101
|
Perfluorooctanoic acid (PFOA) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells. Arch Toxicol 2018; 92:1729-1739. [PMID: 29502166 PMCID: PMC5962621 DOI: 10.1007/s00204-018-2181-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/28/2018] [Indexed: 12/05/2022]
Abstract
Despite significant advances in early detection and treatment, breast cancer remains a major cause of morbidity and mortality. Perfluorooctanoic acid (PFOA) is a suspected endocrine disruptor and a common environmental pollutant associated with various diseases including cancer. However, the effects of PFOA and its mechanisms of action on hormone-responsive cells remain unclear. Here, we explored the potential tumorigenic activity of PFOA (100 nM–1 mM) in human breast epithelial cells (MCF-10A). MCF-10A cells exposed to 50 and 100 µM PFOA demonstrated a higher growth rate compared to controls. The compound promoted MCF-10A proliferation by accelerating G0/G1 to S phase transition of the cell cycle. PFOA increased cyclin D1 and CDK4/6 levels, concomitant with a decrease in p27. In contrast to previous studies of perfluorooctane sulfate (PFOS), the estrogen receptor antagonist ICI 182,780 had no effect on PFOA-induced cell proliferation, whereas the PPARα antagonist GW 6471 was able to prevent the MCF-10A proliferation, indicating that the underlying mechanisms involve PPARα-dependent pathways. Interestingly, we also showed that PFOA is able to stimulate cell migration and invasion, demonstrating its potential to induce neoplastic transformation of human breast epithelial cells. These results suggest that more attention should be paid to the roles of PFOA in the development and progression of breast cancer.
Collapse
|
102
|
Śledziński P, Zeyland J, Słomski R, Nowak A. The current state and future perspectives of cannabinoids in cancer biology. Cancer Med 2018; 7:765-775. [PMID: 29473338 PMCID: PMC5852356 DOI: 10.1002/cam4.1312] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/16/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022] Open
Abstract
To date, cannabinoids have been allowed in the palliative medicine due to their analgesic and antiemetic effects, but increasing number of preclinical studies indicates their anticancer properties. Cannabinoids exhibit their action by a modulation of the signaling pathways crucial in the control of cell proliferation and survival. Many in vitro and in vivo experiments have shown that cannabinoids inhibit proliferation of cancer cells, stimulate autophagy and apoptosis, and have also a potential to inhibit angiogenesis and metastasis. In this review, we present an actual state of knowledge regarding molecular mechanisms of cannabinoids' anticancer action, but we discuss also aspects that are still not fully understood such as the role of the endocannabinoid system in a carcinogenesis, the impact of cannabinoids on the immune system in the context of cancer development, or the cases of a stimulation of cancer cells' proliferation by cannabinoids. The review includes also a summary of currently ongoing clinical trials evaluating the safety and efficacy of cannabinoids as anticancer agents.
Collapse
Affiliation(s)
- Paweł Śledziński
- Department of Biochemistry and BiotechnologyPoznań University of Life SciencesDojazd Street 1160‐632PoznańPoland
| | - Joanna Zeyland
- Department of Biochemistry and BiotechnologyPoznań University of Life SciencesDojazd Street 1160‐632PoznańPoland
| | - Ryszard Słomski
- Department of Biochemistry and BiotechnologyPoznań University of Life SciencesDojazd Street 1160‐632PoznańPoland
- Institute of Human Genetics of the Polish Academy of SciencesStrzeszyńska Street 3260‐479PoznańPoland
| | - Agnieszka Nowak
- Department of Biochemistry and BiotechnologyPoznań University of Life SciencesDojazd Street 1160‐632PoznańPoland
| |
Collapse
|
103
|
Pierozan P, Karlsson O. PFOS induces proliferation, cell-cycle progression, and malignant phenotype in human breast epithelial cells. Arch Toxicol 2017; 92:705-716. [PMID: 29063134 PMCID: PMC5818598 DOI: 10.1007/s00204-017-2077-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a synthetic fluorosurfactant widely used in the industry and a prominent environmental toxicant. PFOS is persistent, bioaccumulative, and toxic to mammalian species. Growing evidence suggests that PFOS has the potential to interfere with estrogen homeostasis, posing a risk of endocrine-disrupting effects. Recently, concerns about a potential link between PFOS and breast cancer have been raised, but the mechanisms underlying its actions as a potential carcinogen are unknown. By utilizing cell proliferation assays, flow cytometry, immunocytochemistry, and cell migration/invasion assays, we examined the potentially tumorigenic activity of PFOS (100 nM–1 mM) in MCF-10A breast cell line. The results showed that the growth of MCF-10A cells exposed to 1 and 10 µM PFOS was higher compared to that of the control. Mechanistic studies using 10 µM PFOS demonstrated that the compound promotes MCF-10A proliferation through accelerating G0/G1-to-S phase transition of the cell cycle after 24, 48, and 72 h of treatment. In addition, PFOS exposure increased CDK4 and decreased p27, p21, and p53 levels in the cells. Importantly, treatment with 10 µM PFOS for 72 h also stimulated MCF-10A cell migration and invasion, illustrating its capability to induce neoplastic transformation of human breast epithelial cells. Our experimental results suggest that exposure to low levels of PFOS might be a potential risk factor in human breast cancer initiation and development.
Collapse
Affiliation(s)
- Paula Pierozan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
104
|
Bogdanović V, Mrdjanović J, Borišev I. A Review of the Therapeutic Antitumor Potential of Cannabinoids. J Altern Complement Med 2017; 23:831-836. [PMID: 28799775 DOI: 10.1089/acm.2017.0016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The aim of this review is to discuss cannabinoids from a preclinical and clinical oncological perspective and provide the audience with a concise, retrospective overview of the most significant findings concerning the potential use of cannabinoids in cancer treatment. METHODS A literature survey of medical and scientific databases was conducted with a focus on the biological and medical potential of cannabinoids in cancer treatment. RESULTS Cannabis sativa is a plant rich in more than 100 types of cannabinoids. Besides exogenous plant cannabinoids, mammalian endocannabinoids and synthetic cannabinoid analogues have been identified. Cannabinoid receptors type 1 (CB1) and type 2 (CB2) have been isolated and characterized from mammalian cells. Through cannabinoid receptor and non-receptor signaling pathways, cannabinoids show specific cytotoxicity against tumor cells, while protecting healthy tissue from apoptosis. The dual antiproliferative and proapoptotic effects of cannabinoids and associated signaling pathways have been investigated on a large panel of cancer cell lines. Cannabinoids also display potent anticancer activity against tumor xenografts, including tumors that express high resistance to standard chemotherapeutics. Few studies have investigated the possible synergistic effects of cannabinoids with standard oncology therapies, and are based on the preclinically confirmed concept of "cannabinoid sensitizers." Also, clinical trials aimed to confirm the antineoplastic activity of cannabinoids have only been evaluated on a small number of subjects, with no consensus conclusions regarding their effectiveness. CONCLUSIONS A large number of cannabinoid compounds have been discovered, developed, and used to study the effects of cannabinoids on cancers in model systems. However, few clinical trials have been conducted on the use of cannabinoids in the treatment of cancers in humans. Further studies require extensive monitoring of the effects of cannabinoids alone or in combination with standard anticancer strategies. With such knowledge, cannabinoids could become a therapy of choice in contemporary oncology.
Collapse
Affiliation(s)
- Višnja Bogdanović
- 1 Medical Faculty, University of Novi Sad , Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Jasminka Mrdjanović
- 1 Medical Faculty, University of Novi Sad , Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Ivana Borišev
- 2 Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad , Novi Sad, Serbia
| |
Collapse
|
105
|
Morales P, Reggio PH, Jagerovic N. An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol. Front Pharmacol 2017; 8:422. [PMID: 28701957 PMCID: PMC5487438 DOI: 10.3389/fphar.2017.00422] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/14/2017] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) has been traditionally used in Cannabis-based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis. Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging.
Collapse
Affiliation(s)
- Paula Morales
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, GreensboroNC, United States
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, GreensboroNC, United States
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i al Instituto de Química Médica/Universidad Rey Juan CarlosMadrid, Spain
| |
Collapse
|
106
|
Ramer R, Hinz B. Cannabinoids as Anticancer Drugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:397-436. [PMID: 28826542 DOI: 10.1016/bs.apha.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The endocannabinoid system encompassing cannabinoid receptors, endogenous receptor ligands (endocannabinoids), as well as enzymes conferring the synthesis and degradation of endocannabinoids has emerged as a considerable target for pharmacotherapeutical approaches of numerous diseases. Besides palliative effects of cannabinoids used in cancer treatment, phytocannabinoids, synthetic agonists, as well as substances that increase endogenous endocannabinoid levels have gained interest as potential agents for systemic cancer treatment. Accordingly, cannabinoid compounds have been reported to inhibit tumor growth and spreading in numerous rodent models. The underlying mechanisms include induction of apoptosis, autophagy, and cell cycle arrest in tumor cells as well as inhibition of tumor cell invasion and angiogenic features of endothelial cells. In addition, cannabinoids have been shown to suppress epithelial-to-mesenchymal transition, to enhance tumor immune surveillance, and to support chemotherapeutics' effects on drug-resistant cancer cells. However, unwanted side effects include psychoactivity and possibly pathogenic effects on liver health. Other cannabinoids such as the nonpsychoactive cannabidiol exert a comparatively good safety profile while exhibiting considerable anticancer properties. So far experience with anticarcinogenic effects of cannabinoids is confined to in vitro studies and animal models. Although a bench-to-bedside conversion remains to be established, the current knowledge suggests cannabinoid compounds to serve as a group of drugs that may offer significant advantages for patients suffering from cancer diseases. The present review summarizes the role of the endocannabinoid system and cannabinoid compounds in tumor progression.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
107
|
Campos AC, Fogaça MV, Scarante FF, Joca SRL, Sales AJ, Gomes FV, Sonego AB, Rodrigues NS, Galve-Roperh I, Guimarães FS. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders. Front Pharmacol 2017; 8:269. [PMID: 28588483 PMCID: PMC5441138 DOI: 10.3389/fphar.2017.00269] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/01/2017] [Indexed: 12/25/2022] Open
Abstract
Beneficial effects of cannabidiol (CBD) have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.
Collapse
Affiliation(s)
- Alline C Campos
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Manoela V Fogaça
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Franciele F Scarante
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Sâmia R L Joca
- Department of Physical and Chemical, School of Pharmaceutical Science of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Amanda J Sales
- Department of Physical and Chemical, School of Pharmaceutical Science of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Neuroscience, University of PittsburghPittsburgh, PA, United States
| | - Andreza B Sonego
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Naielly S Rodrigues
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense UniversityMadrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Universitario de Investigación en Neuroquímica and Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Francisco S Guimarães
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
108
|
Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D, Laezza C, Bifulco M. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175:133-150. [PMID: 28232276 DOI: 10.1016/j.pharmthera.2017.02.041] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past years, several lines of evidence support a therapeutic potential of Cannabis derivatives and in particular phytocannabinoids. Δ9-THC and cannabidiol (CBD) are the most abundant phytocannabinoids in Cannabis plants and therapeutic application for both compounds have been suggested. However, CBD is recently emerging as a therapeutic agent in numerous pathological conditions since devoid of the psychoactive side effects exhibited instead by Δ9-THC. In this review, we highlight the pharmacological activities of CBD, its cannabinoid receptor-dependent and -independent action, its biological effects focusing on immunomodulation, angiogenetic properties, and modulation of neuronal and cardiovascular function. Furthermore, the therapeutic potential of cannabidiol is also highlighted, in particular in nuerological diseases and cancer.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy.
| | - Anna Maria Malfitano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Anna Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Roberta Ranieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Gaia Cuomo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Giorgio Faggiana
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | | | | | | | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy; Corporea, Fondazione Idis-Città della Scienza, Naples, Italy.
| |
Collapse
|
109
|
Śledziński P, Nowak A, Zeyland J, Słomski R. Endocannabinoid system and anticancer properties of cannabinoids. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/fobio-2016-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabinoids impact human body by binding to cannabinoids receptors (CB1 and CB2). The two main phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC interacts with CB1 receptors occurring in central nervous system and is responsible for psychoactive properties of marijuana. CBD has low affinity to CB1 receptor, has no psychoactive characteristics and its medical applications can be wider. CB receptors are part of a complex machinery involved in regulation of many physiological processes – endocannabinoid system. Cannabinoids have found some applications in palliative medicine, but there are many reports concerning their anticancer affects. Agonists of CB1 receptors stimulate accumulation of ceramides in cancer cells, stress of endoplasmic reticulum (ER stress) and, in turn, apoptosis. Effects of cannabinoids showing low affinity to CB receptors is mediated probably by induction of reactive oxygen species production. Knowledge of antitumor activity of cannabinoids is still based only on preclinical studies and there is a necessity to conduct more experiments to assess the real potential of these compounds.
Collapse
|
110
|
Ladin DA, Soliman E, Griffin L, Van Dross R. Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents. Front Pharmacol 2016; 7:361. [PMID: 27774065 PMCID: PMC5054289 DOI: 10.3389/fphar.2016.00361] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority. Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history. Cannabinoid activity is regulated by the endocannabinoid system (ECS), which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown. More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death. However, many studies investigated these effects using in vitro models which may not adequately mimic tumor growth and metastasis. As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical animal models and to examine the current standing of cannabinoids that are being tested in human cancer patients.
Collapse
Affiliation(s)
- Daniel A Ladin
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina UniversityGreenville, NC, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - LaToya Griffin
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina UniversityGreenville, NC, USA; Center for Health Disparities, East Carolina UniversityGreenville, NC, USA
| |
Collapse
|
111
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
112
|
Fraguas-Sánchez AI, Fernández-Carballido A, Torres-Suárez AI. Phyto-, endo- and synthetic cannabinoids: promising chemotherapeutic agents in the treatment of breast and prostate carcinomas. Expert Opin Investig Drugs 2016; 25:1311-1323. [PMID: 27633508 DOI: 10.1080/13543784.2016.1236913] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The term 'cannabinoids' designates a family of compounds with activity upon cannabinoid receptors. Cannabinoids are classified in three groups: phytocannabinoids, endocannabinoids, and the synthetic analogues of both groups. They have become a promising tool in the treatment of cancer disease, not only as palliative agents, but also as antitumor drugs, due to their ability to inhibit the proliferation, adhesion, migration, invasion, and angiogenesis of tumour cells. Two of the cancers where they have shown high anticancer activity are breast and prostate tumours. Despite this potential clinical interest, several studies have also reported that cannabinoids can stimulate the proliferation of cancer cells at very low concentrations. Areas covered: The aim of this review is to evaluate the promising chemotherapeutic utility of phytocannabinoids, endocannabinoids, and synthetic cannabinoids in breast and prostate cancer. Expert opinion: Cannabinoids, in particular the non-psychoactive CBD, may be promising tools in combination therapy for breast and prostate cancer, due to their direct antitumor effects, their ability to improve the efficacy of conventional antitumor drugs and their usefulness as palliative treatment. Nevertheless, deeper studies to fully establish the mechanisms responsible for their antitumour and pro-tumour properties and their formulation in efficient delivery systems remain to be established.
Collapse
Affiliation(s)
- A I Fraguas-Sánchez
- a Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , Complutense University of Madrid , Madrid , Spain
| | - A Fernández-Carballido
- a Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , Complutense University of Madrid , Madrid , Spain.,b Institute of Industrial Pharmacy , Complutense University of Madrid , Madrid , Spain
| | - A I Torres-Suárez
- a Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , Complutense University of Madrid , Madrid , Spain.,b Institute of Industrial Pharmacy , Complutense University of Madrid , Madrid , Spain
| |
Collapse
|
113
|
Chen YC, Zhang Z, Fouladdel S, Deol Y, Ingram PN, McDermott SP, Azizi E, Wicha MS, Yoon E. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells. LAB ON A CHIP 2016; 16:2935-45. [PMID: 27381658 PMCID: PMC4977365 DOI: 10.1039/c6lc00062b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor-stromal interactions.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Elbaz M, Ahirwar D, Xiaoli Z, Zhou X, Lustberg M, Nasser MW, Shilo K, Ganju RK. TRPV2 is a novel biomarker and therapeutic target in triple negative breast cancer. Oncotarget 2016; 9:33459-33470. [PMID: 30323891 DOI: 10.18632/oncotarget.9663] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential vanilloid type-2 (TRPV2) is an ion channel that is triggered by agonists like cannabidiol (CBD). Triple negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Chemotherapy is still the first line for the treatment of TNBC patients; however, TNBC usually gains rapid resistance and unresponsiveness to chemotherapeutic drugs. In this study, we found that TRPV2 protein is highly up-regulated in TNBC tissues compared to normal breast tissues. We also observed that TNBC and estrogen receptor alpha negative (ERβ-) patients with higher TRPV2 expression have significantly higher recurrence free survival compared to patients with lower TRPV2 expression especially those who were treated with chemotherapy. In addition, we showed that TRPV2 overexpression or activation by CBD significantly increased doxorubicin (DOX) uptake and apoptosis in TNBC cells. The induction of DOX uptake was abrogated by TRPV2 blocking or downregulation. In vivo mouse model studies showed that the TNBC tumors derived from CBD+DOX treated mice have significantly reduced weight and increased apoptosis compared to those treated with CBD or DOX alone. Overall, our studies for the first time revealed that TRPV2 might be a good prognostic marker for TNBC and ERβ- breast cancer patient especially for those who are treated with chemotherapy. In addition, TRPV2 activation could be a novel therapeutic strategy to enhance the uptake and efficacy of chemotherapy in TNBC patients.
Collapse
Affiliation(s)
- Mohamad Elbaz
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA.,Department of Pharmacology, Pharmacy School, Helwan University, Helwan, Egypt
| | - Dinesh Ahirwar
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| | - Zhang Xiaoli
- Center for Biostatistics, Ohio State University (OSU), Columbus, OH, USA
| | - Xinyu Zhou
- Department of surgery, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, USA
| | - Maryam Lustberg
- Department of Internal Medicine, Ohio State University (OSU), Columbus, OH, USA
| | - Mohd W Nasser
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| | - Konstantin Shilo
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
115
|
Ramer R, Hinz B. Antitumorigenic targets of cannabinoids - current status and implications. Expert Opin Ther Targets 2016; 20:1219-35. [PMID: 27070944 DOI: 10.1080/14728222.2016.1177512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment. AREAS COVERED The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids. EXPERT OPINION The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds. In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions. Thus, drugs aiming at the endocannabinoid system may represent potential 'antimetastatics' for an upgrade of a future armamentarium against cancer diseases.
Collapse
Affiliation(s)
- Robert Ramer
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Toxicology and Pharmacology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
116
|
Hanlon KE, Lozano-Ondoua AN, Umaretiya PJ, Symons-Liguori AM, Chandramouli A, Moy JK, Kwass WK, Mantyh PW, Nelson MA, Vanderah TW. Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent. BREAST CANCER-TARGETS AND THERAPY 2016; 8:59-71. [PMID: 27186076 PMCID: PMC4847606 DOI: 10.2147/bctt.s100393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems. The mechanism of this modulation remains only partially delineated, and activity induced via the CB1 and CB2 receptors may be distinct despite significant sequence homology and structural similarity of ligands. Methods The CB2-selective agonist JWH-015 was used to investigate mechanisms downstream of CB2 activation in mouse and human breast cancer cell lines in vitro and in a murine mammary tumor model. Results JWH-015 treatment significantly reduced primary tumor burden and metastasis of luciferase-tagged murine mammary carcinoma 4T1 cells in immunocompetent mice in vivo. Furthermore, JWH-015 reduced the viability of murine 4T1 and human MCF7 mammary carcinoma cells in vitro by inducing apoptosis. JWH-015-mediated reduction of breast cancer cell viability was not dependent on Gαi signaling in vitro or modified by classical pharmacological blockade of CB1, GPR55, TRPV1, or TRPA1 receptors. JWH-015 effects were calcium dependent and induced changes in MAPK/ERK signaling. Conclusion The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor.
Collapse
Affiliation(s)
- Katherine E Hanlon
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA; Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME, USA
| | | | - Puja J Umaretiya
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Anupama Chandramouli
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jamie K Moy
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - William K Kwass
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
117
|
Murase R, Sumida T, Kawamura R, Onishi-Ishikawa A, Hamakawa H, McAllister SD, Desprez PY. Suppression of invasion and metastasis in aggressive salivary cancer cells through targeted inhibition of ID1 gene expression. Cancer Lett 2016; 377:11-6. [PMID: 27087608 DOI: 10.1016/j.canlet.2016.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 10/22/2022]
Abstract
Salivary gland cancer (SGC) represents the most common malignancy in the head and neck region, and often metastasizes to the lungs. The helix-loop-helix ID1 protein has been shown to control metastatic progression in many types of cancers. Using two different approaches to target the expression of ID1 (genetic knockdown and progesterone receptor introduction combined with progesterone treatment), we previously determined that the aggressiveness of salivary gland tumor ACCM cells in culture was suppressed. Here, using the same approaches to target ID1 expression, we investigated the ability of ACCM cells to generate lung metastatic foci in nude mice. Moreover, since both approaches would be challenging for applications in humans, we added a third approach, i.e., treatment of mice with a non-toxic cannabinoid compound known to down-regulate ID1 gene expression. All approaches aimed at targeting the pro-metastatic ID1 gene led to a significant reduction in the formation of lung metastatic foci. Therefore, targeting a key transcriptional regulator using different means results in the same reduction of the metastatic spread of SGC cells in animal models, suggesting a novel approach for the treatment of patients with aggressive SGC.
Collapse
Affiliation(s)
- Ryuichi Murase
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Tomoki Sumida
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Rumi Kawamura
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Akiko Onishi-Ishikawa
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Hiroyuki Hamakawa
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Sean D McAllister
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Pierre-Yves Desprez
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA.
| |
Collapse
|
118
|
Parray HA, Yun JW. Cannabidiol promotes browning in 3T3-L1 adipocytes. Mol Cell Biochem 2016; 416:131-9. [DOI: 10.1007/s11010-016-2702-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
|
119
|
Abstract
In addition to the well-known palliative effects of cannabinoids on some cancer-associated symptoms, a large body of evidence shows that these molecules can decrease tumour growth in animal models of cancer. They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals. In this review, we discuss the current understanding of cannabinoids as antitumour agents, focusing on recent discoveries about their molecular mechanisms of action, including resistance mechanisms and opportunities for their use in combination therapy. Those observations have already contributed to the foundation for the development of the first clinical studies that will analyze the safety and potential clinical benefit of cannabinoids as anticancer agents.
Collapse
Affiliation(s)
- G Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and Instituto Universitario de Investigación Neuroquímica, Madrid, Spain;; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain;; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - C Sánchez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and Instituto Universitario de Investigación Neuroquímica, Madrid, Spain;; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - M Guzmán
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and Instituto Universitario de Investigación Neuroquímica, Madrid, Spain;; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain;; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
120
|
Fisher T, Golan H, Schiby G, PriChen S, Smoum R, Moshe I, Peshes-Yaloz N, Castiel A, Waldman D, Gallily R, Mechoulam R, Toren A. In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma. ACTA ACUST UNITED AC 2016; 23:S15-22. [PMID: 27022310 DOI: 10.3747/co.23.2893] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. METHODS We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human nbl SK-N-SH cells. RESULTS Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts. CONCLUSIONS Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.
Collapse
Affiliation(s)
- T Fisher
- Pediatric Hemato-Oncology Research Laboratory, Sheba Cancer Research Center
| | - H Golan
- Pediatric Hemato-Oncology Research Laboratory, Sheba Cancer Research Center; Department of Pediatric Hemato-Oncology, The Edmond and Lily Safra Children's Hospital
| | - G Schiby
- Department of Pathology, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - S PriChen
- Pediatric Stem Cell Research Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - R Smoum
- Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - I Moshe
- Pediatric Hemato-Oncology Research Laboratory, Sheba Cancer Research Center
| | - N Peshes-Yaloz
- Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - A Castiel
- Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - D Waldman
- Pediatric Hemato-Oncology Research Laboratory, Sheba Cancer Research Center; Department of Pediatric Hemato-Oncology, The Edmond and Lily Safra Children's Hospital
| | - R Gallily
- The Lautenberg Center for General and Tumour Immunology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - R Mechoulam
- Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Toren
- Department of Pediatric Hemato-Oncology, The Edmond and Lily Safra Children's Hospital; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
121
|
Reddy DS, Golub VM. The Pharmacological Basis of Cannabis Therapy for Epilepsy. J Pharmacol Exp Ther 2016; 357:45-55. [PMID: 26787773 DOI: 10.1124/jpet.115.230151] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/15/2016] [Indexed: 12/30/2022] Open
Abstract
Recently, cannabis has been suggested as a potential alternative therapy for refractory epilepsy, which affects 30% of epilepsy, both adults and children, who do not respond to current medications. There is a large unmet medical need for new antiepileptics that would not interfere with normal function in patients with refractory epilepsy and conditions associated with refractory seizures. The two chief cannabinoids are Δ-9-tetrahyrdrocannabinol, the major psychoactive component of marijuana, and cannabidiol (CBD), the major nonpsychoactive component of marijuana. Claims of clinical efficacy in epilepsy of CBD-predominant cannabis or medical marijuana come mostly from limited studies, surveys, or case reports. However, the mechanisms underlying the antiepileptic efficacy of cannabis remain unclear. This article highlights the pharmacological basis of cannabis therapy, with an emphasis on the endocannabinoid mechanisms underlying the emerging neurotherapeutics of CBD in epilepsy. CBD is anticonvulsant, but it has a low affinity for the cannabinoid receptors CB1 and CB2; therefore the exact mechanism by which it affects seizures remains poorly understood. A rigorous clinical evaluation of pharmaceutical CBD products is needed to establish the safety and efficacy of their use in the treatment of epilepsy. Identification of mechanisms underlying the anticonvulsant efficacy of CBD is also critical for identifying other potential treatment options.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
122
|
Velasco G, Hernández-Tiedra S, Dávila D, Lorente M. The use of cannabinoids as anticancer agents. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:259-66. [PMID: 26071989 DOI: 10.1016/j.pnpbp.2015.05.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022]
Abstract
It is well-established that cannabinoids exert palliative effects on some cancer-associated symptoms. In addition evidences obtained during the last fifteen years support that these compounds can reduce tumor growth in animal models of cancer. Cannabinoids have been shown to activate an ER-stress related pathway that leads to the stimulation of autophagy-mediated cancer cell death. In addition, cannabinoids inhibit tumor angiogenesis and decrease cancer cell migration. The mechanisms of resistance to cannabinoid anticancer action as well as the possible strategies to develop cannabinoid-based combinational therapies to fight cancer have also started to be explored. In this review we will summarize these observations (that have already helped to set the bases for the development of the first clinical studies to investigate the potential clinical benefit of using cannabinoids in anticancer therapies) and will discuss the possible future avenues of research in this area.
Collapse
Affiliation(s)
- Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Spain.
| | - Sonia Hernández-Tiedra
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Spain
| | - David Dávila
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Spain
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Spain
| |
Collapse
|
123
|
Chakravarti B, Ravi J, Ganju RK. Cannabinoids as therapeutic agents in cancer: current status and future implications. Oncotarget 2015; 5:5852-72. [PMID: 25115386 PMCID: PMC4171598 DOI: 10.18632/oncotarget.2233] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The pharmacological importance of cannabinoids has been in study for several years. Cannabinoids comprise of (a) the active compounds of the Cannabis sativa plant, (b) endogenous as well as (c) synthetic cannabinoids. Though cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents. They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models. Cannabinoids regulate key cell signaling pathways that are involved in cell survival, invasion, angiogenesis, metastasis, etc. There is more focus on CB1 and CB2, the two cannabinoid receptors which are activated by most of the cannabinoids. In this review article, we will focus on a broad range of cannabinoids, their receptor dependent and receptor independent functional roles against various cancer types with respect to growth, metastasis, energy metabolism, immune environment, stemness and future perspectives in exploring new possible therapeutic opportunities.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India; These authors contributed equally to this work
| | - Janani Ravi
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA; These authors contributed equally to this work
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
124
|
Yu L, Yang Y, Hou J, Zhai C, Song Y, Zhang Z, Qiu L, Jia X. MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncol Rep 2015; 34:1845-52. [PMID: 26252024 DOI: 10.3892/or.2015.4173] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy resistance remains a major obstacle for patients with breast cancer. miRNAs are important regulators in many biological processes including proliferation, apoptosis, invasion and metastasis and response to treatment in different types of tumors. Here, we describe the role of miRNA-144 in the regulation of radiotherapy sensitivity, migration and invasion of breast cancer cells. The cell survival rate of breast cancer cells was measured by WST-1 assay after irradiation. The caspase-3/-7 activity and apoptotic proteins were analyzed by Caspase-Glo3/7 assay and western blot analysis, respectively. The migration and invasion of breast cancer cells were evaluated by BD Transwell migration and Matrigel invasion assays. The EMT markers were detected by western blot analysis. We found that overexpression of miR-144 increased the proliferation rate of MDA-MB-231 cells without radiation. Both MDA-MB‑231 and SKBR3 cells exhibited significantly increased radiation resistance after overexpression of miR-144. Meanwhile, the migration and invasion of both MDA-MB-231 and SKBR3 cells were changed by altered miR-144 expression. In addition, the overexpression of miR-144 inhibited E-cadherin expression and promoted Snail expression. miR-144 activated AKT by downregulation of PTEN in breast cancer cells. Our results strongly suggest that miR-144 acts as an important regulator of tumorigenesis and tumor progression of breast cancer. These results indicate that miR-144 might serve as a potential molecular target for breast cancer treatment.
Collapse
Affiliation(s)
- Lei Yu
- Department of Tumor Radiation Therapy, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yanming Yang
- Department of Tumor Radiation Therapy, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Jiguang Hou
- Department of Tumor Radiation Therapy, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Chengwei Zhai
- Department of Tumor Radiation Therapy, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yunhao Song
- Department of Tumor Radiation Therapy, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Zhiliang Zhang
- Department of Tumor Radiation Therapy, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Ling Qiu
- Department of Tumor Radiation Therapy, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Xiaojing Jia
- Department of Tumor Radiation Therapy, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
125
|
Synthesis and biological evaluation of (3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-aryl/alkyl-methanone selective CB2 inverse agonist. Bioorg Med Chem 2015; 23:5390-401. [PMID: 26275680 DOI: 10.1016/j.bmc.2015.07.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 01/28/2023]
Abstract
Cannabinoid receptor 2 (CB2) selective agonists and inverse agonists possess significant potential as therapeutic agents for regulating inflammation and immune function. Although CB2 agonists have received the greatest attention, it is emerging that inverse agonists also manifest anti-inflammatory activity. In process of designing new cannabinoid ligands we discovered that the 2,6-dihydroxy-biphenyl-aryl methanone scaffold imparts inverse agonist activity at CB2 receptor without functional activity at CB1. To further explore the scaffold we synthesized a series of (3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-aryl/alkyl-methanone analogs and evaluated the CB1 and CB2 affinity, potency, and efficacy. The studies reveal that an aromatic C ring is required for inverse agonist activity and that substitution at the 4 position is optimum. The resorcinol moiety is required for optimum CB2 inverse agonist activity and selectivity. Antagonist studies against CP 55,940 demonstrate that the compounds 41 and 45 are noncompetitive antagonists at CB2.
Collapse
|
126
|
Ruiz de Garibay G, Herranz C, Llorente A, Boni J, Serra-Musach J, Mateo F, Aguilar H, Gómez-Baldó L, Petit A, Vidal A, Climent F, Hernández-Losa J, Cordero Á, González-Suárez E, Sánchez-Mut JV, Esteller M, Llatjós R, Varela M, López JI, García N, Extremera AI, Gumà A, Ortega R, Plà MJ, Fernández A, Pernas S, Falo C, Morilla I, Campos M, Gil M, Román A, Molina-Molina M, Ussetti P, Laporta R, Valenzuela C, Ancochea J, Xaubet A, Casanova Á, Pujana MA. Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness. PLoS One 2015; 10:e0132546. [PMID: 26167915 PMCID: PMC4500593 DOI: 10.1371/journal.pone.0132546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/17/2015] [Indexed: 12/23/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-ß3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Carmen Herranz
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Alicia Llorente
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Jacopo Boni
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Jordi Serra-Musach
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Francesca Mateo
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Helena Aguilar
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Laia Gómez-Baldó
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Anna Petit
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Fina Climent
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | | | - Álex Cordero
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Eva González-Suárez
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - José Vicente Sánchez-Mut
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Roger Llatjós
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Mar Varela
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - José Ignacio López
- Cruces University Hospital, BioCruces Research Institute, University of the Basque Country, Barakaldo, Spain
| | - Nadia García
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Ana I. Extremera
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Anna Gumà
- Department of Radiology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Raúl Ortega
- Department of Radiology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - María Jesús Plà
- Department of Gynecology, University Hospital of Bellvitge, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Adela Fernández
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Sònia Pernas
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Catalina Falo
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Idoia Morilla
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Miriam Campos
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Miguel Gil
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Antonio Román
- Department of Pulmonology, Lung Transplant Unit, Lymphangioleiomyomatosis (LAM) Clinic, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - María Molina-Molina
- Department of Pneumology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES), Madrid, Spain
| | - Piedad Ussetti
- Department of Pneumology, University Hospital Clínica Puerta del Hierro, Madrid, Spain
| | - Rosalía Laporta
- Department of Pneumology, University Hospital Clínica Puerta del Hierro, Madrid, Spain
| | - Claudia Valenzuela
- Department of Pneumology, Instituto de Investigación Sanitaria La Princesa, Hospital La Princesa, Madrid, Spain
| | - Julio Ancochea
- Department of Pneumology, Instituto de Investigación Sanitaria La Princesa, Hospital La Princesa, Madrid, Spain
| | - Antoni Xaubet
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES), Madrid, Spain
- Department of Pneumology, Hospital Clinic of Barcelona, Agusti Pi Suñer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain
| | | | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
- * E-mail:
| |
Collapse
|
127
|
Baron EP. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It's Been …. Headache 2015; 55:885-916. [PMID: 26015168 DOI: 10.1111/head.12570] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of cannabis, or marijuana, for medicinal purposes is deeply rooted though history, dating back to ancient times. It once held a prominent position in the history of medicine, recommended by many eminent physicians for numerous diseases, particularly headache and migraine. Through the decades, this plant has taken a fascinating journey from a legal and frequently prescribed status to illegal, driven by political and social factors rather than by science. However, with an abundance of growing support for its multitude of medicinal uses, the misguided stigma of cannabis is fading, and there has been a dramatic push for legalizing medicinal cannabis and research. Almost half of the United States has now legalized medicinal cannabis, several states have legalized recreational use, and others have legalized cannabidiol-only use, which is one of many therapeutic cannabinoids extracted from cannabis. Physicians need to be educated on the history, pharmacology, clinical indications, and proper clinical use of cannabis, as patients will inevitably inquire about it for many diseases, including chronic pain and headache disorders for which there is some intriguing supportive evidence. OBJECTIVE To review the history of medicinal cannabis use, discuss the pharmacology and physiology of the endocannabinoid system and cannabis-derived cannabinoids, perform a comprehensive literature review of the clinical uses of medicinal cannabis and cannabinoids with a focus on migraine and other headache disorders, and outline general clinical practice guidelines. CONCLUSION The literature suggests that the medicinal use of cannabis may have a therapeutic role for a multitude of diseases, particularly chronic pain disorders including headache. Supporting literature suggests a role for medicinal cannabis and cannabinoids in several types of headache disorders including migraine and cluster headache, although it is primarily limited to case based, anecdotal, or laboratory-based scientific research. Cannabis contains an extensive number of pharmacological and biochemical compounds, of which only a minority are understood, so many potential therapeutic uses likely remain undiscovered. Cannabinoids appear to modulate and interact at many pathways inherent to migraine, triptan mechanisms ofaction, and opiate pathways, suggesting potential synergistic or similar benefits. Modulation of the endocannabinoid system through agonism or antagonism of its receptors, targeting its metabolic pathways, or combining cannabinoids with other analgesics for synergistic effects, may provide the foundation for many new classes of medications. Despite the limited evidence and research suggesting a role for cannabis and cannabinoids in some headache disorders, randomized clinical trials are lacking and necessary for confirmation and further evaluation.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Headache Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
128
|
Ayakannu T, Taylor AH, Willets JM, Konje JC. The evolving role of the endocannabinoid system in gynaecological cancer. Hum Reprod Update 2015; 21:517-35. [PMID: 25958409 DOI: 10.1093/humupd/dmv022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The 'endocannabinoid system' (ECS), comprising endogenous ligands (endocannabinoids) and their regulating enzymes, together with the cannabinoid receptors, has attracted a great deal of attention because it affects not only all facets of human reproduction, from gametogenesis through to parturition and beyond, but also targets key mechanisms affecting some hallmarks of cancer. Recent evidence showing that cannabinoid receptors play a very important role in the development of malignancies outside of the reproductive organs suggests a similar role for the ECS in the establishment or continued development of gynaecological malignancy. METHODS Primary papers and review articles, and primary sources within these papers, up to December 2014, on the evolving role of the ECS in cancer, with a special focus on gynaecological cancers, were obtained by Medline and PubMed searches using the search terms: 'cancer', 'cannabinoid', 'endocannabinoid', 'gynaecology' and 'malignancy'. Non-English manuscripts were excluded. RESULTS More than 2100 sources were obtained from which only 112 were specifically important to the topic. Analysis of those articles supports a role of the ECS in gynaecological cancers but leaves many gaps in our knowledge that need to be filled. How some of the relevant receptors are activated and cause changes in cell phenotypes that progress to malignancy remains undiscovered and an area for future research. Increasing evidence suggests that malignant transformation within the female genital tract could be accompanied by deregulation of components of the ECS, acting through rather complex cannabinoid receptor-dependent and receptor-independent mechanisms. CONCLUSIONS The paucity of studies in this area suggests that research using animal models is needed to evaluate endocannabinoid signalling in cancer networks. Future randomized clinical studies should reveal whether endocannabinoids or their derivatives prove to be useful therapeutic targets for gynaecological and other cancers.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Anthony H Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK Biosciences, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG1 4BU, UK
| | - Jonathan M Willets
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Justin C Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK Department of Obstetrics and Gynaecology, Sidra Medical and Research Centre, Doha P.O. Box 26999, Qatar
| |
Collapse
|
129
|
Fowler CJ. Delta(9) -tetrahydrocannabinol and cannabidiol as potential curative agents for cancer: A critical examination of the preclinical literature. Clin Pharmacol Ther 2015; 97:587-96. [PMID: 25669486 DOI: 10.1002/cpt.84] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/26/2015] [Indexed: 12/13/2022]
Abstract
An Internet search with search words "cannabis cures cancer" produce a wealth of sites claiming that cannabis has this effect. These sites are freely accessible to the general public and thus contribute to public opinion. But do delta(9) -tetrahydrocannabinol (Δ(9) -THC) and cannabidiol (CBD) cure cancer? In the absence of clinical data other than a safety study and case reports, preclinical data should be evaluated in terms of its predictive value. Using a strict approach where only concentrations and/or models relevant to the clinical situation are considered, the current preclinical data do not yet provide robust evidence that systemically administered Δ(9) -THC will be useful for the curative treatment of cancer. There is more support for an intratumoral route of administration of higher doses of Δ(9) -THC. CBD produces effects in relevant concentrations and models, although more data are needed concerning its use in conjunction with other treatment strategies.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| |
Collapse
|
130
|
McAllister SD, Soroceanu L, Desprez PY. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids. J Neuroimmune Pharmacol 2015; 10:255-67. [PMID: 25916739 DOI: 10.1007/s11481-015-9608-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/30/2015] [Indexed: 01/12/2023]
Abstract
As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.
Collapse
Affiliation(s)
- Sean D McAllister
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA, 94107, USA,
| | | | | |
Collapse
|
131
|
Elbaz M, Nasser MW, Ravi J, Wani NA, Ahirwar DK, Zhao H, Oghumu S, Satoskar AR, Shilo K, Carson WE, Ganju RK. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: novel anti-tumor mechanisms of Cannabidiol in breast cancer. Mol Oncol 2015; 9:906-19. [PMID: 25660577 DOI: 10.1016/j.molonc.2014.12.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/08/2014] [Accepted: 12/27/2014] [Indexed: 12/12/2022] Open
Abstract
The anti-tumor role and mechanisms of Cannabidiol (CBD), a non-psychotropic cannabinoid compound, are not well studied especially in triple-negative breast cancer (TNBC). In the present study, we analyzed CBD's anti-tumorigenic activity against highly aggressive breast cancer cell lines including TNBC subtype. We show here -for the first time-that CBD significantly inhibits epidermal growth factor (EGF)-induced proliferation and chemotaxis of breast cancer cells. Further studies revealed that CBD inhibits EGF-induced activation of EGFR, ERK, AKT and NF-kB signaling pathways as well as MMP2 and MMP9 secretion. In addition, we demonstrated that CBD inhibits tumor growth and metastasis in different mouse model systems. Analysis of molecular mechanisms revealed that CBD significantly inhibits the recruitment of tumor-associated macrophages in primary tumor stroma and secondary lung metastases. Similarly, our in vitro studies showed a significant reduction in the number of migrated RAW 264.7 cells towards the conditioned medium of CBD-treated cancer cells. The conditioned medium of CBD-treated cancer cells also showed lower levels of GM-CSF and CCL3 cytokines which are important for macrophage recruitment and activation. In summary, our study shows -for the first time-that CBD inhibits breast cancer growth and metastasis through novel mechanisms by inhibiting EGF/EGFR signaling and modulating the tumor microenvironment. These results also indicate that CBD can be used as a novel therapeutic option to inhibit growth and metastasis of highly aggressive breast cancer subtypes including TNBC, which currently have limited therapeutic options and are associated with poor prognosis and low survival rates.
Collapse
Affiliation(s)
- Mohamad Elbaz
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - Mohd W Nasser
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - Janani Ravi
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - Nissar A Wani
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - Helong Zhao
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - Steve Oghumu
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - William E Carson
- The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA; Department of Surgery, The Ohio State University, Wexner Medical Center, 43210, USA.
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Wexner Medical Center, 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, 43210, USA.
| |
Collapse
|
132
|
Abstract
A large body of evidence shows that cannabinoids, in addition to their well-known palliative effects on some cancer-associated symptoms, can reduce tumour growth in animal models of cancer. They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angiogenesis and cell proliferation in different types of tumours in laboratory animals. By contrast, little is known about the biological role of the endocannabinoid system in cancer physio-pathology, and several studies suggest that it may be over-activated in cancer. In this review, we discuss our current understanding of cannabinoids as antitumour agents, focusing on recent advances in the molecular mechanisms of action, including resistance mechanisms and opportunities for combination therapy approaches.
Collapse
Affiliation(s)
- Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
- Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain.
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
133
|
New Insights into Antimetastatic and Antiangiogenic Effects of Cannabinoids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 314:43-116. [DOI: 10.1016/bs.ircmb.2014.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
134
|
Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol 2014; 171:636-45. [PMID: 24117398 DOI: 10.1111/bph.12439] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/12/2013] [Accepted: 08/26/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Paclitaxel (PAC) is associated with chemotherapy-induced neuropathic pain (CIPN) that can lead to the cessation of treatment in cancer patients even in the absence of alternate therapies. We previously reported that chronic administration of the non-psychoactive cannabinoid cannabidiol (CBD) prevents PAC-induced mechanical and thermal sensitivity in mice. Hence, we sought to determine receptor mechanisms by which CBD inhibits CIPN and whether CBD negatively effects nervous system function or chemotherapy efficacy. EXPERIMENTAL APPROACH The ability of acute CBD pretreatment to prevent PAC-induced mechanical sensitivity was assessed, as was the effect of CBD on place conditioning and on an operant-conditioned learning and memory task. The potential interaction of CBD and PAC on breast cancer cell viability was determined using the MTT assay. KEY RESULTS PAC-induced mechanical sensitivity was prevented by administration of CBD (2.5 - 10 mg·kg⁻¹) in female C57Bl/6 mice. This effect was reversed by co-administration of the 5-HT(1A) antagonist WAY 100635, but not the CB₁ antagonist SR141716 or the CB₂ antagonist SR144528. CBD produced no conditioned rewarding effects and did not affect conditioned learning and memory. Also, CBD + PAC combinations produce additive to synergistic inhibition of breast cancer cell viability. CONCLUSIONS AND IMPLICATIONS Our data suggest that CBD is protective against PAC-induced neurotoxicity mediated in part by the 5-HT(1A) receptor system. Furthermore, CBD treatment was devoid of conditioned rewarding effects or cognitive impairment and did not attenuate PAC-induced inhibition of breast cancer cell viability. Hence, adjunct treatment with CBD during PAC chemotherapy may be safe and effective in the prevention or attenuation of CIPN.
Collapse
Affiliation(s)
- Sara Jane Ward
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
135
|
Murase R, Kawamura R, Singer E, Pakdel A, Sarma P, Judkins J, Elwakeel E, Dayal S, Martinez-Martinez E, Amere M, Gujjar R, Mahadevan A, Desprez PY, McAllister SD. Targeting multiple cannabinoid anti-tumour pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer. Br J Pharmacol 2014; 171:4464-77. [PMID: 24910342 DOI: 10.1111/bph.12803] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/29/2014] [Accepted: 05/20/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The psychoactive cannabinoid Δ(9) -tetrahydrocannabinol (THC) and the non-psychoactive cannabinoid cannabidiol (CBD) can both reduce cancer progression, each through distinct anti-tumour pathways. Our goal was to discover a compound that could efficiently target both cannabinoid anti-tumour pathways. EXPERIMENTAL APPROACH To measure breast cancer cell proliferation/viability and invasion, MTT and Boyden chamber assays were used. Modulation of reactive oxygen species (ROS) and apoptosis was measured using dichlorodihydrofluorescein and annexin/propidium iodide, respectively, in combination with cell flow cytometry. Changes in protein levels were evaluated using Western analysis. Orthotopic and i.v. mouse models of breast cancer metastasis were used to test the activity of cannabinoids in vivo. KEY RESULTS CBD reduced breast cancer metastasis in advanced stages of the disease as the direct result of down-regulating the transcriptional regulator Id1. However, this was associated with moderate increases in survival. We therefore screened for analogues that could co-target cannabinoid anti-tumour pathways (CBD- and THC-associated) and discovered the compound O-1663. This analogue inhibited Id1, produced a marked stimulation of ROS, up-regulated autophagy and induced apoptosis. Of all the compounds tested, it was the most potent at inhibiting breast cancer cell proliferation and invasion in culture and metastasis in vivo. CONCLUSIONS AND IMPLICATIONS O-1663 prolonged survival in advanced stages of breast cancer metastasis. Developing compounds that can simultaneously target multiple cannabinoid anti-tumour pathways efficiently may provide a novel approach for the treatment of patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Ryuichi Murase
- California Pacific Medical Center, Research Institute, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
|
137
|
Gumireddy K, Li A, Kossenkov AV, Cai KQ, Liu Q, Yan J, Xu H, Showe L, Zhang L, Huang Q. ID1 promotes breast cancer metastasis by S100A9 regulation. Mol Cancer Res 2014; 12:1334-43. [PMID: 24948111 DOI: 10.1158/1541-7786.mcr-14-0049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Metastasis is a major factor responsible for mortality in patients with breast cancer. Inhibitor of DNA binding 1 (Id1) has been shown to play an important role in cell differentiation, tumor angiogenesis, cell invasion, and metastasis. Despite the data establishing Id1 as a critical factor for lung metastasis in breast cancer, the pathways and molecular mechanisms of Id1 functions in metastasis remain to be defined. Here, we show that Id1 interacts with TFAP2A to suppress S100A9 expression. We show that expression of Id1 and S100A9 is inversely correlated in both breast cancer cell lines and clinical samples. We also show that the migratory and invasive phenotypes in vitro and metastasis in vivo induced by Id1 expression are rescued by reestablishment of S100A9 expression. S100A9 also suppresses the expression of known metastasis-promoting factor RhoC activated by Id1 expression. Our results suggest that Id1 promotes breast cancer metastasis by the suppression of S100A9 expression. IMPLICATIONS Novel pathways by Id1 regulation in metastasis.
Collapse
Affiliation(s)
| | - Anping Li
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Jinchun Yan
- University of Washington Medical Center, Seattle, Washington
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China. Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Louise Showe
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Lin Zhang
- Center for Research on Early Detection and Cure of Ovarian Cancer, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qihong Huang
- The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
138
|
Romano B, Borrelli F, Pagano E, Cascio MG, Pertwee RG, Izzo AA. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:631-639. [PMID: 24373545 DOI: 10.1016/j.phymed.2013.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
PURPOSE Colon cancer is a major public health problem. Cannabis-based medicines are useful adjunctive treatments in cancer patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS, i.e. CBD botanical drug substance, on colorectal cancer cell proliferation and in experimental models of colon cancer in vivo. METHODS Proliferation was evaluated in colorectal carcinoma (DLD-1 and HCT116) as well as in healthy colonic cells using the MTT assay. CBD BDS binding was evaluated by its ability to displace [(3)H]CP55940 from human cannabinoid CB1 and CB2 receptors. In vivo, the effect of CBD BDS was examined on the preneoplastic lesions (aberrant crypt foci), polyps and tumours induced by the carcinogenic agent azoxymethane (AOM) as well as in a xenograft model of colon cancer in mice. RESULTS CBD BDS and CBD reduced cell proliferation in tumoral, but not in healthy, cells. The effect of CBD BDS was counteracted by selective CB1 and CB2 receptor antagonists. Pure CBD reduced cell proliferation in a CB1-sensitive antagonist manner only. In binding assays, CBD BDS showed greater affinity than pure CBD for both CB1 and CB2 receptors, with pure CBD having very little affinity. In vivo, CBD BDS reduced AOM-induced preneoplastic lesions and polyps as well as tumour growth in the xenograft model of colon cancer. CONCLUSIONS CBD BDS attenuates colon carcinogenesis and inhibits colorectal cancer cell proliferation via CB1 and CB2 receptor activation. The results may have some clinical relevance for the use of Cannabis-based medicines in cancer patients.
Collapse
Affiliation(s)
- Barbara Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Italy; School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Francesca Borrelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Italy
| | - Ester Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Italy
| | - Maria Grazia Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Angelo A Izzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; Endocannabinoid Research Group, Italy.
| |
Collapse
|
139
|
De Petrocellis L, Ligresti A, Schiano Moriello A, Iappelli M, Verde R, Stott CG, Cristino L, Orlando P, Di Marzo V. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. Br J Pharmacol 2014; 168:79-102. [PMID: 22594963 DOI: 10.1111/j.1476-5381.2012.02027.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid receptor activation induces prostate carcinoma cell (PCC) apoptosis, but cannabinoids other than Δ(9) -tetrahydrocannabinol (THC), which lack potency at cannabinoid receptors, have not been investigated. Some of these compounds antagonize transient receptor potential melastatin type-8 (TRPM8) channels, the expression of which is necessary for androgen receptor (AR)-dependent PCC survival. EXPERIMENTAL APPROACH We tested pure cannabinoids and extracts from Cannabis strains enriched in particular cannabinoids (BDS), on AR-positive (LNCaP and 22RV1) and -negative (DU-145 and PC-3) cells, by evaluating cell viability (MTT test), cell cycle arrest and apoptosis induction, by FACS scans, caspase 3/7 assays, DNA fragmentation and TUNEL, and size of xenograft tumours induced by LNCaP and DU-145 cells. KEY RESULTS Cannabidiol (CBD) significantly inhibited cell viability. Other compounds became effective in cells deprived of serum for 24 h. Several BDS were more potent than the pure compounds in the presence of serum. CBD-BDS (i.p.) potentiated the effects of bicalutamide and docetaxel against LNCaP and DU-145 xenograft tumours and, given alone, reduced LNCaP xenograft size. CBD (1-10 µM) induced apoptosis and induced markers of intrinsic apoptotic pathways (PUMA and CHOP expression and intracellular Ca(2+)). In LNCaP cells, the pro-apoptotic effect of CBD was only partly due to TRPM8 antagonism and was accompanied by down-regulation of AR, p53 activation and elevation of reactive oxygen species. LNCaP cells differentiated to androgen-insensitive neuroendocrine-like cells were more sensitive to CBD-induced apoptosis. CONCLUSIONS AND IMPLICATIONS These data support the clinical testing of CBD against prostate carcinoma.
Collapse
Affiliation(s)
- Luciano De Petrocellis
- Istituto di Cibernetica, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Macpherson T, Armstrong JA, Criddle DN, Wright KL. Physiological intestinal oxygen modulates the Caco-2 cell model and increases sensitivity to the phytocannabinoid cannabidiol. In Vitro Cell Dev Biol Anim 2014; 50:417-26. [PMID: 24464350 DOI: 10.1007/s11626-013-9719-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The Caco-2 cell model is widely used as a model of colon cancer and small intestinal epithelium but, like most cell models, is cultured in atmospheric oxygen conditions (∼21%). This does not reflect the physiological oxygen range found in the colon. In this study, we investigated the effect of adapting the Caco-2 cell line to routine culturing in a physiological oxygen (5%) environment. Under these conditions, cells maintain a number of key characteristics of the Caco-2 model, such as increased formation of tight junctions and alkaline phosphatase expression over the differentiation period and maintenance of barrier function. However, these cells exhibit differential oxidative metabolism, proliferate less and become larger during differentiation. In addition, these cells were more sensitive to cannabidiol-induced antiproliferative actions through changes in cellular energetics: from a drop of oxygen consumption rate and loss of mitochondrial membrane integrity in cells treated under atmospheric conditions to an increase in reactive oxygen species in intact mitochondria in cells treated under low-oxygen conditions. Inclusion of an additional physiological parameter, sodium butyrate, into the medium revealed a cannabidiol-induced proliferative response at low doses. These effects could impact on its development as an anticancer therapeutic, but overall, the data supports the principle that culturing cells in microenvironments that more closely mimic the in vivo conditions is important for drug screening and mechanism of action studies.
Collapse
Affiliation(s)
- Tara Macpherson
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YG, UK
| | | | | | | |
Collapse
|
141
|
Rimmerman N, Ben-Hail D, Porat Z, Juknat A, Kozela E, Daniels MP, Connelly PS, Leishman E, Bradshaw HB, Shoshan-Barmatz V, Vogel Z. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death. Cell Death Dis 2013; 4:e949. [PMID: 24309936 PMCID: PMC3877544 DOI: 10.1038/cddis.2013.471] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022]
Abstract
Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD.
Collapse
Affiliation(s)
- N Rimmerman
- The Dr. Miriam and Sheldon G Adelson Center for the Biology of Addictive Diseases, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Emery SM, Alotaibi MR, Tao Q, Selley DE, Lichtman AH, Gewirtz DA. Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. J Pharmacol Exp Ther 2013; 348:293-302. [PMID: 24259678 DOI: 10.1124/jpet.113.205120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The potential antitumor activity of cannabinoid receptor agonists, such as the aminoalklylindole WIN55,212-2 (WIN2), has been studied extensively, but their potential interaction with conventional cancer therapies, such as radiation, remains unknown. In the present work, the influence of WIN2 on the antiproliferative activity of radiation in human (MCF-7 and MDA-MB231) and murine (4T1) breast cancer cells was investigated. The antiproliferative effects produced by combination of WIN2 and radiation were more effective than either agent alone. The stereoisomer of WIN2, WIN55,212-3 (WIN3), failed to inhibit growth or potentiate the growth-inhibitory effects of radiation, indicative of stereospecificity. Two other aminoalkylindoles, pravadoline and JWH-015 [(2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenyl-methanone], also enhanced the antiproliferative effects of radiation, but other synthetic cannabinoids (i.e., nabilone, CP55,940 [(+)-rel-5-(1,1-dimethylheptyl)-2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-phenol], and methanandamide) or phytocannabinoids [i.e., Δ⁹-tetrahydrocannabinol (THC) and cannabidiol] did not. The combination treatment of WIN2 + radiation promoted both autophagy and senescence but not apoptosis or necrosis. WIN2 also failed to alter radiation-induced DNA damage or the apparent rate of DNA repair. Although the antiproliferative actions of WIN2 were mediated through noncannabinoid receptor-mediated pathways, the observation that WIN2 interfered with growth stimulation by sphingosine-1-phosphate (S1P) implicates the potential involvement of S1P/ceramide signaling pathways. In addition to demonstrating that aminoalkylindole compounds could potentially augment the effectiveness of radiation treatment in breast cancer, the present study suggests that THC and nabilone are unlikely to interfere with the effectiveness of radiation therapy, which is of particular relevance to patients using cannabinoid-based drugs to ameliorate the toxicity of cancer therapies.
Collapse
Affiliation(s)
- Sean M Emery
- Departments of Pharmacology and Toxicology (S.M.E., M.R.A., Q.T., D.E.S., A.H.T., D.A.G.), Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | |
Collapse
|
143
|
Zhang Y, Duan C, Bian C, Xiong Y, Zhang J. Steroid receptor coactivator-1: a versatile regulator and promising therapeutic target for breast cancer. J Steroid Biochem Mol Biol 2013; 138:17-23. [PMID: 23474438 DOI: 10.1016/j.jsbmb.2013.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 11/15/2022]
Abstract
Breast cancer is the leading cause of cancer death for women worldwide. Various therapeutic approaches have been proposed, among which endocrine therapy has recently become popular due to the high sensitivity of breast tissues to steroids such as estrogens and progesterone. The underlying mechanisms of steroid regulation in breast cancer cell proliferation, invasiveness, metastasis and endocrine resistance, however, remain largely unknown. Steroid receptor coactivator-1 (SRC-1) has attracted much attention because it is an important co-regulator and plays a pivotal role in modulating the transcriptional activities of steroid nuclear receptors. Accumulated research has established a strong correlation between SRC-1 and the pathological progression or disease-related features of breast cancer, which supports its potential as a target for specific therapeutic intervention in the clinical management of breast cancer. In addition, a diverse group of downstream molecules have also been shown to participate in various functional pathways related to SRC-1-associated regulation of breast cancer. These downstream molecules are also considered promising therapeutic targets, providing additional options for targeted treatments. In this review, the expression of SRC-1 in breast cancer and the close relationships between SRC-1 and the cell proliferation, invasiveness, metastasis and endocrine resistance of breast cancer will be discussed, followed by a brief summary of its putative functional mechanisms with an emphasis on the potential therapeutic role of SRC-1.
Collapse
Affiliation(s)
- Yanlei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Company Ten of Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
144
|
Ding C, Zhang Y, Chen H, Yang Z, Wild C, Ye N, Ester CD, Xiong A, White MA, Shen Q, Zhou J. Oridonin ring A-based diverse constructions of enone functionality: identification of novel dienone analogues effective for highly aggressive breast cancer by inducing apoptosis. J Med Chem 2013; 56:8814-25. [PMID: 24128046 DOI: 10.1021/jm401248x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oridonin (1) has attracted considerable attention in recent years because of its unique and safe anticancer pharmacological profile. Nevertheless, it exhibits moderate to poor effects against highly aggressive cancers including triple-negative and drug-resistant breast cancer cells. Herein, we report the rational design and synthesis of novel dienone derivatives with an additional α,β-unsaturated ketone system diversely installed in the A-ring based on this class of natural scaffold that features dense functionalities and stereochemistry-rich frameworks. Efficient and regioselective enone construction strategies have been established. Meanwhile, a unique 3,7-rearrangement reaction was identified to furnish an unprecedented dienone scaffold. Intriguingly, these new analogues have been demonstrated to significantly induce apoptosis and inhibit colony formation with superior antitumor effects against aggressive and drug-resistant breast cancer cells in vitro and in vivo while also exhibiting comparable or lower toxicity to normal human mammary epithelial cells in comparison with 1.
Collapse
Affiliation(s)
- Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Massi P, Solinas M, Cinquina V, Parolaro D. Cannabidiol as potential anticancer drug. Br J Clin Pharmacol 2013; 75:303-12. [PMID: 22506672 DOI: 10.1111/j.1365-2125.2012.04298.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the past years, several lines of evidence support an antitumourigenic effect of cannabinoids including Δ(9)-tetrahydrocannabinol (Δ(9)-THC), synthetic agonists, endocannabinoids and endocannabinoid transport or degradation inhibitors. Indeed, cannabinoids possess anti-proliferative and pro-apoptotic effects and they are known to interfere with tumour neovascularization, cancer cell migration, adhesion, invasion and metastasization. However, the clinical use of Δ(9)-THC and additional cannabinoid agonists is often limited by their unwanted psychoactive side effects, and for this reason interest in non-psychoactive cannabinoid compounds with structural affinity for Δ(9)-THC, such as cannabidiol (CBD), has substantially increased in recent years. The present review will focus on the efficacy of CBD in the modulation of different steps of tumourigenesis in several types of cancer and highlights the importance of exploring CBD/CBD analogues as alternative therapeutic agents.
Collapse
Affiliation(s)
- Paola Massi
- Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
146
|
The endocannabinoid signaling system in cancer. Trends Pharmacol Sci 2013; 34:273-82. [PMID: 23602129 DOI: 10.1016/j.tips.2013.03.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
Abstract
Changes in lipid metabolism are intimately related to cancer. Several classes of bioactive lipids play roles in the regulation of signaling pathways involved in neoplastic transformation and tumor growth and progression. The endocannabinoid system, comprising lipid-derived endocannabinoids, their G-protein-coupled receptors (GPCRs), and the enzymes for their metabolism, is emerging as a promising therapeutic target in cancer. This report highlights the main signaling pathways for the antitumor effects of the endocannabinoid system in cancer and its basic role in cancer pathogenesis, and discusses the alternative view of cannabinoid receptors as tumor promoters. We focus on new players in the antitumor action of the endocannabinoid system and on emerging crosstalk among cannabinoid receptors and other membrane or nuclear receptors involved in cancer. We also discuss the enzyme MAGL, a key player in endocannabinoid metabolism that was recently recognized as a marker of tumor lipogenic phenotype.
Collapse
|
147
|
Gene entropy-fractal dimension informatics with application to mouse-human translational medicine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:582358. [PMID: 23586047 PMCID: PMC3613058 DOI: 10.1155/2013/582358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/05/2013] [Indexed: 02/03/2023]
Abstract
DNA informatics represented by Shannon entropy and fractal dimension have been used to form 2D maps of related genes in various mammals. The distance between points on these maps for corresponding mRNA sequences in different species is used to study evolution. By quantifying the similarity of genes between species, this distance might be indicated when studies on one species (mouse) would tend to be valid in the other (human). The hypothesis that a small distance from mouse to human could facilitate mouse to human translational medicine success is supported by the studied ESR-1, LMNA, Myc, and RNF4 sequences. ID1 and PLCZ1 have larger separation. The collinearity of displacement vectors is further analyzed with a regression model, and the ID1 result suggests a mouse-chimp-human translational medicine approach. Further inference was found in the tumor suppression gene, p53, with a new hypothesis of including the bovine PKM2 pathways for targeting the glycolysis preference in many types of cancerous cells, consistent with quantum metabolism models. The distance between mRNA and protein coding CDS is proposed as a measure of the pressure associated with noncoding processes. The Y-chromosome DYS14 in fetal micro chimerism that could offer protection from Alzheimer's disease is given as an example.
Collapse
|
148
|
Kapoor S. The inhibitory effects of cannabidiol on systemic malignant tumors. J Pain Symptom Manage 2013; 45:e1. [PMID: 23544909 DOI: 10.1016/j.jpainsymman.2013.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/01/2013] [Indexed: 11/27/2022]
|
149
|
Solinas M, Massi P, Cantelmo AR, Cattaneo MG, Cammarota R, Bartolini D, Cinquina V, Valenti M, Vicentini LM, Noonan DM, Albini A, Parolaro D. Cannabidiol inhibits angiogenesis by multiple mechanisms. Br J Pharmacol 2013; 167:1218-31. [PMID: 22624859 DOI: 10.1111/j.1476-5381.2012.02050.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. EXPERIMENTAL APPROACH Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability - through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis - and in vitro motility - both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. KEY RESULTS CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. CONCLUSIONS AND IMPLICATIONS This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy.
Collapse
Affiliation(s)
- M Solinas
- Department of Biomedical, Computer and Communication Sciences, University of Insubria, Busto Arsizio (VA), Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Wejksza K, Lee-Chang C, Bodogai M, Bonzo J, Gonzalez FJ, Lehrmann E, Becker K, Biragyn A. Cancer-produced metabolites of 5-lipoxygenase induce tumor-evoked regulatory B cells via peroxisome proliferator-activated receptor α. THE JOURNAL OF IMMUNOLOGY 2013; 190:2575-84. [PMID: 23408836 DOI: 10.4049/jimmunol.1201920] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Breast cancer cells facilitate distant metastasis through the induction of immunosuppressive regulatory B cells, designated tBregs. We report in this study that, to do this, breast cancer cells produce metabolites of the 5-lipoxygenase pathway such as leukotriene B4 to activate the peroxisome proliferator-activated receptor α (PPARα) in B cells. Inactivation of leukotriene B4 signaling or genetic deficiency of PPARα in B cells blocks the generation of tBregs and thereby abrogates lung metastasis in mice with established breast cancer. Thus, in addition to eliciting fatty acid oxidation and metabolic signals, PPARα initiates programs required for differentiation of tBregs. We propose that PPARα in B cells and/or tumor 5-lipoxygenase pathways represents new targets for pharmacological control of tBreg-mediated cancer escape.
Collapse
Affiliation(s)
- Katarzyna Wejksza
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|