101
|
Sun J, Mu J, Wang S, Jia C, Li D, Hua H, Cao H. Design and synthesis of chromone-nitrogen mustard derivatives and evaluation of anti-breast cancer activity. J Enzyme Inhib Med Chem 2021; 37:431-444. [PMID: 34957906 PMCID: PMC8725944 DOI: 10.1080/14756366.2021.2018685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chromone has emerged as one of the most important synthetic scaffolds for antitumor activity, which promotes the development of candidate drugs with better activity. In this study, a series of nitrogen mustard derivatives of chromone were designed and synthesised, in order to discover promising anti-breast tumour candidates. Almost all target derivatives showed antiproliferative activity against MCF-7 and MDA-MB-231 cell lines. In particular, methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-(5-(((6-methoxy-4-oxo-4H-chromen-3-yl)methyl)amino)-5-oxopentanamido)propanoate showed the most potent antiproliferative activity with IC50 values of 1.83 and 1.90 μM, respectively, and it also exhibited certain selectivity between tumour cells and normal cells. Further mechanism exploration against MDA-MB-231 cells showed that it possibly induced G2/M phase arrest and apoptosis by generating intracellular ROS and activating DNA damage. In addition, it also inhibited MDA-MB-231 cells metastasis, invasion and adhesion. Overall, methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-(5-(((6-methoxy-4-oxo-4H-chromen-3-yl)methyl)amino)-5-oxopentanamido)propanoate showed potent antitumor activities and relatively low side effects, and deserved further investigation.
Collapse
Affiliation(s)
- Jianan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jiahui Mu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Shenglin Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Cai Jia
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Hao Cao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China.,School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
102
|
Investigation of phytoconstituents of Enicostemma littorale as potential glucokinase activators through molecular docking for the treatment of type 2 diabetes mellitus. In Silico Pharmacol 2021; 10:1. [PMID: 34926125 DOI: 10.1007/s40203-021-00116-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
Glucokinase (GK) is an enzyme involved in synthesising glucose into glucose-6 phosphate and serves a crucial function in glucose sensing. Therefore, agents that induce GK activation could be used to treat T2DM. The present work has been carried out to investigate the GK activation potential of phytoconstituents of Enicostemma littorale through molecular docking. All the phytoconstituents have been screened through the Lipinski rule of 5, Veber's rule, and ADMET properties. From these initial screening, only Apigenin, Ferulic acid, Genkwanin, p-coumaric acid, Protocatechuic acid, Syringic acid, and Vanillic acid have been selected to perform molecular docking studies. The binding free energy and binding mode of the native ligand in the allosteric site of the enzyme have been considered the reference for the other molecules' validation. The native ligand has exhibited - 7.2 kcal/mol binding free energy, whereas; it has formed four hydrogen bonds with THR-228, LYS-169, ASP-78, and GLY-81. Based on these findings, the interactions of phytoconstituents have been justified. Apigenin, genkwanin, and swertiamarin exhibited - 8.7, - 7.5, and - 8.3 kcal/mol binding free energy, respectively, which indicates better enzyme activation than the native ligand. Swertiamarin has formed 08 hydrogen bonds with allosteric amino acid residues, which confirms the excellent enzyme activation by these phytoconstituents. We concluded that if we can isolate and consume the exact active phytoconstituents (GK activators) from this plant, we can use them effectively to treat T2DM. More GK activators can be developed by considering them as a natural lead moiety.
Collapse
|
103
|
Yoo M, Koh D. Crystal structure of ( E)-ethyl 2-((4-oxo-4 H-chromen-3-yl)methyleneaminooxy)acetate, C 14H 13NO 5. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C14H13NO5, monoclinic, P21 (no. 4), a = 4.6967(7) Å, b = 10.7175(16) Å, c = 12.945(2) Å, β = 94.827(8)°, V = 649.30(17) Å3, Z = 2, R
gt
(F) = 0.0577, wR
ref
(F
2) = 0.1302, T = 223(2) K.
Collapse
Affiliation(s)
- Miri Yoo
- Department of Applied Chemistry , Dongduk Women’s University , Seoul 136-714 , Republic of Korea
| | - Dongsoo Koh
- Department of Applied Chemistry , Dongduk Women’s University , Seoul 136-714 , Republic of Korea
| |
Collapse
|
104
|
Jittapalapong S, Poompoung T, Sutjarit S. Apigenin induces oxidative stress in mouse Sertoli TM4 cells. Vet World 2021; 14:3132-3137. [PMID: 35153403 PMCID: PMC8829396 DOI: 10.14202/vetworld.2021.3132-3137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Apigenin (API) is an estrogenic compound found in many plants. Sertoli cells reside in the testis and are a key target of environmental toxicants. This study aimed to examine the cytotoxicity, especially oxidative stress of API in mouse Sertoli TM4 cells. Materials and Methods: Mouse Sertoli TM4 cells were treated with 50 and 100 μM API for 48 h. Cell viability, lactate dehydrogenase (LDH) activities, glutathione reductase (GR) activities, production of reactive oxygen species (ROS), and malondialdehyde (MDA) levels were evaluated using various assays. Results: Treatment with API at both 50 and 100 μM decreased viability and GR activity but increased LDH activity, ROS production, and MDA levels in mouse Sertoli TM4 cells. Conclusion: Exposure to API induced oxidative stress in mouse Sertoli TM4 cells.
Collapse
Affiliation(s)
- Sathaporn Jittapalapong
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Thapanee Poompoung
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Samak Sutjarit
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
105
|
Kim TW, Lee HG. Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells. Int J Mol Sci 2021; 22:ijms222413455. [PMID: 34948250 PMCID: PMC8706813 DOI: 10.3390/ijms222413455] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Hypoxia is a major obstacle to gastric cancer (GC) therapy and leads to chemoresistance as GC cells are frequently exposed to the hypoxia environment. Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines. However, detailed mechanisms involved in the treatment of GC using APG are not fully understood. In this study, we investigated the biological activity of and molecular mechanisms involved in APG-mediated treatment of GC under hypoxia. APG promoted autophagic cell death by increasing ATG5, LC3-II, and phosphorylation of AMPK and ULK1 and down-regulating p-mTOR and p62 in GC. Furthermore, our results show that APG induces autophagic cell death via the activation of the PERK signaling, indicating an endoplasmic reticulum (ER) stress response. The inhibition of ER stress suppressed APG-induced autophagy and conferred prolonged cell survival, indicating autophagic cell death. We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia. Taken together, our findings indicate that APG activates autophagic cell death by inhibiting HIF-1α and Ezh2 under hypoxia conditions in GC cells.
Collapse
Affiliation(s)
- Tae Woo Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (T.W.K.); (H.G.L.); Tel.: +82-2-961-0329 (T.W.K.); +82-42-860-4182 (H.G.L.); Fax: +82-2-961-1165 (T.W.K.); +82-42-860-4593 (H.G.L.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (T.W.K.); (H.G.L.); Tel.: +82-2-961-0329 (T.W.K.); +82-42-860-4182 (H.G.L.); Fax: +82-2-961-1165 (T.W.K.); +82-42-860-4593 (H.G.L.)
| |
Collapse
|
106
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
107
|
Meerson A, Khatib S, Mahajna J. Natural Products Targeting Cancer Stem Cells for Augmenting Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222313044. [PMID: 34884848 PMCID: PMC8657727 DOI: 10.3390/ijms222313044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor's resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.
Collapse
Affiliation(s)
- Ari Meerson
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Soliman Khatib
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Jamal Mahajna
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
- Correspondence:
| |
Collapse
|
108
|
Taghavi Bahreghani M, Geraily G, Alizadeh S, Najafi M, Shirazi A. Apigenin Enhanced Radiation-Induced Apoptosis/Necrosis by Sensitization of LNCaP Prostate Cancer Cells to 6 MV Photon Beams. CELL JOURNAL 2021; 23:730-735. [PMID: 34979061 PMCID: PMC8753104 DOI: 10.22074/cellj.2021.7610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Whereas prostate cancer (PrCa) may be unresponsive or moderately responsive to radiation therapy (RT)- most common modality for treatment of PrCa- patients must receive a high dose of RT In order to achieve appropriate tumour control. However, this increase in radiation dose may lead to severe adverse effects in normal tissues. Sensitization of PrCa to radiation provides an alternate approach to improve the therapeutic efficacy of RT. This study aims to assess the radiosensitisation effect of apigenin (Api) on a prostate cancer cell line (LNCaP). MATERIALS AND METHODS In this experimental study, LNCaP cells were treated with 0-80 μM Api to investigate its effect on LNCaP cell viability and determine its half-maximal inhibitory concentration (IC50). Next, the cells were divided into four groups: i. Control, ii. Cells treated with the IC50 concentration of Api, iii. Cells treated with 2 Gy ionizing radiation (IR), and cells co-treated with Api and IR. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, real-time polymerase chain reaction (PCR), and an Annexin V-FITC/PI assay were performed to assess cell survival, Bax and Bcl-2 expressions, and presence of apoptosis and necrosis. RESULTS Api inhibited cell survival in a dose-dependent, but not time-dependent manner. Cells treated with Api had increased amounts of early apoptosis, late apoptosis, and secondary necrosis compared to the control group. This group also had decreased Bcl-2 gene expression and up-regulated Bax gene expression. Co-treatment with Api and IR significantly inhibited cell survival, and increased early apoptosis, late apoptosis and secondary necrosis compared to the other groups. There was a significant decrease in Bcl-2 gene expression along with up-regulation of Bax gene expression, and Bax/Bcl-2 ratio changes that favoured apoptosis. CONCLUSION Api inhibited PrCa cell survival and induced apoptosis as a single agent. In addition, Api significantly sensitized the LNCaP cells to IR and enhanced radiation-induced apoptosis.
Collapse
Affiliation(s)
- Morteza Taghavi Bahreghani
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran,P.O.Box: 13599471Department of Medical Physics and Biomedical EngineeringTehran University of Medical
SciencesTehranIran
| | - Shaban Alizadeh
- Department of Haematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Allied Medical Sciences Kermanshah University of Medical Sciences,
Kermanshah, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
109
|
Habrowska-Górczyńska DE, Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. FOXO3a and Its Regulators in Prostate Cancer. Int J Mol Sci 2021; 22:ijms222212530. [PMID: 34830408 PMCID: PMC8625444 DOI: 10.3390/ijms222212530] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Forkhead box O3 (FOXO3a) is a member of a subfamily of forkhead transcription factors involved in the basic processes within a cell, including proliferation, apoptosis, cell cycle regulation, and DNA damage. As a transcription factor, FOXO3a is involved in the response to cellular stress, UV radiation, or oxidative stress. Its regulation is based on the modification of proteins as well as regulation by other proteins, e.g., growth factors. FOXO3a is commonly deregulated in cancer cells, and its inactivation is associated with initiation and progression of tumorigenesis, suggesting its role as a tumor suppressor; however, its role is still disputed and seems to be dependent on upstream signaling. Nevertheless, FOXO3a serves as an interesting potential target in therapies as it is regulated during treatment with very common anti-cancer drugs such as paclitaxel, cisplatin, docetaxel, and doxorubicin. This review aims to update the reported role of FOXO3a in prostate cancer (PCa), with a focus on its regulators that might serve as potential therapeutic agents in PCa therapy.
Collapse
|
110
|
Kumar N, Singh A, Gulati HK, Bhagat K, Kaur K, Kaur J, Dudhal S, Duggal A, Gulati P, Singh H, Singh JV, Bedi PMS. Phytoconstituents from ten natural herbs as potent inhibitors of main protease enzyme of SARS-COV-2: In silico study. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021. [PMID: 35403086 DOI: 10.1016/j.phyplu.2021.100139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. PURPOSE The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. METHODS We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. RESULTS All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. CONCLUSION Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.
Collapse
Key Words
- ACE-2, Angiotensin converting enzyme- 2
- ADMET
- ADMET, absorption, Distribution, metabolism, excretion and toxicity
- Ala, Alanine
- Approx., approximately
- Arg, arginine
- Asn, Asparagine
- Asp, Aspartic acid
- CADD, Computer Aided Drug Design
- CHARMM, Chemistry at Harvard Macromolecular Mechanics
- COV, coronavirus
- COVID, Novel corona-virus disease
- Covid-19
- Cys, cysteine
- DSBDS, Dassault's Systems Biovia's Discovery studio
- Gln, Glutamine
- Glu, glutamate
- Gly, Glycine
- His, histidine
- Ile, isoleucine
- K, Kelvin
- Kcal/mol, kilo calories per mol
- Leu, Leucine
- Leu, leucine
- Lys, Lysine
- MD, Molecular Dynamics
- Met, Methionine
- MoISA, Molecular Surface Area
- Molecular dynamic simulations
- Mpro protein
- Mpro, Main protease enzyme
- N protein, nucleocapsid protein
- NI, N-(4-methylpyridin-3-yl) acetamide inhibitor
- NPT, amount of substance (N), pressure (P) and temperature (T)
- NVT, amount of substance (N), volume (V) and temperature (T)
- Natural Antiviral herbs
- PDB, protein data bank
- PPB, plasma protein binding
- PSA, Polar Surface Area
- Phi, Phenylalanine
- Pro, Proline
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMS, Root Mean Square
- RMSD, Root Mean Square Deviation
- RMSF, root mean square fluctuations
- RNA, Ribonucleic acid
- SAR-COV-2, severe acute respiratory syndrome coronavirus 2
- SDF, structure data format
- Ser, serine
- T, Temperature
- Thr, Threonine
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- kDa, kilo Dalton
- nCOV-19, Novel Coronavirus 2019
- ns/nsec, nano seconds
- ps, pentoseconds
- rGyr, Radius of gyration
- w.r.t., with respect to
- Å, angstrom
- α, alpha
- β, beta
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
- Drug and Pollution testing Lab, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jaspreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Shilpa Dudhal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Amit Duggal
- Drugs Control Wing, Sector 16, Chandigarh, India, 160015
| | - Puja Gulati
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India, 147301
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | | |
Collapse
|
111
|
Nozhat Z, Heydarzadeh S, Memariani Z, Ahmadi A. Chemoprotective and chemosensitizing effects of apigenin on cancer therapy. Cancer Cell Int 2021; 21:574. [PMID: 34715860 PMCID: PMC8555304 DOI: 10.1186/s12935-021-02282-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Therapeutic resistance to radiation and chemotherapy is one of the major obstacles in cancer treatment. Although synthetic radiosensitizers are pragmatic solution to enhance tumor sensitivity, they pose concerns of toxicity and non-specificity. In the last decades, scientists scrutinized novel plant-derived radiosensitizers and chemosensitizers, such as flavones, owing to their substantial physiological effects like low toxicity and non-mutagenic properties on the human cells. The combination therapy with apigenin is potential candidate in cancer therapeutics. This review explicates the combinatorial strategies involving apigenin to overcome drug resistance and boost the anti-cancer properties. METHODS We selected full-text English papers on international databases like PubMed, Web of Science, Google Scholar, Scopus, and ScienceDirect from 1972 up to 2020. The keywords included in the search were: Apigenin, Chemoprotective, Chemosensitizing, Side Effects, and Molecular Mechanisms. RESULTS In this review, we focused on combination therapy, particularly with apigenin augmenting the anti-cancer effects of chemo drugs on tumor cells, reduce their side effects, subdue drug resistance, and protect healthy cells. The reviewed research data implies that these co-therapies exhibited a synergistic effect on various cancer cells, where apigenin sensitized the chemo drug through different pathways including a significant reduction in overexpressed genes, AKT phosphorylation, NFκB, inhibition of Nrf2, overexpression of caspases, up-regulation of p53 and MAPK, compared to the monotherapies. Meanwhile, contrary to the chemo drugs alone, combined treatments significantly induced apoptosis in the treated cells. CONCLUSION Briefly, our analysis proposed that the combination therapies with apigenin could suppress the unwanted toxicity of chemotherapeutic agents. It is believed that these expedient results may pave the path for the development of drugs with a high therapeutic index. Nevertheless, human clinical trials are a prerequisite to consider the potential use of apigenin in the prevention and treatment of various cancers. Conclusively, the clinical trials to comprehend the role of apigenin as a chemoprotective agent are still in infancy.
Collapse
Affiliation(s)
- Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Heydarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
112
|
Miklavčič Višnjevec A, Baker PW, Peeters K, Schwarzkopf M, Krienke D, Charlton A. HPLC-DAD-qTOF Compositional Analysis of the Phenolic Compounds Present in Crude Tomato Protein Extracts Derived from Food Processing. Molecules 2021; 26:molecules26216403. [PMID: 34770812 PMCID: PMC8587773 DOI: 10.3390/molecules26216403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The conversion of raw fruits and vegetables, including tomatoes into processed food products creates side streams of residues that can place a burden on the environment. However, these processed residues are still rich in bioactive compounds and in an effort to valorize these materials in tomato by-product streams, the main aim of this study is to extract proteins and identify the main phenolic compounds present in tomato pomace (TP), peel and skins (TPS) by HPLC-DAD-ESI-QTOF. Forty different phenolic compounds were identified in the different tomato extracts, encompassing different groups of phenolic compounds, including derivatives of simple phenolic acid derivatives, hydroxycinnamoylquinic acid, flavones, flavonones, flavonol, and dihydrochalcone. In the crude protein extract (TPE) derived from tomatoes, most of these compounds were still present, confirming that valuable phenolic compounds were not degraded during food processing of these co-product streams. Moreover, phenolic compounds present in the tomato protein crude extract could provide a valuable contribution to the required daily intake of phenolics that are usually supplied by consuming fresh vegetables and fruits.
Collapse
Affiliation(s)
- Ana Miklavčič Višnjevec
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia;
| | - Paul W. Baker
- The Biocomposites Centre, Bangor University, Bangor LL57 2DG, UK;
| | - Kelly Peeters
- InnoRenew CoE, Livade 6, SI-6310 Izola, Slovenia; (K.P.); (M.S.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
| | - Matthew Schwarzkopf
- InnoRenew CoE, Livade 6, SI-6310 Izola, Slovenia; (K.P.); (M.S.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
| | - Dominik Krienke
- GEA Westfalia Separator Group GmbH, Werner-Habig-Straße 1, 59302 Oelde, Germany;
| | - Adam Charlton
- The Biocomposites Centre, Bangor University, Bangor LL57 2DG, UK;
- Correspondence:
| |
Collapse
|
113
|
Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants (Basel) 2021; 10:antiox10101643. [PMID: 34679777 PMCID: PMC8533599 DOI: 10.3390/antiox10101643] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome and its associated disorders such as obesity, insulin resistance, atherosclerosis and type 2 diabetes mellitus are globally prevalent. Different molecules showing therapeutic potential are currently available for the management of metabolic syndrome, although their efficacy has often been compromised by their poor bioavailability and side effects. Studies have been carried out on medicinal plant extracts for the treatment and prevention of metabolic syndrome. In this regard, isolated pure compounds have shown promising efficacy for the management of metabolic syndrome, both in preclinical and clinical settings. Apigenin, a natural bioactive flavonoid widely present in medicinal plants, functional foods, vegetables and fruits, exerts protective effects in models of neurological disorders and cardiovascular diseases and most of these effects are attributed to its antioxidant action. Various preclinical and clinical studies carried out so far show a protective effect of apigenin against metabolic syndrome. Herein, we provide a comprehensive review on both in vitro and in vivo evidence related to the promising antioxidant role of apigenin in cardioprotection, neuroprotection and renoprotection, and to its beneficial action in metabolic-syndrome-dependent organ dysfunction. We also provide evidence on the potential of apigenin in the prevention and/or treatment of metabolic syndrome, analysing the potential and limitation of its therapeutic use.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 221400, China;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
- National Institute of Cardiovascular Research I.N.R.C., 40126 Bologna, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China;
| |
Collapse
|
114
|
Sharma V, Sehrawat N, Sharma A, Yadav M, Verma P, Sharma AK. Multifaceted antiviral therapeutic potential of dietary flavonoids: Emerging trends and future perspectives. Biotechnol Appl Biochem 2021; 69:2028-2045. [PMID: 34586691 DOI: 10.1002/bab.2265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
Phytochemicals are the natural biomolecules produced by plants via primary or secondary metabolism, which have been known to have many potential health benefits to human beings. Flavonoids or phytoestrogens constitute a major group of such phytochemicals widely available in variety of vegetables, fruits, herbs, tea, and so forth, implicated in a variety of bio-pharmacological and biochemical activities against diseases including bacterial, viral, cancer, inflammatory, and autoimmune disorders. More recently, these natural biomolecules have been shown to have effective antiviral properties via therapeutically active ingredients within them, acting at different stages of infection. Current review emphasizes upon the role of these flavonoids in physiological functions, prevention and treatment of viral diseases. More so the review focuses specifically upon the antiviral effects exhibited by these natural biomolecules against RNA viruses including coronaviruses. Furthermore, the article would certainly provide a lead to the scientific community for the effective therapeutic antiviral use of flavonoids using potential cost-effective tools for improvement of the pharmacokinetics, bioavailability, and biodistribution of such compounds for the concrete action along with the promotion of human health.
Collapse
Affiliation(s)
- Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar, Ambala, Haryana, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar, Ambala, Haryana, India
| | - Pawan Verma
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar, Ambala, Haryana, India
| |
Collapse
|
115
|
Kashyap P, Shikha D, Thakur M, Aneja A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J Food Biochem 2021; 46:e13950. [PMID: 34569073 DOI: 10.1111/jfbc.13950] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Numerous diseases such as cancer, diabetes, cardiovascular, neurodegenerative diseases, etc. are linked with overproduction of reactive oxygen species (ROS) and oxidative stress. Apigenin (5,7,4'-trihydroxyflavone) is a widely distributed flavonoid, responsible for antioxidant potential and chelating redox active metals. Being present as glycosides or polymers, the apigenin degrades to variable amount in the digestive tract; during processing, its activity is also reduced due to high temperature or Fe/Cu addition. Although its metabolism remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. Delayed clearance in plasma and slow liver decomposition enhance its systematic bioavailability. Antioxidant mechanism of apigenin includes: oxidant enzymes inhibition, modulation of redox signaling pathways (NF-kB, Nrf2, MAPK, and P13/Akt), reinforcing enzymatic and nonenzymatic antioxidant, metal chelation, and free radical scavenging. DPPH, ORAC, ABTS, and FRAP are the major in vitro methods for determining the antioxidant potential of apigenin, whereas its protective effects in whole and living cells of animals are examined using in vivo studies. Due to limited information on antioxidant potential of apigenin, its in vitro and in vivo antioxidant effects are, therefore, discussed with action mechanism and interaction with the signaling pathways. This paper concludes that apigenin is a potent antioxidant compound to overcome the difficulties related to oxidative stress and other chronic diseases.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Deep Shikha
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, India
| | - Ashwin Aneja
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
116
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
117
|
Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int J Mol Sci 2021; 22:8798. [PMID: 34445499 PMCID: PMC8395949 DOI: 10.3390/ijms22168798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Xenoestrogens and phytoestrogens are referred to as "foreign estrogens" that are produced outside of the human body and have been shown to exert estrogen-like activity. Xenoestrogens are synthetic industrial chemicals, whereas phytoestrogens are chemicals present in the plant. Considering that these environmental estrogen mimics potentially promote hormone-related cancers, an understanding of how they interact with estrogenic pathways in human cells is crucial to resolve their possible impacts in cancer. Here, we conducted an extensive literature evaluation on the origins of these chemicals, emerging research techniques, updated molecular mechanisms, and ongoing clinical studies of estrogen mimics in human cancers. In this review, we describe new applications of patient-derived xenograft (PDX) models and single-cell RNA sequencing (scRNA-seq) techniques in shaping the current knowledge. At the molecular and cellular levels, we provide comprehensive and up-to-date insights into the mechanism of xenoestrogens and phytoestrogens in modulating the hallmarks of cancer. At the systemic level, we bring the emerging concept of window of susceptibility (WOS) into focus. WOS is the critical timing during the female lifespan that includes the prenatal, pubertal, pregnancy, and menopausal transition periods, during which the mammary glands are more sensitive to environmental exposures. Lastly, we reviewed 18 clinical trials on the application of phytoestrogens in the prevention or treatment of different cancers, conducted from 2002 to the present, and provide evidence-based perspectives on the clinical applications of phytoestrogens in cancers. Further research with carefully thought-through concepts and advanced methods on environmental estrogens will help to improve understanding for the identification of environmental influences, as well as provide novel mechanisms to guide the development of prevention and therapeutic approaches for human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (X.W.); (D.H.); (R.Y.); (Y.S.C.); (D.S.)
| |
Collapse
|
118
|
Beet ( Beta vulgaris L.) stalk and leaf supplementation changes the glucose homeostasis and inflammatory markers in the liver of mice exposed to a high-fat diet. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100018. [PMID: 35415624 PMCID: PMC8991781 DOI: 10.1016/j.fochms.2021.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/14/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
Beet stalks and leaves is a good source of vitexin derivatives. Phenolic compounds are able to reduce high fat diet damages in mice. Dehydrated beet stalks and leaves decrease the protein levels on TNFα. It is possible to control glucose homeostasis with supplementation.
Although beet stalks and leaves are not consumed and are usually discarded, they are an important source of bioactive flavonoids possessing antioxidant and anti-inflammatory activity. The aim of this study was to assess the effect of supplementation with beet stalks and leaves on metabolic parameters and glucose homeostasis in mice exposed to a high-fat diet. Six-week-old male Swiss mice were randomly divided into five experimental groups submitted to either standard diet (CT) or high-fat diet (HF), and HF-fed mice were subdivided into three treatment groups supplemented with oven-dehydrated beet stalks and leaves (SL), lyophilized beet stalks and leaves (Ly) or beet stalk and leaf extract (EX). Supplementation with SL promoted a mild improvement in the glucose homeostasis and decreased the protein levels of TNFα with no alterations in hepatic triglyceride content. It remains to be clarified if the enhancement in the glucose homeostasis observed in HFSL could be a consequence of improvement in pancreatic insulin secretion and/or glucose uptake from skeletal muscle and white adipose tissues.
Collapse
|
119
|
da Cunha LNOL, Tizziani T, Souza GB, Moreira MA, Neto JSS, Dos Santos CVD, de Carvalho MG, Dalmarco EM, Turqueti LB, Scotti MT, Scotti L, de Assis FF, Braga A, Sandjo LP. Natural Products with tandem Anti-inflammatory, Immunomodulatory and Anti-SARS-CoV/2 effects: A Drug Discovery Perspective against SARS-CoV-2. Curr Med Chem 2021; 29:2530-2564. [PMID: 34313197 DOI: 10.2174/0929867328666210726094955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 is still causing victims with long-term health consequences, mass deaths, and collapsing healthcare systems around the world. The disease has no efficient drugs. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be significant in the search for drug candidates with antiviral effects against SARS-CoV-2. OBJECTIVE This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. METHOD The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. RESULTS Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed in previous studies immunomodulatory effects. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. CONCLUSION This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidate for the search of antibiotics against COVID-19.
Collapse
Affiliation(s)
- Luana N O Leal da Cunha
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tiago Tizziani
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriella B Souza
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Monalisa A Moreira
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - José S S Neto
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carlos V D Dos Santos
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Maryelle G de Carvalho
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo M Dalmarco
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Leonardo B Turqueti
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marcus Tullius Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Francisco F de Assis
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Antonio Braga
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
120
|
The Potential of Dietary Antioxidants from a Series of Plant Extracts as Anticancer Agents against Melanoma, Glioblastoma, and Breast Cancer. Antioxidants (Basel) 2021; 10:antiox10071115. [PMID: 34356348 PMCID: PMC8301026 DOI: 10.3390/antiox10071115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/24/2023] Open
Abstract
In modern society, cancer is one of the most relevant medical problems. It is important to search for promising plant raw materials whose extracts have strong antioxidant and anticancer effects. The aim of this study was to determine the composition of phenolic compounds in plant extracts, to evaluate their antioxidant and anticancer activity, and to find the correlations between those activities. Extracts of calendula, sage, bearberry, eucalyptus, yarrow, and apple were selected for the study. The phenolic compounds of these extracts were determined by the UPLC-ESI-MS/MS method and the antioxidant activity was evaluated in vitro by four different UV-VIS spectrophotometric methods (ABTS, DPPH, CUPRAC, FRAP). The anticancer activity of extracts was tested against melanoma IGR39, glioblastoma U-87, and triple-negative breast cancer MDA-MB-231 cell lines in vitro by MTT assay. The highest content of identified and quantified phenolic compounds was found in sage leaf extract and the lowest in ethanol eucalyptus leaf extract. The highest antioxidant activity was determined by all applied methods for the acetone eucalyptus leaf extract. The majority of extracts were mostly active against the melanoma IGR39 cell line, and possessed the lowest activity against the glioblastoma U-87 cell line. Acetone extract of eucalyptus leaf samples exhibited the highest anticancer activity against all tested cell lines. Strong and reliable correlation has been found between antioxidant and anticancer activity in breast cancer and glioblastoma cell lines, especially when evaluating antioxidant activity by the FRAP method.
Collapse
|
121
|
Butkeviciute A, Petrikaite V, Jurgaityte V, Liaudanskas M, Janulis V. Antioxidant, Anti-Inflammatory, and Cytotoxic Activity of Extracts from Some Commercial Apple Cultivars in Two Colorectal and Glioblastoma Human Cell Lines. Antioxidants (Basel) 2021; 10:antiox10071098. [PMID: 34356331 PMCID: PMC8301036 DOI: 10.3390/antiox10071098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer initiation and development are closely related to oxidative stress and chronic inflammation. The aim of this study was to evaluate apple extracts and individual tritepenes antioxidant, anti-inflammatory, and cytotoxic activities. Dry extracts of apple were analyzed by HPLC-PDA. A hyaluronidase inhibition assay was selected to determine the anti-inflammatory effect. Cytotoxic activities against human colon adenocarcinoma cell line (HT-29) and human glioblastoma cell line (U-87) were determined using MTT, cell colony formation, and spheroid growth assays. Radical scavenging and reducing activities were evaluated using DPPH, ABTS, FRAP, and CUPRAC assays, respectively. The apple extracts inhibited hyaluronidase from 26.38 ± 4.4% to 35.05 ± 3.8%. The AAW extract possessed the strongest cytotoxic activity (EC50 varied from 113.3 ± 11.11 µg/mL to 119.7 ± 4.0 µg/mL). The AEW extract had four and five times stronger antiradical activity when determined by ABTS and DPPH, and two and eight times stronger reducing activity when evaluated by CUPRAC and FRAP, respectively. Understanding the mechanisms of apple extracts and individual triterpenes as hyaluronidase inhibitors and antioxidants related in cancer development may be a benefit to future study in vivo, as well as cancer prognosis or the development of new, innovative food supplements, which could be used for chronic disease prevention.
Collapse
Affiliation(s)
- Aurita Butkeviciute
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
- Correspondence: ; Tel.: +37-037-621-56190
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (V.P.); (V.J.)
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, A. Mickeviciaus 9, LT-44307 Kaunas, Lithuania
| | - Vidmante Jurgaityte
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (V.P.); (V.J.)
| | - Mindaugas Liaudanskas
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (M.L.); (V.J.)
| |
Collapse
|
122
|
Novel Protein Hydrocolloids Constructed by Hydrophobic Rice Proteins and Walnut Proteins as Loading Platforms for Nutraceutical Models. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09680-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
123
|
An In Vitro-In Vivo Evaluation of the Antiproliferative and Antiangiogenic Effect of Flavone Apigenin against SK-MEL-24 Human Melanoma Cell Line. ACTA ACUST UNITED AC 2021; 2021:5552664. [PMID: 34239802 PMCID: PMC8241515 DOI: 10.1155/2021/5552664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023]
Abstract
One of the most important class of natural compounds with successful preclinical results in the management of cancer is the flavonoids. Due to the plethora of biological activities, apigenin (4',5,7 trihydroxyflavone) is a main representant of the flavone subclass. Although the antiproliferative and antiangiogenic effects of apigenin were studied on a significant number of human and murine melanoma cell lines, in order to complete the data existing in the literature, the aim of this study is to evaluate the in vitro effect of apigenin on SK-MEL-24 human melanoma cell line as well as in vivo on tumor angiogenesis using the aforementioned cell line on the chorioallantoic membrane assay. Results have shown that in the range of tested doses, the phytocompound presents significant antiproliferative, cytotoxic, and antimigratory potential at 30 μM, respectively, 60 μM. Moreover, the phytocompound in both tested concentrations limited melanoma cell growth and migration and induced a reduced angiogenic reaction limiting melanoma cell development.
Collapse
|
124
|
Shetti P, Jalalpure SS. A single robust stability-indicating RP-HPLC analytical tool for apigenin quantification in bulk powder and in nanoliposomes: a novel approach. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Apigenin (4′, 5, 7-trihydroxyflavone), a flavonoid, is present usually in fruits and vegetables possessing numerous biological properties like antioxidant, anti-viral, antibacterial, anti-inflammatory, and chemoprevention activity. So present study was aimed to prepare and characterize nanoliposomes of apigenin and estimate its encapsulation efficiency by stability-assisted reverse-phase (RP)-HPLC method.
Results
The stability indication of the RP-HPLC method developed for apigenin-loaded nanoliposomes was successfully demonstrated and parameters were mainly the retention time which was 4.21 min, limit of detection (LOD) 0.49 μg/mL, limit of quantification (LOQ) 1.48 μg/mL, and %relative standard deviation (RSD) less than 2%. Therefore, the stability indication of the developed reverse-phase HPLC method for apigenin-loaded nanoliposomes was demonstrated successfully and parameters like accuracy, linearity, LOD, LOQ, precision, and %RSD were within the limit range and found to be satisfactory.
Conclusion
The developed RP-HPLC method was found to be suitable for the quantification or estimation of apigenin with its stability in apigenin-loaded nanoliposomes, and this method will be a powerful tool in the future for the estimation of apigenin present in any pharmaceutical preparations.
Collapse
|
125
|
Yammine A, Namsi A, Vervandier-Fasseur D, Mackrill JJ, Lizard G, Latruffe N. Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer. Molecules 2021; 26:3483. [PMID: 34201125 PMCID: PMC8227701 DOI: 10.3390/molecules26123483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean diet is a central element of a healthy lifestyle, where polyphenols play a key role due to their anti-oxidant properties, and for some of them, as nutripharmacological compounds capable of preventing a number of diseases, including cancer. Due to the high prevalence of intestinal cancer (ranking second in causing morbidity and mortality), this review is focused on the beneficial effects of selected dietary phytophenols, largely present in Mediterranean cooking: apigenin, curcumin, epigallocatechin gallate, quercetin-rutine, and resveratrol. The role of the Mediterranean diet in the prevention of colorectal cancer and future perspectives are discussed in terms of food polyphenol content, the effectiveness, the plasma level, and the importance of other factors, such as the polyphenol metabolites and the influence of the microbiome. Perspectives are discussed in terms of microbiome-dependency of the brain-second brain axis. The emergence of polyphenol formulations may strengthen the efficiency of the Mediterranean diet in the prevention of cancer.
Collapse
Affiliation(s)
- Aline Yammine
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Amira Namsi
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioScience Institute, College Road, T12 YT20 Cork, Ireland;
| | - Gérard Lizard
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| | - Norbert Latruffe
- Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (A.N.); (G.L.)
| |
Collapse
|
126
|
Ali AAM, Mansour AB, Attia SA. The potential protective role of apigenin against oxidative damage induced by nickel oxide nanoparticles in liver and kidney of male Wistar rat, Rattus norvegicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27577-27592. [PMID: 33515148 DOI: 10.1007/s11356-021-12632-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Nickel oxide nanoparticles (NiONPs) are involved in several applications but still have some adverse effects. Apigenin (APG) is a widespread natural product with antioxidative, anticancer, and anti-inflammatory properties. The present work aimed to study the protective role of APG against the NiONP-induced toxicity in male Wistar rats. Rats were randomly distributed to one control group and three treated groups. The treated groups were orally administered NiONPs (100 mg/kg) alone, APG (25 mg/kg) alone, or APG 1 h before NiONPs, once daily for 28 days. Blood, liver, and kidney were collected after 7, 14, and 28 days of administration for Ni accumulation, hematological, biochemical, histological, and transmission electron microscopy (TEM) investigations. As compared to the controls, the administration of NiONPs alone significantly elevated the levels of Ni, malondialdehyde, total cholesterol, low-density lipoprotein cholesterol, creatinine, urea, blood urea nitrogen, and the activity of alanine and aspartate aminotransferases as well as the count of white blood cells. Besides, marked reductions in the activity of superoxide dismutase, and the levels of glutathione, high-density lipoprotein cholesterol, total proteins, albumin, globulin, hemoglobin, packed cell volume, and red blood cell count were reported. Histologically, the liver and kidney of rats administered NiONPs alone showed remarkable disturbances. According to TEM, subcellular alterations were observed in the liver and kidney of rats administered NiONPs alone. In contrast, APG administering before NiONPs substantially alleviated all the studied parameters. In conclusion, APG can ameliorate the NiONP-induced hepatotoxicity and nephrotoxicity in male Wistar rats.
Collapse
|
127
|
Cheng Y, Han X, Mo F, Zeng H, Zhao Y, Wang H, Zheng Y, Ma X. Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p. PHYTOMEDICINE 2021; 89:153603. [PMID: 34175590 DOI: 10.1016/j.phymed.2021.153603] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Apigenin (API) is a naturally occurring plant-derived flavone, which is abundantly present in common fruits and vegetables, and shows little or no toxicity of daily diet. The treatment of colorectal cancer is limited by high recurrence rate and multidrug resistance. PURPOSE The purpose of this study was to explore the potential therapeutic effect and possible mechanisms of API on colorectal cancer cells. METHODS Cell proliferation and apoptosis of human colon cancer cell line HCT116 was assessed after API treatment. A comprehensive transcriptome profile of API-treated HCT116 cells was acquired by high-throughput sequencing. The regulation of miRNA215-5p and E2F1/3 were identified by bioinformatics analyses. An inhibitor of miRNA215-5p, inhibitor 215, was applied to confirm the role of this microRNA played in the anti-cancer effect of API. Luciferase reporter gene assay was performed to identify targeting relationship between miRNA215-5p and E2F1/3. RESULT API significantly promoted cell apoptosis and anti-proliferation of HCT116 cells in a dose-dependent manner. Bioinformatics analyses identified several altered miRNAs among which the expression of miRNA-215-5p showed markedly increased. Meanwhile, the expression of E2F1 and E2F3 was decreased by API, which was associated with miRNA215-5p. Luciferase reporter gene assay showed miRNA-215-5p could directly bind to 3' UTR of E2F1/3. Inhibition of miRNA-215-5p significantly inhibited apoptosis and cell cycle arrest at G0/G1 phase induced by API. CONCLUSIONS The result of this study confirmed the anti-cancer effect of API on human colorectal cancer cells and investigated the underlying mechanism by a comprehensive transcriptome profile of API-treated cells.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuejiao Han
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Department of Medical oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
128
|
Wang H, Lu P, Yuan C, Zhao J, Liu H, Lu W, Wang J. Effects of Apigenin and Astragalus Polysaccharide on the Cryopreservation of Bull Semen. Animals (Basel) 2021; 11:ani11061506. [PMID: 34067384 PMCID: PMC8224660 DOI: 10.3390/ani11061506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to determine the effects of apigenin and astragalus polysaccharides on the cryopreservation of bovine semen. Apigenin, astragalus polysaccharides, or their combination were added to a frozen diluent of bovine semen. Afterwards, Computer Assisted Semen Analysis (CASA), membrane functionality, acrosome integrity, mitochondrial integrity, CAT, SOD, GSH-Px, MDA, and ROS detection were conducted. The results showed that adding 0.2 mmol/L AP or 0.5 mg/mL APS could improve the quality of frozen sperm. Compared to 0.2 mmol/L AP alone, the combination of 0.2 mmol/L AP and 0.3 mg/mL APS significantly increased the total motility (TM), average path distance (DAP), straight line distance (DSL), average path velocity (VAP), curvilinear velocity (VCL), wobble (WOB), and sperm CAT and SOD levels (p < 0.05), while reducing the ROS and MDA levels (p < 0.05). These results indicated that the addition of 0.2 mmol/L AP or 0.5 mg/mL APS alone has a protective effect on the freezing of bovine semen. Compared to the addition of 0.2 mmol/L AP, a combination of 0.2 mmol/L AP and 0.3 mg/mL APS could further improve the quality of frozen semen.
Collapse
Affiliation(s)
- Hongtao Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.W.); (P.L.); (C.Y.); (J.Z.); (H.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ping Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.W.); (P.L.); (C.Y.); (J.Z.); (H.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chongshan Yuan
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.W.); (P.L.); (C.Y.); (J.Z.); (H.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.W.); (P.L.); (C.Y.); (J.Z.); (H.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.W.); (P.L.); (C.Y.); (J.Z.); (H.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.W.); (P.L.); (C.Y.); (J.Z.); (H.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (W.L.); (J.W.); Tel.: +86-0431-84532936 (W.L.); Fax: +86-0431-84532936 (W.L.)
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.W.); (P.L.); (C.Y.); (J.Z.); (H.L.)
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (W.L.); (J.W.); Tel.: +86-0431-84532936 (W.L.); Fax: +86-0431-84532936 (W.L.)
| |
Collapse
|
129
|
Messeha SS, Zarmouh NO, Soliman KFA. Polyphenols Modulating Effects of PD-L1/PD-1 Checkpoint and EMT-Mediated PD-L1 Overexpression in Breast Cancer. Nutrients 2021; 13:nu13051718. [PMID: 34069461 PMCID: PMC8159140 DOI: 10.3390/nu13051718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Investigating dietary polyphenolic compounds as antitumor agents are rising due to the growing evidence of the close association between immunity and cancer. Cancer cells elude immune surveillance for enhancing their progression and metastasis utilizing various mechanisms. These mechanisms include the upregulation of programmed death-ligand 1 (PD-L1) expression and Epithelial-to-Mesenchymal Transition (EMT) cell phenotype activation. In addition to its role in stimulating normal embryonic development, EMT has been identified as a critical driver in various aspects of cancer pathology, including carcinogenesis, metastasis, and drug resistance. Furthermore, EMT conversion to another phenotype, Mesenchymal-to-Epithelial Transition (MET), is crucial in developing cancer metastasis. A central mechanism in the upregulation of PD-L1 expression in various cancer types is EMT signaling activation. In breast cancer (BC) cells, the upregulated level of PD-L1 has become a critical target in cancer therapy. Various signal transduction pathways are involved in EMT-mediated PD-L1 checkpoint overexpression. Three main groups are considered potential targets in EMT development; the effectors (E-cadherin and Vimentin), the regulators (Zeb, Twist, and Snail), and the inducers that include members of the transforming growth factor-beta (TGF-β). Meanwhile, the correlation between consuming flavonoid-rich food and the lower risk of cancers has been demonstrated. In BC, polyphenols were found to downregulate PD-L1 expression. This review highlights the effects of polyphenols on the EMT process by inhibiting mesenchymal proteins and upregulating the epithelial phenotype. This multifunctional mechanism could hold promises in the prevention and treating breast cancer.
Collapse
Affiliation(s)
- Samia S. Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health Florida A&M University, Tallahassee, FL 32307, USA;
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan National Board for Technical & Vocational Education, Misrata LY72, Libya;
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health Florida A&M University, Tallahassee, FL 32307, USA;
- Correspondence: ; Tel.: +1-850-599-3306; Fax: +1-850-599-3667
| |
Collapse
|
130
|
Ahmad A, Zafar A, Zargar S, Bazgaifan A, Wani TA, Ahmad M. Protective effects of apigenin against edifenphos-induced genotoxicity and cytotoxicity in rat hepatocytes. J Biomol Struct Dyn 2021; 40:9306-9317. [PMID: 33998977 DOI: 10.1080/07391102.2021.1926325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Edifenphos (EDF) is an organophosphorus pesticide with antifungal and anti-insecticidal properties. However, EDF accumulates in various agricultural products and causes potential hazards to human health. Although numerous reports have indicated EDF accumulation in agricultural products, toxic effects on cellular system is poorly understood. In the present study, we investigated the cytotoxicity and genotoxicity of EDF in rat hepatocytes and its amelioration by apigenin (a dietary flavonoid). Results showed that EDF inhibited the cell viability, induced oxidative stress, DNA damage, loss of mitochondrial membrane potential (ΔΨm) and caspase-9/-3 activation in rat hepatocytes. Incubation of hepatocytes with N-acetyl cysteine (ROS scavenger) significantly abrogated the ROS generation and apoptosis caused by EDF. In addition, this study also showed that apigenin significantly suppressed the toxic effects of EDF by quenching ROS production thereby abrogating the caspase-9/-3 and apoptosis activation in hepatocytes. Taken together, the findings of this study demonstrate that EDF induces cytotoxicity and DNA damage in hepatocytes, and apigenin can be considered as an effective dietary anti-oxidant regimen against EDF- induced toxicity in cellular system.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajaz Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Arwa Bazgaifan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
131
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
132
|
Roboon J, Hattori T, Ishii H, Takarada-Iemata M, Nguyen DT, Heer CD, O'Meally D, Brenner C, Yamamoto Y, Okamoto H, Higashida H, Hori O. Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD . J Neurochem 2021; 158:311-327. [PMID: 33871064 DOI: 10.1111/jnc.15367] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Neuroinflammation is initiated by activation of the brain's innate immune system in response to an inflammatory challenge. Insufficient control of neuroinflammation leads to enhanced or prolonged pathology in various neurological conditions including multiple sclerosis and Alzheimer's disease. Nicotinamide adenine dinucleotide (NAD+ ) plays critical roles in cellular energy metabolism and calcium homeostasis. Our previous study demonstrated that deletion of CD38, which consumes NAD+ , suppressed cuprizone-induced demyelination, neuroinflammation, and glial activation. However, it is still unknown whether CD38 directly affects neuroinflammation through regulating brain NAD+ level. In this study, we investigated the effect of CD38 deletion and inhibition and supplementation of NAD+ on lipopolysaccharide (LPS)-induced neuroinflammation in mice. Intracerebroventricular injection of LPS significantly increased CD38 expression especially in the hippocampus. Deletion of CD38 decreased LPS-induced inflammatory responses and glial activation. Pre-administration of apigenin, a flavonoid with CD38 inhibitory activity, or nicotinamide riboside (NR), an NAD+ precursor, increased NAD+ level, and significantly suppressed induction of cytokines and chemokines, glial activation and subsequent neurodegeneration after LPS administration. In cell culture, LPS-induced inflammatory responses were suppressed by treatment of primary astrocytes or microglia with apigenin, NAD+ , NR or 78c, the latter a specific CD38 inhibitor. Finally, all these compounds suppressed NF-κB signaling pathway in microglia. These results suggest that CD38-mediated neuroinflammation is linked to NAD+ consumption and that boosting NAD+ by CD38 inhibition and NR supplementation directly suppress neuroinflammation in the brain.
Collapse
Affiliation(s)
- Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Collin D Heer
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, USA
| | - Denis O'Meally
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Charles Brenner
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
133
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Dominguez-Verano P, Martinez-Galero E, Canales-Martinez MM, Rodriguez-Monroy MA. Evaluation of the gastroprotective effects of Chihuahua propolis on indomethacin- induced gastric ulcers in mouse. Biomed Pharmacother 2021; 137:111345. [PMID: 33556873 DOI: 10.1016/j.biopha.2021.111345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
The aim of this work was to evaluate the gastroprotective activity of a Mexican propolis on indomethacin-induced gastric ulcers in a mouse model. The following contents of the ethanolic extract of propolis of Chihuahua (EEPCh) were determined: antioxidant activity (SA50), total phenolic content (TPC), total flavonoid content (TFC), and chemical composition by HPLC-DAD and HPLC-MS, as well as acute toxicity by OECD Guideline 423. Gastric lesions were induced by intragastric indomethacin treatment in male ICR mice. As the positive control, omeprazole was administered, and three doses of EEPCh were evaluated (50, 150 and 300 mg/kg). Gastric mucosal injury, histological changes and mucosal content were evaluated by means of H&E and PAS staining. For homogenized gastric tissues, the following were evaluated: TBARS, MPO, and PGE2 levels; SOD and GPx antioxidant enzymatic activity; and the concentrations of the proinflammatory cytokines, TNF-α, IL-1β and IL-6. EEPCh had a significant SA50 of 41.55 µg/mL. The TPC of EEPCh was 860 mg GAE/g, and its TFC was 49.58 mg QE/g. Different phenolic compounds were identified in the extract and were not toxic. The EEPCh doses decreased mucosal damage and histological injuries, maintained the mucosal content and reduced the TBARS, MPO and concentrations of proinflammatory cytokines in gastric ulcer tissues. The 150 and 300 mg/kg doses increased the SOD activity and maintained the PGE2 content. Only the 300 mg/kg dose increased the GPx activity. The results of this study suggest that EEPCh displays gastroprotective effects by means of its antioxidant activity and anti-inflammatory effects and promotes ulcer protection through the maintenance of mucosal content and PGE2 levels.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, 07738 Ciudad de México, México; Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, 07738 Ciudad de México, México.
| | - Pilar Dominguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| | - Elizdath Martinez-Galero
- Laboratorio de Toxicología de la Reproducción-Teratogénesis, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, 07738 Ciudad de México, México.
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| |
Collapse
|
134
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
135
|
Yoshioka Y, Kamata Y, Tominaga M, Umehara Y, Yoshida I, Matsuoka N, Takamori K. Extract of Scutellaria baicalensis induces semaphorin 3A production in human epidermal keratinocytes. PLoS One 2021; 16:e0250663. [PMID: 33905439 PMCID: PMC8078742 DOI: 10.1371/journal.pone.0250663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
In a disease-state-dependent manner, the histamine-resistant itch in dry skin-based skin diseases such as atopic dermatitis (AD) and xerosis is mainly due to hyperinnervation in the epidermis. Semaphorin 3A (Sema3A) is a nerve repulsion factor expressed in keratinocytes and it suppresses nerve fiber elongation in the epidermis. Our previous studies have shown that Sema3A ointment inhibits epidermal hyperinnervation and scratching behavior and improves dermatitis scores in AD model mice. Therefore, we consider Sema3A as a key therapeutic target for improving histamine-resistant itch in AD and xerosis. This study was designed to screen a library of herbal plant extracts to discover compounds with potential to induce Sema3A in normal human epidermal keratinocytes (NHEKs) using a reporter gene assay, so that positive samples were found. Among the positive samples, only the extract of S. baicalensis was found to consistently increase Sema3A levels in cultured NHEKs in assays using quantitative real-time PCR and ELISA. In evaluation of reconstituted human epidermis models, the level of Sema3A protein in culture supernatants significantly increased by application of the extract of S. baicalensis. In addition, we investigated which components in the extract of S. baicalensis contributed to Sema3A induction and found that baicalin and baicalein markedly increased the relative luciferase activity, and that baicalein had higher induction activity than baicalin. Thus, these findings suggest that S. baicalensis extract and its compounds, baicalin and baicalein, may be promising candidates for improving histamine-resistant itch via the induction of Sema3A expression in epidermal keratinocytes.
Collapse
Affiliation(s)
- Yasuko Yoshioka
- Central R&D Laboratory, Kobayashi Pharmaceutical Co. Ltd., Ibaraki, Osaka, Japan
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Yayoi Kamata
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Yoshie Umehara
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Ikuyo Yoshida
- Central R&D Laboratory, Kobayashi Pharmaceutical Co. Ltd., Ibaraki, Osaka, Japan
| | - Nobuya Matsuoka
- Central R&D Laboratory, Kobayashi Pharmaceutical Co. Ltd., Ibaraki, Osaka, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
- * E-mail:
| |
Collapse
|
136
|
Zhu S, Zhang J, Lv Z, Yu M. LC-MS/MS Determination of Apigenin in Rat Plasma and Application to Pharmacokinetic Study. Curr Pharm Biotechnol 2021; 22:274-280. [PMID: 32767914 DOI: 10.2174/1389201021666200807113144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Apigenin, a natural plant flavone, has been shown to possess a variety of biological properties. OBJECTIVE In this report, a highly selective and sensitive LC-MS/MS method was developed and validated for the determination of apigenin in rat plasma. METHODS Analysts were separated on the HSS T3 column (1.8 μm 2.1×100 mm) using acetonitrile and 0.1% formic acid in 2mM ammonium acetate buffer at a supply rate of 0.200 mL/min as eluent in gradient model. RESULTS Plasma samples were treated by protein precipitation using acetonitrile for the recovery ranging from 86.5% to 90.1% for apigenin. The calibration curves followed linearity in the concentration range of 0.50-500ng/mL. The inter-day and intra-day precisions at different QC levels within 13.1% and the accuracies ranged from -10.6% to 8.6%. CONCLUSION The assay has been successfully applied to the pharmacokinetic study of apigenin in rats.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
137
|
Akter R, Chowdhury MAR, Rahman MH. Flavonoids and Polyphenolic Compounds as Potential Talented Agents for the Treatment of Alzheimer's Disease and their Antioxidant Activities. Curr Pharm Des 2021; 27:345-356. [PMID: 33138754 DOI: 10.2174/1381612826666201102102810] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/29/2020] [Indexed: 11/22/2022]
Abstract
Aging is a normal human cycle and the most important risk factor for neurodegenerative diseases. Alternations in cells due to aging contribute to loss of the nutrient-sensing, cell function, increased oxidative stress, loss of the homeostasis cell, genomic instability, the build-up of malfunctioning proteins, weakened cellular defenses, and a telomere split. Disturbance of these essential cellular processes in neuronal cells can lead to life threats including Alzheimer's disease (AD), Huntington's disease (HD), Lewy's disease, etc. The most common cause of death in the elderly population is AD. Specific therapeutic molecules were created to alleviate AD's social, economic, and health burden. In clinical practice, almost every chemical compound was found to relieve symptoms only in palliative treatment. The reason behind these perfect medicines is that the current medicines are not effective in targeting the cause of this disease. In this paper, we explored the potential role of flavonoid and polyphenolic compounds, which could be the most effective preventative anti-Alzheimer's strategy.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | | | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213, South Korea
| |
Collapse
|
138
|
Anelli L, Di Nardo A, Bonucci M. Integrative Treatment of Lung Cancer Patients: Observational Study of 57 Cases. ASIAN JOURNAL OF ONCOLOGY 2021. [DOI: 10.1055/s-0040-1722380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
Introduction A retrospective clinical study was performed to identify the characteristics of patients with lung cancer treated with integrative cancer treatment in addition to conventional medicine.
Materials and Methods We reviewed medical records for lung cancer patients who visited a single integrative setting in Rome, Italy. A total of 57 patients were included, and the majority had advanced-stage cancer. All of them underwent integrative therapy with nutrition and phytotherapy indications. The diet was designed to reduce most of possible factors promoting cancer proliferation, inflammation, and obesity. Foods with anti-inflammatory, prebiotic, antioxidant, and anticancer properties had been chosen. Herbal supplements with known effects on lung cancer were prescribed. In particular, astragal, apigenine, fucosterol, polydatin, epigallocatechin gallate, cannabis, curcumin, and inositol were used. Furthermore, medical mushrooms and other substances were used to improve the immune system and to reduce chemotherapy side effects. Five key parameters have been evaluated for 2 years starting at the first surgery: nutritional status, immune status, discontinuation of therapy, quality of life, and prognosis of the disease.
Results A relevant improvement in parameters relative to nutritional status, immune status, and quality of life has been observed after integrative therapy compared with the same parameters at the first medical visit before starting such approach.
Conclusion The results suggest that integrative therapy may have benefits in patients with lung cancer. Even though there are limitations, the study suggests that integrative therapy could improve nutritional status and quality of life, with possible positive effect on overall survival.
Collapse
Affiliation(s)
- Lorenzo Anelli
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| | | | - Massimo Bonucci
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| |
Collapse
|
139
|
Najibi M, Honwad HH, Moreau JA, Becker SM, Irazoqui JE. A NOVEL NOX/PHOX-CD38-NAADP-TFEB AXIS IMPORTANT FOR MACROPHAGE ACTIVATION DURING BACTERIAL PHAGOCYTOSIS. Autophagy 2021; 18:124-141. [PMID: 33818279 PMCID: PMC8865266 DOI: 10.1080/15548627.2021.1911548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophage activation in the presence of bacterial cells and molecules entails complex programs of gene expression. How such triggers elicit specific gene expression programs is incompletely understood. We previously discovered that TFEB (transcription factor EB) is a key contributor to macrophage activation during bacterial phagocytosis. However, the mechanism linking phagocytosis of bacterial cells to TFEB activation and downstream pro-inflammatory cytokine induction remained unknown. We found that macrophages lacking both TFEB and TFE3 (transcription factor E3) were unable to mount a pro-inflammatory phenotype in response to bacterial infection. The NOX/PHOX (NADPH oxidase)-dependent oxidative burst was required for nuclear translocation of TFEB during phagocytosis of Gram-positive or -negative bacteria, and reactive oxygen species (ROS) were sufficient to trigger TFEB activation in a CD38- and NAADP (nicotinic acid adenine dinucleotide phosphate)-dependent manner. Consistent with the Ca2+-releasing activity of NAADP, intracellular Ca2+ chelation and PPP3/calcineurin inhibition prevented TFEB activation by phagocytosis and ROS (reactive oxygen species), impairing the induction of pro-inflammatory cytokines such as IL6 and TNF/TNFα. Therefore, here we describe a previously unknown pathway that links phagocytosis with macrophage pro-inflammatory polarization via TFEB and related transcription factor TFE3. These findings reveal that activation of TFEB and TFE3 is a key regulatory event for the activation of macrophages, and have important implications for infections, inflammation, cancer, obesity, and atherosclerosis.
Collapse
Affiliation(s)
- Mehran Najibi
- Department of Microbiology and Physiological Systems and Program in Innate Immunity, University of Massachusetts Medical School, Worcester, USA.,Present Address: Department of Pathology, The Warren Alpert Medical School of Brown University, Providence
| | - Havisha H Honwad
- Department of Microbiology and Physiological Systems and Program in Innate Immunity, University of Massachusetts Medical School, Worcester, USA
| | - Joseph A Moreau
- Department of Microbiology and Physiological Systems and Program in Innate Immunity, University of Massachusetts Medical School, Worcester, USA
| | - Stephanie M Becker
- Department of Microbiology and Physiological Systems and Program in Innate Immunity, University of Massachusetts Medical School, Worcester, USA
| | - Javier E Irazoqui
- Department of Microbiology and Physiological Systems and Program in Innate Immunity, University of Massachusetts Medical School, Worcester, USA
| |
Collapse
|
140
|
Rodríguez García SL, Raghavan V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds-A review. Crit Rev Food Sci Nutr 2021; 62:6446-6466. [PMID: 33792417 DOI: 10.1080/10408398.2021.1901651] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Food wastes imply significant greenhouse gas emissions, that increase the challenge of climate change and impact food security. According to FAO (2019), one of the main food wastes come from fruit and vegetables, representing 0.5 billion tons per year, of the 1.3 billion tons of total waste. The wastes obtained from fruit and vegetables have plenty of valuable components, known as bioactive compounds, with many properties that impact positively in human health. Some bioactive compounds hold antioxidant, anti-inflammatory, and anti-cancer properties and they have the capacity of modulating metabolic processes. Currently, the use of fruit and vegetable waste is studied to obtain bioactive compounds, through non-conventional techniques, also known as green extraction techniques. These extraction techniques report higher yields, reduce the use of solvents, employ less extraction time, and improve the efficiency of the process for obtaining bioactive compounds. Once extracted, these compounds can be used in the cosmetic, pharmaceutical, or food industry, the last one being focused on improving food quality.
Collapse
Affiliation(s)
- Sheila Lucía Rodríguez García
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
141
|
Papachristou F, Anninou N, Koukoulis G, Paraskakis S, Sertaridou E, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha A. Differential effects of cisplatin combined with the flavonoid apigenin on HepG2, Hep3B, and Huh7 liver cancer cell lines. Mutat Res 2021; 866:503352. [PMID: 33985696 DOI: 10.1016/j.mrgentox.2021.503352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The potential of apigenin (APG) to enhance cisplatin's (CDDP) chemotherapeutic efficacy was investigated in HepG2, Hep3B, and Huh7 liver cancer cell lines. The presence of 20 μM APG sensitized all cell lines to CDDP treatment (degree of sensitization based on the MTT assay: HepG2>Huh7>Hep3B). As reflected by sister chromatid exchange levels, the degree of genetic instability as well as DNA repair by homologous recombination differed among cell lines. CDDP and 20 μM APG cotreatment exhibited a synergistic genotoxic effect on Hep3B cells and a less than additive effect on HepG2 and Huh7 cells. Cell cycle delays were noticed during the first mitotic division in Hep3B and Huh7 cells and the second mitotic division in HepG2 cells. CDDP and CDDP + APG treatments reduced the clonogenic capacity of all cell lines; however, there was a discordance in drug sensitivity compared with the MMT assay. Furthermore, a senescence-like phenotype was induced, especially in Hep3B and Huh7 cells. Unlike CDDP monotherapy, the combined treatment exhibited a significant anti-invasive and anti-migratory action in all cancer cell lines. The fact that the three liver cancer cell lines responded differently, yet positively, to CDDP + APG cotreatment could be attributed to variations they present in gene expression. Complex mechanisms seem to influence cellular responses and cell fate.
Collapse
Affiliation(s)
- Fotini Papachristou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece.
| | - Nikolia Anninou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Georgios Koukoulis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Stefanos Paraskakis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Eleni Sertaridou
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Christos Tsalikidis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Constantinos Simopoulos
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| |
Collapse
|
142
|
Chen LJ, Hsu TC, Yeh PJ, Yow JL, Chang CL, Lin CH, Tzang BS. Differential Effects of Wedelia chinensis on Human Glioblastoma Multiforme Cells. Integr Cancer Ther 2021; 20:15347354211000119. [PMID: 33729002 PMCID: PMC7983241 DOI: 10.1177/15347354211000119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: Glioblastoma multiforme (GBM) is the most aggressive glioma, and its diffuse
nature makes resection of it difficult. Moreover, even with the
administration of postoperative radiotherapy and chemotherapy, prolonged
remission is often not achieved. Hence, innovative or alternative treatments
for GBM are urgently required. Traditional Chinese herbs and their
functional components have long been used in the treatment of various
cancers, including GBM. The current study investigated the antitumor
activity of Wedelia chinensis and its major functional
components, luteolin and apigenin, on GBM. Materials and Methods: MTT assay, Transwell migration assay, and flow cytometry analysis were
adopted to assess the cell viability, invasive capability, and cell cycle.
Immunofluorescence staining and Western blotting were used to detect the
expressions of apoptotic and autophagy-related signaling molecules. Results: The W. chinensis extract (WCE) significantly inhibited the
proliferation and invasive ability of both GBM8401 and U-87MG cells in a
dose-dependent manner. Moreover, differential effects of WCE on GBM8401 and
U-87MG cells were observed: WCE induced apoptosis in GBM8401 cells and
autophagy in U-87MG cells. Notably, WCE had significant effects in reducing
the cell survival and invasive capability of both GBM8401 and U-87MG cells
than the combination of luteolin and apigenin. Conclusions: Taken together, these findings indicate the potential of using WCE and the
combination of luteolin and apigenin for GBM treatment. However, further
investigations are warranted before considering recommending the clinical
use of WCE or the combination of luteolin and apigenin as the standard for
GBM treatment.
Collapse
Affiliation(s)
- Li-Jeng Chen
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, Taiwan, R.O.C.,Immunology Research Center, Chung Shan Medical University, Taichung city, Taiwan, R.O.C
| | - Pei-Jung Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| | - Jia Le Yow
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| | - Chia-Ling Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| | - Cheng-Hui Lin
- Division of Rheumatology Immunology Clinic, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan, R.O.C
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, Taiwan, R.O.C.,Immunology Research Center, Chung Shan Medical University, Taichung city, Taiwan, R.O.C.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung City, Taiwan, R.O.C
| |
Collapse
|
143
|
Shi Y, Bai J, Dang Y, Bai Q, Zheng R, Chen J, Li Z. Protection of apigenin against acrylonitrile-induced sperm and testis injury in rats: involvement of activation of ASK1-JNK/p38 signaling pathway. Toxicol Res (Camb) 2021; 10:159-168. [PMID: 33884167 DOI: 10.1093/toxres/tfab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 11/14/2022] Open
Abstract
This study aims to clarify if apigenin (AP) could play a pivotal role in attenuating acrylonitrile (ACN)-induced sperm and testis injury by inhibiting ASK1-JNK/p38 signaling pathway. Male Sprague-Dawley rats were randomly divided into five groups: a control group (corn oil), an ACN group (ACN 46 mg kg-1), an ACN + AP1 group (ACN + AP 117 mg kg-1), an ACN + AP2 group (ACN + AP 234 mg kg-1) and an ACN + AP3 group (ACN + AP 351 mg kg-1). The ACN + AP groups were given ACN by gavage after a pretreatment with different dosages of AP for 30 min, whereas the rats in the control group received an equivalent volume of corn oil. The gavage was conducted for 6 days per week in 4 weeks. The results showed that AP reduced sperm deformity rate and DNA fragment index and attenuated the testicular injury induced by ACN. AP could also alleviate oxidative stress, downregulate ASK1-JNK/p38 signaling pathway and eventually inhibit mitochondria-mediated testicular apoptosis. In brief, AP could dampen oxidative stress thereby inhibiting testicular apoptosis mediated by ASK1-JNK/p38 signaling pathway, alleviating ACN-induced sperm and testis injury and exerting a protective effect on male reproductive system.
Collapse
Affiliation(s)
- Ying Shi
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou 730030, China
| | - Jin Bai
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qingli Bai
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rong Zheng
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jia Chen
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
144
|
Aliyev AT, Ozcan-Sezer S, Akdemir A, Gurer-Orhan H. In vitro evaluation of estrogenic, antiestrogenic and antitumor effects of amentoflavone. Hum Exp Toxicol 2021; 40:1510-1518. [PMID: 33678040 DOI: 10.1177/0960327121999454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.
Collapse
Affiliation(s)
- A T Aliyev
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37509Ege University, Izmir, Turkey
| | - S Ozcan-Sezer
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37509Ege University, Izmir, Turkey
| | - A Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, 221265Bezmialem Vakif University, Istanbul, Turkey
| | - H Gurer-Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37509Ege University, Izmir, Turkey
| |
Collapse
|
145
|
Zeng X, Du Z, Ding X, Jiang W. Protective effects of dietary flavonoids against pesticide-induced toxicity: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
146
|
Cannataro R, Fazio A, La Torre C, Caroleo MC, Cione E. Polyphenols in the Mediterranean Diet: From Dietary Sources to microRNA Modulation. Antioxidants (Basel) 2021; 10:328. [PMID: 33672251 PMCID: PMC7926722 DOI: 10.3390/antiox10020328] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
It is now well established that polyphenols are a class of natural substance that offers numerous health benefits; they are present in all plants in very different quantities and types. On the other hand, their bioavailability, and efficacy is are not always well proven. Therefore, this work aims to discuss some types of polyphenols belonging to Mediterranean foods. We chose six polyphenols-(1) Naringenin, (2) Apigenin, (3) Kaempferol, (4) Hesperidin, (5) Ellagic Acid and (6) Oleuropein-present in Mediterranean foods, describing dietary source and their chemistry, as well as their pharmacokinetic profile and their use as nutraceuticals/supplements, in addition to the relevant element of their capability in modulating microRNAs expression profile.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
147
|
Singh M, Sharma P, Singh PK, Singh TG, Saini B. Medicinal Potential of Heterocyclic Compounds from Diverse Natural Sources for the Management of Cancer. Mini Rev Med Chem 2021; 20:942-957. [PMID: 32048967 DOI: 10.2174/1389557520666200212104742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
Natural products form a significant portion of medicinal agents that are currently used for the management of cancer. All these natural products have unique structures along with diverse action mechanisms with the capacity to interact with different therapeutic targets of several complex disorders. Although plants contribute as a major source of natural products with anti-cancer potential, the marine environment and microbes have also bestowed some substantial chemotherapeutic agents. A few examples of anti-cancer agents of natural origin include vincristine, vinblastine, paclitaxel, camptothecin and topotecan obtained from plants, bryostatins, sarcodictyin and cytarabine from marine organisms and bleomycin and doxorubicin from micro-organisms (dactinomycin, bleomycin and doxorubicin). The incredible diversity in the chemical structures and biological properties of compounds obtained from million species of plants, marine organisms and microorganisms present in nature has commenced a new era of potential therapeutic anti-cancer agents.
Collapse
Affiliation(s)
- Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Kumar Singh
- Department of Chemistry and Pharmacy, University of Sassari 07100, Italy
| | | | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
148
|
Determination of Chemical Constituents and Antioxidant Activities of Leaves and Stems from Jatropha cinerea (Ortega) Müll. Arg and Jatropha cordata (Ortega) Müll. Arg. PLANTS 2021; 10:plants10020212. [PMID: 33499190 PMCID: PMC7911936 DOI: 10.3390/plants10020212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/06/2023]
Abstract
Jatropha species have been shown to be an important source of secondary metabolites with different biological effects. Jatropha cinerea (Ortega) Müll. Arg and Jatropha cordata (Ortega) Müll. Arg are distributed in the Northwestern region of Mexico, are adapted to extreme weather conditions and are widely used (stems, leaves, and sap) in traditional medicine. The aim of the present study was to carry out the phytochemical characterization and the evaluation of the antioxidant activity in methanolic extracts of stems and leaves from J. cinerea and J. cordata. The compounds present in the extracts of both species were characterized by ESI-IT-MS/MS and quantified by HPLC-DAD. The results showed that the stem extracts of both species are rich in phenolic acids, while the leaf extracts are rich in flavonoids. Some of the main compounds found were gallic acid, gentisic acid, 3,4-Dihydroxybenzoic acid, vitexin, isovitexin, and catechol. Both species showed high concentrations of phenols and total flavonoids and antioxidant activity. J. cordata showed the highest antioxidant capacity and the highest concentration of phenolic compounds. Overall, both Jatropha species are a natural source of antioxidant compounds with potential biotechnological uses.
Collapse
|
149
|
Ghosh A, Mukherjee S, Roy M, Datta A. Modulatory role of tea in arsenic induced epigenetic alterations in carcinogenesis. THE NUCLEUS 2021. [DOI: 10.1007/s13237-020-00346-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
150
|
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021; 9:197. [PMID: 33477910 PMCID: PMC7833388 DOI: 10.3390/microorganisms9010197] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharmacologically active compounds and the bottlenecks in the commercialization of this novel approach in the area of drug discovery. After recent updates in the field of 'omics' and 'one strain many compounds' (OSMAC) approach, fungal endophytes have emerged as strong unconventional source of such prized products.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Dheeraj K. Singh
- Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India
| | - Ravindra N. Kharwar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Surendra K. Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|