101
|
Arai AC, Xia YF, Suzuki E. Modulation of AMPA receptor kinetics differentially influences synaptic plasticity in the hippocampus. Neuroscience 2004; 123:1011-24. [PMID: 14751292 DOI: 10.1016/j.neuroscience.2003.10.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Prior studies showed that positive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor modulators facilitate long-term potentiation (LTP) and improve the formation of several types of memory in animals and humans. However, these modulators are highly diverse in their effects on receptor kinetics and synaptic transmission and thus may differ also in their efficacy to promote changes in synaptic strength. The present study examined three of these modulators for their effects on synaptic plasticity in field CA1 of hippocampal slices, two of them being the benzamide drugs 1-(quinoxalin-6-ylcarbonyl)piperidine (CX516) and 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546) which prominently enhance synaptic transmission yet differ in their relative impact on amplitude versus duration of the synaptic response. The third drug was cyclothiazide which potently blocks AMPA receptor desensitization. Effects on plasticity were assessed by measuring (i) the likelihood of obtaining stable potentiation when using theta-burst stimulation with three instead of four pulses per burst, (ii) the maximum amount of potentiation under optimal stimulation conditions, and (iii) the effect on long-term depression (LTD). Both benzamides facilitated the formation of stable potentiation induced with three-pulse burst stimulation which is normally ineffective. CX546 in addition increased maximally inducible potentiation after four-pulse burst stimulation from about 50% to 100%. Burst response analysis revealed that CX546 greatly prolonged the duration of depolarization by slowing the decay of the response which thus presumably leads to a more continuous N-methyl-D-aspartate (NMDA) receptor activation. Cyclothiazide was ineffective in increasing maximal potentiation in either field or whole-cell recordings. CX546, but not CX516, also enhanced nearly two-fold the NMDA receptor-dependent long-term depression induced by heterosynaptic 2 Hz stimulation. Tests with recombinant NMDA receptors (NR1/NR2A) showed that CX516 and CX546 have no direct effects on currents mediated by these receptors. These results suggest that (1) modulation of AMPA receptors which increases either response amplitude or duration can facilitate LTP formation, (2) modulators that effectively slow response deactivation augment the maximum magnitude of LTP and LTD, and (3) receptor desensitization may have a minor impact on synaptic plasticity in the hippocampus. Taken together, our data indicate that AMPA receptor modulators differ substantially in their ability to enhance synaptic potentiation or depression, depending on their particular influence on receptor kinetics, and hence that they may also be differentially effective in influencing higher-order processes such as memory encoding.
Collapse
Affiliation(s)
- A C Arai
- Department of Pharmacology, Southern Illinois University School of Medicine, MC 9629, 801 North Rutledge Street, Springfield, IL 62702, USA.
| | | | | |
Collapse
|
102
|
Dieguez D, Barea-Rodriguez EJ. Aging impairs the late phase of long-term potentiation at the medial perforant path-CA3 synapse in awake rats. Synapse 2004; 52:53-61. [PMID: 14755632 PMCID: PMC1913478 DOI: 10.1002/syn.20004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effects of aging on long-term potentiation (LTP) in the dentate gyrus (DG) and CA1 are well documented, but LTP at the medial perforant path (MPP)-CA3 synapse of aged animals has remained unexplored. Because the MPP-DG and Schaffer-collateral-CA1 synapses account for only about 20% of total hippocampal synapses, global understanding of how aging affects hippocampal plasticity has remained limited. Much is known about LTP induction in the hippocampal formation, whereas the mechanisms that regulate LTP maintenance are less understood, especially during aging. We investigated the effects of aging on MPP-CA3 LTP induction and maintenance in awake rats. As is the case in the DG and CA1, high-frequency stimulation-induced LTP at the MPP-CA3 synapse is normal in aged rats. These data indicate that N-methyl-D-aspartate (NMDA) receptor-mediated processes are intact at the MPP-CA3 synapse in aged rats. In contrast, aging impaired the magnitude and duration of MPP-CA3 LTP over a period of days. Also, these data are consistent with reports that area CA3 is especially susceptible to age-related changes. Our data suggest that aging impairs mechanisms that regulate the late phase of MPP-CA3 LTP and contribute to a more global understanding of how aging affects hippocampal plasticity.
Collapse
Affiliation(s)
- Dario Dieguez
- Neurobiology of Aging Laboratory, Department of Biology, The University of Texas, San Antonio, Texas 78249-0662
| | | |
Collapse
|
103
|
Abstract
Over the last few decades, technology to record through ever increasing numbers of electrodes has become available to electrophysiologists. For the study of distributed neural processing, however, the ability to stimulate through equal numbers of electrodes, and thus to attain bidirectional communication, is of paramount importance. Here, we present a stimulation system for multi-electrode arrays which interfaces with existing commercial recording hardware, and allows stimulation through any electrode in the array, with rapid switching between channels. The system is controlled through real-time Linux, making it extremely flexible: stimulation sequences can be constructed on-the-fly, and arbitrary stimulus waveforms can be used if desired. A key feature of this design is that it can be readily and inexpensively reproduced in other labs, since it interfaces to standard PC parallel ports and uses only off-the-shelf components. Moreover, adaptation for use with in vivo multi-electrode probes would be straightforward. In combination with our freely available data-acquisition software, MeaBench, this system can provide feedback stimulation in response to recorded action potentials within 15 ms.
Collapse
Affiliation(s)
- Daniel A Wagenaar
- Department of Physics, California Institute of Technology, Caltech 103-33, Pasadena, CA 91125, USA.
| | | |
Collapse
|
104
|
Abstract
Hypotheses about the factors controlling the rate of brain aging are usually derived from 1) correlates of maximum life span across mammals or 2) investigations into the causes of age-related neuropathologies in humans. With regard to the former, the strong correlation between metabolic rate and longevity prompted a variety of free radical hypotheses of aging. There is also evidence that brain size affects life span independently of body metabolism rates. The second approach has led to a diverse array of pathogenic mechanisms and, importantly for the development of general hypotheses, the discovery of animal analogues. The present paper discusses the possibility that age-associated lysosomal dysfunction constitutes a generalized mammalian phenomenon that accounts for specific features of the aged human brain. Immunocytochemical studies using rats and dogs have identified lysosomal changes that begin early in adulthood and are most pronounced in brain areas known to be particularly vulnerable to age-related pathogenesis in humans. Experimentally induced lysosomal dysfunction in cultured brain slices from rats and mutant mice triggers a wide array of changes associated with the aged human brain, including meganeurites and intraneuronal tangles. Finally, there is evidence that at least some forms of proteolysis decrease with increasing brain size across the mammals. The above observations lead to the suggestion that the expansion of neuronal arborizations that occurred in conjunction with increases in brain size secondarily slowed both neuronal metabolism and protein turnover. These events could have served to reduce the rate at which lysosomes (and other organelles) fail.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, California 92697-1695, USA.
| | | |
Collapse
|
105
|
Gall CM, Lynch G. Integrins, synaptic plasticity and epileptogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:12-33. [PMID: 15250583 DOI: 10.1007/978-1-4757-6376-8_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A number of processes are thought to contribute to the development of epilepsy including enduring increases in excitatory synaptic transmission, changes in GABAergic inhibition, neuronal cell death and the development of aberrant innervation patterns in part arising from reactive axonal growth. Recent findings indicate that adhesion chemistries and, most particularly, activities of integrin class adhesion receptors play roles in each of these processes and thereby are likely to contribute significantly to the cell biology underlying epileptogenesis. As reviewed in this chapter, studies of long-term potentiation have shown that integrins are important for stabilizing activity-induced increases in synaptic strength and excitability. Other work has demonstrated that seizures, and in some instances subseizure neuronal activity, modulate the expression of integrins and their matrix ligands and the activities of proteases which regulate them both. These same adhesion proteins and proteases play critical roles in axonal growth and synaptogenesis including processes induced by seizure in adult brain. Together, these findings indicate that seizures activate integrin signaling and induce a turnover in adhesive contacts and that both processes contribute to lasting changes in circuit and synaptic function underlying epileptogenesis.
Collapse
Affiliation(s)
- Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, USA
| | | |
Collapse
|
106
|
Christian KM, Thompson RF. Neural Substrates of Eyeblink Conditioning: Acquisition and Retention. Learn Mem 2003; 10:427-55. [PMID: 14657256 DOI: 10.1101/lm.59603] [Citation(s) in RCA: 441] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Classical conditioning of the eyeblink reflex to a neutral stimulus that predicts an aversive stimulus is a basic form of associative learning. Acquisition and retention of this learned response require the cerebellum and associated sensory and motor pathways and engage several other brain regions including the hippocampus, neocortex, neostriatum, septum, and amygdala. The cerebellum and its associated circuitry form the essential neural system for delay eyeblink conditioning. Trace eyeblink conditioning, a learning paradigm in which the conditioned and unconditioned stimuli are noncontiguous, requires both the cerebellum and the hippocampus and exhibits striking parallels to declarative memory formation in humans. Identification of the neural structures critical to the development and maintenance of the conditioned eyeblink response is an essential precursor to the investigation of the mechanisms responsible for the formation of these associative memories. In this review, we describe the evidence used to identify the neural substrates of classical eyeblink conditioning and potential mechanisms of memory formation in critical regions of the hippocampus and cerebellum. Addressing a central goal of behavioral neuroscience, exploitation of this simple yet robust model of learning and memory has yielded one of the most comprehensive descriptions to date of the physical basis of a learned behavior in mammals.
Collapse
Affiliation(s)
- Kimberly M Christian
- Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | |
Collapse
|
107
|
Morozov A, Muzzio IA, Bourtchouladze R, Van-Strien N, Lapidus K, Yin D, Winder DG, Adams JP, Sweatt JD, Kandel ER. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 2003; 39:309-25. [PMID: 12873387 DOI: 10.1016/s0896-6273(03)00404-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Learning-induced synaptic plasticity commonly involves the interaction between cAMP and p42/44MAPK. To investigate the role of Rap1 as a potential signaling molecule coupling cAMP and p42/44MAPK, we expressed an interfering Rap1 mutant (iRap1) in the mouse forebrain. This expression selectively decreased basal phosphorylation of a membrane-associated pool of p42/44MAPK, impaired cAMP-dependent LTP in the hippocampal Schaffer collateral pathway induced by either forskolin or theta frequency stimulation, decreased complex spike firing, and reduced the p42/44MAPK-mediated phosphorylation of the A-type potassium channel Kv4.2. These changes correlated with impaired spatial memory and context discrimination. These results indicate that Rap1 couples cAMP signaling to a selective membrane-associated pool of p42/44MAPK to control excitability of pyramidal cells, the early and late phases of LTP, and the storage of spatial memory.
Collapse
Affiliation(s)
- Alexei Morozov
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 2003; 65:453-80. [PMID: 12471170 DOI: 10.1146/annurev.physiol.65.092101.142734] [Citation(s) in RCA: 901] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperpolarization-activated cation currents, termed If, Ih, or Iq, were initially discovered in heart and nerve cells over 20 years ago. These currents contribute to a wide range of physiological functions, including cardiac and neuronal pacemaker activity, the setting of resting potentials, input conductance and length constants, and dendritic integration. The hyperpolarization-activated, cation nonselective (HCN) gene family encodes the channels that underlie Ih. Here we review the relation between the biophysical properties of recombinant HCN channels and the pattern of HCN mRNA expression with the properties of native Ih in neurons and cardiac muscle. Moreover, we consider selected examples of the expanding physiological functions of Ih with a view toward understanding how the properties of HCN channels contribute to these diverse functional roles.
Collapse
Affiliation(s)
- Richard B Robinson
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
109
|
Doyère V, Schafe GE, Sigurdsson T, LeDoux JE. Long-term potentiation in freely moving rats reveals asymmetries in thalamic and cortical inputs to the lateral amygdala. Eur J Neurosci 2003; 17:2703-15. [PMID: 12823477 DOI: 10.1046/j.1460-9568.2003.02707.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Long-term memory underlying Pavlovian fear conditioning is believed to involve plasticity at sensory input synapses in the lateral nucleus of the amygdala (LA). A useful physiological model for studying synaptic plasticity is long-term potentiation (LTP). LTP in the LA has been studied only in vitro or in anaesthetized rats. Here, we tested whether LTP can be induced in auditory input pathways to the LA in awake rats, and if so, whether it persists over days. In chronically implanted rats, extracellular field potentials evoked in the LA by stimulation of the auditory thalamus and the auditory association cortex, using test simulations and input/output (I/O) curves, were compared in the same animals after tetanization of either pathway alone or after combined tetanization. For both pathways, LTP was input-specific and long lasting. LTP at cortical inputs exhibited the largest change at early time points (24 h) but faded within 3 days. In contrast, LTP at thalamic inputs, though smaller initially than cortical LTP, remained stable until at least 6 days. Comparisons of I/O curves indicated that the two pathways may rely on different mechanisms for the maintenance of LTP and may benefit differently from their coactivation. This is the first report of LTP at sensory inputs to the LA in awake animals. The results reveal important characteristics of synaptic plasticity in neuronal circuits of fear memory that could not have been revealed with in vitro preparations, and suggest a differential role of thalamic and cortical auditory afferents in long-term memory of fear conditioning.
Collapse
Affiliation(s)
- Valérie Doyère
- W.M. Keck Foundation, Laboratory of Neurobiology, Center for Neural Science, NYU, New York, NY 10003, USA
| | | | | | | |
Collapse
|
110
|
Abstract
The paramount feature of long-term potentiation (LTP) as a memory mechanism is its characteristic persistence over time. Although the basic phenomenology of LTP persistence was established 30 years ago, new insights have emerged recently about the extent of LTP persistence and its regulation by activity and experience. Thus, it is now evident that LTP, at least in the dentate gyrus, can either be decremental, lasting from hours to weeks, or stable, lasting months or longer. Although mechanisms engaged during the induction of LTP regulate its subsequent persistence, the maintenance of LTP is also governed by activity patterns post-induction, whether induced experimentally or generated by experience. These new findings establish dentate gyrus LTP as a useful model system for studying the mechanisms governing the induction, maintenance and interference with long-term memory, including very long-term memory lasting months or longer. The challenge is to study LTP persistence in other brain areas, and to relate, if possible, the properties and regulation of LTP maintenance to these same properties of the information that is actually stored in those regions.
Collapse
Affiliation(s)
- Wickliffe C Abraham
- Department of Psychology, Box 56, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
111
|
Muir GM, Bilkey DK. Theta- and movement velocity-related firing of hippocampal neurons is disrupted by lesions centered on the perirhinal cortex. Hippocampus 2003; 13:93-108. [PMID: 12625461 DOI: 10.1002/hipo.10052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hippocampus is critically involved in spatial memory and navigation. It has previously been proposed that, as part of this process, the hippocampus might have access to self-motion information. The possibility that some of this information may originate from the perirhinal cortex, a region involved in high-order multimodal processing, was tested in the present study by recording the responses of hippocampal complex-spike (place cells) and theta cells (putative interneurons) to movement velocity and to the movement-related theta rhythm EEG while rats with bilateral ibotenic acid lesions centered on the perirhinal cortex (n = 5), or control surgeries (n = 5), foraged in a rectangular environment. Perirhinal cortex lesions altered several characteristics of place and theta cell firing. First, the proportion of theta cells recorded was significantly lower in perirhinal lesion animals (8/39 units) compared to controls (22/53 units). Second, the firing of place cells recorded from lesion animals was phase-shifted so as to occur significantly earlier during the theta rhythm cycle than in place cells from controls (mean difference = 48.73 degrees). Third, the firing rates of a significantly lower proportion of place cells from lesion animals were modulated by the movement velocity of the animal compared to place cells from controls. These results indicate that the perirhinal cortex contributes to the responses of hippocampal CA1 place cells by providing information about self-movement and by controlling the timing of firing of these cells. This information may normally be utilized by the hippocampus during spatial memory and navigation processes.
Collapse
Affiliation(s)
- Gary M Muir
- Department of Psychology, University of Otago, Otago, Dunedin, New Zealand
| | | |
Collapse
|
112
|
Abstract
Tests were made for use-dependent plasticity in the cholinergic projections to hippocampus. Transient infusion of the cholinergic agonist carbachol into hippocampal slices induced rhythmic activity that persisted for hours after washout. Comparable effects were obtained with physostigmine, a drug that blocks acetylcholine breakdown and thereby enhances cholinergic transmission. It thus seems that activation of cholinergic synapses induces lasting changes in hippocampal physiology. Two lines of evidence indicated that cholinergic synapses are also the sites at which the plasticity is expressed. First, the induction and expression of the rhythms were not blocked by the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonovaleric acid, indicating that a long-term potentiation effect between pyramidal cells was not involved. Second, a muscarinic antagonist (atropine) completely abolished stable rhythmic activity after agonist washout. This result indicates that endogenous cholinergic activity is responsible for the persistence of rhythmic oscillations. These experiments suggest that short periods of intense cholinergic activity induce lasting changes in cholinergic synapses and thus extend such forms of plasticity to beyond the glutamatergic system.
Collapse
Affiliation(s)
- Laura Lee Colgin
- Institute for Mathematical Behavioral Sciences, University of California, 101 Theory, #250, Irvine, CA 92612-1695, USA.
| | | | | |
Collapse
|
113
|
Kang-Park MH, Sarda MA, Jones KH, Moore SD, Shenolikar S, Clark S, Wilson WA. Protein phosphatases mediate depotentiation induced by high-intensity theta-burst stimulation. J Neurophysiol 2003; 89:684-90. [PMID: 12574446 DOI: 10.1152/jn.01041.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that varying stimulus intensity produces qualitatively different types of synaptic plasticity in area CA1 of hippocampal slices: brief low-intensity (LI) theta-burst (TB) stimuli induce long-term potentiation (LTP), but if the stimulus intensity is increased (to mimic conditions that may exist during seizures), LTP is not induced; instead, high-intensity (HI) TB stimuli erase previously induced LTP ("TB depotentiation"). We now have explored the mechanisms underlying TB depotentiation using extracellular field recordings with pharmacological manipulations. We found that TB depotentiation was blocked by okadaic acid and calyculin A (inhibitors of serine/threonine protein phosphatases PP1 and PP2A), FK506 (a specific blocker of calcineurin, a Ca(2+)/calmodulin (CaM) protein phosphatase), and 8-Br-cAMP (an activator of protein kinase A) with 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor). These results suggest that protein phosphatase pathways are involved in the TB depotentiation similar to other type of down-regulating synaptic plasticity such as low-frequency stimulation (LFS)-induced long-term depression (LTD) and depotentiation in the rat hippocampus. However, TB depotentiation and LFS depotentiation could have differential functional significance.
Collapse
Affiliation(s)
- Maeng-Hee Kang-Park
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Rosenzweig ES, Barnes CA. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 2003; 69:143-79. [PMID: 12758108 DOI: 10.1016/s0301-0082(02)00126-0] [Citation(s) in RCA: 557] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aging is associated with specific impairments of learning and memory, some of which are similar to those caused by hippocampal damage. Studies of the effects of aging on hippocampal anatomy, physiology, plasticity, and network dynamics may lead to a better understanding of age-related cognitive deficits. Anatomical and electrophysiological studies indicate that the hippocampus of the aged rat sustains a loss of synapses in the dentate gyrus, a loss of functional synapses in area CA1, a decrease in the NMDA-receptor-mediated response at perforant path synapses onto dentate gyrus granule cells, and an alteration of Ca(2+) regulation in area CA1. These changes may contribute to the observed age-related impairments of synaptic plasticity, which include deficits in the induction and maintenance of long-term potentiation (LTP) and lower thresholds for depotentiation and long-term depression (LTD). This shift in the balance of LTP and LTD could, in turn, impair the encoding of memories and enhance the erasure of memories, and therefore contribute to cognitive deficits experienced by many aged mammals. Altered synaptic plasticity may also change the dynamic interactions among cells in hippocampal networks, causing deficits in the storage and retrieval of information about the spatial organization of the environment. Further studies of the aged hippocampus will not only lead to treatments for age-related cognitive impairments, but may also clarify the mechanisms of learning in adult mammals.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Arizona Research Laboratories, Division of Neural Systems, Memory, and Aging, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
115
|
Martin SJ, Morris RGM. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 2003; 12:609-36. [PMID: 12440577 DOI: 10.1002/hipo.10107] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted, although definitive proof of the synaptic plasticity and memory hypothesis is still lacking. This article reviews recent evidence relevant to the hypothesis, with particular emphasis on studies of experience-dependent plasticity in the neocortex and hippocampus. In our view, there is now compelling evidence that changes in synaptic strength occur as a consequence of certain forms of learning. A major challenge will be to determine whether such changes constitute the memory trace itself or play a less specific supporting role in the information processing that accompanies memory formation.
Collapse
|
116
|
Selcher JC, Weeber EJ, Christian J, Nekrasova T, Landreth GE, Sweatt JD. A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. Learn Mem 2003; 10:26-39. [PMID: 12551961 PMCID: PMC196656 DOI: 10.1101/lm.51103] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies demonstrate a requirement for the Extracellular signal Regulated Kinase (ERK) mitogen-activated protein kinase (MAPK) cascade in both the induction of long-lasting forms of hippocampal synaptic plasticity and in hippocampus-dependent associative and spatial learning. In the present studies, we investigated mechanisms by which ERK might contribute to synaptic plasticity at Schaffer collateral synapses in hippocampal slices. We found that long-term potentiation (LTP) induced with a pair of 100-Hz tetani does not require ERK activation in mice whereas it does in rats. However, in mice, inhibition of ERK activation blocked LTP induced by two LTP induction paradigms that mimicked the endogenous theta rhythm. In an additional series of studies, we found that mice specifically deficient in the ERK1 isoform of MAPK showed no impairments in tests of hippocampal physiology. To investigate ERK-dependent mechanisms operating during LTP-inducing stimulation paradigms, we monitored spike production in the cell body layer of the hippocampus during the period of theta-like LTP-inducing stimulation. Theta-burst stimulation (TBS) produced a significant amount of postsynaptic spiking, and the likelihood of spike production increased progressively over the course of the three trains of TBS independent of any apparent increase in Excitatory Post-Synaptic Potential (EPSP) magnitude. Inhibition of ERK activation dampened this TBS-associated increase in spiking. These data indicate that, for specific patterns of stimulation, ERK may function in the regulation of neuronal excitability in hippocampal area CA1. Overall, our data indicate that the progressive increase in spiking observed during TBS represents a form of physiologic temporal integration that is dependent on ERK MAPK activity.
Collapse
Affiliation(s)
- Joel C Selcher
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
117
|
Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 2002. [PMID: 12451139 DOI: 10.1523/jneurosci.22-23-10399.2002] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in activity-dependent modifications of neuronal connectivity and synaptic strength, including establishment of hippocampal long-term potentiation (LTP). To shed light on mechanisms underlying BDNF-dependent synaptic plasticity, the present study was undertaken to characterize release of native BDNF from newborn rat hippocampal neurons in response to physiologically relevant patterns of electrical field stimulation in culture, including tonic stimulation at 5 Hz, bursting stimulation at 25 and 100 Hz, and theta-burst stimulation (TBS). Release was measured using the ELISA in situ technique, developed in our laboratory to quantify secretion of native BDNF without the need to first overexpress the protein to nonphysiological levels. Each stimulation protocol resulted in a significant increase in BDNF release that was tetrodotoxin sensitive and occurred in the absence of glutamate receptor activation. However, 100 Hz tetanus and TBS, stimulus patterns that are most effective in inducing hippocampal LTP, were significantly more effective in releasing native BDNF than lower-frequency stimulation. For all stimulation protocols tested, removal of extracellular calcium, or blockade of N-type calcium channels, prevented BDNF release. Similarly, depletion of intracellular calcium stores with thapsigargin and treatment with dantrolene, an inhibitor of calcium release from caffeine-ryanodine-sensitive stores, markedly inhibited activity-dependent BDNF release. Our results indicate that BDNF release can encode temporal features of hippocampal neuronal activity. The dual requirement for calcium influx through N-type calcium channels and calcium mobilization from intracellular stores strongly implicates a role for calcium-induced calcium release in activity-dependent BDNF secretion.
Collapse
|
118
|
Pennartz CMA, Uylings HBM, Barnes CA, McNaughton BL. Memory reactivation and consolidation during sleep: from cellular mechanisms to human performance. PROGRESS IN BRAIN RESEARCH 2002; 138:143-66. [PMID: 12432768 DOI: 10.1016/s0079-6123(02)38076-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C M A Pennartz
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
119
|
Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci 2002. [PMID: 12417688 DOI: 10.1523/jneurosci.22-21-09626.2002] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) is widely regarded as a memory mechanism, but it is not known whether it can last long enough to underlie very long-term memory. We report that high-frequency stimulation (HFS) paradigms applied to the rat dentate gyrus can elicit stable LTP lasting months and up to at least 1 year. The induction of stable LTP was sensitive to stimulation variables on the day of HFS and was associated with phosphorylation of cAMP response element-binding protein. The maintenance of stable LTP was also experience-dependent, because it was reversed when animals were exposed repeatedly to an enriched environment beginning 14 d post-HFS. However, stable LTP eventually consolidated over time and became resistant to reversal, because exposure to enriched environments 90 d post-HFS failed to influence stable LTP maintenance. Thus, LTP can be shown to meet one of the principal criteria for a very long-term memory storage mechanism. However, under naturalistic environmental conditions, LTP may normally be retained in the hippocampus for only short periods of time.
Collapse
|
120
|
Kramár EA, Bernard JA, Gall CM, Lynch G. Alpha3 integrin receptors contribute to the consolidation of long-term potentiation. Neuroscience 2002; 110:29-39. [PMID: 11882370 DOI: 10.1016/s0306-4522(01)00540-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several lines of evidence suggest that integrin receptors play a pivotal role in consolidation of long-term potentiation (LTP), but which of the many integrin dimers are involved remains to be discovered. The present study used an LTP reversal paradigm to test if alpha3 integrins make an important contribution. Function blocking alpha3 monoclonal antibodies or vehicle were locally infused into recording sites in field CA1 of rat hippocampal slices and LTP induced with theta burst stimulation. Low frequency trains of pulses were applied 30 min after the theta bursts. Previous work indicates that low frequency stimulation reverses LTP when applied immediately after induction but is largely ineffective after 30-45-min delays. If the antibodies were to block consolidation, then they should extend the period over which potentiation is vulnerable to disruption. There was no detectable difference between the two groups in the initial degree of LTP or within slice decay of potentiation 1-10 min after induction; a small but reliable decay occurred from 10 to 30 min with antibody treatment (P<0.01) but not in control slices. Percent potentiation was not statistically different for vehicle (55 +/- 19%, mean +/- S.D.) and anti-alpha3 (43 +/- 21%) slices at 30 min post-theta bursts. Five-Hz stimulation ("theta pulse" stimulation) 30 min after induction caused a reduction of LTP. The percent loss of potentiation after the 1-min trains was greater in the antibody-treated slices than in controls (98 +/- 4% vs. 62 +/- 28%, P<0.01, U-test) and correlated (r=0.84, alpha3 slices) with the percent LTP present prior to low frequency stimulation, as expected if the stimulation reversed potentiation. Recovery occurred in both groups but percent LTP was significantly smaller in experimental slices at 10 min post-theta pulses (5 +/- 11% vs. 36 +/- 15%, P<0.01). Recovery continued for 20 min after theta pulses and, in accordance with earlier work, was nearly complete for the control slices (50 +/- 19% vs 55 +/- 15%, 40 min post- vs. immediately pre-theta pulses). LTP remained depressed after 40 min of recovery in the anti-alpha3 slices (23 +/- 19% vs. 43 +/- 21%) at which point it was substantially less than that found in controls (P<0.01). Western blots with anti-alpha3 antibodies identified a polypeptide with the molecular mass (155 kDa) expected for the alpha3 subunit and further showed that it is broadly distributed in brain. Subcellular fractionation experiments demonstrated that alpha3 is concentrated in synaptic membranes over homogenates to about the same degree as the GluR1 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor. From these results we suggest that alpha3-containing integrins are localized to synapses and are needed to stabilize a slowly decaying form of LTP. The findings also show that vulnerability to reversal can be used in place of extended recording sessions in studying consolidation.
Collapse
Affiliation(s)
- E A Kramár
- Department of Psychiatry and Human Behavior, University of California-Irvine, 101 Theory, Suite #250, Research Park, Irvine, CA 92612-1695, USA.
| | | | | | | |
Collapse
|
121
|
Zink WE, Boyle J, Persidsky Y, Xiong H, Gendelman HE. Model systems for assessing cognitive function: implications for HIV-1 infection and drugs of abuse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 493:7-27. [PMID: 11727783 DOI: 10.1007/0-306-47611-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Memory deficits are common among drug abusers and in those with chronic neurodegenerative disorders. Currently, the mechanisms through which diverse neurophysiologic processes alter memory are not known. This review describes the current systems and rationale for studying memory formation, consolidation, and recall. Special attention is given to physiologic (hippocampal long-term potentiation) and behavioral animal models. The principles and methods described can be applied to studies of diverse clinical disorders.
Collapse
Affiliation(s)
- W E Zink
- The Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha 68198-5215, USA
| | | | | | | | | |
Collapse
|
122
|
Varga V, Sik A, Freund TF, Kocsis B. GABA(B) receptors in the median raphe nucleus: distribution and role in the serotonergic control of hippocampal activity. Neuroscience 2002; 109:119-32. [PMID: 11784704 DOI: 10.1016/s0306-4522(01)00448-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that serotonergic neurons of the median raphe nucleus have a suppressive effect on theta synchronization in the hippocampus. Median raphe lesion, suppression of 5-HT neuronal activity by administration of GABA(A) receptor antagonist or by glutamate blockade or depletion produced long-lasting non-interrupted hippocampal theta in freely behaving rats independent of behavior and in rats anesthetized with urethane. Serotonergic neurons show a characteristic sleep-wake pattern of activity and there is evidence that GABAergic mechanisms play an important role in their regulation. In this study we analyzed the distribution and subcellular localization of GABA(B) receptors in the midbrain raphe complex using combined 5-HT/GABA(B) receptor immunohistochemistry at the light and electron microscopic levels and studied the effects of their pharmacological manipulation on hippocampal electroencephalographic activity in urethane-anesthetized rats. We found that sustained infusion of the GABA(B) receptor agonist baclofen into the median raphe nucleus, using the microdialysis technique, elicited lasting theta activity in the hippocampus. The effect was antagonized by selective GABA(B) receptor antagonists. The predominant localization of GABA(B) receptors in the median, as well as in dorsal raphe was found on serotonergic neurons which strongly indicates that the increase in theta occurrence after baclofen injection resulted from suppression of the serotonergic output originating from the median raphe. On the electron microscopic level, we found GABA(B) receptors located extrasynaptically indicating that these receptors are preferentially activated by strong inputs, i.e. when GABA released from the synaptic terminals is sufficient to spill over from the synaptic cleft. Such conditions might be satisfied during rapid eye movement sleep when GABAergic neurons in the raphe are firing at their highest rate and in rhythmic synchronized bursts. Our data indicate that midbrain raphe GABA(B) mechanisms play an important role in behavioral state control and in hippocampal activity, in particular.
Collapse
Affiliation(s)
- V Varga
- National Institute of Neurosurgery, Budapest, Hungary
| | | | | | | |
Collapse
|
123
|
Abstract
In this review we describe an emerging understanding of the roles of the Extracellular-signal regulated kinase/mitogen-activated protein kinase (ERK/MAPK) cascade in learning and memory. We begin by describing several behavioral memory paradigms and review data implicating ERK as an essential component of the signal transduction mechanisms subserving these processes. We then describe evidence implicating ERK as a critical player in synaptic and neuronal plasticity-a cellular role likely to underlie ERK's behavioral role in the animal. We then proceed to parsing the complexities of biochemical regulation of ERK in neurons and to a description of a few likely cellular targets of ERK. This is in order to begin discussing the possible molecular basis of ERK-mediated behavioral change. We close our review with speculations concerning how the complexities and idiosyncrasies of ERK regulation may allow for sophisticated information processing at the biochemical level in neurons-attributes that may make the ERK cascade well-suited for triggering complex and long-lasting behavioral change. Our goal in this review is not so much to portray ERK as unique regarding its role as a signal transducter in memory, but rather to use ERK as one specific example of recent studies beginning to address the molecules and signal transduction pathways subserving cognition.
Collapse
Affiliation(s)
- J Paige Adams
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
124
|
Klein SB, Cosmides L, Tooby J, Chance S. Decisions and the evolution of memory: multiple systems, multiple functions. Psychol Rev 2002; 109:306-29. [PMID: 11990320 DOI: 10.1037/0033-295x.109.2.306] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Memory evolved to supply useful, timely information to the organism's decision-making systems. Therefore, decision rules, multiple memory systems, and the search engines that link them should have coevolved to mesh in a coadapted, functionally interlocking way. This adaptationist perspective suggested the scope hypothesis: When a generalization is retrieved from semantic memory, episodic memories that are inconsistent with it should be retrieved in tandem to place boundary conditions on the scope of the generalization. Using a priming paradigm and a decision task involving person memory, the authors tested and confirmed this hypothesis. The results support the view that priming is an evolved adaptation. They further show that dissociations between memory systems are not--and should not be--absolute: Independence exists for some tasks but not others.
Collapse
Affiliation(s)
- Stanley B Klein
- Department of Psychology, University of California, Santa Barbara 93106, USA.
| | | | | | | |
Collapse
|
125
|
Yaniv D, Schafe GE, LeDoux JE, Richter-Levin G. A gradient of plasticity in the amygdala revealed by cortical and subcortical stimulation, in vivo. Neuroscience 2002; 106:613-20. [PMID: 11591461 DOI: 10.1016/s0306-4522(01)00312-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Projections to the amygdala from various cortical and subcortical areas terminate in different nuclei. In the present study we examined long-term potentiation of synaptic transmission in the lateral or the basal amygdaloid nuclei by theta burst stimulation of thalamic vs. cortical sensory projections in the anesthetized rat. Although both the medial geniculate nucleus and the dorsal perirhinal cortex have direct projections to lateral nucleus, only the thalamic stimulation induced long-term potentiation of field potentials recorded in the lateral nucleus. In contrast, cortical (ventral perirhinal cortex) but not thalamic stimulation induced long-term potentiation in the basal nucleus. Since the thalamic pathway is believed to process simple/unimodal stimulus features, and the perirhinal cortex complex/polymodal sensory representations, the dissociation of long-term potentiation in lateral and basal nuclei suggests that the basal nucleus may serve as an amygdaloid sensory interface for complex stimulus information similar to the role of the lateral nucleus in relation to relatively simple representations. Thus plasticity of simple and complex representations may involve different amygdala inputs and circuits.
Collapse
Affiliation(s)
- D Yaniv
- Laboratory of Behavioral Neuroscience, Department of Psychology, University of Haifa, Israel
| | | | | | | |
Collapse
|
126
|
Villarreal DM, Do V, Haddad E, Derrick BE. NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat Neurosci 2002; 5:48-52. [PMID: 11740500 DOI: 10.1038/nn776] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although long-term potentiation (LTP) is long-lasting, it is not permanent and decays within weeks after its induction. Little is known about the processes underlying this decay. Here we assessed the contribution of synaptic activity to LTP decay by determining the effect of the competitive NMDA receptor antagonist CPP on the decay of perforant path-dentate LTP. CPP blocked decay over a one-week period when administered daily following the induction of LTP, and blocked decay of the late, protein-synthesis-dependent phase of LTP when administered two days after LTP induction. CPP administered for a five-day period following spatial memory training enhanced subsequent memory retention. These data suggest that LTP is normally a persistent process that is actively reversed by NMDA receptor activation, and that both the early and late phases of LTP are dynamic processes regulated by NMDA receptors. These data also support the view that LTP is involved in maintaining spatial memory.
Collapse
Affiliation(s)
- Desiree M Villarreal
- The Department of Biology and The Cajal Neuroscience Research Center, Division of Life Sciences, The University of Texas at San Antonio, 6900 N. Loop 1604 W., San Antonio, Texas 78249-0662, USA
| | | | | | | |
Collapse
|
127
|
Abstract
Studies are reviewed that support a hypothesized role for hippocampal theta oscillations in the neural plasticity underlying behavioral learning. Begun in Richard F. Thompson's laboratory in the 1970s, these experiments have documented a relationship between free-running 3- to 7-Hz hippocampal slow waves (theta) and rates of acquisition in rabbit classical nictitating membrane (NM) conditioning. Lesion and drug manipulations of septohippocampal projections have affected NM and jaw movement conditioning in ways consistent with a theta-related brain state being an important modulator of behavioral acquisition. These findings provide essential empirical support for the recently developed neurobiological and computational models that posit an important role for rhythmic oscillations (such as theta) in cellular plasticity and behavioral learning.
Collapse
Affiliation(s)
- S D Berry
- Department of Psychology and Center for Neuroscience, Miami University, Oxford, Ohio 45056, USA.
| | | |
Collapse
|
128
|
Morgan SL, Teyler TJ. Electrical stimuli patterned after the theta-rhythm induce multiple forms of LTP. J Neurophysiol 2001; 86:1289-96. [PMID: 11535677 DOI: 10.1152/jn.2001.86.3.1289] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The induction of long-term potentiation (LTP) by high-frequency stimulation is considered an acceptable model for the study of learning and memory. In area CA1 calcium influx through N-methyl-D-aspartate receptors (NMDARs; nmdaLTP) and/or L-type voltage-dependent calcium channels (vdccLTP) results in distinct forms of LTP. In the light of significant accumulation of knowledge about patterns of naturally occurring activity in the intact animal, we examined whether the application of stimuli patterned after natural activity induced nmdaLTP and/or vdccLTP. In rat hippocampal slices we examined LTP induced by three types of patterned stimulation short (S-TBS), long (L-TBS), and high-intensity long theta-patterned stimulation (HL-TBS). The patterns of stimulation were applied in control, nifedipine (blocks vdccLTP), D,L-2-amino-5-phosphonovaleric acid (APV; blocks nmdaLTP), or APV and nifedipine containing media. We found that S-TBS resulted in LTP that was completely attenuated in the presence of APV but was unaffected by nifedipine. Thus S-TBS results in the selective induction of nmdaLTP. L-TBS resulted in LTP that was completely blocked by APV and only partially blocked by nifedipine. Therefore L-TBS results in a compoundLTP consisting of both nmdaLTP and vdccLTP components. In the presence of APV, HL-TBS resulted in vdccLTP, and when APV and nifedipine were both present, LTP was completely blocked. Thus HL-TBS results in a vdccLTP in isolation when APV is present. We also examined saturation of S-TBS-induced LTP (nmdaLTP) by applying S-TBS at short intervals. When nifedipine was present, multiple S-TBS trains resulted in a substantially smaller final LTP as compared with controls. We conclude that multiple bursts of S-TBS eventually summate to result in compoundLTP. Stimuli patterned after innate rhythms in the hippocampus effectively induce nmdaLTP (S-TBS), compoundLTP (L-TBS), or vdccLTP (HL-TBS).
Collapse
Affiliation(s)
- S L Morgan
- Department of Neurobiology and Pharmacology, Northeastern Ohio Universities College of Medicine, 4209 State Rt. 44, Rootstown, OH 44272-0095, USA
| | | |
Collapse
|
129
|
Vertes RP, Albo Z, Viana Di Prisco G. Theta-rhythmically firing neurons in the anterior thalamus: implications for mnemonic functions of Papez's circuit. Neuroscience 2001; 104:619-25. [PMID: 11440795 DOI: 10.1016/s0306-4522(01)00131-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In 1937 Papez described an anatomical circuit (or loop) beginning and ending in the hippocampal formation that he proposed subserved emotional experience (Papez, 1937). Specifically, the projections of the circuit were as follows: hippocampal formation--> mammillary bodies--> anterior thalamus--> cingulate cortex--> parahippocampal gyrus--> hippocampal formation. Although the circuit has been refined based on subsequent anatomical findings (Amaral and Witter, 1995; Shibata, 1992; Van Groen and Wyss, 1995), the major links of the circuit unquestionably represent a prominent system of connections in the mammalian brain. Hence, the enduring nature of 'Papez's circuit'. Unlike, however, its persistence as anatomical entity, the proposed functional role for the circuit has been less resilient. The early notion that Papez's circuit subserves emotional experience/expression has been abandoned (LeDoux, 1993) and replaced by the proposal that it is primarily involved in mnemonic functions (Aggleton and Brown, 1999). Lesions of each of the major components of the circuit have been shown to disrupt memory (Aggleton and Brown, 1999; Sutherland et al., 1988; Sziklas and Petrides, 1993). The mammillary bodies represent a major output from the hippocampus in Papez's circuit (Amaral and Witter, 1995). It has recently been shown that cells of mammillary body fire rhythmically in bursts synchronous with the theta rhythm of the hippocampus (Bland et al., 1995; Kirk et al., 1996; Kocsis and Vertes, 1994, 1997) and that this rhythmical activity is dependent upon the action of the hippocampus on the mammillary bodies (Bland et al., 1995; Kirk et al., 1996). It is well established that the mammillary bodies project massively to the anterior thalamus (Shibata, 1992), which taken together with the demonstration that mammillary body cells fire synchronously with theta, suggests that the mammillary bodies may act on the anterior thalamus, possibly in the manner that the hippocampus acts on the mammillary bodies, to rhythmically activate cells of the anterior thalamus at theta frequency. We demonstrated that approximately 75% of cells of the anterior ventral nucleus of the thalamus fire rhythmically synchronous with the hippocampal theta rhythm and the activity of 46% of these anterior ventral neurons was highly correlated with theta. These findings, together with demonstration of theta-rhythmically firing cells in other structures of Papez's circuit, indicate that a theta-rhythmic signal may resonate throughout Papez's circuit, possibly involved in the control of mnemonic functions of the circuit.
Collapse
Affiliation(s)
- R P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | |
Collapse
|
130
|
Kramár EA, Armstrong DL, Ikeda S, Wayner MJ, Harding JW, Wright JW. The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res 2001; 897:114-21. [PMID: 11282364 DOI: 10.1016/s0006-8993(01)02100-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Within the brain-renin angiotensin system, it is generally assumed that angiotensin peptide fragments shorter than angiotensins II and III, including angiotensin IV (AngIV), are inactive. This belief has been challenged by the recent discovery that AngIV, and AngIV-like analogs, bind with high affinity and specificity to a putative angiotensin binding site termed AT4. In the brain these sites include the hippocampus, cerebellum, and cerebral cortex, and influence associative and spatial learning tasks. The present study investigated the effects of two AngIV analogs, Nle1-AngIV (an AT4 receptor agonist) and Nle1-Leual3-AngIV (an AT4 receptor antagonist), on long-term potentiation (LTP). Field excitatory postsynaptic potentials (fEPSPs) were recorded from the CA1 stratum radiatum following stimulation of the Schaffer collateral pathway. Activation of AT4 receptors by Nle1-AngIV enhanced synaptic transmission during low-frequency test pulses (0.1 Hz), and increased the level of tetanus-induced LTP by 63% over that measured under control conditions. Paired stimulation before and during infusion of Nle1-AngIV indicated no change in paired-pulse facilitation (PPF) as a result of AT4 receptor activation suggesting that the underlying mechanism(s) responsible for Nle1-AngIV-induced increase in synaptic transmission and LTP is likely a postsynaptic event. Further, applications of Nle1-Leual3-AngIV prior to, but not 15 or 30 min after, tetanization prevented stabilization of LTP. These results extend previous findings from behavioral data in that AT4 receptor agonists and antagonists are capable of activating, and inhibiting, learning and memory pathways in the hippocampus, and suggest that the AT4 receptor subtype is involved in synaptic plasticity.
Collapse
Affiliation(s)
- E A Kramár
- Program in Neuroscience, Washington State University, Pullman, WA 99164-4820, USA.
| | | | | | | | | | | |
Collapse
|
131
|
Martin PD, Shapiro ML. Disparate effects of long-term potentiation on evoked potentials and single CA1 neurons in the hippocampus of anesthetized rats. Hippocampus 2001; 10:207-12. [PMID: 10902890 DOI: 10.1002/1098-1063(2000)10:3<207::aid-hipo1>3.0.co;2-s] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To examine the effects of long-term potentiation (LTP) on individual neurons in the intact brain, anesthetized rats were implanted with a recording stereotrode in the right CA1 layer of the hippocampus and a stimulating electrode in the right and left CA3 layers. The evoked and spontaneous firing of single CA1 neurons was characterized before and after LTP of the contralateral (commissural) Schaffer collaterals and again after LTP of the ipsilateral (associational) Schaffer collaterals. Individual CA1 neurons displayed either increases or decreases in evoked and spontaneous firing after LTP. As many as five discriminated cells were recorded simultaneously, and they typically responded discordantly, so that after LTP, firing in some neurons increased while in others it decreased. The response of individual neurons to in vivo LTP may be modulated by heterogeneous synaptic changes on individual and local groups of cells, and by changes in feed-forward excitation and inhibition provided by local hippocampal circuitry.
Collapse
Affiliation(s)
- P D Martin
- Centre Nationale de la Recherche Scientifique, College de France Laboratoire de Physiologie de la Perception et de l'Action, Paris
| | | |
Collapse
|
132
|
Abstract
Previous reports have shown that the supramammillary nucleus projects to the medial septum and to the hippocampus, and specifically to the dentate gyrus and the CA2/CA3a region of the hippocampus. The aim of the present study was to examine collateral projections from the supramammillary nucleus to the septum and hippocampus. The fluorescent retrograde tracers, Fluororuby and Fluorogold, were injected into regions of the septum and hippocampus, respectively, and the supramammillary nucleus was examined for the presence of single- and double-labeled neurons. The main findings were: 1) pronounced numbers of single-labeled cells (about 40-60/section) were present in the supramammillary nucleus following retrograde tracer injections in either the septum or hippocampus; 2) single and double retrogradely labeled neurons were intermingled within the supramammillary nucleus and mainly localized to the lateral two-thirds of the supramammillary nucleus; 3) approximately 5-10% of supramammillary cells were double-labeled, ipsilaterally, and 2-4%, contralaterally, with injections in medial or lateral parts of the medial septum and the dentate gyrus of the hippocampus; and 4) approximately 3-5% of supramammillary cells were double-labeled, ipsilaterally, and 1-2%, contralaterally, with injections in the medial septum and CA2/CA3a of the dorsal hippocampus. Cells of the supramammillary nucleus have been shown to fire rhythmically in bursts synchronous with the hippocampal theta rhythm and have been implicated in the generation of the theta rhythm. The supramammillary cells that we identified with collateral projections to the septum and hippocampus may be directly involved in generation of the theta rhythm.
Collapse
Affiliation(s)
- R P Vertes
- Center for Complex Systems, Florida Atlantic University, Boca Raton, Florida 33431, USA.
| | | |
Collapse
|
133
|
Nguyen PV, Duffy SN, Young JZ. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J Neurophysiol 2000; 84:2484-93. [PMID: 11067991 DOI: 10.1152/jn.2000.84.5.2484] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic and knockout mice are used extensively to elucidate the molecular mechanisms of hippocampal synaptic plasticity. However, genetic and phenotypic variations between inbred mouse strains that are used to construct genetic models may confound the interpretation of cellular neurophysiological data derived from these models. Using in vitro slice stimulation and recording methods, we compared the membrane biophysical, cellular electrophysiological, and synaptoplastic properties of hippocampal CA1 neurons in four specific strains of inbred mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms/J. Hippocampal long-term potentiation (LTP) induced by theta-pattern stimulation, and by repeated multi-burst 100-Hz stimulation at various interburst intervals, was better maintained in area CA1 of slices from BL/6J mice than in slices from CBA and DBA mice. At an interburst interval of 20 s, maintenance of LTP was impaired in CBA and DBA slices, as compared with BL/6J slices. When the interburst interval was reduced to 3 s, induction of LTP was significantly enhanced in129/SvEms slices, but not in DBA and CBA slices. Long-term depression (LTD) was not significantly different between slices from these four strains. For the four strains examined, CA1 pyramidal neurons showed no significant differences in spike-frequency accommodation, membrane input resistance, and number of spikes elicited by current injection. Synaptically-evoked glutamatergic postsynaptic currents did not significantly differ among CA1 pyramidal neurons in these four strains. Since the observed LTP deficits resembled those previously seen in transgenic mice with reduced hippocampal cAMP-dependent protein kinase (PKA) activity, we searched for possible strain-dependent differences in cAMP-dependent synaptic facilitation induced by forskolin (an activator of adenylate cyclase) and IBMX (a phosphodiesterase inhibitor). We found that forskolin/IBMX-induced synaptic facilitation was deficient in area CA1 of DBA/2J and CBA/J slices, but not in BL/6J and 129/SvEms/J slices. These defects in cAMP-induced synaptic facilitation may underlie the deficits in memory, observed in CBA/J and DBA/2J mice, that have been previously reported. We conclude that hippocampal LTP is influenced by genetic background and by the temporal characteristics of the stimulation protocol. The plasticity of hippocampal synapses in some inbred mouse strains may be "tuned" to particular temporal patterns of synaptic activity. From a broader perspective, our data support the notion that strain-dependent variation in genetic background is an important factor that can influence the synaptoplastic phenotypes observed in studies that use genetically modified mice to explore the molecular bases of synaptic plasticity.
Collapse
Affiliation(s)
- P V Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
134
|
Abstract
Changing the strength of connections between neurons is widely assumed to be the mechanism by which memory traces are encoded and stored in the central nervous system. In its most general form, the synaptic plasticity and memory hypothesis states that "activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation and is both necessary and sufficient for the information storage underlying the type of memory mediated by the brain area in which that plasticity is observed." We outline a set of criteria by which this hypothesis can be judged and describe a range of experimental strategies used to investigate it. We review both classical and newly discovered properties of synaptic plasticity and stress the importance of the neural architecture and synaptic learning rules of the network in which it is embedded. The greater part of the article focuses on types of memory mediated by the hippocampus, amygdala, and cortex. We conclude that a wealth of data supports the notion that synaptic plasticity is necessary for learning and memory, but that little data currently supports the notion of sufficiency.
Collapse
Affiliation(s)
- S J Martin
- Department and Centre for Neuroscience, University of Edinburgh, United Kingdom.
| | | | | |
Collapse
|
135
|
Kuenzi FM, Fitzjohn SM, Morton RA, Collingridge GL, Seabrook GR. Reduced long-term potentiation in hippocampal slices prepared using sucrose-based artificial cerebrospinal fluid. J Neurosci Methods 2000; 100:117-22. [PMID: 11040373 DOI: 10.1016/s0165-0270(00)00239-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sucrose-based artificial cerebrospinal fluid (aCSF) is sometimes used to prepare brain slices for in vitro electrophysiological experiments. This study compared the effect of preparing brain slices using chilled sucrose-based aCSF versus the conventional method using chilled aCSF on hippocampal synaptic plasticity. Brain slices from each treatment group were transferred to normal aCSF before electrophysiological recordings were made. The stimulus-response relationship of field excitatory postsynaptic potentials (fEPSPs) in the CA1 region was indistinguishable between the two treatment groups. However, the amount of LTP induced by either a θ-burst (four stimuli at 100 Hz repeated ten times at 200 ms intervals) or tetanic stimulation (100 Hz for 1 s) was significantly reduced in slices that had been prepared using sucrose-based aCSF. This was associated with reduced facilitation of the fEPSPs during the high frequency stimulus, reduced post-tetanic potentiation and short-term potentiation. In sucrose-cut slices the fEPSPs were slightly shorter in duration (29%, P<0.01), and during paired-pulse stimulation the broadening of the second fEPSP was enhanced. The LTP deficit in sucrose-cut slices was reversed by blocking GABA(A) receptor function with picrotoxin. These data suggest that the use of sucrose based aCSF better preserves GABA-mediated synaptic transmission, which limits the induction of LTP in hippocampal brain slices.
Collapse
Affiliation(s)
- F M Kuenzi
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Essex CM20 2QR, Harlow, UK.
| | | | | | | | | |
Collapse
|
136
|
Paradee W, Melikian HE, Rasmussen DL, Kenneson A, Conn PJ, Warren ST. Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 1999; 94:185-92. [PMID: 10613508 DOI: 10.1016/s0306-4522(99)00285-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fragile X syndrome is an X-linked form of mental retardation resulting from the absence of expression of the fragile X mental retardation 1 gene. The encoded protein is a ribosome-associated, RNA-binding protein thought to play a role in translational regulation of selective messenger RNA transcripts. A knockout mouse has been described that exhibits subtle deficits in spatial learning but normal early-phase long-term potentiation. We expanded these studies by examination of late-phase hippocampal long-term potentiation, the protein synthesis-dependent form of long-term potentiation, in the Fmrl knockout mice. Here, late-phase long-term potentiation was normal, suggesting either that absence of fragile X mental retardation protein has no influence on long-term potentiation or that any influence is too subtle to be detected by this technique. Alternatively, the hippocampus may not be the primary site affected by the absence of this protein. Accordingly, we examined spatial learning in the knockout mice using the hippocampus-dependent Morris water maze. Contrary to earlier reports, near-normal performance was observed. Since the knockout line used in this study has been back-crossed to C57BL/6 for more than 15 generations, whereas the line used in the earlier studies contained a substantial strain 129 contribution, we examined F1 siblings of knockout and 129 crosses. Here, significant but subtle increased swim latencies in reversal trials were observed, in agreement with the previous studies. These data suggest strain differences between C57BL/6 and 129 that influence the Fmrl knockout phenotype. In order to investigate a paradigm less dependent on hippocampal function, the knockout mice were examined using the conditional fear paradigm. Here, the knockout animals displayed significantly less freezing behavior than their wild-type littermates following both contextual and conditional fear stimuli. These data suggest that amygdala disturbances may also be involved in fragile X syndrome.
Collapse
Affiliation(s)
- W Paradee
- Howard Hughes Medical Institute, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
137
|
Bilkey DK, Heinemann U. Intrinsic theta-frequency membrane potential oscillations in layer III/V perirhinal cortex neurons of the rat. Hippocampus 1999; 9:510-8. [PMID: 10560921 DOI: 10.1002/(sici)1098-1063(1999)9:5<510::aid-hipo4>3.0.co;2-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The firing of a proportion of neurons in the in vivo perirhinal cortex, a brain region involved in object recognition memory, has recently been shown to be synchronized with hippocampal theta activity. The purpose of the present study was to determine whether neurons located in perirhinal cortex have intrinsic properties that might encourage their participation in theta activity. To these ends, current clamp recordings were made from 98 neurons located in layer III/V of the in vitro rat perirhinal cortex. The intrinsic properties of these neurons were investigated, and a subset of 61 neurons were tested for the presence of membrane potential oscillations at threshold levels of depolarization. Thirty-nine percent of these neurons displayed a theta-frequency membrane potential oscillation (MPO; mean frequency = 8.6 Hz). When depolarized past spike threshold, these neurons tended to fire in clusters, with a within-cluster interspike interval close to the peak to peak interval of the MPOs. Neurons that did not generate MPOs generated nonaccomodating action potential trains with a frequency that spanned the theta range. Biocytin staining indicated that MPOs could be generated in cells with both pyramidal and nonpyramidal morphology. These findings demonstrate that a large proportion of perirhinal neurons exhibit intrinsic properties that could assist in the entrainment and synchronization of theta-frequency oscillations. These properties may enhance the communication of information between the perirhinal cortex, entorhinal cortex, and hippocampus.
Collapse
Affiliation(s)
- D K Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
138
|
Time-dependent reversal of long-term potentiation in area CA1 of the freely moving rat induced by theta pulse stimulation. J Neurosci 1999. [PMID: 10493772 DOI: 10.1523/jneurosci.19-19-08712.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies in slices have shown that low-frequency stimulation at 5 Hz, i.e., theta pulse stimulation (TPS), completely reverses long-term potentiation (LTP) in area CA1 when delivered within 1-2 min after induction but produces progressively less depotentiation at longer delays, until it has no longer any impact at 30 min after induction. The present study examined whether LTP in the freely moving rat exhibits a similar time-dependent susceptibility to reversal. Adult male Long-Evans rats with bilateral stimulating electrodes activating collateral/commissural projections to area CA1 were used. A 1 min episode of TPS, ineffective when applied to naive pathways, was found to permanently erase LTP when delivered to the test pathway either 30 sec or 15 min after induction. Administered at a delay of 30 min, however, the same treatment no longer had any impact on established LTP. Additional experiments examined the ability of shorter TPS episodes to erase LTP and found that a 30 sec treatment was effective at 30 sec but not 15 min after induction. When the duration of TPS was further reduced to 15 sec, a reversal was no longer obtained at any delay. These results provide the first demonstration that the limited vulnerability of LTP to reversal by TPS, originally observed in vitro, also holds true for LTP in the awake animal and occurs along the same time frame, supporting the notion that LTP stabilization mechanisms take less than 30 min to be complete.
Collapse
|
139
|
Hirai N, Uchida S, Maehara T, Okubo Y, Shimizu H. Beta-1 (10-20 Hz) cortical oscillations observed in the human medial temporal lobe. Neuroreport 1999; 10:3055-9. [PMID: 10549822 DOI: 10.1097/00001756-199909290-00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During wakefulness, signals from subdural electrodes attached to the basal and medial temporal lobes of adult human epilepsy patients revealed a rhythmic oscillation in the beta-1 frequency range (10-20 Hz). This activity was more prominent in the medial than in the basal temporal cortex. We also observed simultaneous oscillations in alpha frequency activity in the medial and the basal temporal cortices. In an eyes-open condition, the alpha oscillation was attenuated, while the beta-1 oscillation in the medial temporal lobe was not. This is the first report that the beta-1 oscillation is present in the human medial temporal lobe. Since we recorded this activity from within the limbic system, beta-1 activity may be an analog of the hippocampal rhythmic slow activity observed in some animals.
Collapse
Affiliation(s)
- N Hirai
- Department of Psychophysiology, Tokyo Institute of Psychiatry, Japan
| | | | | | | | | |
Collapse
|
140
|
|
141
|
Leranth C, Vertes RP. Median raphe serotonergic innervation of medial septum/diagonal band of Broca (MSDB) parvalbumin-containing neurons: Possible involvement of the MSDB in the desynchronization of the hippocampal EEG. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990809)410:4<586::aid-cne6>3.0.co;2-h] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
142
|
van der Zee EA, Luiten PG. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 1999; 58:409-71. [PMID: 10380240 DOI: 10.1016/s0301-0082(98)00092-6] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunocytochemical mapping studies employing the extensively used monoclonal anti-muscarinic acetylcholine receptor (mAChR) antibody M35 are reviewed. We focus on three neuronal muscarinic cholinoceptive substrates, which are target regions of the cholinergic basal forebrain system intimately involved in cognitive functions: the hippocampus; neocortex; and amygdala. The distribution and neurochemistry of mAChR-immunoreactive cells as well as behaviorally induced alterations in mAChR-immunoreactivity (ir) are described in detail. M35+ neurons are viewed as cells actively engaged in neuronal functions in which the cholinergic system is typically involved. Phosphorylation and subsequent internalization of muscarinic receptors determine the immunocytochemical outcome, and hence M35 as a tool to visualize muscarinic receptors is less suitable for detection of the entire pool of mAChRs in the central nervous system (CNS). Instead, M35 is sensitive to and capable of detecting alterations in the physiological condition of muscarinic receptors. Therefore, M35 is an excellent tool to localize alterations in cellular cholinoceptivity in the CNS. M35-ir is not only determined by acetylcholine (ACh), but by any substance that changes the phosphorylation/internalization state of the mAChR. An important consequence of this proposition is that other neurotransmitters than ACh (especially glutamate) can regulate M35-ir and the cholinoceptive state of a neuron, and hence the functional properties of a neuron. One of the primary objectives of this review is to provide a synthesis of our data and literature data on mAChR-ir. We propose a hypothesis for the role of muscarinic receptors in learning and memory in terms of modulation between learning and recall states of brain areas at the postsynaptic level as studied by way of immunocytochemistry employing the monoclonal antibody M35.
Collapse
Affiliation(s)
- E A van der Zee
- Department of Zoology, University of Groningen, Haren, The Netherlands.
| | | |
Collapse
|
143
|
Commins S, Anderson M, Gigg J, O'Mara SM. The effects of single and multiple episodes of theta patterned or high frequency stimulation on synaptic transmission from hippocampal area CA1 to the subiculum in rats. Neurosci Lett 1999; 270:99-102. [PMID: 10462107 DOI: 10.1016/s0304-3940(99)00486-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Long-term potentiation (LTP) is a popular model for the synaptic changes that may occur during learning and memory; it involves a strengthening of synaptic response and is readily induced in the hippocampus, an area of the brain implicated in learning and memory. Previous research on LTP has focused on 'early' components of the hippocampal circuitry, that is, the dentate gyrus and areas CA1 and CA3. This paper examines the plasticity of the CA1-subiculum pathway; we extend our previous work in this area demonstrating that the projection from area CA1 to subiculum sustains theta-patterned stimulus-induced LTP in vivo. We show that this pathway remains potentiated over a long period (3 h). Furthermore, once this projection is potentiated, it seems resistant to further episodes of high-frequency stimulation. We discuss the implications of these findings for theories of hippocampal-cortical interaction during the biological consolidation of memory.
Collapse
Affiliation(s)
- S Commins
- Department of Psychology, University of Dublin, Trinity College, Ireland
| | | | | | | |
Collapse
|
144
|
Pike FG, Meredith RM, Olding AW, Paulsen O. Rapid report: postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J Physiol 1999; 518 ( Pt 2):571-6. [PMID: 10381601 PMCID: PMC2269446 DOI: 10.1111/j.1469-7793.1999.0571p.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The biologically relevant rules of synaptic potentiation were investigated in hippocampal slices from adult rat by mimicking neuronal activity seen during learning behaviours. Synaptic efficacy was monitored in two separate afferent pathways among the Schaffer collaterals during intracellular recording of CA1 pyramidal neurones. The effects of pairing presynaptic single spikes or bursts with postsynaptic single spikes or bursts, repeated at 5 Hz ('theta' frequency), were compared. 2. The pairing of ten single evoked excitatory synaptic events with ten postsynaptic single action potentials at 5 Hz, repeated twelve times, failed to induce synaptic enhancement (EPSP amplitude 95% of baseline amplitude 20 min after pairing; n = 5). In contrast, pairing the same number of action potentials, but clustered in bursts, induced robust synaptic potentiation (EPSP amplitude 163%; P < 0.01, Student's t test; n = 5). This potentiation was input specific, long lasting ( > 1 h; n = 3) and its induction was blocked by an antagonist at NMDA receptors (20-50 microM D(-)-2-amino-5-phosphonopentanoic acid; EPSP amplitude 109%; n = 6). 3. Presynaptic bursting paired with postsynaptic single action potentials did not induce input specific synaptic change (113 % in the test input vs. 111 % in the control; n = 8). In contrast, postsynaptic bursting when paired with presynaptic single action potentials was sufficient to induce synaptic potentiation when the presynaptic activity preceded the postsynaptic activity by 10 ms (150 vs. 84 % in the control input; P < 0.01; n = 10). 4. These results indicate that, under our conditions, postsynaptic bursting activity is necessary for associative synaptic potentiation at CA1 excitatory synapses in adult hippocampus. The existence of a distinct postsynaptic signal for induction of synaptic change calls for refinement of the common interpretation of Hebb's rule, and is likely to have important implications for our understanding of cortical network operation.
Collapse
Affiliation(s)
- F G Pike
- University Department of Pharmacology and MRC Anatomical Neuropharmacology Unit, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | |
Collapse
|
145
|
Kortekaas R, Costall B, Smythe JW. Changes in hippocampal theta following intrahippocampal corticotropin-releasing hormone (CRH) infusions in the rat. Brain Res Bull 1999; 48:603-7. [PMID: 10386840 DOI: 10.1016/s0361-9230(99)00039-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hippocampal theta activity is a large amplitude, sinusoidal wave that occurs during attentive immobility and exploratory behaviour in the rat, and it is thought to be involved in memory formation. Recent reports suggest that corticotropin-releasing hormone (CRH) has pro-mnemonic effects in rodents. Because memory-enhancing substances/manipulations generally alter either theta frequencies or amplitudes, these variables were monitored in urethane-anaesthetised rats following intrahippocampal infusions of CRH. Adult male, Lister hooded rats were implanted with a hippocampal recording electrode and a guide cannula, both aimed at the dentate gyrus. When CRH was infused into the hippocampus, the main change in the hippocampal EEG was a slow onset increase in the amplitude of spontaneous theta and, paradoxically, a significant decrease in the amount of time spent displaying theta. These data suggest that CRH has the ability to modulate ongoing hippocampal theta, but, considering the slow effect, the involvement of hippocampal CRH receptors is suspect. Regardless of locus, the described electrophysiological changes suggest that hippocampal cholinergic systems may play a role in the memory-enhancing effects of CRH.
Collapse
Affiliation(s)
- R Kortekaas
- Department of Pharmacology, University of Bradford, UK.
| | | | | |
Collapse
|
146
|
Blurton-Jones M, Roberts J, Tuszynski M. Estrogen receptor immunoreactivity in the adult primate brain: Neuronal distribution and association with p75,trkA, and choline acetyltransferase. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990322)405:4<529::aid-cne6>3.0.co;2-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
147
|
Kleshchevnikov AM. Synaptic plasticity in the hippocampus during afferent activation reproducing the pattern of the theta rhythm (theta plasticity). NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1999; 29:185-96. [PMID: 10432508 DOI: 10.1007/bf02465325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This review summarizes data on the plasticity of hippocampal synaptic pathways in conditions of afferent activation modeling the electrical activity of neurons during the theta rhythm. Activation with short trains of stimuli with frequencies of about 5 Hz efficiently induces long-term potentiation, i.e., stable facilitation of synaptic transmission. Contrarily, single stimuli presented at the same frequency "depotentiate" synapses or even induce long-term depression. Combined theta activity at two synaptic inputs, in phase with each other, induces long-term potentiation, while combined activity in antiphase produces long-term depression of the weakly-activated input (associative long-term potentiation and depression). Short trains of single stimuli at a frequency of 5 Hz induce heterosynaptic short-term depression: the efficiency of all synaptic inputs is decreased for time periods of the order of 1 min. Apart from changes in synaptic efficiency, theta activation affects the ability to induce synaptic rearrangements in conditions of subsequent afferent activation ("cryptic" plasticity). Thus, virtually all known types of synaptic plasticity are efficiently induced by afferent activation of the pattern of the hippocampal theta rhythm, which suggests the possible mechanisms for its roles in learning and memory processes.
Collapse
|
148
|
Perez Y, Chapman CA, Woodhall G, Robitaille R, Lacaille JC. Differential induction of long-lasting potentiation of inhibitory postsynaptic potentials by theta patterned stimulation versus 100-Hz tetanization in hippocampal pyramidal cells in vitro. Neuroscience 1999; 90:747-57. [PMID: 10218776 DOI: 10.1016/s0306-4522(98)00531-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tetanization of Schaffer collaterals, which induces long-term potentiation of excitatory transmission in the hippocampus of the rat, also affects local inhibitory circuits. Mechanisms controlling plasticity of early and late components of inhibitory postsynaptic potentials in CA1 pyramidal cells were studied using intracellular recordings and Ca2+ imaging in rat hippocampal slices. High-frequency stimulation (100 Hz/s) of Schaffer collaterals resulted in no change in the mean amplitude of early or late inhibitory postsynaptic potentials 30 min post-tetanus. However, intracellular injection of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetate unmasked a significant increase in mean amplitude of both inhibitory postsynaptic potentials 30 min post-tetanus and the induction of this potentiation was blocked by the N-methyl-D-aspartate receptor antagonist(+/-)-2-amino-5-phosphopentanoic acid. In contrast to high-frequency tetanization, "theta-burst" stimulation in normal medium resulted in a significant potentiation of the mean amplitude of both early and late inhibitory postsynaptic potentials 30 min post-tetanus. This potentiation was blocked by the N-methyl-D-aspartate receptor antagonist. The more physiological tetanization pattern, which mimics the endogenous theta rhythm, therefore resulted in an N-methyl-D-aspartate-dependent increase in inhibition 30 min post-tetanus. Calcium imaging during whole-cell recordings from pyramidal cells revealed differences in the Ca2+ signal associated with high-frequency and theta-burst stimulations. During theta-burst stimulation of Schaffer collaterals, the mean time to peak of Ca2+ signals was significantly longer, and the mean peak amplitude and area under the Ca2+ response were larger than during high-frequency stimulation. These results indicate that tetanization induces long-lasting synaptic plasticity in hippocampal inhibitory circuits. This plasticity involves an interaction between a Ca2(+)-mediated postsynaptic depression and an N-methyl-D-aspartate-mediated potentiation of GABAA and GABAB inhibition, and these processes are differentially sensitive to tetanization parameters.
Collapse
Affiliation(s)
- Y Perez
- Centre de recherche en sciences neurologiques and Département de physiologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
149
|
Abstract
Use-dependent alterations in synaptic efficacy are believed to form the basis for such complex brain functions as learning and memory and significantly contribute to the development of neuronal networks. The algorithm of synapse modification proposed by Hebb as early as 1949 is the coincident activation of pre- and postsynaptic neurons. The present review considers the evolution of experimental protocols in which postsynaptic cell depolarization through the recording microelectrode was used to reveal the manifestation of Hebb-type plasticity in the synaptic inputs of the neocortex and hippocampus. Special attention is focused on the inhibitory control of the Hebb-type plasticity. Disinhibition within the local neuronal circuits is considered to be an important factor in Hebbian plasticity, contributing to such phenomena as priming, primed burst potentiation, hippocampal theta-rhythm and cortical arousal. The role of various transmitters (acetylcholine, norepinephrine, gamma-amino-butyric acid) in disinhibition is discussed with a special emphasis on the brain noradrenergic system. Possible mechanisms of Hebbian synapse modification and their modulation by memory enhancing substances are considered. It is suggested that along with their involvement in disinhibition processes these substances may control Hebb-type plasticity through intracellular second messenger systems.
Collapse
Affiliation(s)
- V G Skrebitsky
- Brain Research Institute, Russian Academy of Medical Sciences, Moscow
| | | |
Collapse
|
150
|
Muir GM, Bilkey DK. Synchronous modulation of perirhinal cortex neuronal activity during cholinergically mediated (type II) hippocampal theta. Hippocampus 1998; 8:526-32. [PMID: 9825962 DOI: 10.1002/(sici)1098-1063(1998)8:5<526::aid-hipo10>3.0.co;2-v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The perirhinal cortex (PRC) plays a major role in memory processes. This role may be influenced by activity in the adjacent entorhinal cortex (EC) and hippocampus (HPC), particularly during the processing of spatial information. In the current experiment we sought to determine whether the cholinergically mediated (type II) theta rhythm, which is a prominent electrophysiological feature of both HPC and EC activity, influenced neuronal firing in the PRC of urethane-anesthetized rats. When the spontaneous firing activity of single units recorded in PRC was related to theta recorded from the hippocampal fissure, it was determined that the firing of 50/163 (31%) PRC neurons exhibited a statistically significant phase relationship (mean phase angle = 188 degrees) to HPC theta. Thirty-three (66%) of these neurons tended to fire near the trough, and 17 near the peak, of this activity. These data indicate that a high proportion of PRC neurons participate in hippocampal-entorhinal theta activity. This activity may support information transmission and storage within and between these structures.
Collapse
Affiliation(s)
- G M Muir
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|