental impacts of bioethanol production are totally dependent on feedstock availability and conversion technology. The biochemical conversion route must overcome several technological and economical challenges such as pre-treatment, fermentation, hydrolysis process and separation. A completely mature technology is still to be developed and must adapted to the nature of the feedstock. Nevertheless, using process simulation software, Life Cycle Assessment and integrating the different steps of bioresource harvesting and treatment processes, including the energy balances and the water requirements, it is shown that 2G bioethanol production will reduce environmental impacts provided the evaluation addresses a long-time perspective, including all conversion steps and the regeneration of the bioresource.
Collapse
Affiliation(s)
- Bhawna Sharma
- Institut Pascal, UMR Université Clermont Auvergne, CNRS, SIGMA Clermont, 4 avenue Blaise Pascal, BP 206, 63178 Aubière cedex, France
| | - Christian Larroche
- Institut Pascal, UMR Université Clermont Auvergne, CNRS, SIGMA Clermont, 4 avenue Blaise Pascal, BP 206, 63178 Aubière cedex, France
| | - Claude-Gilles Dussap
- Institut Pascal, UMR Université Clermont Auvergne, CNRS, SIGMA Clermont, 4 avenue Blaise Pascal, BP 206, 63178 Aubière cedex, France.
| |
Collapse
|
136
|
Production of xylitol from mixed sugars of xylose and arabinose without co-producing arabitol. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
137
|
Miyamoto RY, José AHM, Lopes MM, Rodrigues RC. Effectiveness of Baffled Flasks on the Growth of Scheffersomyces stipitis CBS 6054 Inoculum for Ethanol Production in Corncob Hemicellulosic Hydrolysate. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Renan Y. Miyamoto
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Alvaro H. M. José
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Milena M. Lopes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Rita C.L.B. Rodrigues
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| |
Collapse
|
138
|
Liu Z, Ning C, Yuan M, Fu X, Yang S, Wei X, Xiao M, Mou H, Zhu C. High-efficiency expression of a superior β-mannanase engineered by cooperative substitution method in Pichia pastoris and its application in preparation of prebiotic mannooligosaccharides. BIORESOURCE TECHNOLOGY 2020; 311:123482. [PMID: 32416491 DOI: 10.1016/j.biortech.2020.123482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
β-mannanase with high specific activity is a prerequisite for the industrial preparation of prebiotic mannooligosaccharides. Three mutants, namely MEI, MER, and MEIR, were constructed by cooperative substitution based on three predominant single-point site mutations (K291E, L211I, and Q112R, respectively). Heterologous expression was facilitated in Pichia pastoris and the recombinase was characterized completely. The specific activities of MER (7481.9 U mg-1) and MEIR (9003.1 U mg-1) increased by 1.07- and 1.29-fold from the initial activity of ME (6970.2U mg-1), respectively. MEIR was used for high-cell-density fermentation to further improve enzyme activity, and the expression levels achieved in the 10-L fermenter were significantly high (105,836 U mL-1). The prebiotic mannooligosaccharides (<2000 Da) were prepared by hydrolyzing konjac gum and locust bean gum with MEIR, with 100% and 76.40% hydrolysis rates, respectively. These characteristics make MEIR highly attractive for prebiotic development in food and related industries.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Chen Ning
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Suxiao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 China.
| |
Collapse
|
139
|
Hydrothermal gasification of the isolated hemicellulose and sawdust of the white poplar (Populus alba L.). J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
140
|
Sain M. Production of Bioplastic and Sustainable Packaging Materials from Rice Straw to Eradicate Stubble Burning (A Mini Review). ACTA ACUST UNITED AC 2020. [DOI: 10.36953/ecj.2020.21301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
India is the second-largest producer of rice, which plays an important role in the GDP of the nation, but the burning of rice straw is one of the most severe issues, which the country is facing. The government has tightly regulated this practice, and the farmers are usually advised to incorporate the residue in the soil, but this management option is minimal because of its slow degradation properties in the soil and may also foster rice diseases. A lot of lab-scale and commercial research studies have been conducted on rice straw-based nanocomposites, but rice straw-based bioplastic is a much superior latest technology that is not much explored. Only a few researchers have worked on making biodegradable bioplastic packaging materials from rice straw. The developed technology not only eradicates the pollution problems caused because of stubble burning but also resolves the problem of synthetic plastic packs, which is another major issue worldwide as 40% of the total plastic is used in food packaging. The current study is aimed to explore the feasibility of this agricultural residue to get converted into useful biodegradable packaging materials that can work for agroecological and sustainable development.
Collapse
|
141
|
Al-Rudainy B, Galbe M, Wallberg O. Hemicellulose Recovery from Spent-Sulfite-Liquor: Lignin Removal by Adsorption to Resins for Improvement of the Ultrafiltration Process. Molecules 2020; 25:molecules25153435. [PMID: 32731635 PMCID: PMC7436075 DOI: 10.3390/molecules25153435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, three polymeric resins were examined as alternatives for the separation of hemicellulose and lignin. The aim was to remove the lignin from spent-sulfite-liquor (SSL) prior to ultrafiltration, producing a hemicellulose-rich retentate with high purity, and increase the capacity of the membrane filtration. The lignin in the SSL was sulfonated; thus, two of the resins were anion exchangers and 1 was hydrophobic. The data from the equilibrium studies and adsorption kinetics were fitted to established models, and the results were interpreted based on these observations. The strongly basic anion exchanger performed best with regard to lignin removal. The adsorption followed the Sips isotherm, indicating that the process was cooperative with chemisorption as the main reaction between the adsorbate and adsorbent based on the kinetics. Regeneration of the adsorbent was also possible, wherein 100 g/L NaCl was sufficient to recover 98% of the lignin. The lignin removal had a positive effect on the ultrafiltration process, in which the flux increased by 38% and the extent of separation between the hemicellulose and lignin rose from 17% to 59%.
Collapse
|
142
|
Jilani SB, Dev C, Eqbal D, Jawed K, Prasad R, Yazdani SS. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture. Microb Cell Fact 2020; 19:153. [PMID: 32723338 PMCID: PMC7389444 DOI: 10.1186/s12934-020-01414-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Furfural and 5-hydroxymethyl furfural (5-HMF) are key furan inhibitors that are generated due to breakdown of lignocellulosic sugars at high temperature and acidic treatment conditions. Both furfural and 5-HMF act in a synergistic manner to inhibit microbial metabolism and resistance to both is a desirable characteristic for efficient conversion of lignocellulosic carbon to ethanol. Genetic manipulations targeted toward increasing cellular NADPH pools have successfully imparted tolerance against furfural and 5-HMF. In present study, deletion of pgi gene as a strategy to augment carbon flow through pentose phosphate pathway (PPP) was studied in ethanologenic Escherichia coli strain SSK101 to impart tolerance towards either furfural or 5-HMFor both inhibitors together. RESULTS A key gene of EMP pathway, pgi, was deleted in an ethanologenic E. coli strain SSK42 to yield strain SSK101. In presence of 1 g/L furfural in minimal AM1 media, the rate of biomass formation for strain SSK101 was up to 1.9-fold higher as compared to parent SSK42 strain, and it was able to clear furfural in half the time. Tolerance to inhibitor was associated with glucose as carbon source and not xylose, and the tolerance advantage of SSK101 was neutralized in LB media. Bioreactor studies were performed under binary stress of furfural and 5-HMF (1 g/L each) and different glucose concentrations in a glucose-xylose mixture with final sugar concentration of 5.5%, mimicking major components of dilute acid treated biomass hydrolysate. In the mixture having 6 g/L and 12 g/L glucose, SSK101 strain produced ~ 18 g/L and 20 g/L ethanol, respectively. Interestingly, the maximum ethanol productivity was better at lower glucose load with 0.46 g/(L.h) between 96 and 120 h, as compared to higher glucose load where it was 0.33 g/(L.h) between 144 and 168 h. Importantly, parent strain SSK42 did not exhibit significant metabolic activity under similar conditions of inhibitor load and sugar concentration. CONCLUSIONS E. coli strain SSK101 with pgi deletion had enhanced tolerance against both furfural and 5-HMF, which was associated with presence of glucose in media. Strain SSK101 also had improved fermentation characteristics under both hyperosmotic as well as binary stress of furfural and 5-HMF in media containing glucose-xylose mixture.
Collapse
Affiliation(s)
- Syed Bilal Jilani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Institute of Biotechnology, Amity University, Manesar, Haryana India
| | - Chandra Dev
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Danish Eqbal
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kamran Jawed
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Present Address: Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rajendra Prasad
- Institute of Biotechnology, Amity University, Manesar, Haryana India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
143
|
Xia Q, Zhang G, Wang J, Zhang W, Liu M, Li Y, Yin B, Yang C, Shen J, Jin X. Synergistic Bimetallic Pd–Pt/TiO2 Catalysts for Hydrogenolysis of Xylitol with In Situ-Formed H2. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qi Xia
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Guangyu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Wenxiang Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Yushan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Bin Yin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Jian Shen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| |
Collapse
|
144
|
Abstract
Mesostructured silica nanoparticles offer a unique opportunity in the field of biocatalysis thanks to their outstanding properties. The tunable pore size in the range of mesopores allows for immobilizing bulky enzyme molecules. The large surface area improves the catalytic efficiency by increasing enzyme loading and finely dispersing the biocatalyst molecules. The easily tunable pore morphology allows for creating a proper environment to host an enzyme. The confining effect of mesopores can improve the enzyme stability and its resistance to extreme pH and temperatures. Benefits also arise from other peculiarities of nanoparticles such as Brownian motion and easy dispersion. Fossil fuel depletion and environmental pollution have led to the need for alternative sustainable and renewable energy sources such as biofuels. In this context, lignocellulosic biomass has been considered as a strategic fuel source. Cellulases are a class of hydrolytic enzymes that convert cellulose into fermentable sugars. This review is intended to survey the immobilization of cellulolytic enzymes (cellulases and β-glucosidase) onto mesoporous silica nanoparticles and their catalytic performance, with the aim to give a contribution to the urgent action required against climate change and its impacts, by biorefineries’ development.
Collapse
|
145
|
Prabhakar PK, Wang HT, Smith PJ, Yang JY, Barnes WJ, Peña MJ, Moremen KW, Urbanowicz BR. Heterologous expression of plant glycosyltransferases for biochemistry and structural biology. Methods Cell Biol 2020; 160:145-165. [PMID: 32896313 PMCID: PMC7593805 DOI: 10.1016/bs.mcb.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Much of the carbon captured by photosynthesis is converted into the polysaccharides that constitute plant cell walls. These complex macrostructures are composed of cellulose, hemicellulose, and pectins, together with small amounts of structural proteins, minerals, and in many cases lignin. Wall components assemble and interact with one another to produce dynamic structures with many capabilities, including providing mechanical support to plant structures and determining plant cell shape and size. Despite their abundance, major gaps in our knowledge of the synthesis of the building blocks of these polymers remain, largely due to ineffective methods for expression and purification of active synthetic enzymes for in vitro biochemical analyses. The hemicellulosic polysaccharide, xyloglucan, comprises up to 25% of the dry weight of primary cell walls in plants. Most of the knowledge about the glycosyltransferases (GTs) involved in the xyloglucan biosynthetic pathway has been derived from the identification and carbohydrate analysis of knockout mutants, lending little information on how the catalytic biosynthesis of xyloglucan occurs in planta. In this chapter we describe methods for the heterologous expression of plant GTs using the HEK293 expression platform. As a demonstration of the utility of this platform, nine xyloglucan-relevant GTs from three different CAZy families were evaluated, and methods for expression, purification, and construct optimization are described for biochemical and structural characterization.
Collapse
Affiliation(s)
- Pradeep K Prabhakar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States
| | - Hsin-Tzu Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States
| | - Peter J Smith
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States
| | - Jeong-Yeh Yang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - William J Barnes
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Breeanna R Urbanowicz
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States.
| |
Collapse
|
146
|
Li D, Long L, Ding S. Alkaline organosolv pretreatment of different sorghum stem parts for enhancing the total reducing sugar yields and p-coumaric acid release. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:106. [PMID: 32536971 PMCID: PMC7288516 DOI: 10.1186/s13068-020-01746-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The sorghum stem can be divided into the pith and rind parts with obvious differences in cell type and chemical composition, thus arising the different recalcitrance to enzyme hydrolysis and demand for different pretreatment conditions. The introduction of organic solvents in the pretreatment can reduce over-degradation of cellulose and hemicellulose, but significance of organic solvent addition in pretreatment of different parts of sorghum stem is still unclear. Valorization of each component is critical for economy of sorghum biorefinery. Therefore, in this study, NaOH-ethanol pretreatment condition for different parts of the sorghum stem was optimized to maximize p-coumaric acid release and total reducing sugar recovery. RESULT Ethanol addition improved p-coumaric acid release and delignification efficiency, but significantly reduced hemicellulose deconstruction in NaOH-ethanol pretreatment. Optimization using the response surface methodology revealed that the pith, rind and whole stem require different NaOH-ethanol pretreatment conditions for maximal p-coumaric acid release and xylan preservation. By respective optimal NaOH-ethanol pretreatment, the p-coumaric acid release yields reached 94.07%, 97.24% and 95.05% from pith, rind and whole stem, which increased by 8.16%, 8.38% and 8.39% compared to those of NaOH-pretreated samples. The xylan recoveries of pith, rind and whole stem reached 76.80%, 88.46% and 85.01%, respectively, which increased by 47.75%, 15.11% and 35.97% compared to NaOH pretreatment. Adding xylanase significantly enhanced the enzymatic saccharification of pretreated residues. The total reducing sugar yields after respective optimal NaOH-ethanol pretreatment and enzymatic hydrolysis reached 84.06%, 82.29% and 84.09% for pith, rind and whole stem, respectively, which increased by 29.56%, 23.67% and 25.56% compared to those of NaOH-pretreated samples. Considering the separation cost of the different stem parts, whole sorghum stem can be directly used as feedstock in industrial biorefinery. CONCLUSION These results indicated that NaOH-ethanol is effective for the efficient fractionation and pretreatment of sorghum biomass. This work will help to understand the differences of different parts of sorghum stem under NaOH-ethanol pretreatment, thereby improving the full-component utilization of sorghum stem.
Collapse
Affiliation(s)
- Dandan Li
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Liangkun Long
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shaojun Ding
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
147
|
Swelling capacity of sugarcane bagasse-g-poly(acrylamide)/attapulgite superabsorbent composites and their application as slow release fertilizer. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109769] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
148
|
Yilmazer C, Germec M, Turhan I. Solid‐state fermentation for the production of a recombinant β‐mannanase from
Aspergillus fumigatus
expressed in
Aspergillus sojae
grown on renewable resources. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cansu Yilmazer
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| | - Irfan Turhan
- Faculty of Engineering Department of Food Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
149
|
Shatalov AA. Polyoxometalate-catalyzed hydrolysis of the hemicelluloses by (Mo-V-P)-heteropolyacids-Statistical modeling using response surfaces. Carbohydr Polym 2020; 236:116091. [PMID: 32172894 DOI: 10.1016/j.carbpol.2020.116091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
The mixed-addenda Keggin-type molybdovanadophosphate heteropolyacids (Mo-V-P)-HPAs of series H(n+3)[PMo(12-n)VnO40] with n = 3,4 (HPA-3 and HPA-4) were found to be extremely effective acid catalysts for green hydrolytic conversion of plant (wood and agro-crop) hemicelluloses into soluble mono and oligosaccharides (XOS) within an integrated biorefining scheme. Response surface methodology (RSM) has been applied for statistical modeling and optimization of (Mo-V-P)-HPA catalyzed hemicellulose hydrolysis using potential European energy agro-crop giant reed (Arundo donax) as a model lignocellulosic feedstock. In much diluted (0.01-0.05 mol/L) aqueous HPA solutions, the linear effect of reaction temperature, as well as the interaction effect between temperature and HPA concentration, were the main factors affecting efficiency and selectivity of the hydrolysis reaction. Under established optimum conditions (0.033 mol/L HPA-4, 141.8 °C, 89.7 min), 98.5 % of total crop xylan was hydrolytically converted into soluble sugars, vs. 98.9 % by model, with loss of only ca. 6.3 % of cellulose and formation ca. 0.8 % furfural.
Collapse
Affiliation(s)
- Anatoly A Shatalov
- University of Lisbon, School of Agriculture, Forest Research Center (CEF), Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| |
Collapse
|
150
|
Ogunyewo OA, Randhawa A, Joshi M, Jain KK, Wadekar P, Odaneth AA, Lali AM, Yazdani SS. Engineered Penicillium funiculosum produces potent lignocellulolytic enzymes for saccharification of various pretreated biomasses. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|