101
|
Romanowski S, Eustáquio AS. Synthetic biology for natural product drug production and engineering. Curr Opin Chem Biol 2020; 58:137-145. [DOI: 10.1016/j.cbpa.2020.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
|
102
|
Efficacy and mechanism of actions of natural antimicrobial drugs. Pharmacol Ther 2020; 216:107671. [PMID: 32916205 DOI: 10.1016/j.pharmthera.2020.107671] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Microbial infections have significantly increased over the last decades, and the mortality rates remain unacceptably high. The emergence of new resistance patterns and the spread of new viruses challenge the eradication of infectious diseases. The declining efficacy of antimicrobial drugs has become a global public health problem. Natural products derived from natural sources, such as plants, animals, and microorganisms, have significant efficacy for the treatment of infectious diseases accompanied by less adverse effects, synergy, and ability to overcome drug resistance. As the Chinese female scientist Youyou Tu received the Nobel Prize for the antimalarial drug artemisinin, antimicrobial drugs developed from Traditional Chinese Medicine are expected to receive increasing attention again. This review summarizes the antimicrobial agents derived from natural products approved for nearly 20 years and describes their efficacy and mode of action. The aim of this unit is to review the current status of antimicrobial drugs from natural products in order to increase the value of natural products as a source of novel drug candidates for infectious diseases.
Collapse
|
103
|
Zhang X, Li M, Zhu Y, Yang L, Li Y, Qu J, Wang L, Zhao J, Qu Y, Qin Y. Penicillium oxalicum putative methyltransferase Mtr23B has similarities and differences with LaeA in regulating conidium development and glycoside hydrolase gene expression. Fungal Genet Biol 2020; 143:103445. [PMID: 32822857 DOI: 10.1016/j.fgb.2020.103445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022]
Abstract
Putative methyltranferase LaeA and LaeA-like proteins, which are conserved in many filamentous fungi, regulate the sporogenesis and biosynthesis of secondary metabolites. In this study, we reported the biological function of a LaeA-like methyltransferase, Penicillium oxalicum Mtr23B, which contains a methyltransf_23 domain and an S-adenosylmethionine binding domain, in controlling spore pigment formation and in the expression of secondary metabolic gene cluster and glycoside hydrolase genes. Additionally, we compared Mtr23B and LaeA, and determined their similarities and differences in terms of their roles in regulating the above biological processes. mtr23B had the highest transcriptional level among the 12 members of the methyltransf_23 family in P. oxalicum. The colony color of Δmtr23B (deletion of mtr23B) was lighter than that of ΔlaeA, although Δmtr23B produced ~ 19.2-fold more conidia than ΔlaeA. The transcriptional levels of abrA, abrB/yA, albA/wA, arpA, arpB, and aygA, which are involved in the dihydroxynaphtalene-melanin pathway, decreased in Δmtr23B. However, Mtr23B had a little effect on brush-like structures and conidium formation, and had a different function from LaeA. Mtr23B extensively regulated glycoside hydrolase gene expression. The absence of Mtr23B remarkably repressed prominent cellulase- and amylase-encoding genes in the whole culture period, while the effect of LaeA mainly occurred in the later phases of prolonged batch cultures. Similar to LaeA, Mtr23B was involved in the expression of 10 physically linked regions containing secondary metabolic gene clusters; the highest regulatory activities of Mtr23B and LaeA were observed in BrlA-dependent cascades. Although LaeA interacted with VeA, Mtr23B did not interact with VeA directly. We assumed that Mtr23B regulates cellulase and amylase gene transcription by interacting with the CCAAT-binding transcription factor HAP5 and chromatin remodeling complex.
Collapse
Affiliation(s)
- Xiujun Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Mengxue Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Yingying Zhu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Ling Yang
- Vocational Education College, Dezhou University, Dezhou 253023, China
| | - Yanan Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Jingyao Qu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, China; National Glycoengineering Research Center, Shandong University, No. 72 Binhai Road, Qingdao 266237, China.
| |
Collapse
|
104
|
Zhu G, Hou C, Yuan W, Wang Z, Zhang J, Jiang L, Karthik L, Li B, Ren B, Lv K, Lu W, Cong Z, Dai H, Hsiang T, Zhang L, Liu X. Molecular networking assisted discovery and biosynthesis elucidation of the antimicrobial spiroketals epicospirocins. Chem Commun (Camb) 2020; 56:10171-10174. [PMID: 32748904 DOI: 10.1039/d0cc03990j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two pairs of dibenzospiroketal racemates, (±)-epicospirocin A (1a/1b) and (±)-1-epi-epicospirocin A (2a/2b), and two (+)-enantiomers of aspermicrones, ent-aspermicrone B (3b) and ent-aspermicrone C (4b), together with two hemiacetal epimeric mixtures, epicospirocin B/1-epi-epicospirocin B (5/6) and epicospirocin C/1-epi-epicospirocin C (7/8), were investigated from the phytopathogenic fungus Epicoccum nigrum 09116 via MS/MS molecular networking guided isolation and chiral separation for the first time. A plausible epicospirocin biosynthetic pathway was elucidated through in silico gene function annotation together with knock-out experiments. This is the first report that has applied MS/MS molecular networking to identify intermediates correlated with a biosynthetic pathway.
Collapse
Affiliation(s)
- Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Hu D, Sun C, Jin T, Fan G, Mok KM, Li K, Lee SMY. Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS/MS Analysis. Front Microbiol 2020; 11:1540. [PMID: 32922368 PMCID: PMC7375171 DOI: 10.3389/fmicb.2020.01540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/12/2020] [Indexed: 11/26/2022] Open
Abstract
Actinobacteria are well recognized for their production of structurally diverse bioactive secondary metabolites, but the rare actinobacterial genera have been underexploited for such potential. To search for new sources of active compounds, an experiment combining genomic analysis and tandem mass spectrometry (MS/MS) screening was designed to isolate and characterize actinobacterial strains from a mangrove environment in Macau. Fourteen actinobacterial strains were isolated from the collected samples. Partial 16S sequences indicated that they were from six genera, including Brevibacterium, Curtobacterium, Kineococcus, Micromonospora, Mycobacterium, and Streptomyces. The isolate sp.01 showing 99.28% sequence similarity with a reference rare actinobacterial species Micromonospora aurantiaca ATCC 27029T was selected for whole genome sequencing. Organization of its gene clusters for secondary metabolite biosynthesis revealed 21 clusters encoded to antibiotic production, which is higher than other Micromonospora species. Of the genome-predicted antibiotics, kanamycin was found through guided MS/MS analysis producible by the M. aurantiaca strain for the first time. The present study highlighted that genomic analysis combined with MS/MS screening is a promising method to discover potential of antibiotic production from rare actinobacteria.
Collapse
Affiliation(s)
- Dini Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Chenghang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Jin
- Beijing Genomics Institute, Shenzhen, China
| | | | - Kai Meng Mok
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Kai Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
106
|
Willems T, De Mol ML, De Bruycker A, De Maeseneire SL, Soetaert WK. Alkaloids from Marine Fungi: Promising Antimicrobials. Antibiotics (Basel) 2020; 9:antibiotics9060340. [PMID: 32570899 PMCID: PMC7345139 DOI: 10.3390/antibiotics9060340] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/20/2023] Open
Abstract
Resistance of pathogenic microorganisms against antimicrobials is a major threat to contemporary human society. It necessitates a perpetual influx of novel antimicrobial compounds. More specifically, Gram− pathogens emerged as the most exigent danger. In our continuing quest to search for novel antimicrobial molecules, alkaloids from marine fungi show great promise. However, current reports of such newly discovered alkaloids are often limited to cytotoxicity studies and, moreover, neglect to discuss the enigma of their biosynthesis. Yet, the latter is often a prerequisite to make them available through sufficiently efficient processes. This review aims to summarize novel alkaloids with promising antimicrobial properties discovered in the past five years and produced by marine fungi. Several discovery strategies are summarized, and knowledge gaps in biochemical production routes are identified. Finally, links between the structure of the newly discovered molecules and their activity are proposed. Since 2015, a total of 35 new antimicrobial alkaloids from marine fungi were identified, of which 22 showed an antibacterial activity against Gram− microorganisms. Eight of them can be classified as narrow-spectrum Gram− antibiotics. Despite this promising ratio of novel alkaloids active against Gram− microorganisms, the number of newly discovered antimicrobial alkaloids is low, due to the narrow spectrum of discovery protocols that are used and the fact that antimicrobial properties of newly discovered alkaloids are barely characterized. Alternatives are proposed in this review. In conclusion, this review summarizes novel findings on antimicrobial alkaloids from marine fungi, shows their potential as promising therapeutic candidates, and hints on how to further improve this potential.
Collapse
|
107
|
Kim W, Lee N, Hwang S, Lee Y, Kim J, Cho S, Palsson B, Cho BK. Comparative Genomics Determines Strain-Dependent Secondary Metabolite Production in Streptomyces venezuelae Strains. Biomolecules 2020; 10:biom10060864. [PMID: 32516997 PMCID: PMC7357120 DOI: 10.3390/biom10060864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/02/2023] Open
Abstract
Streptomyces venezuelae is well known to produce various secondary metabolites, including chloramphenicol, jadomycin, and pikromycin. Although many strains have been classified as S. venezuelae species, only a limited number of strains have been explored extensively for their genomic contents. Moreover, genomic differences and diversity in secondary metabolite production between the strains have never been compared. Here, we report complete genome sequences of three S. venezuelae strains (ATCC 10712, ATCC 10595, and ATCC 21113) harboring chloramphenicol and jadomycin biosynthetic gene clusters (BGC). With these high-quality genome sequences, we revealed that the three strains share more than 85% of total genes and most of the secondary metabolite biosynthetic gene clusters (smBGC). Despite such conservation, the strains produced different amounts of chloramphenicol and jadomycin, indicating differential regulation of secondary metabolite production at the strain level. Interestingly, antagonistic production of chloramphenicol and jadomycin was observed in these strains. Through comparison of the chloramphenicol and jadomycin BGCs among the three strains, we found sequence variations in many genes, the non-coding RNA coding regions, and binding sites of regulators, which affect the production of the secondary metabolites. We anticipate that these genome sequences of closely related strains would serve as useful resources for understanding the complex secondary metabolism and for designing an optimal production process using Streptomyces strains.
Collapse
Affiliation(s)
- Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Jihun Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (W.K.); (N.L.); (S.H.); (Y.L.); (J.K.); (S.C.)
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-42-350-2660
| |
Collapse
|
108
|
Ayed A, Wibberg D, Zendah El Euch I, Frese M, Limam F, Sewald N. Draft genome sequence of Streptomyces tunisialbus DSM 105760 T. Arch Microbiol 2020; 202:2013-2017. [PMID: 32474644 PMCID: PMC7385001 DOI: 10.1007/s00203-020-01913-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 11/28/2022]
Abstract
Streptomyces strains are well known as promising source of bioactive secondary metabolites, important in ecology, biotechnology and medicine. In this study, we present the draft genome of the new type strain Streptomyces tunisialbus DSM 105760T (= JCM 32165T), a rhizospheric bacterium with antimicrobial activity. The genome is 6,880,753 bp in size (average GC content, 71.85%) and encodes 5802 protein-coding genes. Preliminary analysis with antiSMASH 5.1.2. reveals 34 predicted gene clusters for the synthesis of potential secondary metabolites, which was compared with those of Streptomyces varsoviensis NRRL ISP-5346.
Collapse
Affiliation(s)
- Ameni Ayed
- Laboratory of Bioactive Substances, Biotechnology Center of Borj-Cedria (CBBC), BP-901, 2050, Hammam-Lif, Tunisia
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33501, Bielefeld, Germany
| | - Imène Zendah El Euch
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, 33615, Bielefeld, Germany
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, 33615, Bielefeld, Germany
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj-Cedria (CBBC), BP-901, 2050, Hammam-Lif, Tunisia
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
109
|
Li ZY, Bu QT, Wang J, Liu Y, Chen XA, Mao XM, Li YQ. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J Zhejiang Univ Sci B 2020; 20:983-994. [PMID: 31749345 DOI: 10.1631/jzus.b1900344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.
Collapse
Affiliation(s)
- Zi-Yue Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Ting Bu
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Jue Wang
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| |
Collapse
|
110
|
Lall MS, Bassyouni A, Bradow J, Brown M, Bundesmann M, Chen J, Ciszewski G, Hagen AE, Hyek D, Jenkinson S, Liu B, Obach RS, Pan S, Reilly U, Sach N, Smaltz DJ, Spracklin DK, Starr J, Wagenaar M, Walker GS. Late-Stage Lead Diversification Coupled with Quantitative Nuclear Magnetic Resonance Spectroscopy to Identify New Structure–Activity Relationship Vectors at Nanomole-Scale Synthesis: Application to Loratadine, a Human Histamine H1 Receptor Inverse Agonist. J Med Chem 2020; 63:7268-7292. [DOI: 10.1021/acs.jmedchem.0c00483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Manjinder S. Lall
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Asser Bassyouni
- Pfizer Worldwide Research and Development, Science Center Drive, San Diego, California 92121, United States
| | - James Bradow
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Maria Brown
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark Bundesmann
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jinshan Chen
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory Ciszewski
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Anne E. Hagen
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dennis Hyek
- Spectrix Analytical Services, LLC, 410 Sackett Point Road, Bldg 20, North Haven, Connecticut 06473, United States
| | - Stephen Jenkinson
- Pfizer Worldwide Research and Development, Science Center Drive, San Diego, California 92121, United States
| | - Bo Liu
- Spectrix Analytical Services, LLC, 410 Sackett Point Road, Bldg 20, North Haven, Connecticut 06473, United States
| | - R. Scott Obach
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Senliang Pan
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Usa Reilly
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Neal Sach
- Pfizer Worldwide Research and Development, Science Center Drive, San Diego, California 92121, United States
| | - Daniel J. Smaltz
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Douglas K. Spracklin
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeremy Starr
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Melissa Wagenaar
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gregory S. Walker
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
111
|
Kim W, Hwang S, Lee N, Lee Y, Cho S, Palsson B, Cho BK. Transcriptome and translatome profiles of Streptomyces species in different growth phases. Sci Data 2020; 7:138. [PMID: 32385251 PMCID: PMC7210306 DOI: 10.1038/s41597-020-0476-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/02/2020] [Indexed: 12/02/2022] Open
Abstract
Streptomyces are efficient producers of various bioactive compounds, which are mostly synthesized by their secondary metabolite biosynthetic gene clusters (smBGCs). The smBGCs are tightly controlled by complex regulatory systems at transcriptional and translational levels to effectively utilize precursors that are supplied by primary metabolism. Thus, dynamic changes in gene expression in response to cellular status at both the transcriptional and translational levels should be elucidated to directly reflect protein levels, rapid downstream responses, and cellular energy costs. In this study, RNA-Seq and ribosome profiling were performed for five industrially important Streptomyces species at different growth phases, for the deep sequencing of total mRNA, and only those mRNA fragments that are protected by translating ribosomes, respectively. Herein, 12.0 to 763.8 million raw reads were sufficiently obtained with high quality of more than 80% for the Phred score Q30 and high reproducibility. These data provide a comprehensive understanding of the transcriptional and translational landscape across the Streptomyces species and contribute to facilitating the rational engineering of secondary metabolite production.
Collapse
Affiliation(s)
- Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark.
- Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
112
|
Dikmen M, Öztürk SE, Cantürk Z, Ceylan G, Karaduman AB, Yamaç M. Anticancer and antimetastatic activity of Hypomyces chrysospermus, a cosmopolitan parasite in different human cancer cells. Mol Biol Rep 2020; 47:3765-3778. [PMID: 32378168 DOI: 10.1007/s11033-020-05468-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/25/2020] [Indexed: 11/29/2022]
Abstract
The importance of microbial natural compounds in drug research is increasing every year and they are used to prevent or treat a variety of diseases. Hypomyces chrysospermus is a cosmopolitan parasite of many Boletaceae members. Since not much work has been conducted to date, this study is undertaken to explore the anticancer effect, including the antiproliferative and antimetastatic activity of Hypomyces chrysospermus. The aim of this study is to determine the antiproliferative and antimetastatic activity of Hypomyces chrysospermus ethyl acetate extract, having antioxidant activity, against A549, Caco2, MCF-7 human cancer and CCD-19 Lu and CCD 841 CoN healthy human cell lines. Firstly, cytotoxic activity was determined by the WST-1 assay. After cell proliferations and anti-metastatic effects were investigated by a real-time cell analysis system (RTCA-DP) and IC50 concentrations were calculated for each cell line. In addition, the expression levels of Apaf-1, TNF and NF-kB mRNA in cancer cells were investigated with RealTime-PCR. The ethyl acetate extract of Hypomyces chrysospermus presented anticancer activities including antiproliferative and antimetastatic effects. Hypomyces chrysospermus as a source of biologically active metabolites can be used as an important resource in the development of new anticancer effective agents.
Collapse
Affiliation(s)
- Miriş Dikmen
- Faculty of Pharmacy, Department of Pharmacology, Anadolu University, 26210, Eskisehir, Turkey.
| | - Selin Engür Öztürk
- Tavas Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Zerrin Cantürk
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Anadolu University, 26210, Eskisehir, Turkey
| | - Göksu Ceylan
- Public Health Research and Application Center, Central Immunology Laboratory, Gazi University, Ankara, Turkey
| | - Ayşe Betül Karaduman
- Duzen Norwest Laboratories, Kaptanpasa Street, No: 2, Buyukesat District, 06700, Ankara, Turkey
| | - Mustafa Yamaç
- Faculty of Science and Letters, Department of Biology, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| |
Collapse
|
113
|
Wenski SL, Cimen H, Berghaus N, Fuchs SW, Hazir S, Bode HB. Fabclavine diversity in Xenorhabdus bacteria. Beilstein J Org Chem 2020; 16:956-965. [PMID: 32461774 PMCID: PMC7214866 DOI: 10.3762/bjoc.16.84] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
The global threat of multiresistant pathogens has to be answered by the development of novel antibiotics. Established antibiotic applications are often based on so-called secondary or specialized metabolites (SMs), identified in large screening approaches. To continue this successful strategy, new sources for bioactive compounds are required, such as the bacterial genera Xenorhabdus or Photorhabdus. In these strains, fabclavines are widely distributed SMs with a broad-spectrum bioactivity. Fabclavines are hybrid SMs derived from nonribosomal peptide synthetases (NRPS), polyunsaturated fatty acid (PUFA), and polyketide synthases (PKS). Selected Xenorhabdus and Photorhabdus mutant strains were generated applying a chemically inducible promoter in front of the suggested fabclavine (fcl) biosynthesis gene cluster (BGC), followed by the analysis of the occurring fabclavines. Subsequently, known and unknown derivatives were identified and confirmed by MALDI-MS and MALDI-MS2 experiments in combination with an optimized sample preparation. This led to a total number of 22 novel fabclavine derivatives in eight strains, increasing the overall number of fabclavines to 32. Together with the identification of fabclavines as major antibiotics in several entomopathogenic strains, our work lays the foundation for the rapid fabclavine identification and dereplication as the basis for future work of this widespread and bioactive SM class.
Collapse
Affiliation(s)
- Sebastian L Wenski
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Harun Cimen
- Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydin, Turkey
| | - Natalie Berghaus
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Sebastian W Fuchs
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Selcuk Hazir
- Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydin, Turkey
| | - Helge B Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
114
|
Sigrist R, Luhavaya H, McKinnie SMK, Ferreira da Silva A, Jurberg ID, Moore BS, Gonzaga de Oliveira L. Nonlinear Biosynthetic Assembly of Alpiniamide by a Hybrid cis/ trans-AT PKS-NRPS. ACS Chem Biol 2020; 15:1067-1077. [PMID: 32195572 DOI: 10.1021/acschembio.0c00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpiniamide A is a linear polyketide produced by Streptomyces endophytic bacteria. Despite its relatively simple chemical structure suggestive of a linear assembly line biosynthetic construction involving a hybrid polyketide synthase-nonribosomal peptide synthetase enzymatic protein machine, we report an unexpected nonlinear synthesis of this bacterial natural product. Using a combination of genomics, heterologous expression, mutagenesis, isotope-labeling, and chain terminator experiments, we propose that alpiniamide A is assembled in two halves and then ligated into the mature molecule. We show that each polyketide half is constructed using orthogonal biosynthetic strategies, employing either cis- or trans-acyl transferase mechanisms, thus prompting an alternative proposal for the operation of this PKS-NRPS.
Collapse
Affiliation(s)
- Renata Sigrist
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Hanna Luhavaya
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Shaun M. K. McKinnie
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Amanda Ferreira da Silva
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Igor D. Jurberg
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Luciana Gonzaga de Oliveira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
115
|
Sierra-Zapata L, Álvarez JC, Romero-Tabarez M, Silby MW, Traxler MF, Behie SW, Pessotti RDC, Villegas-Escobar V. Inducible Antibacterial Activity in the Bacillales by Triphenyl Tetrazolium Chloride. Sci Rep 2020; 10:5563. [PMID: 32221330 PMCID: PMC7101371 DOI: 10.1038/s41598-020-62236-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/25/2020] [Indexed: 11/09/2022] Open
Abstract
The world is in the midst of an antimicrobial resistance crisis, driving a need to discover novel antibiotic substances. Using chemical cues as inducers to unveil a microorganism's full metabolic potential is considered a successful strategy. To this end, we investigated an inducible antagonistic behavior in multiple isolates of the order Bacillales, where large inhibition zones were produced against Ralstonia solanacearum only when grown in the presence of the indicator triphenyl tetrazolium chloride (TTC). This bioactivity was produced in a TTC-dose dependent manner. Escherichia coli and Staphylococcus sp. isolates were also inhibited by Bacillus sp. strains in TTC presence, to a lesser extent. Knockout mutants and transcriptomic analysis of B. subtilis NCIB 3610 cells revealed that genes from the L-histidine biosynthetic pathway, the purine, pyrimidine de novo synthesis and salvage and interconversion routes, were significantly upregulated. Chemical space studied through metabolomic analysis, showed increased presence of nitrogenous compounds in extracts from induced bacteria. The metabolites orotic acid and L-phenylalaninamide were tested against R. solanacearum, E. coli, Staphylococcus sp. and B. subtilis, and exhibited activity against pathogens only in the presence of TTC, suggesting a biotransformation of nitrogenous compounds in Bacillus sp. cells as the plausible cause of the inducible antagonistic behavior.
Collapse
Affiliation(s)
- Laura Sierra-Zapata
- Research group CIBIOP, Department of Biological Sciences, Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Javier C Álvarez
- Research group CIBIOP, Department of Biological Sciences, Universidad EAFIT, Medellín, Antioquia, Colombia
| | | | - Mark W Silby
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Scott W Behie
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Rita de Cassia Pessotti
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Valeska Villegas-Escobar
- Research group CIBIOP, Department of Biological Sciences, Universidad EAFIT, Medellín, Antioquia, Colombia.
| |
Collapse
|
116
|
Abstract
Total synthesis of marine secondary metabolite nafuredin B has been achieved for the first time using a convergent strategy. Sharpless epoxidation followed by acid catalyzed epoxide opening were adopted to install the tetrasubstituted hydroxy center, whereas the iterative Julia-Kocienski olefination, Wittig olefination and HWE olefination afforded the olefin bonds. Ring closing metathesis in the presence of a free tetrasubstituted hydroxy group provided the unsaturated δ-lactone moiety. This synthetic study provided unambiguous structural confirmation of the isolated nafuredin B.
Collapse
Affiliation(s)
- Gour Hari Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Dhiman Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
117
|
Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci Rep 2020; 10:4104. [PMID: 32139731 PMCID: PMC7057963 DOI: 10.1038/s41598-020-60968-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Actinobacteria is a goldmine for the discovery of abundant secondary metabolites with diverse biological activities. This study explores antimicrobial biosynthetic potential and diversity of actinobacteria from Pobitora Wildlife Sanctuary and Kaziranga National Park of Assam, India, lying in the Indo-Burma mega-biodiversity hotspot. A total of 107 actinobacteria were isolated, of which 77 exhibited significant antagonistic activity. 24 isolates tested positive for at least one of the polyketide synthase type I, polyketide synthase type II or non-ribosomal peptide synthase genes within their genome. Their secondary metabolite pathway products were predicted to be involved in the production of ansamycin, benzoisochromanequinone, streptogramin using DoBISCUIT database. Molecular identification indicated that these actinobacteria predominantly belonged to genus Streptomyces, followed by Nocardia and Kribbella. 4 strains, viz. Streptomyces sp. PB-79 (GenBank accession no. KU901725; 1313 bp), Streptomyces sp. Kz-28 (GenBank accession no. KY000534; 1378 bp), Streptomyces sp. Kz-32 (GenBank accession no. KY000536; 1377 bp) and Streptomyces sp. Kz-67 (GenBank accession no. KY000540; 1383 bp) showed ~89.5% similarity to the nearest type strain in EzTaxon database and may be considered novel. Streptomyces sp. Kz-24 (GenBank accession no. KY000533; 1367 bp) showed only 96.2% sequence similarity to S. malaysiensis and exhibited minimum inhibitory concentration of 0.024 µg/mL against methicilin resistant Staphylococcus aureus ATCC 43300 and Candida albicans MTCC 227. This study establishes that actinobacteria isolated from the poorly explored Indo-Burma mega-biodiversity hotspot may be an extremely rich reservoir for production of biologically active compounds for human welfare.
Collapse
|
118
|
Chandra P, Sharma RK, Arora DS. Antioxidant compounds from microbial sources: A review. Food Res Int 2020; 129:108849. [DOI: 10.1016/j.foodres.2019.108849] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023]
|
119
|
Yang FX, Huang JP, Liu Z, Wang Z, Yang J, Tang J, Yu Z, Yan Y, Kai G, Huang SX. Benwamycins A-G, Trialkyl-Substituted Benzene Derivatives from a Soil-Derived Streptomyces. JOURNAL OF NATURAL PRODUCTS 2020; 83:111-117. [PMID: 31904958 DOI: 10.1021/acs.jnatprod.9b00903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Seven new trialkyl-substituted benzene derivatives named benwamycins A-G (1-7), together with three known congeners, 8-10, were isolated from culture broth of the soil-derived Streptomyces sp. KIB-H1471. Their structures were elucidated by using 1D and 2D NMR analyses in combination with HRESIMS data. The absolute configurations of 1-9 were determined by chemical conversion and comparison of circular dichroism spectra and confirmed for 1 by single-crystal X-ray crystallography. Compounds 6 and 7 have a unique γ-pyrone-like ring on one side chain. Compounds 2 and 6 inhibited human T cell proliferation with IC50 values of 14.3 and 12.5 μM, respectively, without obvious cytotoxicity for naïve human T cells. Compounds 3 and 6 could weakly enhance insulin-stimulated glucose uptake.
Collapse
Affiliation(s)
- Feng-Xian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Zhixiang Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy , Zhejiang Chinese Medical University , Hangzhou , Zhejiang 311402 , People's Republic of China
| | - Zhiyan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Jun Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
- University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Zhiyin Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy , Zhejiang Chinese Medical University , Hangzhou , Zhejiang 311402 , People's Republic of China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| |
Collapse
|
120
|
Andrew M, Jayaraman G. Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydr Res 2020; 487:107881. [DOI: 10.1016/j.carres.2019.107881] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
|
121
|
Rezazadeh D, Norooznezhad AH, Mansouri K, Jahani M, Mostafaie A, Mohammadi MH, Modarressi MH. Rapamycin Reduces Cervical Cancer Cells Viability in Hypoxic Condition: Investigation of the Role of Autophagy and Apoptosis. Onco Targets Ther 2020; 13:4239-4247. [PMID: 32547058 PMCID: PMC7244242 DOI: 10.2147/ott.s249985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/28/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Rapamycin has been known as an anti-cancer agent that affects different malignancies such as glioblastoma and prostate cancer. However, there are few studies concerning rapamycin effects on the cervical cancer cells. In this study, it was aimed to investigate the possible effect of rapamycin on a cervical cancer cell line and explored the possible mechanism(s) and pathway(s) for this agent. MATERIALS AND METHODS To do so, HeLa cells as cervical cancer cell line were used and treated with different concentrations of rapamycin under both normoxic and hypoxic conditions. Then, cell viability assays, Western blot, quantitative real-time polymerase chain reaction (QR-PCR), acridine orange and acridine orange/propidium iodide staining were performed to evaluate rapamycin effect on the mentioned cell line. RESULTS The results showed that autophagy and apoptosis-related genes increased significantly in rapamycin-treated HeLa cells compared to controls. Moreover, cervical cancer cell death by rapamycin-induced autophagy in hypoxia was greater than normoxia compared with controls. In this study, it was showed that autophagy induction by rapamycin can mediate programmed cell death of cervical cancer cells, especially in hypoxic condition. CONCLUSION These findings provide a new evidence that rapamycin may inhibit hypoxic HeLa cell proliferation through the trigger of programmed cell death, facilitating the development of novel anti-cancer therapy.
Collapse
Affiliation(s)
- Davood Rezazadeh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozhgan Jahani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hossein Mohammadi
- HSCT Research Center, Laboratory Hematology and Blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Correspondence: Mohammad Hossein Modarressi Email
| |
Collapse
|
122
|
Massicard JM, Soligot C, Weissman KJ, Jacob C. Manipulating polyketide stereochemistry by exchange of polyketide synthase modules. Chem Commun (Camb) 2020; 56:12749-12752. [DOI: 10.1039/d0cc05068g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exchange of polyketide synthase (PKS) modules by genetic engineering leads to efficient modification of polyketide stereochemistry.
Collapse
Affiliation(s)
| | - Claire Soligot
- Université de Lorraine
- UR AFPA
- USC 340 INRAE
- F-54000 Nancy
- France
| | | | | |
Collapse
|
123
|
Costa JH, Wassano CI, Angolini CFF, Scherlach K, Hertweck C, Pacheco Fill T. Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Sci Rep 2019; 9:18647. [PMID: 31819142 PMCID: PMC6901458 DOI: 10.1038/s41598-019-55204-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Numerous postharvest diseases have been reported that cause substantial losses of citrus fruits worldwide. Penicillium digitatum is responsible for up to 90% of production losses, and represent a problem for worldwide economy. In order to control phytopathogens, chemical fungicides have been extensively used. Yet, the use of some artificial fungicides cause concerns about environmental risks and fungal resistance. Therefore, studies focusing on new approaches, such as the use of natural products, are getting attention. Co-culture strategy can be applied to discover new bioactive compounds and to understand microbial ecology. Mass Spectrometry Imaging (MSI) was used to screen for potential antifungal metabolites involved in the interaction between Penicillium digitatum and Penicillium citrinum. MSI revealed a chemical warfare between the fungi: two tetrapeptides, deoxycitrinadin A, citrinadin A, chrysogenamide A and tryptoquialanines are produced in the fungi confrontation zone. Antimicrobial assays confirmed the antifungal activity of the investigated metabolites. Also, tryptoquialanines inhibited sporulation of P. citrinum. The fungal metabolites reported here were never described as antimicrobials until this date, demonstrating that co-cultures involving phytopathogens that compete for the same host is a positive strategy to discover new antifungal agents. However, the use of these natural products on the environment, as a safer strategy, needs further investigation. This paper aimed to contribute to the protection of agriculture, considering health and ecological risks.
Collapse
Affiliation(s)
- Jonas Henrique Costa
- Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil
| | | | | | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Chair of Natural Product Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, CP 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
124
|
Li ZY, Bu QT, Wang J, Liu Y, Chen XA, Mao XM, Li YQ. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J Zhejiang Univ Sci B 2019. [PMID: 31749345 PMCID: PMC6885405 DOI: 10.1631/jzus.b191900344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.
Collapse
Affiliation(s)
- Zi-yue Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-ting Bu
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Jue Wang
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-ai Chen
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xu-ming Mao
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China,†E-mail:
| |
Collapse
|
125
|
Qian Z, Bruhn T, D’Agostino PM, Herrmann A, Haslbeck M, Antal N, Fiedler HP, Brack-Werner R, Gulder TAM. Discovery of the Streptoketides by Direct Cloning and Rapid Heterologous Expression of a Cryptic PKS II Gene Cluster from Streptomyces sp. Tü 6314. J Org Chem 2019; 85:664-673. [DOI: 10.1021/acs.joc.9b02741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhengyi Qian
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Torsten Bruhn
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10789 Berlin, Germany
| | - Paul M. D’Agostino
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01602 Dresden, Germany
| | - Alexander Herrmann
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Virology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Noémi Antal
- Institute of Microbiology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Hans-Peter Fiedler
- Institute of Microbiology, University of Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Ruth Brack-Werner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Virology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tobias A. M. Gulder
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01602 Dresden, Germany
| |
Collapse
|
126
|
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
127
|
Xia Y, Feng M, Wang E, Chen L, Wang J, Hou R, Zhao Y. An ent-Kaurane Diterpenoid Isolated from Rabdosia excisa Suppresses Bcr-Abl Protein Expression in Vitro and in Vivo and Induces Apoptosis of CML Cells. Chem Biodivers 2019; 16:e1900443. [PMID: 31468670 DOI: 10.1002/cbdv.201900443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia (CML) is a disease of the blood stem cells that features the oncoprotein Bcr-Abl. Tyrosine kinase inhibitors (TKIs) are used to treat CML patients, but these have limited efficacy due to the emergence of resistance via genetic mutation. Kamebakaurin is an ent-kaurane diterpenoid that has been isolated from Rabdosia excisa (Maxim.) H.Hara. Herein, we investigate the potential of kamebakaurin as a chemotherapy reagent for the treatment of CML. We conducted in vitro and in vivo biological experiments and found that kamebakaurin potently inhibits cell proliferation, mainly by enhancing cell apoptosis and down-regulating Bcr-Abl protein levels. In addition, kamebakaurin was found to inhibit tumor growth and has no side effects on five internal organs for in vivo experiment. These results suggest that kamebakaurin is a potential anticancer agent and is a key compound for further investigations.
Collapse
Affiliation(s)
- Yan Xia
- College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Miao Feng
- College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China.,Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Li Chen
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry and Physics, State University of New York at Stony Brook, New York, 11790, USA
| | - Ruibin Hou
- College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China.,Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Yinping Zhao
- College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| |
Collapse
|
128
|
Jackson N, Czaplewski L, Piddock LJV. Discovery and development of new antibacterial drugs: learning from experience? J Antimicrob Chemother 2019; 73:1452-1459. [PMID: 29438542 DOI: 10.1093/jac/dky019] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibiotic (antibacterial) resistance is a serious global problem and the need for new treatments is urgent. The current antibiotic discovery model is not delivering new agents at a rate that is sufficient to combat present levels of antibiotic resistance. This has led to fears of the arrival of a 'post-antibiotic era'. Scientific difficulties, an unfavourable regulatory climate, multiple company mergers and the low financial returns associated with antibiotic drug development have led to the withdrawal of many pharmaceutical companies from the field. The regulatory climate has now begun to improve, but major scientific hurdles still impede the discovery and development of novel antibacterial agents. To facilitate discovery activities there must be increased understanding of the scientific problems experienced by pharmaceutical companies. This must be coupled with addressing the current antibiotic resistance crisis so that compounds and ultimately drugs are delivered to treat the most urgent clinical challenges. By understanding the causes of the failures and successes of the pharmaceutical industry's research history, duplication of discovery programmes will be reduced, increasing the productivity of the antibiotic drug discovery pipeline by academia and small companies. The most important scientific issues to address are getting molecules into the Gram-negative bacterial cell and avoiding their efflux. Hence screening programmes should focus their efforts on whole bacterial cells rather than cell-free systems. Despite falling out of favour with pharmaceutical companies, natural product research still holds promise for providing new molecules as a basis for discovery.
Collapse
Affiliation(s)
- Nicole Jackson
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Lloyd Czaplewski
- Chemical Biology Ventures Ltd, 123 Alexander Close, Abingdon, Oxfordshire OX14 1XD, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
129
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
130
|
Sarsaiya S, Shi J, Chen J. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered 2019; 10:316-334. [PMID: 31347943 PMCID: PMC6682353 DOI: 10.1080/21655979.2019.1644854] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In the development of medicinally important Orchidaceae, the extent of fungal endophytes specificity is not presently very clear. Limited study has been available on natural products formed and its role on plant growth, defence mechanism by endophytes, and to characterize the chief treasure of bioactive molecules. Therefore, this review article presents an evaluation of the endophytes associated with Orchidaceae for physiology, metabolism, and genomics which have prominently contributed to the resurgence of novel metabolite research increasing our considerate of multifaceted mechanisms regulatory appearance of biosynthetic gene groups encoding diverse metabolites. Additionally, we presented the comprehensive recent development of bio-strategies for the cultivation of endophytes from Orchidaceae and integration of bioengineered ‘Genomics with metabolism’ approaches with emphases collective omics as powerful approach to discover novel metabolite compounds. The Orchidaceae-fungal endophytes' biodynamics for sustainable development of bioproducts and its applications are supported in large-scale biosynthesis of industrially and pharmaceutical important biomolecules.
Collapse
Affiliation(s)
- Surendra Sarsaiya
- a Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Zunyi , China.,b Bioresource Institute for Healthy Utilization, Zunyi Medical University , Zunyi , China
| | - Jingshan Shi
- a Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Zunyi , China
| | - Jishuang Chen
- b Bioresource Institute for Healthy Utilization, Zunyi Medical University , Zunyi , China.,c College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing , China
| |
Collapse
|
131
|
Xu GB, Yang FY, Wu XY, Li R, Zhou M, Wang B, Yang XS, Zhang TT, Liao SG. Two new dihydroisocoumarins with antimicrobial activities from the fungus Penicillium sp. XR046 collected from Xinren coal area. Nat Prod Res 2019; 35:1445-1451. [PMID: 31460795 DOI: 10.1080/14786419.2019.1655019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two new dihydroisocoumarins (1 and 2), together with six known compounds (3-8), were isolated from the fungus Penicillium sp. XR046 collected from the Xinren coal area of Guizhou province in China. Their structures were elucidated on the basis of spectroscopic analysis. The absolute configurations of C-3 in 1 and 2 were established by comparison of their CD data with those of known compounds. Compounds 1-6 showed anti-microbial activities with MIC values in the range of 50∼100 μg/mL against Candida albicans, Staphylococcus epidermidis, Bacillus subtilis, and Escherichia coli.
Collapse
Affiliation(s)
- Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Fei-Yu Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,School of Biology & Engineering, Guizhou Medical University, Guian New District, Guizhou, China
| | - Xin-Yu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Bing Wang
- School of Biology & Engineering, Guizhou Medical University, Guian New District, Guizhou, China
| | - Xiao-Sheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou, China
| | - Ting-Ting Zhang
- School of Biology & Engineering, Guizhou Medical University, Guian New District, Guizhou, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| |
Collapse
|
132
|
Yao L, Liu Q, Wu ZM, Li KT. Discovery and evaluation on the antibacterial and cytotoxic activities of a novel antifungalmycin N2 produced from Streptomyces sp. strain N2. Nat Prod Res 2019; 35:2090-2094. [PMID: 31411045 DOI: 10.1080/14786419.2019.1652293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Antifungalmycin N2 (3-methyl-3,5-amino-4-vinyl-2-pyrone, C6H7O2N) was a novel metabolite produced from Streptomyces sp. strain N2, and the present study aimed to evaluate its antibacterial and cytotoxic properties. By using Oxford cup method, the obtained results revealed that antifungalmycin N2 exhibited a significant antibacterial activity against the pathogenic bacteria such as Staphylococcus aureus, Escherichia coli, and Micrococcus kristinae, especially the Gram-positive S. aureus. Meanwhile, the MTT assay showed that antifungalmycin N2 could exert a marked inhibitory action on tumor cell lines, such as the cell lines of BEL-7402 (human hepatocellular carcinoma), Hela (human cervical carcinoma), HCT116 (human colon cancer), and SW620 (human colon cancer). And the IC50 values antifungalmycin N2 against the above cell lines ranged from 11.23 to 15.37 μg/mL. In conclusion, the antibacterial and cytotoxic activities suggested that the novel antifungalmycin N2 was a promising active structure to be developed as new drug for treating infectious diseases and cancers.
Collapse
Affiliation(s)
- Liang Yao
- Oncology Department, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Qun Liu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Zhi-Min Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Kun-Tai Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
133
|
Kornfuehrer T, Eustáquio AS. Diversification of polyketide structures via synthase engineering. MEDCHEMCOMM 2019; 10:1256-1272. [PMID: 32180918 PMCID: PMC7053703 DOI: 10.1039/c9md00141g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
Polyketide natural products possess diverse biological activities including antibiotic, anticancer, and immunosuppressive. Their equally varied and complex structures arise from head-to-tail condensation of simple carboxyacyl monomers. Since the seminal discovery that biosynthesis of polyketides such as the macrolide erythromycin is catalyzed by uncharacteristically large, multifunctional enzymes, termed modular type I polyketide synthases, chemists and biologists alike have been inspired to harness the apparent modularity of the synthases to further diversify polyketide structures. Yet, initial attempts to perform "combinatorial biosynthesis" failed due to challenges associated with maintaining the structural and catalytic integrity of large, chimeric synthases. Fast forward nearly 30 years, and advancements in our understanding of polyketide synthase structure and function have allowed the field to make significant progress toward effecting desired modifications to polyketide scaffolds in addition to engineering small, chiral fragments. This review highlights selected examples of polyketide diversification via control of monomer selection, oxidation state, stereochemistry, and cyclization. We conclude with a perspective on the present and future of polyketide structure diversification and hope that the examples presented here will encourage medicinal chemists to embrace polyketide synthetic biology as a means to revitalize polyketide drug discovery.
Collapse
Affiliation(s)
- Taylor Kornfuehrer
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences , College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; Tel: +1 3124137082
| | - Alessandra S Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences , College of Pharmacy , University of Illinois at Chicago , Chicago , Illinois 60607 , USA . ; Tel: +1 3124137082
| |
Collapse
|
134
|
Oda S, Nomura S, Nakagawa M, Shin-Ya K, Kagaya N, Kawahara T. Solid-liquid Interface Screening SystemーApplication to the Screening of Antibiotic and Cytotoxic Substance-producing Fungi. Biocontrol Sci 2019; 24:47-56. [PMID: 30880313 DOI: 10.4265/bio.24.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
A useful tool for the screening of fungi producing biologically active secondary metabolites such as antibiotics and cytotoxic substances has been developed. An agar plate-organic solvent interface cultivation (A/S-IFC) system, which comprised a hydrophobic organic solvent (upper phase) , a fungal mat (middle phase) and an agar plate (lower phase) , was constructed. The metabolite profiles were compared among the A/S-IFC, a traditional submerged cultivation (SmC) and an extractive liquid surface immobilization (Ext-LSI) system consisted of a hydrophobic solvent (upper phase) , a fungal cells-ballooned microspheres (middle phase) and a liquid medium (lower phase) , with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) . In the A/S-IFC, many hydrophobic metabolites vastly different from those in the SmC were accumulated in the organic phase as with the Ext-LSI. For example, a valuable azaphilone, sclerotiorin, was remarkably produced into the organic phase in the A/S-IFC. The A/S-IFC was applied to the screening of antibiotic-producing fungi. As a result of paper disk method, it was found that 321 isolated among 811 strains produced antifungal metabolites (hit rate, 39.6%) . Furthermore, 8, 23, and 30 strains also produced cytotoxic metabolites against SKOV-3 (human ovary adenocarcinoma) , MESO-1 (human malignant pleural mesothelioma) , and Jurkat cells (immortalized human T lymphocyte) .
Collapse
Affiliation(s)
- Shinobu Oda
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology.,Integrated Technology Research Center of Medicinal Science and Engineering, Kanazawa Institute of Technology
| | - Seiya Nomura
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology
| | - Manami Nakagawa
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology
| | - Kazuo Shin-Ya
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science andTechnology (AIST)
| | - Noritaka Kagaya
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science andTechnology (AIST)
| | - Teppei Kawahara
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science andTechnology (AIST).,Faculty of Life Science, Kumamoto University
| |
Collapse
|
135
|
Ariantari NP, Ancheeva E, Wang C, Mándi A, Knedel TO, Kurtán T, Chaidir C, Müller WEG, Kassack MU, Janiak C, Daletos G, Proksch P. Indole Diterpenoids from an Endophytic Penicillium sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:1412-1423. [PMID: 31117519 DOI: 10.1021/acs.jnatprod.8b00723] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A chemical investigation of the endophyte Penicillium sp. (strain ZO-R1-1), isolated from roots of the medicinal plant Zingiber officinale, yielded nine new indole diterpenoids (1-9), together with 13 known congeners (10-22). The structures of the new compounds were elucidated by 1D and 2D NMR analysis in combination with HRESIMS data. The absolute configuration of the new natural products 1, 3, and 7 was determined using the TDDFT-ECD approach and confirmed for 1 by single-crystal X-ray determination through anomalous dispersion. The isolated compounds were tested for cytotoxicity against L5178Y, A2780, J82, and HEK-293 cell lines. Compound 1 was the most active metabolite toward L5178Y cells, with an IC50 value of 3.6 μM, and an IC50 against A2780 cells of 8.7 μM. Interestingly, 1 features a new type of indole diterpenoid scaffold with a rare 6/5/6/6/6/6/5 heterocyclic system bearing an aromatic ring C, which is suggested to be important for the cytotoxic activity of this natural product against L5278Y and A2780 cells.
Collapse
Affiliation(s)
- Ni P Ariantari
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
- Department of Pharmacy, Faculty of Mathematic and Natural Sciences , Udayana University , 80361 Bali , Indonesia
| | - Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Chenyin Wang
- Institute of Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , P.O.B. 400, 4002 Debrecen , Hungary
| | - Tim-O Knedel
- Institute of Inorganic Chemistry and Structural Chemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , P.O.B. 400, 4002 Debrecen , Hungary
| | - Chaidir Chaidir
- Center for Pharmaceutical and Medical Technology , Agency for the Assessment and Application Technology , 10340 Jakarta , Indonesia
| | - Werner E G Müller
- Institute of Physiological Chemistry , Universitätsmedizin der Johannes Gutenberg-Universität Mainz , Duesbergweg 6 , 55128 Mainz , Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Christoph Janiak
- Institute of Inorganic Chemistry and Structural Chemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
136
|
Natural trypanocidal product produced by endophytic fungi through co-culturing. Folia Microbiol (Praha) 2019; 65:323-328. [PMID: 31250361 DOI: 10.1007/s12223-019-00727-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Endophytic fungi live inside vegetal tissues without causing damage to the host plant and may provide lead compounds for drug discovery. The co-culture of two or more endophytic fungi can trigger silent gene clusters, which could lead to the isolation of bioactive compounds. In this study, two endophytic strains isolated from Handroanthus impetiginosus leaves, identified as Talaromyces purpurogenus H4 and Phanerochaete sp. H2, were grown in mixed and axenic cultures. The meroterpenoid austin was detected only in the extracts from the mixed culture. Once isolated, austin displayed very interesting trypanocidal activity, with an IC50 value of 36.6 ± 1.2 μg/mL against Trypanosoma cruzi in the epimastigote form. The results obtained highlight the importance of the co-culturing of endophytic fungi to obtain natural bioactive products. The findings also enhance our understanding of the ecological relationships between endophytic fungi.
Collapse
|
137
|
Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front Microbiol 2019; 10:1404. [PMID: 31281299 PMCID: PMC6596283 DOI: 10.3389/fmicb.2019.01404] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
A variety of organisms, such as bacteria, fungi, and plants, produce secondary metabolites, also known as natural products. Natural products have been a prolific source and an inspiration for numerous medical agents with widely divergent chemical structures and biological activities, including antimicrobial, immunosuppressive, anticancer, and anti-inflammatory activities, many of which have been developed as treatments and have potential therapeutic applications for human diseases. Aside from natural products, the recent development of recombinant DNA technology has sparked the development of a wide array of biopharmaceutical products, such as recombinant proteins, offering significant advances in treating a broad spectrum of medical illnesses and conditions. Herein, we will introduce the structures and diverse biological activities of natural products and recombinant proteins that have been exploited as valuable molecules in medicine, agriculture and insect control. In addition, we will explore past and ongoing efforts along with achievements in the development of robust and promising microorganisms as cell factories to produce biologically active molecules. Furthermore, we will review multi-disciplinary and comprehensive engineering approaches directed at improving yields of microbial production of natural products and proteins and generating novel molecules. Throughout this article, we will suggest ways in which microbial-derived biologically active molecular entities and their analogs could continue to inspire the development of new therapeutic agents in academia and industry.
Collapse
Affiliation(s)
- Janette V. Pham
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Mariamawit A. Yilma
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Adriana Feliz
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Murtadha T. Majid
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Nicholas Maffetone
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Jorge R. Walker
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Eunji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Hyo Je Cho
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Jared M. Reynolds
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Myoung Chong Song
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Sung Ryeol Park
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
- Baruch S. Blumberg Institute, Doylestown, PA, United States
- Natural Products Discovery Institute, Doylestown, PA, United States
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
138
|
Campos AI, Zampieri M. Metabolomics-Driven Exploration of the Chemical Drug Space to Predict Combination Antimicrobial Therapies. Mol Cell 2019; 74:1291-1303.e6. [PMID: 31047795 PMCID: PMC6591011 DOI: 10.1016/j.molcel.2019.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/27/2018] [Accepted: 03/28/2019] [Indexed: 01/12/2023]
Abstract
Alternative to the conventional search for single-target, single-compound treatments, combination therapies can open entirely new opportunities to fight antibiotic resistance. However, combinatorial complexity prohibits experimental testing of drug combinations on a large scale, and methods to rationally design combination therapies are lagging behind. Here, we developed a combined experimental-computational approach to predict drug-drug interactions using high-throughput metabolomics. The approach was tested on 1,279 pharmacologically diverse drugs applied to the gram-negative bacterium Escherichia coli. Combining our metabolic profiling of drug response with previously generated metabolic and chemogenomic profiles of 3,807 single-gene deletion strains revealed an unexpectedly large space of inhibited gene functions and enabled rational design of drug combinations. This approach is applicable to other therapeutic areas and can unveil unprecedented insights into drug tolerance, side effects, and repurposing. The compendium of drug-associated metabolome profiles is available at https://zampierigroup.shinyapps.io/EcoPrestMet, providing a valuable resource for the microbiological and pharmacological communities.
Collapse
Affiliation(s)
- Adrian I Campos
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Mattia Zampieri
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
139
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
140
|
Sproule A, Correa H, Decken A, Haltli B, Berrué F, Overy DP, Kerr RG. Terrosamycins A and B, Bioactive Polyether Ionophores from Streptomyces sp. RKND004 from Prince Edward Island Sediment. Mar Drugs 2019; 17:md17060347. [PMID: 31212620 PMCID: PMC6627438 DOI: 10.3390/md17060347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022] Open
Abstract
Terrosamycins A (1) and B (2), two polycyclic polyether natural products, were purified from the fermentation broth of Streptomyces sp. RKND004 isolated from Prince Edward Island sediment. The one strain-many compounds (OSMAC) approach coupled with UPLC-HRMS-based metabolomics screening led to the identification of these compounds. The structure of 1 was determined from analysis of NMR, HRMS, and X-ray diffraction data. NMR experiments performed on 2 revealed the presence of two methoxy groups replacing two hydroxy groups in 1. Like other polyether ionophores, 1 and 2 exhibited excellent antibiotic activity against Gram-positive pathogens. Interestingly, the terrosamycins also exhibited activity against two breast cancer cell lines.
Collapse
Affiliation(s)
- Amanda Sproule
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Hebelin Correa
- Nautilus Biosciences Croda, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB E3B 5A3, Canada.
| | - Bradley Haltli
- Nautilus Biosciences Croda, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3 Canada.
| | - Fabrice Berrué
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - David P Overy
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Russell G Kerr
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Nautilus Biosciences Croda, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3 Canada.
| |
Collapse
|
141
|
An Aminoglycoside Antibacterial Substance, S-137-R, Produced by Newly Isolated Bacillus velezensis Strain RP137 from the Persian Gulf. Curr Microbiol 2019; 76:1028-1037. [PMID: 31187206 DOI: 10.1007/s00284-019-01715-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Given antibiotic resistance in pathogens, finding antibiotics from new sources is always a topic of interest to scientists. In the present study, among various isolates from the Persian Gulf coastal area, the strain RP137 was selected as producer of antibacterial compound. Morphological and biochemical studies along with 16S rDNA sequencing showed that strain RP137 belongs to Bacillus genus and was tentatively named Bacillus velezensis strain RP137. The effect of various carbon and nitrogen sources on optimizing the production of antibacterial compound showed that the low-cost rice starch and potassium nitrate supply to the strain RP137 caused producing of 86.0 ± 8.7 µg/mL extract having the antibacterial activity. The fractionation of the primary methanol extract in different solvents followed by reversed-phase HPLC obtained a pure antibacterial-active sample, S-137-R. Structural analysis of the purified S-137-R with the help of FTIR, HR-MS, 1H-NMR, and 13C-NMR showed that the S-137-R compound is classified as aminoglycoside. Minimum inhibition concentration (MIC) of the pure compound for Gram-positive bacteria, Staphylococcus aureus and methicillin resistant Staphylococcus aureus, showed an average antibacterial effect of about 80 µg/mL and 150 µg/mL, respectively and for Pseudomonas aeruginosa (100 µg/mL), while having very little toxic effect on E. coli. Moreover, low cytotoxicity effect of the S-137-R on cancerous and normal cells as well as the low intensity of the hemolysis of red blood cells in higher concentrations of S-137-R make it an ideal candidate for further structure-activity relationship assessments towards its medical applications.
Collapse
|
142
|
Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive Compounds Isolated from Marine-Derived Microbes in China: 2009-2018. Mar Drugs 2019; 17:E339. [PMID: 31174259 PMCID: PMC6628246 DOI: 10.3390/md17060339] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
This review outlines the research that was carried out regarding the isolation of bioactive compounds from marine-derived bacteria and fungi by China-based research groups from 2009-2018, with 897 publications being surveyed. Endophytic organisms featured heavily, with endophytes from mangroves, marine invertebrates, and marine algae making up more than 60% of the microbial strains investigated. There was also a strong focus on fungi as a source of active compounds, with 80% of publications focusing on this area. The rapid increase in the number of publications in the field is perhaps most notable, which have increased more than sevenfold over the past decade, and suggests that China-based researchers will play a major role in marine microbial natural products drug discovery in years to come.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Wenhui Wu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Diana A Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
143
|
Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Mol Biotechnol 2019; 61:579-601. [DOI: 10.1007/s12033-019-00187-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
144
|
Ayaz M, Ullah F, Sadiq A, Ullah F, Ovais M, Ahmed J, Devkota HP. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem Biol Interact 2019; 308:294-303. [PMID: 31158333 DOI: 10.1016/j.cbi.2019.05.050] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/18/2019] [Accepted: 05/29/2019] [Indexed: 01/22/2023]
Abstract
The emergence of multidrug resistant (MDR) pathogens is a global threat and has created problems in providing adequate treatment of many infectious diseases. Although the conventional antimicrobial agents are quite effective against several pathogens, yet there is a need for more effective antimicrobial agents against MDR pathogens. Herbal drugs and phytochemicals have been used for their effective antimicrobial activity from ancient times and there is an increasing trend for development of plant based natural products for the prevention and treatment of pathogenic diseases. One of the strategies for effective resistance modification is the use of antimicrobial agent-phytochemical combinations that will neutralize the resistance mechanism, enabling the drug to still be effective against resistant microbes. These phytochemicals can work by several strategies, such as inhibition of target modifying and drug degrading enzymes or as efflux pumps inhibitors. A plethora of herbal extracts, essential oils and isolated pure compounds have been reported to act synergistically with existing antibiotics, antifungals and chemotherapeutics and augment the activity of these drugs. Considerable increases in the susceptibility pattern of several microbes towards the natural antimicrobials and their combinations were observed as indicated by significant decline in minimum inhibitory concentrations. This review paper summarizes the current developments regarding synergistic interactions of plant extracts and isolated pure compounds in combination with existing antibacterial, antifungal agents and chemotherapeutics. The effect of these agents on the susceptibility patterns of these pathogens and possible mechanisms of action are described in detail. In conclusion, many phytochemicals in combination with existing drugs were found to act as resistance modifying agents and proper combinations may rescue the efficacy of important lifesaving antimicrobial agents.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa (KP), 18000, Pakistan.
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa (KP), 18000, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa (KP), 18000, Pakistan.
| | - Farman Ullah
- Department of Pharmacy, Kohat University of Science and Technology (KUST), Khyber Pakhtunkhwa (KP), Pakistan.
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan.
| | - Hari Prasad Devkota
- (e)Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan.
| |
Collapse
|
145
|
Ertl P, Schuhmann T. A Systematic Cheminformatics Analysis of Functional Groups Occurring in Natural Products. JOURNAL OF NATURAL PRODUCTS 2019; 82:1258-1263. [PMID: 30933507 DOI: 10.1021/acs.jnatprod.8b01022] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The two most striking features that discriminate natural products from synthetic molecules are their characteristic scaffolds and unique functional groups (FGs). In this study we systematically investigate the distribution of FGs in natural products from a cheminformatics perspective by comparing FG frequencies in natural products with those found in average synthetic molecules. We thereby aim for the identification of FGs that are characteristic for molecules produced by living organisms. In our analysis we also include information about the natural origins of the structures investigated, allowing us to link the occurrence of specific FGs to the individual producing species. Our findings have the potential for being applied in a medicinal chemistry context concerning the synthesis of natural product-like libraries and natural product-inspired fragment collections. The results may be used also to support compound derivatization strategies and the design of "non-natural" natural products.
Collapse
Affiliation(s)
- Peter Ertl
- Novartis Institutes for BioMedical Research , CH-4056 , Basel , Switzerland
| | - Tim Schuhmann
- Novartis Institutes for BioMedical Research , CH-4056 , Basel , Switzerland
| |
Collapse
|
146
|
Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Antonie van Leeuwenhoek 2019; 112:1477-1499. [DOI: 10.1007/s10482-019-01276-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
|
147
|
Li HT, Zhou H, Duan RT, Li HY, Tang LH, Yang XQ, Yang YB, Ding ZT. Inducing Secondary Metabolite Production by Co-culture of the Endophytic Fungus Phoma sp. and the Symbiotic Fungus Armillaria sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:1009-1013. [PMID: 30785282 DOI: 10.1021/acs.jnatprod.8b00685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Co-culturing the endophytic fungus Phoma sp. YUD17001 from Gastrodia elata with Armillaria sp. in liquid nutrient medium resulted in the production of five new secondary metabolites, including two phenolic compounds, phexandiols A and B (1 and 2), three aliphatic ester derivatives, phomesters A-C (3-5), and a known fatty acid (6). The structures and absolute configurations of these compounds were elucidated by the interpretation of data from detailed spectroscopic analysis, Mosher's method, and electronic circular dichroism spectra, together with consideration of the biogenetic origins. None of the five new compounds were detected in single-strain cultures under identical fermentation conditions. The results of this work indicated that the production of 1-5 involved a complicated interaction process. None of the new compounds possessed significant cytotoxicity or antimicrobial activities.
Collapse
Affiliation(s)
- Hong-Tao Li
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , People's Republic of China
| | - Hao Zhou
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , People's Republic of China
| | - Rong-Ting Duan
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , People's Republic of China
| | - Hong-Yu Li
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , People's Republic of China
| | - Lin-Huan Tang
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , People's Republic of China
| | - Xue-Qiong Yang
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , People's Republic of China
| | - Ya-Bin Yang
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , People's Republic of China
| | - Zhong-Tao Ding
- Key Laboratory of Functional Molecules Analysis and Biotransformation, Yunnan Provincial Department of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , People's Republic of China
| |
Collapse
|
148
|
Carro L, Castro JF, Razmilic V, Nouioui I, Pan C, Igual JM, Jaspars M, Goodfellow M, Bull AT, Asenjo JA, Klenk HP. Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama Desert soil. Sci Rep 2019; 9:4678. [PMID: 30886188 PMCID: PMC6423291 DOI: 10.1038/s41598-019-38789-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
Abstract
The taxonomic status, biotechnological and ecological potential of several Micromonospora strains isolated from an extreme hyper arid Atacama Desert soil were determined. Initially, a polyphasic study was undertaken to clarify the taxonomic status of five micromonosporae, strains LB4, LB19, LB32T, LB39T and LB41, isolated from an extreme hyper-arid soil collected from one of the driest regions of the Atacama Desert. All of the isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Micromonospora. Isolates LB32T and LB39T were distinguished from their nearest phylogenetic neighbours and proposed as new species, namely as Micromonospora arida sp. nov. and Micromonospora inaquosa sp. nov., respectively. Eluted methanol extracts of all of the isolates showed activity against a panel of bacterial and fungal indicator strains, notably against multi-drug resistant Klebsiella pneumoniae ATCC 700603 while isolates LB4 and LB41 showed pronounced anti-tumour activity against HepG2 cells. Draft genomes generated for the isolates revealed a rich source of novel biosynthetic gene clusters, some of which were unique to individual strains thereby opening up the prospect of selecting especially gifted micromonosporae for natural product discovery. Key stress-related genes detected in the genomes of all of the isolates provided an insight into how micromonosporae adapt to the harsh environmental conditions that prevail in extreme hyper-arid Atacama Desert soils.
Collapse
Affiliation(s)
- Lorena Carro
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain.
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK.
| | - Jean Franco Castro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago, Chile
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Valeria Razmilic
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| | - Che Pan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
- Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca, Unidad Asociada al CSIC, Spain
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Scotland, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| | - Alan T Bull
- School of Biosciences, University of Kent Canterbury, Canterbury, UK
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago, Chile
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon Tyne, UK
| |
Collapse
|
149
|
Burch KD, Han B, Pichtel J, Zubkov T. Removal efficiency of commonly prescribed antibiotics via tertiary wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6301-6310. [PMID: 30666572 DOI: 10.1007/s11356-019-04170-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Wastewater treatment plants (WWTPs) have been identified as "hot spots" of antibiotics release to the environment. Treatment operations at WWTPs may remove a significant proportion of antibiotics from influent wastewater; however, the effects of tertiary treatment processes on antibiotics removal are not well understood. The objective of this review is to summarize the current literature regarding antibiotics removal from common tertiary processes at full-scale municipal WWTPs and to reveal the research gaps and inform future research directions. Chlorination, ultraviolet (UV) irradiation, and sand filtration were reviewed due to their popularity of application in the USA. The majority of studies of antibiotics removal via tertiary wastewater treatment have been conducted in EU nations, the USA, Australia, and China. Chlorination significantly reduces antibiotics concentrations in wastewater effluents. In comparison, sand filtration and UV irradiation are less effective. However, a large discrepancy of removal efficiencies is apparent across different studies of these treatment processes. Increases in antibiotics concentration following tertiary treatment have also been observed. Possible reasons for the discrepancies, such as sorption to filtered particles, sampling strategies, specific operating parameters of wastewater treatment plants, and deconjugation, are discussed. It is concluded that the effects of tertiary treatment on antibiotic removal efficiency are still arguable, and caution must be taken when sampling wastewater in full-scale WWTPs for comparison of removal efficiencies of antibiotics.
Collapse
Affiliation(s)
- Kayla D Burch
- Department of Natural Resources and Environmental Management, Ball State University, Muncie, IN, USA
| | - Bangshuai Han
- Department of Natural Resources and Environmental Management, Ball State University, Muncie, IN, USA.
| | - John Pichtel
- Department of Natural Resources and Environmental Management, Ball State University, Muncie, IN, USA
| | - Tykhon Zubkov
- Department of Chemistry, Ball State University, Muncie, IN, USA
| |
Collapse
|
150
|
Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L, Chen S. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 2019; 4:25-33. [PMID: 30560208 PMCID: PMC6290258 DOI: 10.1016/j.synbio.2018.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Engineering and modifying synthetic microbial chassis is one of the best ways not only to unravel the fundamental principles of life but also to enhance applications in the health, medicine, agricultural, veterinary, and food industries. The two primary strategies for constructing a microbial chassis are the top-down approach (genome reduction) and the bottom-up approach (genome synthesis). Research programs on this topic have been funded in several countries. The 'Minimum genome factory' (MGF) project was launched in 2001 in Japan with the goal of constructing microorganisms with smaller genomes for industrial use. One of the best examples of the results of this project is E. coli MGF-01, which has a reduced-genome size and exhibits better growth and higher threonine production characteristics than the parental strain [1]. The 'cell factory' project was carried out from 1998 to 2002 in the Fifth Framework Program of the EU (European Union), which tried to comprehensively understand microorganisms used in the application field. One of the outstanding results of this project was the elucidation of proteins secreted by Bacillus subtilis, which was summarized as the 'secretome' [2]. The GTL (Genomes to Life) program began in 2002 in the United States. In this program, researchers aimed to create artificial cells both in silico and in vitro, such as the successful design and synthesis of a minimal bacterial genome by John Craig Venter's group [3]. This review provides an update on recent advances in engineering, modification and application of synthetic microbial chassis, with particular emphasis on the value of learning about chassis as a way to better understand life and improve applications.
Collapse
Affiliation(s)
- Haotian Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoli Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Shao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Ying Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|