101
|
Chen L, Chung SW, Hoy KE, Fitzgerald PB. Is theta burst stimulation ready as a clinical treatment for depression? Expert Rev Neurother 2019; 19:1089-1102. [PMID: 31282224 DOI: 10.1080/14737175.2019.1641084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Major depression is a common and debilitating mental disorder that can be difficult to treat. Substantive evidence over the past two decades has established repetitive transcranial magnetic stimulation (rTMS) as an effective antidepressant therapy, although scope exists to improve its efficacy and efficiency. Theta burst stimulation (TBS) is a novel rTMS pattern attracting much research interest as a tool to study neurophysiology and treat neuropsychiatric disorders. Areas covered: This article outlines rTMS' state of development and explores the physiology studies underpinning TBS development and its observable neuronal conditioning and metabolic effects. We present a systematic review of studies that applied TBS to treat depression, followed by commentary on safety and practical considerations. Expert opinion: Much experimental and clinical research have advanced our understanding of the antidepressant effects of TBS, although unanswered questions remain relating to its physiological effects, response variability and optimal parameters for therapeutic purposes. A small number of sham-controlled trials, and one large comparative trial, support the therapeutic efficacy of TBS and demonstrates its non-inferiority relative to traditional rTMS. In this light, TBS can reasonably be offered as an alternative to rTMS in treatment-resistant depression, while ongoing research is likely to inform its therapeutic potential.
Collapse
Affiliation(s)
- Leo Chen
- Monash Alfred Psychiatry Research Centre, Monash University , Melbourne , VIC , Australia.,Epworth Centre for Innovation in Mental Health, Epworth Health Care , Camberwell , VIC , Australia.,Alfred Mental and Addiction Health, Alfred Health , Melbourne , Australia
| | - Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University , Melbourne , VIC , Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University , Melbourne , VIC , Australia.,Epworth Centre for Innovation in Mental Health, Epworth Health Care , Camberwell , VIC , Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University , Melbourne , VIC , Australia.,Epworth Centre for Innovation in Mental Health, Epworth Health Care , Camberwell , VIC , Australia
| |
Collapse
|
102
|
Membrane action of polyhexamethylene guanidine hydrochloride revealed on smooth muscle cells, nerve tissue and rat blood platelets: A biocide driven pore-formation in phospholipid bilayers. Toxicol In Vitro 2019; 60:389-399. [PMID: 31195087 DOI: 10.1016/j.tiv.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/08/2019] [Accepted: 06/09/2019] [Indexed: 12/31/2022]
Abstract
A well-known cationic biocide of guanidine polymer family, polyhexamethylene guanidine hydrochloride (PHMG) has been tested against smooth muscle cells isolated from swine myometrium, synaptosomes of rat brain nerve terminals and rat blood platelets for the membrane action. It was established that PHMG blocked the activity of Na+,K+-ATPase of smooth muscle cells plasma membrane by 82.2 ± 0.9% at a concentration of 7 ppm, whilst a dose-dependent depolarization of synaptosomes and platelets became appreciable at 100-500 ppm. Comparative studies by the methods of mass spectrometry (MALDI-TOF and PDMS-TOF), viscosimetry, dynamic light scattering and model phospholipid membranes revealed PHMG oligomers with various number of repeat units (8-16) that formed K+-selective potential-dependent pores in sterol-free phosphatidylethanolamine-containing phospholipid bilayers at a concentration of 1 ppm. Obtained results suggest that besides acidic lipids and membrane proteins phosphatidylethanolamine and cholesterol are the other major factors responsible for the differences between PHMG-induced plasma membrane depolarization of microbial and eukaryotic cells and thus, diverse modes of PHMG membrane action.
Collapse
|
103
|
Schwippel T, Schroeder PA, Fallgatter AJ, Plewnia C. Clinical review: The therapeutic use of theta-burst stimulation in mental disorders and tinnitus. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:285-300. [PMID: 30707989 DOI: 10.1016/j.pnpbp.2019.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is a neuromodulatory treatment intervention, which can be used to alleviate symptoms of mental disorders. Theta-burst stimulation (TBS), an advanced, patterned form of TMS, features several advantages regarding applicability, treatment duration and neuroplastic effects. This clinical review summarizes TBS studies in mental disorders and tinnitus and discusses effectivity and future directions of clinical TBS research. Following the PRISMA guidelines, the authors included 47 studies published until July 2018. Particularly in depression, evidence for the effectiveness of TBS and non-inferiority to conventional rTMS exists. Evidence for therapeutic efficacy of TBS in other mental disorders remains weak due to a large heterogeneity between studies. Rigorous reporting standards and adequately powered controlled trials are indispensable to foster validity and translation into clinical use. Nevertheless, TBS remains a promising instrument to target maladaptive brain networks and to ameliorate psychiatric symptoms.
Collapse
Affiliation(s)
- Tobias Schwippel
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Philipp A Schroeder
- Department of Psychology, Clinical Psychology & Psychotherapy, University of Tübingen, Schleichstr. 4, 72076 Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany; LEAD Graduate School & Research Network, University of Tübingen, 72074 Tübingen, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany.
| |
Collapse
|
104
|
Hanslmayr S, Axmacher N, Inman CS. Modulating Human Memory via Entrainment of Brain Oscillations. Trends Neurosci 2019; 42:485-499. [PMID: 31178076 DOI: 10.1016/j.tins.2019.04.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
Abstract
In the human brain, oscillations occur during neural processes that are relevant for memory. This has been demonstrated by a plethora of studies relating memory processes to specific oscillatory signatures. Several recent studies have gone beyond such correlative approaches and provided evidence supporting the idea that modulating oscillations via frequency-specific entrainment can alter memory functions. Such causal evidence is important because it allows distinguishing mechanisms directly related to memory from mere epiphenomenal oscillatory signatures of memory. This review provides an overview of stimulation studies using different approaches to entrain brain oscillations for modulating human memory. We argue that these studies demonstrate a causal link between brain oscillations and memory, speaking against an epiphenomenal perspective of brain oscillations.
Collapse
Affiliation(s)
- Simon Hanslmayr
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Cory S Inman
- Department of Neurosurgery, Emory University, 1365 Clifton Road North East, Atlanta, GA 30322, USA
| |
Collapse
|
105
|
Bliss T, Collingridge GL. Persistent memories of long-term potentiation and the N-methyl-d-aspartate receptor. Brain Neurosci Adv 2019; 3:2398212819848213. [PMID: 32166182 PMCID: PMC7058229 DOI: 10.1177/2398212819848213] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/17/2022] Open
Abstract
In this article, we describe our involvement in the early days of research into long-term potentiation. We start with a description of the early experiments conducted in Oslo and London where long-term potentiation was first characterised. We discuss the ways in which the molecular pharmacology of glutamate receptors control the induction and expression of long-term potentiation and its counterpart, long-term depression. We then go on to summarise the extraordinary advances in understanding the cellular mechanisms of synaptic plasticity that have taken place in the subsequent half century. Finally, the increasing evidence that impaired long-term potentiation is a core feature of many brain disorders (LToPathies) is addressed by way of a few selected examples.
Collapse
Affiliation(s)
- Tvp Bliss
- The Francis Crick Institute, London, UK.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - G L Collingridge
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases and Department of Physiology, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
106
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
107
|
Ruan X, Zhang G, Xu G, Gao C, Liu L, Liu Y, Jiang L, Zhang S, Chen X, Jiang X, Lan Y, Wei X. The After-Effects of Theta Burst Stimulation Over the Cortex of the Suprahyoid Muscle on Regional Homogeneity in Healthy Subjects. Front Behav Neurosci 2019; 13:35. [PMID: 30881294 PMCID: PMC6405436 DOI: 10.3389/fnbeh.2019.00035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/08/2019] [Indexed: 01/28/2023] Open
Abstract
Theta burst stimulation (TBS) is a powerful variant of repetitive transcranial magnetic stimulation (rTMS), making it potentially useful for the treatment of swallowing disorders. However, how dose TBS modulate human swallowing cortical excitability remains unclear. Here, we aim to measure the after-effects of spontaneous brain activity at resting-state using the regional homogeneity (ReHo) approach in healthy subjects who underwent different TBS protocols over the suprahyoid muscle cortex. Sixty healthy subjects (23.45 ± 2.73 years, 30 males) were randomized into three groups which completed different TBS protocols. The TMS coil was applied over the cortex of the suprahyoid muscles. Data of resting-state functional MRI (Rs-fMRI) of the subjects were acquired before and after TBS. The ReHo was compared across sessions [continuous TBS (cTBS), intermittent TBS (iTBS) and cTBS/iTBS] and runs (pre/post TBS). In the comparison between pre- and post-TBS, increased ReHo was observed in the right lingual gyrus and right precuneus and decreased ReHo in the left cingulate gyrus in the cTBS group. In the iTBS group, increased ReHo values were seen in the pre-/postcentral gyrus and cuneus, and decreased ReHo was observed in the left cerebellum, brainstem, bilateral temporal gyrus, insula and left inferior frontal gyrus. In the cTBS/iTBS group, increased ReHo was found in the precuneus and decreased ReHo in the right cerebellum posterior lobe, left anterior cerebellum lobe, and right inferior frontal gyrus. In the post-TBS inter-groups comparison, increased ReHo was seen in right middle occipital gyrus and decreased ReHo in right middle frontal gyrus and right postcentral gyrus (cTBS vs. cTBS/iTBS). Increased ReHo was shown in left inferior parietal lobule and left middle frontal gyrus (cTBS vs. iTBS). Increased ReHo was shown in right medial superior frontal gyrus and decreased ReHo in right cuneus (cTBS/iTBS vs. iTBS). Our findings indicate cTBS had no significant influence on ReHo in the primary sensorimotor cortex, iTBS facilitates an increased ReHo in the bilateral sensorimotor cortex and a decreased ReHo in multiple subcortical areas, and no reverse effect exhibits when iTBS followed the contralateral cTBS over the suprahyoid motor cortex. The results provide a novel insight into the neural mechanisms of TBS on swallowing cortex.
Collapse
Affiliation(s)
- Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guoqin Zhang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Cuihua Gao
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lingling Liu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanli Liu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lisheng Jiang
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sijing Zhang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
108
|
Moxon KA, Shahlaie K, Girgis F, Saez I, Kennedy J, Gurkoff GG. From adagio to allegretto: The changing tempo of theta frequencies in epilepsy and its relation to interneuron function. Neurobiol Dis 2019; 129:169-181. [PMID: 30798003 DOI: 10.1016/j.nbd.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Despite decades of research, our understanding of epilepsy, including how seizures are generated and propagate, is incomplete. However, there is growing recognition that epilepsy is more than just the occurrence of seizures, with patients often experiencing comorbid deficits in cognition that are poorly understood. In addition, the available therapies for treatment of epilepsy, from pharmaceutical treatment to surgical resection and seizure prevention devices, often exacerbate deficits in cognitive function. In this review, we discuss the hypothesis that seizure generation and cognitive deficits have a similar pathological source characterized by, but not limited to, deficits in theta oscillations and their influence on interneurons. We present a new framework that describes oscillatory states in epilepsy as alternating between hyper- and hypo-synchrony rather than solely the spontaneous transition to hyper-excitability characterized by the seizures. This framework suggests that as neural oscillations, specifically in the theta range, vary their tempo from a slowed almost adagio tempo during interictal periods to faster, more rhythmic allegretto tempo preictally, they impact the function of interneurons, modulating their ability to control seizures and their role in cognitive processing. This slow wave oscillatory framework may help explain why current therapies that work to reduce hyper-excitability do not completely eliminate seizures and often lead to exacerbated cognitive deficits.
Collapse
Affiliation(s)
- Karen A Moxon
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Fady Girgis
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America
| | - Ignacio Saez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Jeffrey Kennedy
- Department of Neurology, University of California Davis, Sacramento, CA 95817, United States of America
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| |
Collapse
|
109
|
|
110
|
Hermiller MS, VanHaerents S, Raij T, Voss JL. Frequency-specific noninvasive modulation of memory retrieval and its relationship with hippocampal network connectivity. Hippocampus 2018; 29:595-609. [PMID: 30447076 DOI: 10.1002/hipo.23054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/11/2018] [Indexed: 11/12/2022]
Abstract
Episodic memory is thought to rely on interactions of the hippocampus with other regions of the distributed hippocampal-cortical network (HCN) via interregional activity synchrony in the theta frequency band. We sought to causally test this hypothesis using network-targeted transcranial magnetic stimulation. Healthy human participants completed four experimental sessions, each involving a different stimulation pattern delivered to the same individualized parietal cortex location of the HCN for all sessions. There were three active stimulation conditions, including continuous theta-burst stimulation, intermittent theta-burst stimulation, and beta-frequency (20-Hz) repetitive stimulation, and one sham condition. Resting-state fMRI and episodic memory testing were used to assess the impact of stimulation on hippocampal fMRI connectivity related to retrieval success. We hypothesized that theta-burst stimulation conditions would most strongly influence hippocampal-HCN fMRI connectivity and retrieval, given the hypothesized relevance of theta-band activity for HCN memory function. Continuous theta-burst stimulation improved item retrieval success relative to sham and relative to beta-frequency stimulation, whereas intermittent theta-burst stimulation led to numerical but nonsignificant item retrieval improvement. Mean hippocampal fMRI connectivity did not vary for any stimulation conditions, whereas individual differences in retrieval improvements due to continuous theta-burst stimulation were associated with corresponding increases in fMRI connectivity between the hippocampus and other HCN locations. No such memory-related connectivity effects were identified for the other stimulation conditions, indicating that only continuous theta-burst stimulation affected memory-related hippocampal-HCN connectivity. Furthermore, these effects were specific to the targeted HCN, with no significant memory-related fMRI connectivity effects for two distinct control brain networks. These findings support a causal role for fMRI connectivity of the hippocampus with the HCN in episodic memory retrieval and indicate that contributions of this network to retrieval are particularly sensitive to continuous theta-burst noninvasive stimulation.
Collapse
Affiliation(s)
- Molly S Hermiller
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, Illinois
| | - Stephen VanHaerents
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tommi Raij
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, Illinois.,Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, Illinois
| | - Joel L Voss
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, Illinois.,Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
111
|
Suthana N, Aghajan ZM, Mankin EA, Lin A. Reporting Guidelines and Issues to Consider for Using Intracranial Brain Stimulation in Studies of Human Declarative Memory. Front Neurosci 2018; 12:905. [PMID: 30564089 PMCID: PMC6288473 DOI: 10.3389/fnins.2018.00905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Participants with stimulating and recording electrodes implanted within the brain for clinical evaluation and treatment provide a rare opportunity to unravel the neuronal correlates of human memory, as well as offer potential for modulation of behavior. Recent intracranial stimulation studies of memory have been inconsistent in methodologies employed and reported conclusions, which renders generalizations and construction of a framework impossible. In an effort to unify future study efforts and enable larger meta-analyses we propose in this mini-review a set of guidelines to consider when pursuing intracranial stimulation studies of human declarative memory and summarize details reported by previous relevant studies. We present technical and safety issues to consider when undertaking such studies and a checklist for researchers and clinicians to use for guidance when reporting results, including targeting, placement, and localization of electrodes, behavioral task design, stimulation and electrophysiological recording methods, details of participants, and statistical analyses. We hope that, as research in invasive stimulation of human declarative memory further progresses, these reporting guidelines will aid in setting standards for multicenter studies, in comparison of findings across studies, and in study replications.
Collapse
Affiliation(s)
- Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States.,Department of Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.,UCLA, Los Angeles, CA, United States
| | - Zahra M Aghajan
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States
| | - Emily A Mankin
- Department of Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Andy Lin
- IDRE Statistical Consulting Group, UCLA, Los Angeles, CA, United States
| |
Collapse
|
112
|
Rajji TK. Impaired brain plasticity as a potential therapeutic target for treatment and prevention of dementia. Expert Opin Ther Targets 2018; 23:21-28. [DOI: 10.1080/14728222.2019.1550074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Tarek K. Rajji
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
113
|
Arias-Cavieres A, More J, Vicente JM, Adasme T, Hidalgo J, Valdés JL, Humeres A, Valdés-Undurraga I, Sánchez G, Hidalgo C, Barrientos G. Triclosan Impairs Hippocampal Synaptic Plasticity and Spatial Memory in Male Rats. Front Mol Neurosci 2018; 11:429. [PMID: 30534053 PMCID: PMC6275195 DOI: 10.3389/fnmol.2018.00429] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Triclosan, a widely used industrial and household agent, is present as an antiseptic ingredient in numerous products of everyday use, such as toothpaste, cosmetics, kitchenware, and toys. Previous studies have shown that human brain and animal tissues contain triclosan, which has been found also as a contaminant of water and soil. Triclosan disrupts heart and skeletal muscle Ca2+ signaling, damages liver function, alters gut microbiota, causes colonic inflammation, and promotes apoptosis in cultured neocortical neurons and neural stem cells. Information, however, on the possible effects of triclosan on the function of the hippocampus, a key brain region for spatial learning and memory, is lacking. Here, we report that triclosan addition at low concentrations to hippocampal slices from male rats inhibited long-term potentiation but did not affect basal synaptic transmission or paired-pulse facilitation and modified the content or phosphorylation levels of synaptic plasticity-related proteins. Additionally, incubation of primary hippocampal cultures with triclosan prevented both the dendritic spine remodeling induced by brain-derived neurotrophic factor and the emergence of spontaneous oscillatory Ca2+ signals. Furthermore, intra-hippocampal injection of triclosan significantly disrupted rat navigation in the Oasis maze spatial memory task, an indication that triclosan impairs hippocampus-dependent spatial memory performance. Based on these combined results, we conclude that triclosan exerts highly damaging effects on hippocampal neuronal function in vitro and impairs spatial memory processes in vivo.
Collapse
Affiliation(s)
| | - Jamileth More
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | | | - Tatiana Adasme
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Jorge Hidalgo
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alexis Humeres
- Department of Morphofunction, Faculty of Medicine, Universidad Diego Portales, Santiago, Chile
| | | | - Gina Sánchez
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Genaro Barrientos
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
114
|
Basak R, Narayanan R. Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS Comput Biol 2018; 14:e1006485. [PMID: 30383745 PMCID: PMC6233924 DOI: 10.1371/journal.pcbi.1006485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/13/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Microdomains that emerge from spatially constricted spread of biochemical signaling components play a central role in several neuronal computations. Although dendrites, endowed with several voltage-gated ion channels, form a prominent structural substrate for microdomain physiology, it is not known if these channels regulate the spatiotemporal spread of signaling microdomains. Here, we employed a multiscale, morphologically realistic, conductance-based model of the hippocampal pyramidal neuron that accounted for experimental details of electrical and calcium-dependent biochemical signaling. We activated synaptic N-Methyl-d-Aspartate receptors through theta-burst stimulation (TBS) or pairing (TBP) and assessed microdomain propagation along a signaling pathway that included calmodulin, calcium/calmodulin-dependent protein kinase II (CaMKII) and protein phosphatase 1. We found that the spatiotemporal spread of the TBS-evoked microdomain in phosphorylated CaMKII (pCaMKII) was amplified in comparison to that of the corresponding calcium microdomain. Next, we assessed the role of two dendritically expressed inactivating channels, one restorative (A-type potassium) and another regenerative (T-type calcium), by systematically varying their conductances. Whereas A-type potassium channels suppressed the spread of pCaMKII microdomains by altering the voltage response to TBS, T-type calcium channels enhanced this spread by modulating TBS-induced calcium influx without changing the voltage. Finally, we explored cross-dependencies of these channels with other model components, and demonstrated the heavy mutual interdependence of several biophysical and biochemical properties in regulating microdomains and their spread. Our conclusions unveil a pivotal role for dendritic voltage-gated ion channels in actively amplifying or suppressing biochemical signals and their spatiotemporal spread, with critical implications for clustered synaptic plasticity, robust information transfer and efficient neural coding. The spatiotemporal spread of biochemical signals in neurons and other cells regulate signaling specificity, tuning of signal propagation, along with specificity and clustering of adaptive plasticity. Theoretical and experimental studies have demonstrated a critical role for cellular morphology and the topology of signaling networks in regulating this spread. In this study, we add a significantly complex dimension to this narrative by demonstrating that voltage-gated ion channels on the plasma membrane could actively amplify or suppress the strength and spread of downstream signaling components. Given the expression of different ion channels with wide-ranging heterogeneity in gating kinetics, localization and density, our results point to an increase in complexity of and degeneracy in signaling spread, and unveil a powerful mechanism for regulating biochemical-signaling pathways across different cell types.
Collapse
Affiliation(s)
- Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
115
|
Tominaga Y, Taketoshi M, Tominaga T. Overall Assay of Neuronal Signal Propagation Pattern With Long-Term Potentiation (LTP) in Hippocampal Slices From the CA1 Area With Fast Voltage-Sensitive Dye Imaging. Front Cell Neurosci 2018; 12:389. [PMID: 30405360 PMCID: PMC6207578 DOI: 10.3389/fncel.2018.00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Activity-dependent changes in the input-output (I-O) relationship of a neural circuit are central in the learning and memory function of the brain. To understand circuit-wide adjustments, optical imaging techniques to probe the membrane potential at every component of neurons, such as dendrites, axons and somas, in the circuit are essential. We have been developing fast voltage-sensitive dye (VSD) imaging methods for quantitative measurements, especially for single-photon wide-field optical imaging. The long-term continuous measurements needed to evaluate circuit-wide modifications require stable and quantitative long-term recordings. Here, we show that VSD imaging (VSDI) can be used to record changes in circuit activity in association with theta-burst stimulation (TBS)-induced long-term potentiation (LTP) of synaptic strength in the CA1 area. Our optics, together with the fast imaging system, enabled us to measure neuronal signals from the entire CA1 area at a maximum frame speed of 0.1 ms/frame every 60 s for over 12 h. We also introduced a method to evaluate circuit activity changes by mapping the variation in recordings from the CA1 area to coordinates defined by the morphology of CA1 pyramidal cells. The results clearly showed two types of spatial heterogeneity in LTP induction. The first heterogeneity is that LTP increased with distance from the stimulation site. The second heterogeneity is that LTP is higher in the stratum pyramidale (SP)-oriens region than in the stratum radiatum (SR). We also showed that the pattern of the heterogeneity changed according to the induction protocol, such as induction by TBS or high-frequency stimulation (HFS). We further demonstrated that part of the heterogeneity depends on the I-O response of the circuit elements. The results show the usefulness of VSDI in probing the function of hippocampal circuits.
Collapse
Affiliation(s)
| | | | - Takashi Tominaga
- Laboratory for Neural Circuit Systems, Institute of Neuroscience, Tokushima Bunri University, Sanuki, Japan
| |
Collapse
|
116
|
Repetitive Transcranial Magnetic Stimulation for Upper Extremity Motor Recovery: Does It Help? Curr Neurol Neurosci Rep 2018; 18:97. [PMID: 30353408 DOI: 10.1007/s11910-018-0913-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Repetitive transcranial magnetic stimulation (rTMS) noninvasively modulates brain excitability in humans and influences mediators of plasticity in animals. When applied in humans in the months to years after stroke, potentiation of motor recovery has been limited. Recently, investigators have shifted rTMS administration into the early weeks following stroke, when injury-induced plasticity could be maximally engaged. This article provides an overview of basic mechanisms of rTMS, consideration of its interaction with various forms of neuroplasticity, and a summary of the highest quality clinical evidence for rTMS given early after stroke. RECENT FINDINGS Studies of repetitive magnetic stimulation in vitro and in vivo have found modulation of excitatory and inhibitory neurotransmission and induction of cellular mechanisms supporting plasticity. A handful of clinical studies have shown sustained improvements in grip strength and UE motor impairment when rTMS is delivered in the first weeks after stroke. Though in its infancy, recent research suggests a plasticity-enhancing influence and modest motor recovery potentiation when rTMS is delivered early after stroke.
Collapse
|
117
|
Lodge D, Watkins JC, Bortolotto ZA, Jane DE, Volianskis A. The 1980s: D-AP5, LTP and a Decade of NMDA Receptor Discoveries. Neurochem Res 2018; 44:516-530. [PMID: 30284673 PMCID: PMC6420420 DOI: 10.1007/s11064-018-2640-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/02/2023]
Abstract
In the 1960s and 70s, biochemical and pharmacological evidence was pointing toward glutamate as a synaptic transmitter at a number of distinct receptor classes, known as NMDA and non-NMDA receptors. The field, however, lacked a potent and highly selective antagonist to block these putative postsynaptic receptors. So, the discoveries in the early 1980s of d-AP5 as a selective NMDA receptor antagonist and of its ability to block synaptic events and plasticity were a major breakthrough leading to an explosion of knowledge about this receptor subtype. During the next 10 years, the role of NMDA receptors was established in synaptic transmission, long-term potentiation, learning and memory, epilepsy, pain, among others. Hints at pharmacological heterogeneity among NMDA receptors were followed by the cloning of separate subunits. The purpose of this review is to recognize the important contributions made in the 1980s by Graham L. Collingridge and other key scientists to the advances in our understanding of the functions of NMDA receptors throughout the central nervous system.
Collapse
Affiliation(s)
- D Lodge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - J C Watkins
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Z A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - A Volianskis
- School of Clinical Sciences, University of Bristol, Bristol, UK.
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
118
|
Chung SW, Sullivan CM, Rogasch NC, Hoy KE, Bailey NW, Cash RFH, Fitzgerald PB. The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: A TMS-EEG study. Hum Brain Mapp 2018; 40:608-627. [PMID: 30251765 DOI: 10.1002/hbm.24398] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies have highlighted variability in response to theta burst stimulation (TBS) in humans. TBS paradigm was originally developed in rodents to mimic gamma bursts coupled with theta rhythms, and was shown to elicit long-term potentiation. The protocol was subsequently adapted for humans using standardised frequencies of stimulation. However, each individual has different rhythmic firing pattern. The present study sought to explore whether individualised intermittent TBS (Ind iTBS) could outperform the effects of two other iTBS variants. Twenty healthy volunteers received iTBS over left prefrontal cortex using 30 Hz at 6 Hz, 50 Hz at 5 Hz, or individualised frequency in separate sessions. Ind iTBS was determined using theta-gamma coupling during the 3-back task. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) was used to track changes in cortical plasticity. We also utilised mood ratings using a visual analogue scale and assessed working memory via the 3-back task before and after stimulation. No group-level effect was observed following either 30 or 50 Hz iTBS in TMS-EEG. Ind iTBS significantly increased the amplitude of the TMS-evoked P60, and decreased N100 and P200 amplitudes. A significant positive correlation between neurophysiological change and change in mood rating was also observed. Improved accuracy in the 3-back task was observed following both 50 Hz and Ind iTBS conditions. These findings highlight the critical importance of frequency in the parameter space of iTBS. Tailored stimulation parameters appear more efficacious than standard paradigms in neurophysiological and mood changes. This novel approach presents a promising option and benefits may extend to clinical applications.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Melbourne, Australia
| |
Collapse
|
119
|
Tang-Schomer MD, Jackvony T, Santaniello S. Cortical Network Synchrony Under Applied Electrical Field in vitro. Front Neurosci 2018; 12:630. [PMID: 30297981 PMCID: PMC6160828 DOI: 10.3389/fnins.2018.00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/22/2018] [Indexed: 01/11/2023] Open
Abstract
Synchronous network activity plays a crucial role in complex brain functions. Stimulating the nervous system with applied electric field (EF) is a common tool for probing network responses. We used a gold wire-embedded silk protein film-based interface culture to investigate the effects of applied EFs on random cortical networks of in vitro cultures. Two-week-old cultures were exposed to EF of 27 mV/mm for <1 h and monitored by time-lapse calcium imaging. Network activity was represented by calcium signal time series mapped to source neurons and analyzed by using a community detection algorithm. Cortical cultures exhibited large scale, synchronized oscillations under alternating EF of changing frequencies. Field polarity and frequency change were both found to be necessary for network synchrony, as monophasic pulses of similar frequency changes or EF of a constant frequency failed to induce correlated activities of neurons. Group-specific oscillatory patterns were entrained by network-level synchronous oscillations when the alternating EF frequency was increased from 0.2 Hz to 200 kHz. Binary responses of either activity increase or decrease contributed to the opposite phase patterns of different sub-populations. Conversely, when the EF frequency decreased over the same range span, more complex behavior emerged showing group-specific amplitude and phase patterns. These findings formed the basis of a hypothesized network control mechanism for temporal coordination of distributed neuronal activity, involving coordinated stimulation by alternating polarity, and time delay by change of frequency. These novel EF effects on random neural networks have important implications for brain functional studies and neuromodulation applications.
Collapse
Affiliation(s)
- Min D Tang-Schomer
- Department of Pediatrics, UConn Health, Connecticut Children's Medical Center, Farmington, CT, United States.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Taylor Jackvony
- School of Medicine, UConn Health, University of Connecticut, Farmington, CT, United States
| | - Sabato Santaniello
- CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States.,Biomedical Engineering Department, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
120
|
Wu CW, Chiu WT, Hsieh TH, Hsieh CH, Chen JJJ. Modulation of motor excitability by cortical optogenetic theta burst stimulation. PLoS One 2018; 13:e0203333. [PMID: 30161250 PMCID: PMC6117070 DOI: 10.1371/journal.pone.0203333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/17/2018] [Indexed: 11/25/2022] Open
Abstract
Intermittent theta burst stimulation (iTBS) and continuous theta burst stimulation (cTBS) are protocols used in repetitive transcranial magnetic stimulation (rTMS) or cortical electrical stimulation (CES) to facilitate or suppress corticospinal excitability. However, rTMS and CES excite all types of neuron in the target cortex probed by the coil or electrode, making it difficult to differentiate the effect of TBS on specific neural circuits involved in motor plasticity. In this study, TBS protocols were converted into an optogenetic model to achieve focalized and cell-type-specific cortical modulation. Light-sensitive channelrhodopsin-2 (ChR2) was expressed in the glutamatergic neuron in the primary motor cortex (M1) driven by the CaMKIIα promoter. A custom-made optrode comprising an optical fiber and a metal cannula electrode was fabricated to achieve optogenetic stimulation and simultaneous local field potential (LFP) recording. Single-pulse CES was delivered into M1 to elicit motor-evoked potential (MEP), which served as an indicator of motor excitability, before and after TBS intervention. Results show that both CES-iTBS and optogenetic iTBS (Opto-iTBS) can potentiate MEP activity. However, CES-cTBS suppressed MEP activity whereas Opto-cTBS enhanced it. This discrepancy may have resulted from the different neural networks targeted by the two TBS modalities, with CES-cTBS exciting all types of neuron and Opto-cTBS targeting excitatory neuron specifically. The results support the idea that intra-cortical networks determine the variation of TBS-induced neuroplasticity. This study shows that focalized and cell-type-specific brain stimulation using the optogenetic approach is viable and can be extended for further exploration of neuroplasticity.
Collapse
Affiliation(s)
- Chun-Wei Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Cho-Han Hsieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Jin Jason Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
121
|
Sanders PJ, Thompson B, Corballis PM, Maslin M, Searchfield GD. A review of plasticity induced by auditory and visual tetanic stimulation in humans. Eur J Neurosci 2018; 48:2084-2097. [PMID: 30025183 DOI: 10.1111/ejn.14080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/10/2018] [Accepted: 07/04/2018] [Indexed: 12/01/2022]
Abstract
Long-term potentiation is a form of synaptic plasticity thought to play an important role in learning and memory. Recently noninvasive methods have been developed to induce and measure activity similar to long-term potentiation in humans. Sensory tetani (trains of quickly repeating auditory or visual stimuli) alter the electroencephalogram in a manner similar to electrical stimulation that results in long-term potentiation. This review briefly covers the development of long-term potentiation research before focusing on in vivo human studies that produce long-term potentiation-like effects using auditory and visual stimulation. Similarities and differences between traditional (animal and brain tissue) long-term potentiation studies and human sensory tetanization studies will be discussed, as well as implications for perceptual learning. Although evidence for functional consequences of sensory tetanization remains scarce, studies involving clinical populations indicate that sensory induced plasticity paradigms may be developed into diagnostic and research tools in clinical settings. Individual differences in the effects of sensory tetanization are not well-understood and provide an interesting avenue for future research. Differences in effects found between research groups that have emerged as the field has progressed are also yet to be resolved.
Collapse
Affiliation(s)
- Philip J Sanders
- Section of Audiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Auckland, New Zealand
| | - Benjamin Thompson
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,School of Optometry & Vision Science, University of Auckland, Auckland, New Zealand.,School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Paul M Corballis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Psychology, University of Auckland, Auckland, New Zealand
| | | | - Grant D Searchfield
- Section of Audiology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, Auckland, New Zealand
| |
Collapse
|
122
|
Memory-Related Synaptic Plasticity Is Sexually Dimorphic in Rodent Hippocampus. J Neurosci 2018; 38:7935-7951. [PMID: 30209204 DOI: 10.1523/jneurosci.0801-18.2018] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 07/15/2018] [Indexed: 12/22/2022] Open
Abstract
Men are generally superior to women in remembering spatial relationships, whereas the reverse holds for semantic information, but the neurobiological bases for these differences are not understood. Here we describe striking sexual dimorphism in synaptic mechanisms of memory encoding in hippocampal field CA1, a region critical for spatial learning. Studies of acute hippocampal slices from adult rats and mice show that for excitatory Schaffer-commissural projections, the memory-related long-term potentiation (LTP) effect depends upon endogenous estrogen and membrane estrogen receptor α (ERα) in females but not in males; there was no evident involvement of nuclear ERα in females, or of ERβ or GPER1 (G-protein-coupled estrogen receptor 1) in either sex. Quantitative immunofluorescence showed that stimulation-induced activation of two LTP-related kinases (Src, ERK1/2), and of postsynaptic TrkB, required ERα in females only, and that postsynaptic ERα levels are higher in females than in males. Several downstream signaling events involved in LTP were comparable between the sexes. In contrast to endogenous estrogen effects, infused estradiol facilitated LTP and synaptic signaling in females via both ERα and ERβ. The estrogen dependence of LTP in females was associated with a higher threshold for both inducing potentiation and acquiring spatial information. These results indicate that the observed sexual dimorphism in hippocampal LTP reflects differences in synaptic kinase activation, including both a weaker association with NMDA receptors and a greater ERα-mediated kinase activation in response to locally produced estrogen in females. We propose that male/female differences in mechanisms and threshold for field CA1 LTP contribute to differences in encoding specific types of memories.SIGNIFICANCE STATEMENT There is good evidence for male/female differences in memory-related cognitive function, but the neurobiological basis for this sexual dimorphism is not understood. Here we describe sex differences in synaptic function in a brain area that is critical for learning spatial cues. Our results show that female rodents have higher synaptic levels of estrogen receptor α (ERα) and, in contrast to males, require membrane ERα for the activation of signaling kinases that support long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning. The additional requirement of estrogen signaling in females resulted in a higher threshold for both LTP and hippocampal field CA1-dependent spatial learning. These results describe a synaptic basis for sexual dimorphism in encoding spatial information.
Collapse
|
123
|
Human Depotentiation following Induction of Spike Timing Dependent Plasticity. Biomedicines 2018; 6:biomedicines6020071. [PMID: 29912149 PMCID: PMC6027207 DOI: 10.3390/biomedicines6020071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/17/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Depotentiation (DP) is a crucial mechanism for the tuning of memory traces once LTP (Long Term Potentiation) has been induced via learning, artificial procedures, or other activities. Putative unuseful LTP might be abolished via this process. Its deficiency is thought to play a role in pathologies, such as drug induced dyskinesia. However, since it is thought that it represents a mechanism that is linked to the susceptibility to interference during consolidation of a memory trace, it is an important process to consider when therapeutic interventions, such as psychotherapy, are administered. Perhaps a person with an abnormal depotentiation is prone to lose learned effects very easily or on the other end of the spectrum is prone to overload with previously generated unuseful LTP. Perhaps this process partly explains why some disorders and patients are extremely resistant to therapy. The present study seeks to quantify the relationship between LTP and depotentiation in the human brain by using transcranial magnetic stimulation (TMS) over the cortex of healthy participants. The results provide further evidence that depotentiation can be quantified in humans by use of noninvasive brain stimulation techniques. They provide evidence that a nonfocal rhythmic on its own inefficient stimulation, such as a modified thetaburst stimulation, can depotentiate an associative, focal spike timing-dependent PAS (paired associative stimulation)-induced LTP. Therefore, the depotentiation-like process does not seem to be restricted to specific subgroups of synapses that have undergone LTP before. Most importantly, the induced LTP seems highly correlated with the amount of generated depotentiation in healthy individuals. This might be a phenomenon typical of health and might be distorted in brain pathologies, such as dystonia, or dyskinesias. The ratio of LTP/DP might be a valuable marker for potential distortions of persistence versus deletion of memory traces represented by LTP-like plasticity.
Collapse
|
124
|
Tse NY, Goldsworthy MR, Ridding MC, Coxon JP, Fitzgerald PB, Fornito A, Rogasch NC. The effect of stimulation interval on plasticity following repeated blocks of intermittent theta burst stimulation. Sci Rep 2018; 8:8526. [PMID: 29867191 PMCID: PMC5986739 DOI: 10.1038/s41598-018-26791-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
This study assessed the effect of interval duration on the direction and magnitude of changes in cortical excitability and inhibition when applying repeated blocks of intermittent theta burst stimulation (iTBS) over motor cortex. 15 participants received three different iTBS conditions on separate days: single iTBS; repeated iTBS with a 5 minute interval (iTBS-5-iTBS); and with a 15 minute interval (iTBS-15-iTBS). Changes in cortical excitability and short-interval cortical inhibition (SICI) were assessed via motor-evoked potentials (MEPs) before and up to 60 mins following stimulation. iTBS-15-iTBS increased MEP amplitude for up to 60 mins post stimulation, whereas iTBS-5-iTBS decreased MEP amplitude. In contrast, MEP amplitude was not altered by single iTBS. Despite the group level findings, only 53% of individuals showed facilitated MEPs following iTBS-15-iTBS, and only 40% inhibited MEPs following iTBS-5-iTBS. Modulation of SICI did not differ between conditions. These results suggest interval duration between spaced iTBS plays an important role in determining the direction of plasticity on excitatory, but not inhibitory circuits in human motor cortex. While repeated iTBS can increase the magnitude of MEP facilitation/inhibition in some individuals compared to single iTBS, the response to repeated iTBS appears variable between individuals in this small sample.
Collapse
Affiliation(s)
- Nga Yan Tse
- Brain and Mental Health Research Hub, School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neuroscience, and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Mitchell R Goldsworthy
- Neuromotor Plasticity and Development, Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Michael C Ridding
- Neuromotor Plasticity and Development, Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - James P Coxon
- School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Paul B Fitzgerald
- Epworth Healthcare, The Epworth Clinic and Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University, Melbourne, Australia
| | - Alex Fornito
- Brain and Mental Health Research Hub, School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neuroscience, and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Research Hub, School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neuroscience, and Monash Biomedical Imaging, Monash University, Melbourne, Australia.
| |
Collapse
|
125
|
Ostroff LE, Watson DJ, Cao G, Parker PH, Smith H, Harris KM. Shifting patterns of polyribosome accumulation at synapses over the course of hippocampal long-term potentiation. Hippocampus 2018; 28:416-430. [PMID: 29575288 DOI: 10.1002/hipo.22841] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 11/09/2022]
Abstract
Hippocampal long-term potentiation (LTP) is a cellular memory mechanism. For LTP to endure, new protein synthesis is required immediately after induction and some of these proteins must be delivered to specific, presumably potentiated, synapses. Local synthesis in dendrites could rapidly provide new proteins to synapses, but the spatial distribution of translation following induction of LTP is not known. Here, we quantified polyribosomes, the sites of local protein synthesis, in CA1 stratum radiatum dendrites and spines from postnatal day 15 rats. Hippocampal slices were rapidly fixed at 5, 30, or 120 min after LTP induction by theta-burst stimulation (TBS). Dendrites were reconstructed through serial section electron microscopy from comparable regions near the TBS or control electrodes in the same slice, and in unstimulated hippocampus that was perfusion-fixed in vivo. At 5 min after induction of LTP, polyribosomes were elevated in dendritic shafts and spines, especially near spine bases and in spine heads. At 30 min, polyribosomes remained elevated only in spine bases. At 120 min, both spine bases and spine necks had elevated polyribosomes. Polyribosomes accumulated in spines with larger synapses at 5 and 30 min, but not at 120 min. Small spines, meanwhile, proliferated dramatically by 120 min, but these largely lacked polyribosomes. The number of ribosomes per polyribosome is variable and may reflect differences in translation regulation. In dendritic spines, but not shafts, there were fewer ribosomes per polyribosome in the slice conditions relative to in vivo, but this recovered transiently in the 5 min LTP condition. Overall, our data show that LTP induces a rapid, transient upregulation of large polyribosomes in larger spines, and a persistent upregulation of small polyribosomes in the bases and necks of small spines. This is consistent with local translation supporting enlargement of potentiated synapses within minutes of LTP induction.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Deborah J Watson
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Patrick H Parker
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Heather Smith
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| |
Collapse
|
126
|
β-adrenergic receptors reduce the threshold for induction and stabilization of LTP and enhance its magnitude via multiple mechanisms in the ventral but not the dorsal hippocampus. Neurobiol Learn Mem 2018; 151:71-84. [PMID: 29653257 DOI: 10.1016/j.nlm.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/19/2018] [Accepted: 04/07/2018] [Indexed: 12/27/2022]
Abstract
The hippocampus is a functionally heterogeneous structure with the cognitive and emotional signal processing ascribed to the dorsal (DH) and the ventral hippocampus (VH) respectively. However, the underlying mechanisms are poorly understood. Noradrenaline is released in hippocampus during emotional arousal modulating synaptic plasticity and memory consolidation through activation of β adrenergic receptors (β-ARs). Using recordings of field excitatory postsynaptic potentials from the CA1 field of adult rat hippocampal slices we demonstrate that long-term potentiation (LTP) induced either by theta-burst stimulation (TBS) that mimics a physiological firing pattern of hippocampal neurons or by high-frequency stimulation is remarkably more sensitive to β-AR activation in VH than in DH. Thus, pairing of subthreshold primed burst stimulation with activation of β-ARs by their agonist isoproterenol (1 μM) resulted in a reliable induction of NMDA receptor-dependent LTP in the VH without affecting LTP in the DH. Activation of β-ARs by isoproterenol during application of intense TBS increased the magnitude of LTP in both hippocampal segments but facilitated voltage-gated calcium channel-dependent LTP in VH only. Endogenous β-AR activation contributed to the stabilization and the magnitude of LTP in VH but not DH as demonstrated by the effects of the β-ARs antagonist propranolol (10 μM). Exogenous (but not endogenous) β-AR activation strongly increased TBS-induced facilitation of postsynaptic excitability in VH. In DH, isoproterenol only produced a moderate and GABAergic inhibition-dependent enhancement in the facilitation of synaptic burst responses. Paired-pulse facilitation did not change with LTP at any experimental condition suggesting that expression of LTP does not involve presynaptic mechanisms. These findings suggest that β-AR may act as a switch that selectively promotes synaptic plasticity in VH through multiple ways and provide thus a first clue to mechanisms that underlie VH involvement in emotionality.
Collapse
|
127
|
Ibrahim GM, Wong S, Morgan BR, Lipsman N, Fallah A, Weil AG, Krishna V, Wennberg RA, Lozano AA. Phase-amplitude coupling within the anterior thalamic nuclei during seizures. J Neurophysiol 2018; 119:1497-1505. [DOI: 10.1152/jn.00832.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cross-frequency phase-amplitude coupling (cfPAC) subserves an integral role in the hierarchical organization of interregional neuronal communication and is also expressed by epileptogenic cortex during seizures. Here, we sought to characterize patterns of cfPAC expression in the anterior thalamic nuclei during seizures by studying extra-operative recordings in patients implanted with deep brain stimulation electrodes for intractable epilepsy. Nine seizures from two patients were analyzed in the peri-ictal period. CfPAC was calculated using the modulation index and interregional functional connectivity was indexed using the phase-locking value. Statistical analysis was performed within subjects on the basis of nonparametric permutation and corrected with Gaussian field theory. Five of the nine analyzed seizures demonstrated significant cfPAC. Significant cfPAC occurred during the pre-ictal and ictal periods in three seizures, as well as the postictal windows in four seizures. The preferred phase at which cfPAC occurred differed 1) in space, between the thalami of the epileptogenic and nonepileptogenic hemispheres; and 2) in time, at seizure termination. The anterior thalamic nucleus of the epileptogenic hemisphere also exhibited altered interregional phase-locking synchrony concurrent with the expression of cfPAC. By analyzing extraoperative recordings from the anterior thalamic nuclei, we show that cfPAC associated with altered interregional phase synchrony is lateralized to the thalamus of the epileptogenic hemisphere during seizures. Electrophysiological differences in cfPAC, including preferred phase of oscillatory interactions may be further investigated as putative targets for individualized neuromodulation paradigms in patients with drug-resistant epilepsy. NEW & NOTEWORTHY The association between fast brain activity and slower oscillations is an integral mechanism for hierarchical neuronal communication, which is also manifested in epileptogenic cortex. Our data suggest that the same phenomenon occurs in the anterior thalamic nuclei during seizures. Further, the preferred phase of modulation shows differences in space, between the epileptogenic and nonepileptogenic hemispheres and time, as seizures terminate. Our data encourage the study of cross-frequency coupling for targeted, individualized closed-loop stimulation paradigms.
Collapse
Affiliation(s)
- George M. Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Simeon Wong
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin R. Morgan
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Aria Fallah
- Department of Neurosurgery, Mattel Children’s Hospital, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Alexander G. Weil
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Vibhor Krishna
- The Ohio State University, Center for Neuromodulation, Department of Neurosurgery, Columbus, Ohio
- The Ohio State University, Department of Neuroscience, Columbus, Ohio
| | - Richard A. Wennberg
- Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andres A. Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
128
|
Seewoo BJ, Etherington SJ, Feindel KW, Rodger J. Combined rTMS/fMRI Studies: An Overlooked Resource in Animal Models. Front Neurosci 2018; 12:180. [PMID: 29628873 PMCID: PMC5876299 DOI: 10.3389/fnins.2018.00180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique, which has brain network-level effects in healthy individuals and is also used to treat many neurological and psychiatric conditions in which brain connectivity is believed to be abnormal. Despite the fact that rTMS is being used in a clinical setting and animal studies are increasingly identifying potential cellular and molecular mechanisms, little is known about how these mechanisms relate to clinical changes. This knowledge gap is amplified by non-overlapping approaches used in preclinical and clinical rTMS studies: preclinical studies are mostly invasive, using cellular and molecular approaches, while clinical studies are non-invasive, including functional magnetic resonance imaging (fMRI), TMS electroencephalography (EEG), positron emission tomography (PET), and behavioral measures. A non-invasive method is therefore needed in rodents to link our understanding of cellular and molecular changes to functional connectivity changes that are clinically relevant. fMRI is the technique of choice for examining both short and long term functional connectivity changes in large-scale networks and is becoming increasingly popular in animal research because of its high translatability, but, to date, there have been no reports of animal rTMS studies using this technique. This review summarizes the main studies combining different rTMS protocols with fMRI in humans, in both healthy and patient populations, providing a foundation for the design of equivalent studies in animals. We discuss the challenges of combining these two methods in animals and highlight considerations important for acquiring clinically-relevant information from combined rTMS/fMRI studies in animals. We believe that combining rTMS and fMRI in animal models will generate new knowledge in the following ways: functional connectivity changes can be explored in greater detail through complementary invasive procedures, clarifying mechanism and improving the therapeutic application of rTMS, as well as improving interpretation of fMRI data. And, in a more general context, a robust comparative approach will refine the use of animal models of specific neuropsychiatric conditions.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Centre for Microscopy, Characterization and Analysis, Research Infrastructure Centers, The University of Western Australia, Perth, WA, Australia
| | - Sarah J Etherington
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Kirk W Feindel
- Centre for Microscopy, Characterization and Analysis, Research Infrastructure Centers, The University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Research, Perth, WA, Australia
| |
Collapse
|
129
|
Urban BE, Xiao L, Dong B, Chen S, Kozorovitskiy Y, Zhang HF. Imaging neuronal structure dynamics using 2-photon super-resolution patterned excitation reconstruction microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:10.1002/jbio.201700171. [PMID: 28976633 PMCID: PMC7313398 DOI: 10.1002/jbio.201700171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/31/2017] [Accepted: 09/28/2017] [Indexed: 05/11/2023]
Abstract
Visualizing fine neuronal structures deep inside strongly light-scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two-photon super-resolution patterned excitation reconstruction (2P-SuPER) microscopy for 3-dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P-SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P-SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta-burst stimulation of Schaffer collateral axons. 2P-SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.
Collapse
Affiliation(s)
- Ben E. Urban
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lei Xiao
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Biqin Dong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Siyu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Hao F. Zhang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
130
|
Aitken P, Zheng Y, Smith PF. The modulation of hippocampal theta rhythm by the vestibular system. J Neurophysiol 2018; 119:548-562. [DOI: 10.1152/jn.00548.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vestibular system is a sensory system that has evolved over millions of years to detect acceleration of the head, both rotational and translational, in three dimensions. One of its most important functions is to stabilize gaze during unexpected head movement; however, it is also important in the control of posture and autonomic reflexes. Theta rhythm is a 3- to 12-Hz oscillating EEG signal that is intimately linked to self-motion and is also known to be important in learning and memory. Many studies over the last two decades have shown that selective activation of the vestibular system, using either natural rotational or translational stimulation, or electrical stimulation of the peripheral vestibular system, can induce and modulate theta activity. Furthermore, inactivation of the vestibular system has been shown to significantly reduce theta in freely moving animals, which may be linked to its impairment of place cell function as well as spatial learning and memory. The pathways through which vestibular information modulate theta rhythm remain debatable. However, vestibular responses have been found in the pedunculopontine tegmental nucleus (PPTg) and activation of the vestibular system causes an increase in acetylcholine release into the hippocampus, probably from the medial septum. Therefore, a pathway from the vestibular nucleus complex and/or cerebellum to the PPTg, supramammillary nucleus, posterior hypothalamic nucleus, and septum to the hippocampus is likely. The modulation of theta by the vestibular system may have implications for vestibular effects on cognitive function and the contribution of vestibular impairment to the risk of dementia.
Collapse
Affiliation(s)
- Phillip Aitken
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F. Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence
- Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
131
|
Oliva CA, Montecinos-Oliva C, Inestrosa NC. Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:81-130. [PMID: 29389523 DOI: 10.1016/bs.pmbts.2017.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its discovery, Wnt signaling has been shown to be one of the most crucial morphogens in development and during the maturation of central nervous system. Its action is relevant during the establishment and maintenance of synaptic structure and neuronal function. In this chapter, we will discuss the most recent evidence on these aspects, and we will explore the evidence that involves Wnt signaling on other less known functions, such as in adult neurogenesis, in the generation of oscillatory neural rhythms, and in adult behavior. The dysfunction of Wnt signaling at different levels will be also discussed, in particular in those aspects that have been found to be linked with several neurodegenerative diseases and neurological disorders. Finally, we will address the possibility of Wnt signaling manipulation to treat those pathophysiological aspects.
Collapse
Affiliation(s)
- Carolina A Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile
| | - Carla Montecinos-Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Interdisciplinary Institute for Neuroscience (IINS), University of Bordeaux, Bordeaux, France
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia; Center of Excellence in Biomedicine of Magallanes (CEBIMA), University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
132
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
133
|
Martinez LA, Tejada-Simon MV. Pharmacological Rescue of Hippocampal Fear Learning Deficits in Fragile X Syndrome. Mol Neurobiol 2017; 55:5951-5961. [DOI: 10.1007/s12035-017-0819-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
|
134
|
Chung SW, Rogasch NC, Hoy KE, Sullivan CM, Cash RFH, Fitzgerald PB. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum Brain Mapp 2017; 39:783-802. [PMID: 29124791 DOI: 10.1002/hbm.23882] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS) is a noninvasive brain stimulation technique capable of increasing cortical excitability beyond the stimulation period. Due to the rapid induction of modulatory effects, prefrontal application of iTBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression. In an attempt to increase efficacy, higher than conventional intensities are currently being applied. The assumption that this increases neuromodulatory may be mechanistically false for iTBS. This study examined the influence of intensity on the neurophysiological and behavioural effects of iTBS in the prefrontal cortex. Sixteen healthy participants received iTBS over prefrontal cortex at either 50, 75 or 100% resting motor threshold in separate sessions. Single-pulse TMS and concurrent electroencephalography (EEG) was used to assess changes in cortical reactivity measured as TMS-evoked potentials and oscillations. The n-back task was used to assess changes in working memory performance. The data can be summarised as an inverse U-shape relationship between intensity and iTBS plastic effects, where 75% iTBS yielded the largest neurophysiological changes. Improvement in reaction time in the 3-back task was supported by the change in alpha power, however, comparison between conditions revealed no significant differences. The assumption that higher intensity results in greater neuromodulatory effects may be false, at least in healthy individuals, and should be carefully considered for clinical populations. Neurophysiological changes associated with working memory following iTBS suggest functional relevance. However, the effects of different intensities on behavioural performance remain elusive in the present healthy sample.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Camberwell, VIC, Australia
| |
Collapse
|
135
|
Gereke BJ, Mably AJ, Colgin LL. Experience-dependent trends in CA1 theta and slow gamma rhythms in freely behaving mice. J Neurophysiol 2017; 119:476-489. [PMID: 29070630 DOI: 10.1152/jn.00472.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CA1 place cells become more anticipatory with experience, an effect thought to be caused by NMDA receptor-dependent plasticity in the CA3-CA1 network. Theta (~5-12 Hz), slow gamma (~25-50 Hz), and fast gamma (~50-100 Hz) rhythms are thought to route spatial information in the hippocampal formation and to coordinate place cell ensembles. Yet, it is unknown whether these rhythms exhibit experience-dependent changes concurrent with those observed in place cells. Slow gamma rhythms are thought to indicate inputs from CA3 to CA1, and such inputs are thought to be strengthened with experience. Thus, we hypothesized that slow gamma rhythms would become more evident with experience. We tested this hypothesis using mice freely traversing a familiar circular track for three 10-min sessions per day. We found that slow gamma amplitude was reduced in the early minutes of the first session of each day, even though both theta and fast gamma amplitudes were elevated during this same period. However, in the first minutes of the second and third sessions of each day, all three rhythms were elevated. Interestingly, theta was elevated to a greater degree in the first minutes of the first session than in the first minutes of later sessions. Additionally, all three rhythms were strongly influenced by running speed in dynamic ways, with the influence of running speed on theta and slow gamma changing over time within and across sessions. These results raise the possibility that experience-dependent changes in hippocampal rhythms relate to changes in place cell activity that emerge with experience. NEW & NOTEWORTHY We show that CA1 theta, slow gamma, and fast gamma rhythms exhibit characteristic changes over time within sessions in familiar environments. These effects in familiar environments evolve across repeated sessions.
Collapse
Affiliation(s)
- Brian J Gereke
- Institute for Neuroscience, University of Texas at Austin , Austin, Texas.,Center for Learning and Memory, University of Texas at Austin , Austin, Texas
| | - Alexandra J Mably
- Center for Learning and Memory, University of Texas at Austin , Austin, Texas.,Department of Neuroscience, University of Texas at Austin , Austin, Texas
| | - Laura Lee Colgin
- Institute for Neuroscience, University of Texas at Austin , Austin, Texas.,Center for Learning and Memory, University of Texas at Austin , Austin, Texas.,Department of Neuroscience, University of Texas at Austin , Austin, Texas
| |
Collapse
|
136
|
Titiz AS, Hill MRH, Mankin EA, M Aghajan Z, Eliashiv D, Tchemodanov N, Maoz U, Stern J, Tran ME, Schuette P, Behnke E, Suthana NA, Fried I. Theta-burst microstimulation in the human entorhinal area improves memory specificity. eLife 2017; 6. [PMID: 29063831 PMCID: PMC5655155 DOI: 10.7554/elife.29515] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
The hippocampus is critical for episodic memory, and synaptic changes induced by long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal LTP may be induced through electrical stimulation of the perforant path. To test whether similar techniques could improve episodic memory in humans, we implemented a microstimulation technique that allowed delivery of low-current electrical stimulation via 100 μm-diameter microelectrodes. As thirteen neurosurgical patients performed a person recognition task, microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP. Microstimulation in the right entorhinal area during learning significantly improved subsequent memory specificity for novel portraits; participants were able both to recognize previously-viewed photos and reject similar lures. These results suggest that microstimulation with physiologic level currents—a radical departure from commonly used deep brain stimulation protocols—is sufficient to modulate human behavior and provides an avenue for refined interrogation of the circuits involved in human memory.
Collapse
Affiliation(s)
- Ali S Titiz
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Michael R H Hill
- Department of Neurosurgery, University of California, Los Angeles, United States.,California Institute of Technology, Pasadena, United States
| | - Emily A Mankin
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Zahra M Aghajan
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Dawn Eliashiv
- Department of Neurology, University of California, Los Angeles, United States
| | - Natalia Tchemodanov
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Uri Maoz
- Department of Neurosurgery, University of California, Los Angeles, United States.,California Institute of Technology, Pasadena, United States.,Department of Psychology, University of California, Los Angeles, United States
| | - John Stern
- Department of Neurology, University of California, Los Angeles, United States
| | - Michelle E Tran
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Peter Schuette
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Eric Behnke
- Department of Neurosurgery, University of California, Los Angeles, United States
| | - Nanthia A Suthana
- Department of Neurosurgery, University of California, Los Angeles, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States.,Department of Psychology, University of California, Los Angeles, United States
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| |
Collapse
|
137
|
Chen W, Guo Y, Yang W, Chen L, Ren D, Wu C, He B, Zheng P, Tong W. Phosphorylation of connexin 43 induced by traumatic brain injury promotes exosome release. J Neurophysiol 2017; 119:305-311. [PMID: 29046426 DOI: 10.1152/jn.00654.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) caused by the external force leads to the neuronal dysfunction and even death. TBI has been reported to significantly increase the phosphorylation of glial gap junction protein connexin 43 (Cx43), which in turn propagates damages into surrounding brain tissues. However, the neuroprotective and anti-apoptosis effects of glia-derived exosomes have also been implicated in recent studies. Therefore, we detected whether TBI-induced phosphorylation of Cx43 would promote exosome release in rat brain. To generate TBI model, adult male Sprague-Dawley rats were subjected to lateral fluid percussion injury. Phosphorylated Cx43 protein levels and exosome activities were quantified using Western blot analysis following TBI. Long-term potentiation (LTP) was also tested in rat hippocampal slices. TBI significantly increased the phosphorylated Cx43 and exosome markers expression in rat ipsilateral hippocampus, but not cortex. Blocking the activity of Cx43 or ERK, but not JNK, significantly suppressed TBI-induced exosome release in hippocampus. Furthermore, TBI significantly inhibited the induction of LTP in hippocampal slices, which could be partially but significantly restored by pretreatment with exosomes. The results imply that TBI-activated Cx43 could mediate a nociceptive effect by propagating the brain damages, as well as a neuroprotective effect by promoting exosome release. NEW & NOTEWORTHY We have demonstrated in rat traumatic brain injury (TBI) models that both phosphorylated connexin 43 (p-Cx43) expression and exosome release were elevated in the hippocampus following TBI. The promoted exosome release depends on the phosphorylation of Cx43 and requires ERK signaling activation. Exosome treatment could partially restore the attenuated long-term potentiation. Our results provide new insight for future therapeutic direction on the functional recovery of TBI by promoting p-Cx43-dependent exosome release but limiting the gap junction-mediated bystander effect.
Collapse
Affiliation(s)
- Wei Chen
- The People's Hospital of Pu Dong New Area, Chuansha New Town, Shanghai , People's Republic of China
| | - Yijun Guo
- The People's Hospital of Pu Dong New Area, Chuansha New Town, Shanghai , People's Republic of China
| | - Wenjin Yang
- The People's Hospital of Pu Dong New Area, Chuansha New Town, Shanghai , People's Republic of China
| | - Lei Chen
- The People's Hospital of Pu Dong New Area, Chuansha New Town, Shanghai , People's Republic of China
| | - Dabin Ren
- The People's Hospital of Pu Dong New Area, Chuansha New Town, Shanghai , People's Republic of China
| | - Chenxing Wu
- The People's Hospital of Pu Dong New Area, Chuansha New Town, Shanghai , People's Republic of China
| | - Bin He
- The People's Hospital of Pu Dong New Area, Chuansha New Town, Shanghai , People's Republic of China
| | - Ping Zheng
- The People's Hospital of Pu Dong New Area, Chuansha New Town, Shanghai , People's Republic of China
| | - Wusong Tong
- The People's Hospital of Pu Dong New Area, Chuansha New Town, Shanghai , People's Republic of China
| |
Collapse
|
138
|
Marquis LP, Paquette T, Blanchette-Carrière C, Dumel G, Nielsen T. REM Sleep Theta Changes in Frequent Nightmare Recallers. Sleep 2017; 40:3885852. [PMID: 28651358 PMCID: PMC5806577 DOI: 10.1093/sleep/zsx110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Study Objectives To replicate and expand upon past research by evaluating sleep and wake electroencephalographic spectral activity in samples of frequent nightmare (NM) recallers and healthy controls. Methods Computation of spectral activity for sleep (non-REM and REM) and wake electroencephalogram recordings from 18 frequent NM recallers and 15 control participants. Results There was higher "slow-theta" (2-5 Hz) for NM recallers than for controls during wake, non-REM sleep and REM sleep. Differences were clearest for frontal and central derivations and for REM sleep cycles 2-4. There was also higher beta activity during NREM sleep for NM recallers. Findings partially replicate past research by demonstrating higher relative "slow-theta" (3-4Hz) for NM recallers than for controls. Conclusions Findings are consistent with a neurocognitive model of nightmares that stipulates cross-state anomalies in emotion processing in NM-prone individuals.
Collapse
Affiliation(s)
- Louis-Philippe Marquis
- Department of Psychology, Université de Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM – Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tyna Paquette
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM – Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Cloé Blanchette-Carrière
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM – Hôpital du Sacré-Coeur de Montréal, Québec, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Gaëlle Dumel
- Department of Psychology, Université de Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM – Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tore Nielsen
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM – Hôpital du Sacré-Coeur de Montréal, Québec, Canada
- Department of Psychiatry, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
139
|
The effect of pharmacological inactivation of the mammillary body and anterior thalamic nuclei on hippocampal theta rhythm in urethane-anesthetized rats. Neuroscience 2017; 362:196-205. [PMID: 28844761 DOI: 10.1016/j.neuroscience.2017.08.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 02/02/2023]
Abstract
The mammillary body (MB) and the anterior thalamic nuclei (ATN) are closely related structures, which take part in learning and memory processes. However, the exact role of these structures has remained unclear. In both structures neurons firing according to hippocampal theta rhythm have been found, mainly in the medial mammillary nucleus (MM) and anteroventral thalamic nucleus (AV). These neurons are driven by descending projections from the hippocampal formation and are thought to convey theta rhythm back to the hippocampus (HP). We argue that the MB-ATN axis not only relays theta signal, but may also modulate it. To examine it, we performed a pharmacological inactivation of the MM and AV by local infusion of procaine, and measured changes in theta activity in selected structures of the extended hippocampal system in urethane-anesthetized rats. The inactivation of the MM resulted in decrease in EEG power in the HP and AV, the most evidently in the lower theta frequency bands, i.e. 3-5Hz in the HP (down to 9.2% in 3- to 4-Hz band and 37.6% in 4- to 5-Hz band, in comparison to the power in the control conditions) and 3-4Hz in the AV (down to 24.9%). After the AV inactivation, hippocampal EEG power decreased in theta frequency bands of 3-8Hz (down to 61.6% in 6- to 7-Hz band and 69.4% in 7- to 8-Hz band). Our results suggest that the role of the MB-ATN axis in regulating theta rhythm signaling may be much more important than has been speculated so far.
Collapse
|
140
|
Chung SW, Lewis BP, Rogasch NC, Saeki T, Thomson RH, Hoy KE, Bailey NW, Fitzgerald PB. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study. Clin Neurophysiol 2017; 128:1117-1126. [DOI: 10.1016/j.clinph.2017.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
|
141
|
Ghaderi AH, Nazari MA, Shahrokhi H, Darooneh AH. Functional Brain Connectivity Differences Between Different ADHD Presentations: Impaired Functional Segregation in ADHD-Combined Presentation but not in ADHD-Inattentive Presentation. Basic Clin Neurosci 2017; 8:267-278. [PMID: 29158877 PMCID: PMC5683684 DOI: 10.18869/nirp.bcn.8.4.267] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: Contrary to Diagnostic and Statistical Manual of Mental Disorders (DSM-5), fifth edition, some studies indicate that ADHD-inattentive presentation (ADHD-I) is a distinct diagnostic disorder and not an ADHD presentation. Methods: In this study, 12 ADHD-combined presentation (ADHD-C), 10 ADHD-I, and 13 controls were enrolled and their resting state EEG recorded. Following this, a graph theoretical analysis was performed and functional integration and segregation of brain network was calculated. Results: The results show that clustering coefficient of theta band was significantly different among three groups and significant differences were observed in theta global efficiency between controls and ADHD-C. Regarding the alpha band, a lower clustering coefficient was observed in control subjects. In the beta band, clustering coefficient was significantly different between the control and children with ADHD-C and also between ADHD-I and ADHD-C. The clustering coefficient, in the subjects with ADHD-C, demonstrated a rapid decline and was significantly lower than the subjects with ADHD-I and control. Conclusion: Decreased clustering, in high thresholds, may be associated with hyperactivity while increased segregation in low thresholds with inattentiveness. A different functional network occurs in the ADHD-C brain that is consistent with several studies that have reported ADHD-I as a distinct disorder.
Collapse
Affiliation(s)
- Amir Hossein Ghaderi
- Cognitive Neuroscience Laboratory, Department of Psychology, University of Tabriz, Tabriz, Iran
| | - Mohammad Ali Nazari
- Cognitive Neuroscience Laboratory, Department of Psychology, University of Tabriz, Tabriz, Iran
| | - Hassan Shahrokhi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
142
|
Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sci 2017; 7:brainsci7040043. [PMID: 28420200 PMCID: PMC5406700 DOI: 10.3390/brainsci7040043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
In recent years, two separate research streams have focused on information sharing between the medial prefrontal cortex (mPFC) and hippocampus (HC). Research into spatial working memory has shown that successful execution of many types of behaviors requires synchronous activity in the theta range between the mPFC and HC, whereas studies of memory consolidation have shown that shifts in area dependency may be temporally modulated. While the nature of information that is being communicated is still unclear, spatial working memory and remote memory recall is reliant on interactions between these two areas. This review will present recent evidence that shows that these two processes are not as separate as they first appeared. We will also present a novel conceptualization of the nature of the medial prefrontal representation and how this might help explain this area’s role in spatial working memory and remote memory recall.
Collapse
|
143
|
Voelker P, Piscopo D, Weible AP, Lynch G, Rothbart MK, Posner MI, Niell CM. White matter and reaction time: Reply to commentaries. Cogn Neurosci 2017; 8:137-140. [PMID: 27400280 PMCID: PMC5606142 DOI: 10.1080/17588928.2016.1210592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We appreciate the many comments we received on our discussion paper and believe that they reflect a recognition of the importance of this topic worldwide. We point out in this reply that there appears to be a confusion between the role of oscillations in creating white matter and other functions of oscillations in communicating between neural areas during task performance or at rest. We also discuss some mechanisms other than the enhancement of white matter that must influence reaction time. We recognize the limited understanding we have of transfer and outline some future directions designed to improve our understanding of this process.
Collapse
Affiliation(s)
- Pascale Voelker
- a Department of Psychology , University of Oregon , Eugene , OR , USA
| | - Denise Piscopo
- b Institute of Neuroscience , University of Oregon , Eugene , OR , USA
| | - Aldis P Weible
- b Institute of Neuroscience , University of Oregon , Eugene , OR , USA
| | - Gary Lynch
- c Psychiatry & Human Behavior , University of California , Irvine , CA , USA
| | - Mary K Rothbart
- a Department of Psychology , University of Oregon , Eugene , OR , USA
| | - Michael I Posner
- a Department of Psychology , University of Oregon , Eugene , OR , USA
- b Institute of Neuroscience , University of Oregon , Eugene , OR , USA
| | | |
Collapse
|
144
|
Schreiner T, Rasch B. The beneficial role of memory reactivation for language learning during sleep: A review. BRAIN AND LANGUAGE 2017; 167:94-105. [PMID: 27036946 DOI: 10.1016/j.bandl.2016.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/19/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Sleep is essential for diverse aspects of language learning. According to a prominent concept these beneficial effects of sleep rely on spontaneous reactivation processes. A series of recent studies demonstrated that inducing such reactivation processes by re-exposure to memory cues during sleep enhances foreign vocabulary learning. Building upon these findings, the present article reviews recent models and empirical findings concerning the beneficial effects of sleep on language learning. Consequently, the memory function of sleep, its neural underpinnings and the role of the sleeping brain in language learning will be summarized. Finally, we will propose a working model concerning the oscillatory requirements for successful reactivation processes and future research questions to advance our understanding of the role of sleep on language learning and memory processes in general.
Collapse
Affiliation(s)
- Thomas Schreiner
- University of Fribourg, Department of Psychology, Fribourg, Switzerland; Zurich Center for Interdisciplinary Sleep Research (ZiS), Zurich, Switzerland.
| | - Björn Rasch
- University of Fribourg, Department of Psychology, Fribourg, Switzerland; Zurich Center for Interdisciplinary Sleep Research (ZiS), Zurich, Switzerland.
| |
Collapse
|
145
|
Voelker P, Sheese BE, Rothbart MK, Posner MI. Methylation polymorphism influences practice effects in children during attention tasks. Cogn Neurosci 2017; 8:72-84. [PMID: 27050482 PMCID: PMC5605136 DOI: 10.1080/17588928.2016.1170006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic mechanisms mediate the influence of experience on gene expression. Methylation is a principal method for inducing epigenetic effects on DNA. In this paper, we examine alleles of the methylenetetrahydrofolate reductase (MTHFR) gene that vary enzyme activity, altering the availability of the methyl donor and thus changing the efficiency of methylation. We hypothesized that alleles of the MTHFR gene would influence behavior in an attention-related task in conjunction with genes known to influence attention. We found that seven-year-old children homozygous for the C allele of MTHFR in interaction with the catechol O-methyltransferase (COMT) gene showed greater improvement in overall reaction time (RT) and in conflict resolution with practice on the Attention Network Test (ANT). This finding indicates that methylation may operate on or through genes that influence executive network operation. However, MTHFR T allele carriers showed faster overall RT and conflict resolution. Some children showed an initial improvement in ANT RT followed by a decline in performance, and we found that alleles of the dopamine beta-hydroxylase (DBH) gene were related to this performance decline. These results suggest a genetic dissociation between improvement while learning a skill and reduction in performance with continued practice.
Collapse
Affiliation(s)
| | - Brad E Sheese
- b Psychology , Illinois Wesleyan University , Bloomington , USA
| | | | | |
Collapse
|
146
|
Cheung MC, Chan AS, Liu Y, Law D, Wong CWY. Music training is associated with cortical synchronization reflected in EEG coherence during verbal memory encoding. PLoS One 2017; 12:e0174906. [PMID: 28358852 PMCID: PMC5373634 DOI: 10.1371/journal.pone.0174906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/17/2017] [Indexed: 11/19/2022] Open
Abstract
Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation.
Collapse
Affiliation(s)
- Mei-chun Cheung
- Department of Social Work, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
- * E-mail:
| | - Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
- Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Ying Liu
- School of Public Administration, Guangzhou University, Guangzhou, P.R. China
| | - Derry Law
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Christina W. Y. Wong
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| |
Collapse
|
147
|
Tryon VL, Penner MR, Heide SW, King HO, Larkin J, Mizumori SJY. Hippocampal neural activity reflects the economy of choices during goal-directed navigation. Hippocampus 2017; 27:743-758. [PMID: 28241404 DOI: 10.1002/hipo.22720] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/05/2017] [Accepted: 02/17/2017] [Indexed: 11/09/2022]
Abstract
Distinguishing spatial contexts is likely essential for the well-known role of the hippocampus in episodic memory. We studied whether types of hippocampal neural organization thought to underlie context discrimination are impacted by learned economic considerations of choice behavior. Hippocampal place cells and theta activity were recorded as rats performed a maze-based probability discounting task that involved choosing between a small certain reward or a large probabilistic reward. Different spatial distributions of place fields were observed in response to changes in probability, the outcome of the rats' choice, and whether or not rats were free to make that choice. The degree to which the reward location was represented by place cells scaled with the expected probability of rewards. Theta power increased around the goal location also in proportion to the expected probability of signaled rewards. Furthermore, theta power dynamically varied as specific econometric information was obtained "on the fly" during task performance. Such an economic perspective of memory processing by hippocampal place cells expands our view of the nature of context memories retrieved by hippocampus during adaptive navigation.
Collapse
Affiliation(s)
- Valerie L Tryon
- Psychology Department, University of Washington, Seattle, Washington
| | - Marsha R Penner
- Psychology Department, University of Washington, Seattle, Washington
| | - Shawn W Heide
- Psychology Department, University of Washington, Seattle, Washington
| | - Hunter O King
- Psychology Department, University of Washington, Seattle, Washington
| | - Joshua Larkin
- Psychology Department, University of Washington, Seattle, Washington
| | - Sheri J Y Mizumori
- Psychology Department, University of Washington, Seattle, Washington.,Neuroscience Program, University of Washington, Seattle, Washington
| |
Collapse
|
148
|
Abstract
Memory difficulties are commonly associated with temporal lobe epilepsy (TLE) and cause significant disability. This article reviews the role of altered hippocampal theta oscillations and theta-gamma coupling as potential causes of memory disturbance in temporal lobe epilepsy, dissecting the potential mechanisms underlying these changes in large-scale neuronal synchronization. We discuss development of treatments for cognitive dysfunction directed at restoring theta rhythmicity and future directions for research.
Collapse
|
149
|
Noda Y, Zomorrodi R, Saeki T, Rajji TK, Blumberger DM, Daskalakis ZJ, Nakamura M. Resting-state EEG gamma power and theta–gamma coupling enhancement following high-frequency left dorsolateral prefrontal rTMS in patients with depression. Clin Neurophysiol 2017; 128:424-432. [DOI: 10.1016/j.clinph.2016.12.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
|
150
|
Ouyang W, Yan Q, Zhang Y, Fan Z. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood. PLoS One 2017; 12:e0171976. [PMID: 28196142 PMCID: PMC5308857 DOI: 10.1371/journal.pone.0171976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 11/18/2022] Open
Abstract
Moderate traumatic brain injury (TBI) in children often happen when there’s a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP) method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI) 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR) ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1 subregion.
Collapse
Affiliation(s)
- Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- * E-mail:
| | - Qichao Yan
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yu Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiheng Fan
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|