101
|
Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 2003; 11:341-51. [PMID: 12620223 DOI: 10.1016/s1097-2765(03)00037-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The S phase checkpoint protects the genome from spontaneous damage during DNA replication, although the cause of damage has been unknown. We used a dominant-negative mutant of a subunit of CAF-I, a complex that assembles newly synthesized DNA into nucleosomes, to inhibit S phase chromatin assembly and found that this induced S phase arrest. Arrest was accompanied by DNA damage and S phase checkpoint activation and required ATR or ATM kinase activity. These results show that in human cells CAF-I activity is required for completion of S phase and that a defect in chromatin assembly can itself induce DNA damage. We propose that errors in chromatin assembly, occurring spontaneously or caused by genetic mutations or environmental agents, contribute to genome instability.
Collapse
Affiliation(s)
- Xiaofen Ye
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
102
|
Affiliation(s)
- Jay C Vary
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
103
|
Abstract
Recent advances in the identification of molecular components of centromeres have demonstrated a crucial role for chromatin proteins in determining both centromere identity and the stability of kinetochore-microtubule attachments. Although we are far from a complete understanding of the establishment and propagation of centromeres, this review seeks to highlight the contribution of histones, histone deposition factors, histone modifying enzymes, and heterochromatin proteins to the assembly of this sophisticated, highly specialized chromatin structure. First, an overview of DNA sequence elements at centromeric regions will be presented. We will then discuss the contribution of chromatin to kinetochore function in budding yeast, and pericentric heterochromatin domains in other eukaryotic systems. We will conclude with discussion of specialized nucleosomes that direct kinetochore assembly and propagation of centromere-defining chromatin domains.
Collapse
Affiliation(s)
- J A Sharp
- University of California, Berkeley, Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA.
| | | |
Collapse
|
104
|
Nichol K, Pearson CE. CpG methylation modifies the genetic stability of cloned repeat sequences. Genome Res 2002; 12:1246-56. [PMID: 12176932 PMCID: PMC186631 DOI: 10.1101/gr.74502] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The genetic stability of tandemly repeated DNAs is affected by repeat sequence, tract length, tract purity, and replication direction. Alterations in DNA methylation status are thought to influence many processes of mutagenesis. By use of bacterial and primate cell systems, we have determined the effect of CpG methylation on the genetic stability of cloned di-, tri-, penta- and minisatellite repeated DNA sequences. Depending on the repeat sequence, methylation can significantly enhance or reduce its genetic stability. This effect was evident when repeat tracts were replicated from either direction. Unexpectedly, methylation of adjacent sequences altered the stability of contiguous repeat sequences void of methylatable sites. Of the seven repeat sequences investigated, methylation stabilized five, destabilized one, and had no effect on another. Thus, although methylation generally stabilized repeat tracts, its influence depended on the sequence of the repeat. The current results lend support to the notion that the biological consequences of CpG methylation may be affected through local alterations of DNA structure as well as through direct protein-DNA interactions. In vivo CpG methylation in bacteria may have technical applications for the isolation and stable propagation of DNA sequences that have been recalcitrant to isolation and/or analyses because of their extreme instability.
Collapse
Affiliation(s)
- Kerrie Nichol
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
105
|
Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 2002; 9:1191-200. [PMID: 12086617 DOI: 10.1016/s1097-2765(02)00542-7] [Citation(s) in RCA: 839] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two very similar H3 histones-differing at only four amino acid positions-are produced in Drosophila cells. Here we describe a mechanism of chromatin regulation whereby the variant H3.3 is deposited at particular loci, including active rDNA arrays. While the major H3 is incorporated strictly during DNA replication, amino acid changes toward H3.3 allow replication-independent (RI) deposition. In contrast to replication-coupled (RC) deposition, RI deposition does not require the N-terminal tail. H3.3 is the exclusive substrate for RI deposition, and its counterpart is the only substrate retained in yeast. RI substitution of H3.3 provides a mechanism for the immediate activation of genes that are silenced by histone modification. Inheritance of newly deposited nucleosomes may then mark sites as active loci.
Collapse
Affiliation(s)
- Kami Ahmad
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
106
|
Tyler JK. Chromatin assembly. Cooperation between histone chaperones and ATP-dependent nucleosome remodeling machines. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2268-74. [PMID: 11985607 DOI: 10.1046/j.1432-1033.2002.02890.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromatin is a highly dynamic structure that plays an essential role in regulating all nuclear processes that utilize the DNA template including DNA repair, replication, transcription and recombination. Thus, the mechanisms by which chromatin structures are assembled and modified are questions of broad interest. This minireview will focus on two groups of proteins: (a) histone chaperones and (b) ATP-dependent chromatin remodeling machines, that co-operate to assemble DNA and histone proteins into chromatin. The current understanding of how histone chaperones and ATP-dependent remodeling machines coordinately assemble chromatin in vitro will be discussed, together with the growing body of genetic evidence that supports the role of histone chaperones in the cell.
Collapse
Affiliation(s)
- Jessica K Tyler
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA.
| |
Collapse
|
107
|
Krawitz DC, Kama T, Kaufman PD. Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol Cell Biol 2002; 22:614-25. [PMID: 11756556 PMCID: PMC139734 DOI: 10.1128/mcb.22.2.614-625.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin assembly factor I (CAF-I) is a conserved histone H3/H4 deposition complex. Saccharomyces cerevisiae mutants lacking CAF-I subunit genes (CAC1 to CAC3) display reduced heterochromatic gene silencing. In a screen for silencing-impaired cac1 alleles, we isolated a mutation that reduced binding to the Cac3p subunit and another that impaired binding to the DNA replication protein PCNA. Surprisingly, mutations in Cac1p that abolished PCNA binding resulted in very minor telomeric silencing defects but caused silencing to be largely dependent on Hir proteins and Asf1p, which together comprise an alternative silencing pathway. Consistent with these phenotypes, mutant CAF-I complexes defective for PCNA binding displayed reduced nucleosome assembly activity in vitro but were stimulated by Asf1p-histone complexes. Furthermore, these mutant CAF-I complexes displayed a reduced preference for depositing histones onto newly replicated DNA. We also observed a weak interaction between Asf1p and Cac2p in vitro, and we hypothesize that this interaction underlies the functional synergy between these histone deposition proteins.
Collapse
Affiliation(s)
- Denise C Krawitz
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
108
|
Meijsing SH, Ehrenhofer-Murray AE. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae. Genes Dev 2001; 15:3169-82. [PMID: 11731480 PMCID: PMC312838 DOI: 10.1101/gad.929001] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The acetylation state of histones plays a central role in determining gene expression in chromatin. The reestablishment of the acetylation state of nucleosomes after DNA replication and chromatin assembly requires both deacetylation and acetylation of specific lysine residues on newly incorporated histones. In this study, the MYST family acetyltransferase Sas2 was found to interact with Cac1, the largest subunit of Saccharomyces cerevisiae chromatin assembly factor-I (CAF-I), and with the nucleosome assembly factor Asf1. The deletions of CAC1 (cac1Delta), ASF1 (asf1Delta), and SAS2 (sas2Delta) had similar effects on gene silencing and were partially overlapping. Furthermore, Sas2 was found in a nuclear protein complex that included Sas4 and Sas5, a homolog of TAF(II)30. This complex, termed SAS-I, was also found to contribute to rDNA silencing. Furthermore, the observation that a mutation of H4 lysine 16 to arginine displayed the identical silencing phenotypes as sas2Delta suggested that it was the in vivo target of Sas2 acetylation. In summary, our data present a novel model for the reestablishment of acetylation patterns after DNA replication, by which SAS-I is recruited to freshly replicated DNA by its association with chromatin assembly complexes to acetylate lysine 16 of H4.
Collapse
Affiliation(s)
- S H Meijsing
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, D-14195 Berlin, Germany
| | | |
Collapse
|
109
|
Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 2001; 21:6574-84. [PMID: 11533245 PMCID: PMC99803 DOI: 10.1128/mcb.21.19.6574-6584.2001] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of newly synthesized DNA into chromatin is essential for normal growth, development, and differentiation. To gain a better understanding of the assembly of chromatin during DNA synthesis, we identified, cloned, and characterized the 180- and 105-kDa polypeptides of Drosophila chromatin assembly factor 1 (dCAF-1). The purified recombinant p180+p105+p55 dCAF-1 complex is active for DNA replication-coupled chromatin assembly. Furthermore, we have established that the putative 75-kDa polypeptide of dCAF-1 is a C-terminally truncated form of p105 that does not coexist in dCAF-1 complexes containing the p105 subunit. The analysis of native and recombinant dCAF-1 revealed an interaction between dCAF-1 and the Drosophila anti-silencing function 1 (dASF1) component of replication-coupling assembly factor (RCAF). The binding of dASF1 to dCAF-1 is mediated through the p105 subunit of dCAF-1. Consistent with the interaction between dCAF-1 p105 and dASF1 in vitro, we observed that dASF1 and dCAF-1 p105 colocalized in vivo in Drosophila polytene chromosomes. This interaction between dCAF-1 and dASF1 may be a key component of the functional synergy observed between RCAF and dCAF-1 during the assembly of newly synthesized DNA into chromatin.
Collapse
Affiliation(s)
- J K Tyler
- Section of Molecular Biology, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Mattock H, Jares P, Zheleva DI, Lane DP, Warbrick E, Blow JJ. Use of peptides from p21 (Waf1/Cip1) to investigate PCNA function in Xenopus egg extracts. Exp Cell Res 2001; 265:242-51. [PMID: 11302689 DOI: 10.1006/excr.2001.5181] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-free systems derived from unfertilized Xenopus eggs have been particularly informative in the study of the regulation and biochemistry of DNA replication. We have developed a Xenopus-based system to analyze proliferating cell nuclear antigen (PCNA)-specific effects on the functional properties of egg extracts. To do this, we have coupled peptides derived from p21 (Waf1/Cip1) to beads and used these to deplete PCNA from Xenopus egg extracts. The effect on various aspects of DNA replication can be analyzed after the readdition of PCNA and other purified proteins. Using this system, we have shown that replication of single-stranded M13 DNA is entirely dependent upon PCNA. By adding exogenous T7 DNA polymerase to PCNA-depleted extracts, we have uncoupled processive DNA replication from PCNA activity and so created an experimental system to analyze the dependence of postreplicative processes on PCNA function. We have shown that successful chromatin assembly is specifically dependent on PCNA. However, systems for analyzing the far more complex mechanisms required for the replication of nuclear double-stranded DNA have proved so far to be refractory to specific PCNA depletion.
Collapse
Affiliation(s)
- H Mattock
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | | | | | | | | | | |
Collapse
|
111
|
Affiliation(s)
- D T Simmons
- Department of Biological Sciences, University of Delaware, Newark 19716, USA
| |
Collapse
|
112
|
Dong H, Lin W, Zhang CK, Xiong H, Fu G, Jin WR, Chen R, Chen Z, Qi ZT, Huang GM. Genomic sequence and expression analyses of human chromatin assembly factor 1 p150 gene. Gene 2001; 264:187-96. [PMID: 11250073 DOI: 10.1016/s0378-1119(01)00335-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chromatin assembly factor-1 (CAF-1) plays essential roles in eukaryotic chromatin assembly during DNA replication (Smith and Stillman, 1989. Cell 58, 15-25), (Krude, 1999. Eur. J. Biochem. 263, 1-5). Its p150 subunit, involved in interaction with histone H3 and H4, is critical to the CAF-1 nucleosome assembly activity. In this study, we sequenced a 96-kb genomic DNA region that includes a 42.8-kb CAF-1 p150 subunit gene (CHAF1A), and a 41.1-kb EEN gene. A scripted bioinformatics analysis pipeline (research agent) has been set up to annotate the BAC sequence with a set of integrated algorithms. The CAF-1 p150 subunit gene contains 15 exons and 14 introns. The promoter region is characterized by deletional analyses, revealing a potential repressor. Tissue-correlated alternative splicing forms of the transcript was initially identified by EST clustering analysis, then confirmed by RT-PCR which resulted more splicing forms than computational prediction.
Collapse
Affiliation(s)
- H Dong
- Chinese National Human Genome Center at Shanghai, 351 Guo Shou Jing Road, Zhangjiang High Tech Park, Shanghai 201203, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Ahmad A, Nagamatsu N, Kouriki H, Takami Y, Nakayama T. Leucine zipper motif of chicken histone acetyltransferase-1 is essential for in vivo and in vitro interactions with the p48 subunit of chicken chromatin assembly factor-1. Nucleic Acids Res 2001; 29:629-37. [PMID: 11160883 PMCID: PMC30395 DOI: 10.1093/nar/29.3.629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We cloned cDNA encoding chicken cytoplasmic histone acetyltransferase-1, chHAT-1, comprising 408 amino acids including a putative initiation Met. It exhibits 80.4% identity to the human homolog and possesses a typical leucine zipper motif. The glutathione S:-transferase (GST) pull-down assay, involving truncated and missense mutants of the chicken chromatin assembly factor-1 (chCAF-1)p48, revealed not only that a region (comprising amino acids 376-405 of chCAF-1p48 and containing the seventh WD dipeptide motif) binds to chHAT-1 in vitro, but also that mutation of the motif has no influence on the in vitro interaction. The GST pull-down assay, involving truncated and missense chHAT-1 mutants, established that a region, comprising amino acids 380-408 of chHAT-1 and containing the leucine zipper motif, is required for its in vitro interaction with chCAF-1p48. In addition, mutation of each of four Leu residues in the leucine zipper motif prevents the in vitro interaction. The yeast two-hybrid assay revealed that all four Leu residues within the leucine zipper motif of chHAT-1 are necessary for its in vivo interaction with chCAF-1p48. These results indicate not only that the proper leucine zipper motif of chHAT-1 is essential for its interaction with chCAF-1p48, but also that the propeller structure of chCAF-1p48 expected to act as a platform for protein-protein interactions may not be necessary for this interaction of chHAT-1.
Collapse
Affiliation(s)
- A Ahmad
- Department of Biochemistry, Miyazaki Medical College, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | |
Collapse
|
114
|
Ahmad A, Takami Y, Nakayama T. Distinct regions of the chicken p46 polypeptide are required for its in vitro interaction with histones H2B and H4 and histone acetyltransferase-1. Biochem Biophys Res Commun 2000; 279:95-102. [PMID: 11112423 DOI: 10.1006/bbrc.2000.3874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned cDNA encoding the chicken p46 polypeptide, chp46, homologous to the p48 subunit of chicken chromatin assembly factor-1, chCAF-1p48. It comprises 424 amino acids including a putative initiation Met, is a member of the WD protein family, with seven WD repeat motifs, and exhibits 90.3% identity to chCAF-1p48 and 94.3% identity to the human and mouse p46 polypeptides (hup46 and mop46). The in vitro immunoprecipitation experiment established that chp46 interacts with histones H2B and H4 and chicken histone acetyltransferase-1, chHAT-1, whereas hup46 interacts with histones H2A and H4 and chHAT-1 and chCAF-1p48 with histone H4 and chHAT-1. The in vitro immunoprecipitation experiment, involving truncated mutants of chp46, revealed not only that two regions comprising amino acids 33-179 and 375-404 are necessary for its binding to H2B, but also that two regions comprising amino acids 1-32 and 405-424 are necessary for its binding to H4. Furthermore, the GST pulldown affinity assay, involving truncated mutants of chp46, revealed that a region comprising amino acids 359-404 (in fact, 375-404) binds to chHAT-1 in vitro. Taken together, these results indicate not only that chp46 should participate differentially in a number of DNA-utilizing processes through interactions of its distinct regions with chHAT-1 and histones H2B and H4, but also that the proper propeller structure of chp46 is not necessary for its interaction with chHAT-1.
Collapse
Affiliation(s)
- A Ahmad
- Department of Biochemistry, Miyazaki Medical College, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | |
Collapse
|
115
|
Ridgway P, Almouzni G. CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. J Cell Sci 2000; 113 ( Pt 15):2647-58. [PMID: 10893180 DOI: 10.1242/jcs.113.15.2647] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chromatin is no longer considered to be a static structural framework for packaging DNA within the nucleus but is instead believed to be an interactive component of DNA metabolism. The ordered assembly of chromatin produces a nucleoprotein template capable of epigenetically regulating the expression and maintenance of the genome. Factors have been isolated from cell extracts that stimulate early steps in chromatin assembly in vitro. The function of one such factor, chromatin-assembly factor 1 (CAF-1), might extend beyond simply facilitating the progression through an individual assembly reaction to its active participation in a marking system. This marking system could be exploited at the crossroads of DNA replication and repair to monitor genome integrity and to define particular epigenetic states.
Collapse
Affiliation(s)
- P Ridgway
- Institut Curie/Section de Recherche UMR218 du CNRS, Paris cedex 05, France
| | | |
Collapse
|
116
|
Shibahara K, Verreault A, Stillman B. The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1- mediated nucleosome assembly onto replicated DNA in vitro. Proc Natl Acad Sci U S A 2000; 97:7766-71. [PMID: 10884407 PMCID: PMC16619 DOI: 10.1073/pnas.97.14.7766] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An in vitro reconstitution system for the analysis of replication-coupled nucleosome assembly is described. In this "two-step system," nucleosome assembly is performed in a separate reaction from DNA replication, wherein purified newly replicated DNA remains noncovalently marked for subsequent chromatin assembly factor-1 (CAF-1)-dependent nucleosome assembly. Because the nucleosome assembly is performed separately from the DNA replication step, this system is more versatile and biochemically tractable when compared with nucleosome assembly during simian virus 40 (SV40) DNA replication. The N-terminal domains of histones H3 and H4 play an important but redundant function in nucleosome assembly in the budding yeast, Saccharomyces cerevisiae. It had been proposed that at least one tail of histone H3 or H4 is required for replication-coupled nucleosome assembly. However, we demonstrate that the N-terminal domains of both histone H3 and H4 are dispensable for CAF-1-mediated formation of nucleosome cores onto newly replicated DNA in vitro. CAF-1 and each of its individual subunits stably bound to recombinant (H3.H4)(2) tetramers lacking the N-terminal domains of both H3 and H4. Therefore, the N-terminal tails of histone H3 and H4 that contain the specific acetylation sites are not necessary for CAF-1-dependent nucleosome assembly onto replicated DNA. We suggest that the histone acetylation may be required for a CAF-1 independent pathway or function after deposition, by marking of newly replicated chromatin.
Collapse
Affiliation(s)
- K Shibahara
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
117
|
Kang SW, Kuzuhara T, Horikoshi M. Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68. Genes Cells 2000; 5:251-63. [PMID: 10792464 DOI: 10.1046/j.1365-2443.2000.00323.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Transcriptional initiation of class II genes is one of the major targets for the regulation of gene expression and is carried out by RNA polymerase II and many auxiliary factors, which include general transcription initiation factors (GTFs). TFIIE, one of the GTFs, functions at the later stage of transcription initiation. As recent studies indicated the possibility that TFIIE may have a role in chromatin transcriptional regulation, we isolated TFIIE-interacting factors which have chromatin-related functions. RESULTS Using the yeast two-hybrid screening system, we isolated the C-terminal part of the human homologue of Saccharomyces cerevisiae (y) Spt16p/Cdc68p, a general chromatin factor. The C-terminal part of human SPT16/CDC68 directly interacts with TFIIE, and ySpt16p/Cdc68p also interacts with yTFIIE (Tfa1p/Tfa2p), thus indicating the existence of an evolutionarily conserved interaction between TFIIE and SPT16/CDC68. Functional interaction of yTFIIE and ySpt16p/Cdc68p was examined using a conditional yTFIIE-alpha mutant strain. Over-expression of ySpt16p/Cdc68p suppressed the phenotype of cold sensitivity of the yTFIIE-alpha-cs mutant strain, and in vitro binding assays revealed that yTFIIE-alpha-cs mutant protein showed diminished binding affinity to ySpt16p/Cdc68p. CONCLUSIONS These observations indicate that general transcription initiation factor TFIIE functionally interacts with general chromatin factor SPT16/CDC68, a finding which provides new insight into the involvement of TFIIE in chromatin transcription. This may well lead to a breakthrough in relationships between the transcription initiation process and structural changes in chromatin.
Collapse
Affiliation(s)
- S W Kang
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
118
|
Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M. A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 2000; 5:221-33. [PMID: 10759893 DOI: 10.1046/j.1365-2443.2000.00319.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Structural changes in chromatin play essential roles in regulating eukaryotic gene expression. Silencing, potent repression of transcription in Saccharomyces cerevisiae, occurs near telomeres and at the silent mating-type loci, as well as at rDNA loci. This type of repression relates to the condensation of chromatin that occurs in the heterochromatin of multicellular organisms. Anti-silencing is a reaction by which silenced loci are de-repressed. Genetic studies revealed that several factors participate in the anti-silencing reaction. However, actions of factors and molecular mechanisms underlying anti-silencing remain unknown. RESULTS Here we report the functional activity of a highly evolutionarily conserved human factor termed CIA (CCG1-interacting factor A), whose budding yeast homologue ASF1 has anti-silencing activity. Using yeast two-hybrid screening, we isolated histone H3 as an interacting factor of CIA. We also showed that CIA binds to histones H3/H4 in vitro, and that the interacting region of histone H3 is located in the C-terminal helices. Considering the functional role of CIA as a histone-interacting protein, we found that CIA forms a nucleosome-like structure with DNA and histones. CONCLUSIONS These results show that human CIA, whose yeast homologue ASF1 is an anti-silencing factor, possesses histone chaperone activity. This leads to a better understanding of the relationship between chromatin structural changes and anti-silencing processes.
Collapse
Affiliation(s)
- T Munakata
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo,1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
119
|
Moggs JG, Grandi P, Quivy JP, Jónsson ZO, Hübscher U, Becker PB, Almouzni G. A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 2000; 20:1206-18. [PMID: 10648606 PMCID: PMC85246 DOI: 10.1128/mcb.20.4.1206-1218.2000] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA-CAF-1 interaction in the context of DNA damage processing and checkpoint control.
Collapse
Affiliation(s)
- J G Moggs
- Institut Curie/Section de Recherche UMR 218 du CNRS, 75231 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
The acetylation of the core histone N-terminal "tail" domains is now recognized as a highly conserved mechanism for regulating chromatin functional states. The following article examines possible roles of acetylation in two critically important cellular processes: replication-coupled nucleosome assembly, and reversible transitions in chromatin higher order structure. After a description of the acetylation of newly synthesized histones, and of the likely acetyltransferases involved, an overview of histone octamer assembly is presented. Our current understanding of the factors thought to assemble chromatin in vivo is then described. Genetic and biochemical investigations of the function the histone tails, and their acetylation, in nucleosome assembly are detailed, followed by an analysis of the importance of histone deacetylation in the maturation of newly replicated chromatin. In the final section the involvement of the histone tail domains in chromatin higher order structures is addressed, along with the role of histone acetylation in chromatin folding. Suggestions for future research are offered in the concluding remarks.
Collapse
Affiliation(s)
- A T Annunziato
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
121
|
Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 1999; 402:555-60. [PMID: 10591219 DOI: 10.1038/990147] [Citation(s) in RCA: 432] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin assembly is a fundamental biological process that is essential for the replication and maintenance of the eukaryotic genome. In dividing cells, newly synthesized DNA is rapidly assembled into chromatin by the deposition of a tetramer of the histone proteins H3 and H4, followed by the deposition of two dimers of histones H2A and H2B to complete the nucleosome-the fundamental repeating unit of chromatin. Here we describe the identification, purification, cloning, and characterization of replication-coupling assembly factor (RCAF), a novel protein complex that facilitates the assembly of nucleosomes onto newly replicated DNA in vitro. RCAF comprises the Drosophila homologue of anti-silencing function 1 protein ASF1 and histones H3 and H4. The specific acetylation pattern of H3 and H4 in RCAF is identical to that of newly synthesized histones. Genetic analyses in Saccharomyces cerevisiae demonstrate that ASF1 is essential for normal cell cycle progression, and suggest that RCAF mediates chromatin assembly after DNA replication and the repair of double-strand DNA damage in vivo.
Collapse
Affiliation(s)
- J K Tyler
- Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla 92093-0347, USA
| | | | | | | | | | | |
Collapse
|
122
|
Chang L, Ryan CA, Schneider CA, Annunziato AT. Preparation/analysis of chromatin replicated in vivo and in isolated nuclei. Methods Enzymol 1999; 304:76-99. [PMID: 10372357 DOI: 10.1016/s0076-6879(99)04008-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article outlined biochemical methodologies for the labeling, detection, and analysis of newly replicated and newly assembled nucleosomes. The isolation of specific vertebrate factors that may be involved in chromatin assembly in vivo, such as nucleoplasmin, CAF-1, and NAP-1 and their counterparts in Drosophila and yeast add a further dimension to the study of nucleosome assembly in living cells. In particular, the ability to genetically manipulate the yeast system, together with the identification of yeast enzymes that acetylate newly synthesized H4, will certainly provide exciting new avenues for the investigation of chromatin assembly in vivo.
Collapse
Affiliation(s)
- L Chang
- Howard Hughes Medical Institute, Vanderbilt School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
123
|
Ahmad A, Takami Y, Nakayama T. WD repeats of the p48 subunit of chicken chromatin assembly factor-1 required for in vitro interaction with chicken histone deacetylase-2. J Biol Chem 1999; 274:16646-53. [PMID: 10347232 DOI: 10.1074/jbc.274.23.16646] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin assembly factor-1 (CAF-1) is essential for chromatin assembly in eukaryotes, and comprises three subunits of 150 kDa (p150), 60 kDa (p60), and 48 kDa (p48). We cloned and sequenced cDNA encoding the small subunit of the chicken CAF-1, chCAF-1p48. It consists of 425 amino acid residues including a putative initiation Met, possesses seven WD repeat motifs, and contains only one amino acid change relative to the human and mouse CAF-1p48s. The immunoprecipitation experiment followed by Western blotting revealed that chCAF-1p48 interacts with chicken histone deacetylases (chHDAC-1 and -2) in vivo. The glutathione S-transferase pulldown affinity assay revealed the in vitro interaction of chCAF-1p48 with chHDAC-1, -2, and -3. We showed that the p48 subunit tightly binds to two regions of chHDAC-2, located between amino acid residues 82-180 and 245-314, respectively. We also established that two N-terminal, two C-terminal, or one N-terminal and one C-terminal WD repeat motif of chCAF-1p48 are required for this interaction, using deletion mutants of the respective regions. These results suggest that chCAF-1p48 is involved in many aspects of DNA-utilizing processes, through alterations in the chromatin structure based on both the acetylation and deacetylation of core histones.
Collapse
Affiliation(s)
- A Ahmad
- Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | |
Collapse
|
124
|
Shibahara K, Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 1999; 96:575-85. [PMID: 10052459 DOI: 10.1016/s0092-8674(00)80661-3] [Citation(s) in RCA: 516] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromatin assembly factor 1 (CAF-1) is required for inheritance of epigenetically determined chromosomal states in vivo and promotes assembly of chromatin during DNA replication in vitro. Herein, we demonstrate that after DNA replication, replicated, but not unreplicated, DNA is also competent for CAF-1-dependent chromatin assembly. The proliferating cell nuclear antigen (PCNA), a DNA polymerase clamp, is a component of the replication-dependent marking of DNA for chromatin assembly. The clamp loader, replication factor C (RFC), can reverse this mark by unloading PCNA from the replicated DNA. PCNA binds directly to p150, the largest subunit of CAF-1, and the two proteins colocalize at sites of DNA replication in cells. We suggest that PCNA and CAF-1 connect DNA replication to chromatin assembly and the inheritance of epigenetic chromosome states.
Collapse
Affiliation(s)
- K Shibahara
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
125
|
Abstract
The removal of DNA damage from the eukaryotic genome requires DNA repair enzymes to operate within the complex environment of chromatin. We review the evidence for chromatin rearrangements during nucleotide excision repair and discuss the extent and possible molecular mechanisms of these rearrangements, focusing on events at the nucleosome level of chromatin structure.
Collapse
Affiliation(s)
- J G Moggs
- Dynamique de la Chromatine, Institut Curie, Section de Recherche, UMR 144, Paris, France
| | | |
Collapse
|
126
|
Martini E, Roche DM, Marheineke K, Verreault A, Almouzni G. Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J Cell Biol 1998; 143:563-75. [PMID: 9813080 PMCID: PMC2148138 DOI: 10.1083/jcb.143.3.563] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The subcellular distribution and posttranslational modification of human chromatin assembly factor 1 (CAF-1) have been investigated after UV irradiation of HeLa cells. In an asynchronous cell population only a subfraction of the two large CAF-1 subunits, p150 and p60, were found to exist in a chromatin-associated fraction. This fraction is most abundant during S phase in nonirradiated cells and is much reduced in G2 cells. After UV irradiation, the chromatin-associated form of CAF-1 dramatically increased in all cells irrespective of their position in the cell cycle. Such chromatin recruitment resembles that seen for PCNA, a DNA replication and repair factor. The chromatin-associated fraction of p60 was predominantly hypophosphorylated in nonirradiated G2 cells. UV irradiation resulted in the rapid recruitment to chromatin of phosphorylated forms of the p60 subunit. Furthermore, the amount of the p60 and p150 subunits of CAF-1 associated with chromatin was a function of the dose of UV irradiation. Consistent with these in vivo observations, we found that the amount of CAF-1 required to stimulate nucleosome assembly during the repair of UV photoproducts in vitro depended upon both the number of lesions and the phosphorylation state of CAF-1. The recruitment of CAF-1 to chromatin in response to UV irradiation of human cells described here supports a physiological role for CAF-1 in linking chromatin assembly to DNA repair.
Collapse
Affiliation(s)
- E Martini
- Institut Curie, Research Section Unité Mixte de Recherche, 144 du Centre National de la Recherche Scientifique, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
127
|
Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 1998; 67:545-79. [PMID: 9759497 DOI: 10.1146/annurev.biochem.67.1.545] [Citation(s) in RCA: 872] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nucleosome, which is the primary building block of chromatin, is not a static structure: It can adopt alternative conformations. Changes in solution conditions or changes in histone acetylation state cause nucleosomes and nucleosomal arrays to behave with altered biophysical properties. Distinct subpopulations of nucleosomes isolated from cells have chromatographic properties and nuclease sensitivity different from those of bulk nucleosomes. Recently, proteins that were initially identified as necessary for transcriptional regulation have been shown to alter nucleosomal structure. These proteins are found in three types of multiprotein complexes that can acetylate nucleosomes, deacetylate nucleosomes, or alter nucleosome structure in an ATP-dependent manner. The direct modification of nucleosome structure by these complexes is likely to play a central role in appropriate regulation of eukaryotic genes.
Collapse
Affiliation(s)
- J L Workman
- Howard Hughes Medical Institute, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
128
|
Kaufman PD, Cohen JL, Osley MA. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol Cell Biol 1998; 18:4793-806. [PMID: 9671489 PMCID: PMC109065 DOI: 10.1128/mcb.18.8.4793] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1998] [Accepted: 05/14/1998] [Indexed: 02/08/2023] Open
Abstract
Chromatin assembly factor I (CAF-I) is a three-subunit histone-binding complex conserved from the yeast Saccharomyces cerevisiae to humans. Yeast cells lacking CAF-I (cacDelta mutants) have defects in heterochromatic gene silencing. In this study, we showed that deletion of HIR genes, which regulate histone gene expression, synergistically reduced gene silencing at telomeres and at the HM loci in cacDelta mutants, although hirDelta mutants had no silencing defects when CAF-I was intact. Therefore, Hir proteins are required for an alternative silencing pathway that becomes important in the absence of CAF-I. Because Hir proteins regulate expression of histone genes, we tested the effects of histone gene deletion and overexpression on telomeric silencing and found that alterations in histone H3 and H4 levels or in core histone stoichiometry reduced silencing in cacDelta mutants but not in wild-type cells. We therefore propose that Hir proteins contribute to silencing indirectly via regulation of histone synthesis. However, deletion of combinations of CAC and HIR genes also affected the growth rate and in some cases caused partial temperature sensitivity, suggesting that global aspects of chromosome function may be affected by the loss of members of both gene families.
Collapse
Affiliation(s)
- P D Kaufman
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA.
| | | | | |
Collapse
|
129
|
Ruiz-García AB, Sendra R, Galiana M, Pamblanco M, Pérez-Ortín JE, Tordera V. HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4. J Biol Chem 1998; 273:12599-605. [PMID: 9575221 DOI: 10.1074/jbc.273.20.12599] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the histone acetyltransferase enzymes obtained from a series of yeast hat1, hat2, and gcn5 single mutants and hat1,hat2 and hat1,gcn5 double mutants. Extracts prepared from both hat1 and hat2 mutant strains specifically lack the following two histone acetyltransferase activities: the well known cytoplasmic type B enzyme and a free histone H4-specific histone acetyltransferase located in the nucleus. The catalytic subunits of both cytoplasmic and nuclear enzymes have identical molecular masses (42 kDa), the same as that of HAT1. However, the cytoplasmic complex has a molecular mass (150 kDa) greater than that of the nuclear complex (110 kDa). The possible functions of HAT1 and HAT2 in the yeast nucleus are discussed. In addition, we have detected a yeast histone acetyltransferase not previously described, designated HAT-A4. This enzyme is located in the nucleus and is able to acetylate free and nucleosome-bound histones H3 and H4. Finally, we show that the hat1, gcn5 double mutant is viable and does not exhibit a new phenotype, thus suggesting the existence of several histone acetyltransferases with overlapping functions.
Collapse
Affiliation(s)
- A B Ruiz-García
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Dr. Moliner 50, E-46100 Burjassot (València), Spain
| | | | | | | | | | | |
Collapse
|
130
|
Kadonaga JT. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 1998; 92:307-13. [PMID: 9476891 DOI: 10.1016/s0092-8674(00)80924-1] [Citation(s) in RCA: 417] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J T Kadonaga
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0347, USA
| |
Collapse
|
131
|
Abstract
DNA replication is a complicated process that is largely regulated during stages of initiation. The Siman Virus 40 in vitro replication system has served as an excellent model for studies of the initiation of DNA replication, and its regulation, in eukaryotes. Initiation of SV40 replication requires a single viral protein termed T-antigen, all other proteins are supplied by the host. The recent determination of the solution structure of the T-antigen domain that recognizes the SV40 origin has provided significant insights into the initiation process. For example, it has afforded a clearer understanding of origin recognition, T-antigen oligomerization, and DNA unwinding. Furthermore, the Simian virus 40 in vitro replication system has been used to study nascent DNA formation in the vicinity of the viral origin of replication. Among the conclusions drawn from these experiments is that nascent DNA synthesis does not initiate in the core origin in vitro and that Okazaki fragment formation is complex. These and related studies demonstrate that significant progress has been made in understanding the initiation of DNA synthesis at the molecular level.
Collapse
Affiliation(s)
- P A Bullock
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
132
|
Enomoto S, Berman J. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 1998; 12:219-32. [PMID: 9436982 PMCID: PMC316446 DOI: 10.1101/gad.12.2.219] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CAC1/RLF2 encodes the largest subunit of chromatin assembly factor I (CAF-I), a complex that assembles newly synthesized histones onto recently replicated DNA in vitro. In vivo, cac1/rlf2 mutants are defective in telomeric silencing and mislocalize Rap1p, a telomere-binding protein. Here, we report that in cells lacking CAF-I the silent mating loci are derepressed partially. MATa cac1 cells exhibit an unusual response to alpha-factor: They arrest and form mating projections (shmoos) initially, but are unable to sustain the arrest state, giving rise to clusters of shmooing cells. cac1 MATa HMLa HMRa strains do not form these shmoo clusters, indicating that derepression of HMLalpha causes the shmoo cluster phenotype in cac1 cells. When SIR3 is reintroduced into sir1 sir3 cells, HML remains derepressed indicating that SIR1 is required for the re-establishment of silencing at HML. In contrast, when SIR3 is reintroduced into cac1 sir3 cells, silencing is restored to HML, indicating that CAF-I is not required for the re-establishment of silencing. Loss of the other CAF-I subunits (Cac2p and Cac3p/Msi1p) also results in the shmoo cluster phenotype, implying that loss of CAF-I activity gives rise to this unstable repression of HML. Strains carrying certain mutations in the amino terminus of histone H4 and strains with limiting amounts of Sir2p or Sir3p also form shmoo clusters, implying that the shmoo cluster phenotype is indicative of defects in maintenance of the structural integrity of silent chromatin. MATa cac- sir1 double mutants have a synergistic mating defect, suggesting that the two silencing mechanisms, establishment and maintenance, function cooperatively. We propose a model to explain the distinctions between the establishment and the maintenance of silent chromatin.
Collapse
Affiliation(s)
- S Enomoto
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, Minnesota 55108 USA
| | | |
Collapse
|
133
|
Hu RJ, Lee MP, Connors TD, Johnson LA, Burn TC, Su K, Landes GM, Feinberg AP. A 2.5-Mb transcript map of a tumor-suppressing subchromosomal transferable fragment from 11p15.5, and isolation and sequence analysis of three novel genes. Genomics 1997; 46:9-17. [PMID: 9403053 DOI: 10.1006/geno.1997.4981] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
11p15.5 is an important tumor-suppressor gene region, showing loss of heterozygosity in Wilms tumor, rhabdomyosarcoma, adrenocortical carcinoma, and lung, ovarian, and breast cancer. We previously mapped directly by genetic complementation a subtransferable fragment (STF) harboring an embryonal tumor-suppressor gene and spanning about 2.5 Mb. We have now mapped the centromeric end of this STF between D11S988 and D11S12 and its telomeric end between D11S1318 and TH. We have isolated a complete contig of PAC, P1, BAC, and cosmid genomic clones spanning the entire 2.5-Mb region defined by this STF, as well as more than 200 exons from these genomic clones using exon trapping. We have isolated genes in this region by directly screening DNA libraries as well as by database searching for ESTs. Nine of these genes have been reported previously by us and by others. However, the initial mapping of most of those genes was based on FISH or somatic cell hybrid analysis, and here we precisely define their physical location. These genes include RRM1, GOK (D11S4896E), Nup98, CARS, hNAP2 (NAP1L4), p57KIP2 (CDKN1C), KVLQT1 (KCNA9), TAPA-1, and ASCL2. In addition, we have identified several novel genes in this region, three of which, termed TSSC1, TSSC2, and TSSC3, are reported here. TSSC1 shows homology to Rb-associated protein p48 and chromatin assembly factor CAF1, and it is located between GOK and Nup98. TSSC2 is homologous to Caenorhabditis elegans beta-mannosyl transferase, and it lies between Nup98 and CARS. TSSC3 shows homology to mouse TDAG51, which is implicated in FasL-mediated apoptosis, and it is located between hNAP2 and p57KIP2. Thus, these genes may play a role in malignancies that involve this region.
Collapse
Affiliation(s)
- R J Hu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Gaillard PHL, Moggs JG, Roche DM, Quivy JP, Becker PB, Wood RD, Almouzni G. Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO J 1997; 16:6281-9. [PMID: 9321407 PMCID: PMC1326312 DOI: 10.1093/emboj/16.20.6281] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To restore full genomic integrity in a eukaryotic cell, DNA repair processes have to be coordinated with the resetting of nucleosomal organization. We have established a cell-free system using Drosophila embryo extracts to investigate the mechanism linking de novo nucleosome formation to nucleotide excision repair (NER). Closed-circular DNA containing a uniquely placed cisplatin-DNA adduct was used to follow chromatin assembly specifically from a site of NER. Nucleosome formation was initiated from a target site for NER. The assembly of nucleosomes propagated bidirectionally, creating a regular nucleosomal array extending beyond the initiation site. Furthermore, this chromatin assembly was still effective when the repair synthesis step in the NER process was inhibited.
Collapse
|
135
|
Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 1997; 90:145-55. [PMID: 9230310 DOI: 10.1016/s0092-8674(00)80321-9] [Citation(s) in RCA: 480] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe the purification and characterization of ACF, an ATP-utilizing chromatin assembly and remodeling factor. ACF is a multisubunit factor that contains ISWI protein and is distinct from NURF, another ISWI-containing factor. In chromatin assembly, purified ACF and a core histone chaperone (such as NAP-1 or CAF-1) are sufficient for the ATP-dependent formation of periodic nucleosome arrays. In chromatin remodeling, ACF is able to modulate the internucleosomal spacing of chromatin by an ATP-dependent mechanism. Moreover, ACF can mediate promoter-specific nucleosome reconfiguration by Gal4-VP16 in an ATP-dependent manner. These results suggest that ACF acts catalytically both in chromatin assembly and in the remodeling of nucleosomes that occurs during transcriptional activation.
Collapse
Affiliation(s)
- T Ito
- Department of Biology, University of California, San Diego, La Jolla 92093-0347, USA
| | | | | | | | | |
Collapse
|
136
|
Kaufman PD, Kobayashi R, Stillman B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 1997; 11:345-57. [PMID: 9030687 DOI: 10.1101/gad.11.3.345] [Citation(s) in RCA: 315] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vivo, nucleosomes are formed rapidly on newly synthesized DNA after polymerase passage. Previously, a protein complex from human cells, termed chromatin assembly factor-I (CAF-I), was isolated that assembles nucleosomes preferentially onto SV40 DNA templates that undergo replication in vitro. Using a similar assay, we now report the purification of CAF-I from the budding yeast Saccharomyces cerevisiae. Amino acid sequence data from purified yeast CAF-I led to identification of the genes encoding each subunit in the yeast genome data base. The CAC1 and CAC2 (chromatin assembly complex) genes encode proteins similar to the p150 and p60 subunits of human CAF-I, respectively. The gene encoding the p50 subunit of yeast CAF-I (CAC3) is similar to the human p48 CAF-I subunit and was identified previously as MSI1, a member of a highly conserved subfamily of WD repeat proteins implicated in histone function in several organisms. Thus, CAF-I has been conserved functionally and structurally from yeast to human cells. Genes encoding the CAF-I subunits (collectively referred to as CAC genes) are not essential for cell viability. However, deletion of any CAC gene causes an increase in sensitivity to ultraviolet radiation, without significantly increasing sensitivity to gamma rays. This is consistent with previous biochemical data demonstrating the ability of CAF-I to assemble nucleosomes on templates undergoing nucleotide excision repair. Deletion of CAC genes also strongly reduces silencing of genes adjacent to telomeric DNA; the CAC1 gene is identical to RLF2 (Rap1p localization factor-2), a gene required for the normal distribution of the telomere-binding Rap1p protein within the nucleus. Together, these data suggest that CAF-I plays a role in generating chromatin structures in vivo.
Collapse
Affiliation(s)
- P D Kaufman
- Cold Spring Harbor Laboratory, New York 11724, USA.
| | | | | |
Collapse
|
137
|
Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT. The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase-associated protein. Mol Cell Biol 1996; 16:6149-59. [PMID: 8887645 PMCID: PMC231618 DOI: 10.1128/mcb.16.11.6149] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To gain a better understanding of DNA replication-coupled chromatin assembly, we have isolated the cDNA encoding the smallest (apparent molecular mass, 55 kDa; termed p55) subunit of Drosophila melanogaster chromatin assembly factor 1 (dCAF-1), a multisubunit protein that is required for the assembly of nucleosomes onto newly replicated DNA in vitro. The p55 polypeptide comprises seven WD repeat motifs and is homologous to the mammalian RbAp48 protein, which is associated with the HD1 histone deacetylase. dCAF-1 was immunopurified by using affinity-purified antibodies against p55; the resulting dCAF-1 preparation possessed the four putative subunits of dCAF-1 (p180, p105, p75, and p55) and was active for DNA replication-coupled chromatin assembly. Moreover, dCAF-1 activity was specifically depleted with antibodies against p55. Thus, p55 is an integral component of dCAF-1. p55 is localized to the nucleus and is present throughout Drosophila development. Consistent with the homology between p55 and the HD1-associated RbAp48 protein, histone deacetylase activity was observed to coimmunoprecipitate specifically with p55 from a Drosophila nuclear extract. Furthermore, a fraction of the p55 protein becomes associated with the newly assembled chromatin following DNA replication. These findings collectively suggest that p55 may function as a link between DNA replication-coupled chromatin assembly and histone modification.
Collapse
Affiliation(s)
- J K Tyler
- Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla 92093-0347, USA
| | | | | | | | | |
Collapse
|
138
|
Verreault A, Kaufman PD, Kobayashi R, Stillman B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 1996; 87:95-104. [PMID: 8858152 DOI: 10.1016/s0092-8674(00)81326-4] [Citation(s) in RCA: 514] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chromatin assembly factor 1 (CAF-1) assembles nucleosomes in a replication-dependent manner. The small subunit of CAF-1 (p48) is a member of a highly conserved subfamily of WD-repeat proteins. There are at least two members of this subfamily in both human (p46 and p48) and yeast cells (Hat2p, a subunit of the B-type H4 acetyltransferase, and Msi1p). Human p48 can bind to histone H4 in the absence of CAF-1 p150 and p60. p48, also a known subunit of a histone deacetylase, copurifies with a chromatin assembly complex (CAC), which contains the three subunits of CAF-1 (p150, p60, p48) and H3 and H4, and promotes DNA replication-dependent chromatin assembly. CAC histone H4 exhibits a novel pattern of lysine acetylation that overlaps with, but is distinct from, that reported for newly synthesized H4 isolated from nascent chromatin. Our data suggest that CAC is a key intermediate of the de novo nucleosome assembly pathway and that the p48 subunit participates in other aspects of histone metabolism.
Collapse
Affiliation(s)
- A Verreault
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | |
Collapse
|
139
|
Parthun MR, Widom J, Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 1996; 87:85-94. [PMID: 8858151 DOI: 10.1016/s0092-8674(00)81325-2] [Citation(s) in RCA: 341] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have isolated the predominant cytoplasmic histone acetyltransferase activity from Saccharomyces cerevisiae. This enzyme acetylates the lysine at residue 12 of free histone H4 but does not modify histone H4 when packaged in chromatin. The activity contains two proteins, Hat1p and Hat2p. Hat1p is the catalytic subunit of the histone acetyltransferase and has an intrinsic substrate specificity that modifies lysine in the recognition sequence GXGKXG. The specificity of the enzyme in the yeast cytoplasm is restricted relative to recombinant Hat1p suggesting that it is negatively regulated in vivo. Hat2p, which is required for high affinity binding of the acetyltransferase to histone H4, is highly related to Rbap48, which is a subunit of the chromatin assembly factor, CAF-1, and copurifies with the human histone deacetylase HD1. We propose that the Hat2p/Rbap48 family serve as escorts of histone metabolism enzymes to facilitate their interaction with histone H4.
Collapse
Affiliation(s)
- M R Parthun
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
140
|
Gaillard PHL, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 1996; 86:887-96. [PMID: 8808624 DOI: 10.1016/s0092-8674(00)80164-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA repair in the eukaryotic cell disrupts local chromatin organization. To investigate whether the resetting of nucleosomal arrays can be linked to the repair process, we developed model systems, with both Xenopus egg extract and human cell extracts, to follow repair and chromatin assembly in parallel on circular DNA templates. Both systems were able to carry out nucleotide excision repair of DNA lesions. We observed that UV-dependent DNA synthesis occurs simultaneously with chromatin assembly, strongly indicating a mechanistic coupling between the two processes. A complementation assay established that chromatin assembly factor I (CAF1) is necessary for this repair associated chromatin formation.
Collapse
|
141
|
Ruiz-Lara SA, Cornudella L, Rodríguez-Campos A. Dissociation of protamine-DNA complexes by Xenopus nucleoplasmin and minichromosome assembly in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:186-94. [PMID: 8797853 DOI: 10.1111/j.1432-1033.1996.0186h.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nucleoplasmin, an acidic thermostable protein abundant in the nucleus of Xenopus laevis oocytes, has been found to dissociate complexes of pUC19 DNA and protein phi 1, an intermediate protamine present in ripe sperm from the mollusc Mytilus edulis. Cruder preparations of nucleoplasmin, such as the amphibian oocyte S150 extract and its thermostable fraction, also dissociate the heterologous DNA-phi 1 complexes and, in addition, promote the assembly of plasmid DNA into a minichromosome displaying regular nucleosomal periodicity, as revealed by micrococcal nuclease digestion. In contrast, purified nucleoplasmin complemented with rat hepatocyte core histone octamers in the presence of DNA topoisomerase I, although capable of inducing nucleoprotein formation onto the complexed DNA, fails to position nucleosomes at the native spacings seen in chromatin in vivo. These data favour the existence of a general mechanism to bring about, in a concerted manner, removal of sperm-specific nuclear proteins and reconstitution of somatic chromatin following fertilization.
Collapse
Affiliation(s)
- S A Ruiz-Lara
- Departamento de Biología Molecular y Celular, Centro de Investigación y Desarrollo del CSIC, Barcelona, Spain
| | | | | |
Collapse
|
142
|
Abstract
Recent data argue strongly that a protein complex termed chromatin assembly factor-1 (CAF-I) plays a major role in de novo nucleosome assembly during DNA replication. Human CAF-I deposits newly synthesized, acetylated histones onto replicated DNA in vitro and localizes to sites of DNA replication in S-phase cells. Specific lysines of the histones used for nucleosome assembly are acetylated; in the past year the first gene encoding a histone acetyltransferase was cloned. However, mechanistic links between histone acetylation and nucleosome assembly have not been established in vivo or in vitro.
Collapse
Affiliation(s)
- P D Kaufman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
143
|
Kamakaka RT, Bulger M, Kaufman PD, Stillman B, Kadonaga JT. Postreplicative chromatin assembly by Drosophila and human chromatin assembly factor 1. Mol Cell Biol 1996; 16:810-7. [PMID: 8622682 PMCID: PMC231061 DOI: 10.1128/mcb.16.3.810] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To study the relationship between DNA replication and chromatin assembly, we have purified a factor termed Drosophila chromatin assembly factor 1 (dCAF-1) to approximately 50% homogeneity from a nuclear extract derived from embryos. dCAF-1 appears to consist of four polypeptides with molecular masses of 180, 105, 75, and 55 kDa. dCAF-1 preferentially mediates chromatin assembly of newly replicated DNA relative to unreplicated DNA during T-antigen-dependent simian virus 40 DNA replication in vitro, as seen with human CAF-1. Analysis of the mechanism of DNA replication-coupled chromatin assembly revealed that both dCAF-1 and human CAF-1 mediate chromatin assembly preferentially with previously yet newly replicated DNA relative to unreplicated DNA. Moreover, the preferential assembly of the postreplicative DNA was observed at 30 min after inhibition of DNA replication by aphidicolin, but this effect slowly diminished until it was no longer apparent at 120 min after inhibition of replication. These findings suggest that the coupling between DNA replication and chromatin assembly may not necessarily involve a direct interaction between the replication and assembly factors at a replication fork.
Collapse
Affiliation(s)
- R T Kamakaka
- Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla 92093-0347, USA
| | | | | | | | | |
Collapse
|
144
|
Gruss C, Knippers R. Structure of replicating chromatin. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:337-65. [PMID: 8821265 DOI: 10.1016/s0079-6603(08)60971-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C Gruss
- Fakultät für Biologie, Universität Konstanz, Germany
| | | |
Collapse
|
145
|
Bulger M, Ito T, Kamakaka RT, Kadonaga JT. Assembly of regularly spaced nucleosome arrays by Drosophila chromatin assembly factor 1 and a 56-kDa histone-binding protein. Proc Natl Acad Sci U S A 1995; 92:11726-30. [PMID: 8524837 PMCID: PMC40475 DOI: 10.1073/pnas.92.25.11726] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To ascertain the mechanism by which nucleosomes are assembled by factors derived from Drosophila embryos, two proteins termed Drosophila chromatin assembly factors (CAFs) 1 and 4 (dCAF-1 and dCAF-4) were fractionated and purified from a Drosophila embryo extract. The assembly of chromatin by dCAF-1, dCAF-4, purified histones, ATP, and DNA is a process that generates regularly spaced nucleosomal arrays with a repeat length that resembles that of bulk native Drosophila chromatin and is not obligatorily coupled to DNA replication. The assembly of chromatin by dCAF-1 and dCAF-4 is nearly complete within 10 min. The dCAF-1 activity copurified with the Drosophila version of chromatin assembly factor-1 (CAF-1), a factor that has been found to be required for the assembly of chromatin during large tumor (T) antigen-mediated, simian virus 40 (SV40) origin-dependent DNA replication. The dCAF-4 activity copurified with a 56-kDa core-histone-binding protein that was purified to > 90% homogeneity.
Collapse
Affiliation(s)
- M Bulger
- Department of Biology, University of California, San Diego, La Jolla 92093-0347, USA
| | | | | | | |
Collapse
|
146
|
Affiliation(s)
- T Krude
- Wellcome/CRC Institute, University of Cambridge, UK
| |
Collapse
|
147
|
Fabry S, Müller K, Lindauer A, Park PB, Cornelius T, Schmitt R. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes. Curr Genet 1995; 28:333-45. [PMID: 8590479 DOI: 10.1007/bf00326431] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II (66% identity). Organization of the core histone gene in pairs, and non-polyadenylation of mRNAs are features shared with animals, whereas peptide sequences and enhancer elements are shared with higher plants, assigning the volvocalean histone genes a position intermediate between animals and plants.
Collapse
Affiliation(s)
- S Fabry
- Lehrstuhl, für Genetik, Universität Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
148
|
Kaufman PD, Kobayashi R, Kessler N, Stillman B. The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 1995; 81:1105-14. [PMID: 7600578 DOI: 10.1016/s0092-8674(05)80015-7] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chromatin assembly factor I (CAF-I) from human cell nuclei is a three-subunit protein complex that assembles histone octamers onto replicating DNA in a cell-free system. Sequences of cDNAs encoding the two largest CAF-I subunits reveal that the p150 protein contains large clusters of charged residues, whereas p60 contains WD repeats. p150 and p60 directly interact and are both required for DNA replication-dependent assembly of nucleosomes. Deletion of the p60-binding domain from the p150 protein prevents chromatin assembly. p150 and p60 form complexes with newly synthesized histones H3 and acetylated H4 in human cell extracts, suggesting that such complexes are intermediates between histone synthesis and assembly onto replicating DNA.
Collapse
Affiliation(s)
- P D Kaufman
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | |
Collapse
|
149
|
Brénot-Bosc F, Gupta S, Margolis RL, Fotedar R. Changes in the subcellular localization of replication initiation proteins and cell cycle proteins during G1- to S-phase transition in mammalian cells. Chromosoma 1995; 103:517-27. [PMID: 7621701 DOI: 10.1007/bf00355316] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA replication in eukaryotic cells is restricted to the S-phase of the cell cycle. In a cell-free replication model system, using SV40 origin-containing DNA, extracts from G1 cells are inefficient in supporting DNA replication. We have undertaken a detailed analysis of the subcellular localization of replication proteins and cell cycle regulators to determine when these proteins are present in the nucleus and therefore available for DNA replication. Cyclin A and cdk2 have been implicated in regulating DNA replication, and may be responsible for activating components of the DNA replication initiation complex on entry into S-phase. G1 cell extracts used for in vitro replication contain the replication proteins RPA (the eukaryotic single-stranded DNA binding protein) and DNA polymerase alpha as well as cdk2, but lack cyclin A. On localizing these components in G1 cells we find that both RPA and DNA polymerase alpha are present as nuclear proteins, while cdk2 is primarily cytoplasmic and there is no detectable cyclin A. An apparent change in the distribution of these proteins occurs as the cell enters S-phase. Cyclin A becomes abundant and both cyclin A and cdk2 become localized to the nucleus in S-phase. In contrast, the RPA-34 and RPA-70 subunits of RPA, which are already nuclear, undergo a transition from the uniform nuclear distribution observed during G1, and now display a distinct punctate nuclear pattern. The initiation of DNA replication therefore most likely occurs by modification and activation of these replication initiation proteins rather than by their recruitment to the nuclear compartment.
Collapse
|
150
|
Dimitrov S, Wolffe AP. Chromatin and nuclear assembly: experimental approaches towards the reconstitution of transcriptionally active and silent states. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:1-13. [PMID: 7999782 DOI: 10.1016/0167-4781(94)00182-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S Dimitrov
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-0001
| | | |
Collapse
|