101
|
Charroux B, Freeman M, Kerridge S, Baonza A. Atrophin contributes to the negative regulation of epidermal growth factor receptor signaling in Drosophila. Dev Biol 2006; 291:278-90. [PMID: 16445904 DOI: 10.1016/j.ydbio.2005.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 11/21/2005] [Accepted: 12/06/2005] [Indexed: 11/18/2022]
Abstract
Dentato-rubral and pallido-luysian atrophy (DRPLA) is a dominant, progressive neurodegenerative disease caused by the expansion of polyglutamine repeats within the human Atrophin-1 protein. Drosophila Atrophin and its human orthologue are thought to function as transcriptional co-repressors. Here, we report that Drosophila Atrophin participates in the negative regulation of Epidermal Growth Factor Receptor (EGFR) signaling both in the wing and the eye imaginal discs. In the wing pouch, Atrophin loss of function clones induces cell autonomous expression of the EGFR target gene Delta, and the formation of extra vein tissue, while overexpression of Atrophin inhibits EGFR-dependent vein formation. In the eye, Atrophin cooperates with other negative regulators of the EGFR signaling to prevent the differentiation of surplus photoreceptor cells and to repress Delta expression. Overexpression of Atrophin in the eye reduces the EGFR-dependent recruitment of cone cells. In both the eye and wing, epistasis tests show that Atrophin acts downstream or in parallel to the MAP kinase rolled to modulate EGFR signaling outputs. We show that Atrophin genetically cooperates with the nuclear repressor Yan to inhibit the EGFR signaling activity. Finally, we have found that expression of pathogenic or normal forms of human Atrophin-1 in the wing promotes wing vein differentiation and acts as dominant negative proteins inhibiting endogenous fly Atrophin activity.
Collapse
Affiliation(s)
- Bernard Charroux
- Laboratoire de Génétique et Physiologie du Développement, UMR 6545 CNRS-Université, IBDM-CNRS-Université de la Méditerranée, Marseille Cedex 09 13288, France
| | | | | | | |
Collapse
|
102
|
Katou S, Karita E, Yamakawa H, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y. Catalytic activation of the plant MAPK phosphatase NtMKP1 by its physiological substrate salicylic acid-induced protein kinase but not by calmodulins. J Biol Chem 2005; 280:39569-81. [PMID: 16183637 DOI: 10.1074/jbc.m508115200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MAPK phosphatases (MKPs) are negative regulators of MAPKs. Previously, we identified NtMKP1 as a novel calmodulin (CaM)-binding protein (Yamakawa, H., Katou, S., Seo, S., Mitsuhara, I., Kamada, H., and Ohashi, Y. (2004) J. Biol. Chem. 279, 928-936). In this study, we characterized the interaction of NtMKP1 with substrate MAPKs and CaM. NtMKP1 (produced by in vitro transcription/translation) inactivated salicylic acid-induced protein kinase (SIPK) through dephosphorylation of the TEY motif of SIPK. CaM bound but unexpectedly did not activate the phosphatase activity of NtMKP1. NtMKP1 has four characteristic domains, viz. a dual-specificity phosphatase catalytic domain, a gelsolin homology domain, a CaM-binding domain, and C-terminal domain. Deletion analysis revealed that the N-terminal non-catalytic region of NtMKP1 bound SIPK and was essential for inactivating SIPK, whereas the CaM-binding and C-terminal domains were dispensable. Moreover, the phosphatase activity of NtMKP1 was increased strongly by the binding of SIPK, but weakly by another MAPK, wound-induced protein kinase. Swapping and site-directed mutagenesis of SIPK and wound-induced protein kinase revealed that the strong activation of NtMKP1 phosphatase activity by SIPK partially depended on the putative common docking domain of SIPK. On the other hand, conversion of Lys(41) and Arg(43) of NtMKP1 to Ala (K41A/R43A) abolished the interaction with SIPK. Expression of constitutively active MAPK kinase in Nicotiana benthamiana induced activation of SIPK and cell death. Simultaneous expression of either NtMKP1 or NtMKP1 L443R, which was unable to bind CaM, compromised the constitutively active MAPK kinase-induced responses, whereas that of NtMKP1 K41A/R43A did not. These results indicate that the regulation of NtMKP1 activity by SIPK binding, but not by CaM binding, is important for the function of NtMKP1.
Collapse
Affiliation(s)
- Shinpei Katou
- Plant Physiology Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
103
|
Molina DM, Grewal S, Bardwell L. Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J Biol Chem 2005; 280:42051-60. [PMID: 16246839 PMCID: PMC3017498 DOI: 10.1074/jbc.m510590200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient and specific signaling by mitogen-activated protein kinases (MAPKs) is enhanced by docking sites found on many MAPK substrates and regulators. Here we show that the MAPKs ERK1 and ERK2 form a stable complex (Kd approximately 6 microm) with their substrate the microphthalmia-associated transcription factor (MITF). Complex formation requires a domain of MITF of approximately 100 residues that is nearby, but C-terminal to, the MAPK phosphorylation site at Ser73. MITF derivatives lacking this ERK-binding domain do not bind ERK2 and are phosphorylated less efficiently by ERK2. The ERK-binding domain of MITF bears no obvious resemblance to previously characterized MAPK docking motifs; in particular, it does not contain a consensus D-site. Consistent with this, ERK2-MITF binding does not require the integrity of the CD/sevenmaker region of ERK2. Furthermore, D-site peptides, which are able to potently inhibit ERK2-mediated phosphorylation of the Elk-1 transcription factor (IC50= 3 microm), are relatively poor inhibitors of ERK2-mediated phosphorylation of MITF, exhibiting >15-fold selectivity for inhibition of Elk-1 versus MITF. These observations demonstrate substrate-selective kinase inhibition: the possibility that small molecules that target docking interactions may be used to selectively inhibit the phosphorylation of a subset of the substrates of a kinase.
Collapse
Affiliation(s)
| | | | - Lee Bardwell
- To whom correspondence should be addressed: Tel.: 949-824-6902; Fax: 949-824-4709;
| |
Collapse
|
104
|
Tárrega C, Ríos P, Cejudo-Marín R, Blanco-Aparicio C, van den Berk L, Schepens J, Hendriks W, Tabernero L, Pulido R. ERK2 shows a restrictive and locally selective mechanism of recognition by its tyrosine phosphatase inactivators not shared by its activator MEK1. J Biol Chem 2005; 280:37885-94. [PMID: 16148006 DOI: 10.1074/jbc.m504366200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The two regulatory residues that control the enzymatic activity of the mitogen-activated protein (MAP) kinase ERK2 are phosphorylated by the unique MAP kinase kinases MEK1/2 and dephosphorylated by several tyrosine-specific and dual specificity protein phosphatases. Selective docking interactions facilitate these phosphorylation and dephosphorylation events, controlling the specificity and duration of the MAP kinase activation-inactivation cycles. We have analyzed the contribution of specific residues of ERK2 in the physical and functional interaction with the ERK2 phosphatase inactivators PTP-SL and MKP-3 and with its activator MEK1. Single mutations in ERK2 that abrogated the dephosphorylation by endogenous tyrosine phosphatases from HEK293 cells still allowed efficient phosphorylation by endogenous MEK1/2. Discrete ERK2 mutations at the ERK2 docking groove differentially affected binding and inactivation by PTP-SL and MKP-3. Remarkably, the cytosolic retention of ERK2 by its activator MEK1 was not affected by any of the analyzed ERK2 single amino acid substitutions. A chimeric MEK1 protein, containing the kinase interaction motif of PTP-SL, bound tightly to ERK2 through its docking groove and behaved as a gain-of-function MAP kinase kinase that hyperactivated ERK2. Our results provide evidence that the ERK2 docking groove is more restrictive and selective for its tyrosine phosphatase inactivators than for MEK1/2 and indicate that distinct ERK2 residues modulate the docking interactions with activating and inactivating effectors.
Collapse
Affiliation(s)
- Céline Tárrega
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Sano Y, Akimaru H, Okamura T, Nagao T, Okada M, Ishii S. Drosophila activating transcription factor-2 is involved in stress response via activation by p38, but not c-Jun NH(2)-terminal kinase. Mol Biol Cell 2005; 16:2934-46. [PMID: 15788564 PMCID: PMC1142437 DOI: 10.1091/mbc.e04-11-1008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Activating transcription factor (ATF)-2 is a member of the ATF/cAMP response element-binding protein family of transcription factors, and its trans-activating capacity is enhanced by stress-activated protein kinases such as c-Jun NH(2)-terminal kinase (JNK) and p38. However, little is known about the in vivo roles played by ATF-2. Here, we identified the Drosophila homologue of ATF-2 (dATF-2) consisting of 381 amino acids. In response to UV irradiation and osmotic stress, Drosophila p38 (dp38), but not JNK, phosphorylates dATF-2 and enhances dATF-2-dependent transcription. Consistent with this, injection of dATF-2 double-stranded RNA (dsRNA) into embryos did not induce the dorsal closure defects that are commonly observed in the Drosophila JNK mutant. Furthermore, expression of the dominant-negative dp38 enhanced the aberrant wing phenotype caused by expression of a dominant-negative dATF-2. Similar genetic interactions between dATF-2 and the dMEKK1-dp38 signaling pathway also were observed in the osmotic stress-induced lethality of embryos. Loss of dATF-2 in Drosophila S2 cells by using dsRNA abrogated the induction of 40% of the osmotic stress-induced genes, including multiple immune response-related genes. This indicates that dATF-2 is a major transcriptional factor in stress-induced transcription. Thus, dATF-2 is critical for the p38-mediated stress response.
Collapse
Affiliation(s)
- Yuji Sano
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
106
|
Mandl M, Slack DN, Keyse SM. Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol Cell Biol 2005; 25:1830-45. [PMID: 15713638 PMCID: PMC549372 DOI: 10.1128/mcb.25.5.1830-1845.2005] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 09/24/2004] [Accepted: 11/30/2004] [Indexed: 11/20/2022] Open
Abstract
The mechanisms which determine the nuclear accumulation and inactivation of the extracellular signal-regulated kinase 1 (ERK1) or ERK2 mitogen-activated protein (MAP) kinases are poorly understood. Here we demonstrate that DUSP5, an inducible nuclear phosphatase, interacts specifically with ERK2 via a kinase interaction motif (KIM) within its amino-terminal noncatalytic domain. This binding determines the substrate specificity of DUSP5 in vivo, as it inactivates ERK2 but not Jun N-terminal protein kinase or p38 MAP kinase. Using green fluorescent protein fusions, we identify within this same domain of DUSP5 a functional nuclear localization signal (NLS) which functions independently of the KIM. Moreover, we demonstrate that the expression of DUSP5 causes both nuclear translocation and sequestration of inactive ERK2. Nuclear anchoring is ERK2 specific and requires both interactions between the DUSP5 KIM and the common docking site of ERK2 and a functional NLS within DUSP5. Finally, the expression of a catalytically inactive mutant of DUSP5 also tethers ERK2 within the nucleus. Furthermore, this nuclear ERK2 is phosphorylated by MAP kinase kinase in response to growth factors and also activates transcription factor Elk-1. We conclude that DUSP5 is an inducible nuclear ERK-specific MAP kinase phosphatase that functions as both an inactivator of and a nuclear anchor for ERK2 in mammalian cells. In addition, our data indicate that the cytoplasm may not be an exclusive site of MAP kinase activation.
Collapse
Affiliation(s)
- Margret Mandl
- Cancer Research UK, Molecular Pharmacology Unit, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | |
Collapse
|
107
|
Li WX. Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 2005; 232:656-72. [PMID: 15704136 PMCID: PMC3092428 DOI: 10.1002/dvdy.20295] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Torso receptor tyrosine kinase (RTK) is required for cell fate specification in the terminal regions (head and tail) of the early Drosophila embryo. Torso contains a split tyrosine kinase domain and belongs to the type III subgroup of the RTK superfamily that also includes the platelet-derived growth factor receptors, stem cell or steel factor receptor c-Kit proto-oncoprotein, colony-stimulating factor-1 receptor, and vascular endothelial growth factor receptor. The Torso pathway has been a model system for studying RTK signal transduction. Genetic and biochemical studies of Torso signaling have provided valuable insights into the biological functions and mechanisms of RTK signaling during early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
108
|
Gómez AR, López-Varea A, Molnar C, de la Calle-Mustienes E, Ruiz-Gómez M, Gómez-Skarmeta JL, de Celis JF. Conserved cross-interactions inDrosophilaandXenopusbetween Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Dev Dyn 2005; 232:695-708. [PMID: 15704110 DOI: 10.1002/dvdy.20227] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) is a key transducer of the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) signaling pathways, and its function is required in multiple processes during animal development. The activity of ERK depends on the phosphorylation state of conserved threonine and tyrosine residues, and this state is regulated by different kinases and phosphatases. A family of phosphatases with specificity toward both threonine and tyrosine residues in ERK (dual-specificity phosphatases) play a conserved role in its dephosphorylation and consequent inactivation. Here, we characterize the function of the dual-specificity phosphatase MKP3 in Drosophila EGFR and Xenopus FGFR signaling. The function of MKP3 is required during Drosophila wing vein formation and Xenopus anteroposterior neural patterning. We find that the expression of the MKP3 gene is localized in places of high EGFR and FGFR signaling. Furthermore, this restricted expression depends on ERK function both in Drosophila and Xenopus, suggesting that MKP3 constitutes a conserved negative feedback loop on the activity of the Ras/ERK signaling pathway.
Collapse
Affiliation(s)
- Ana Ruiz Gómez
- Centro de Biologóa Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
109
|
Liévens JC, Rival T, Iché M, Chneiweiss H, Birman S. Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila. Hum Mol Genet 2005; 14:713-24. [PMID: 15677486 DOI: 10.1093/hmg/ddi067] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease (HD) is a late onset heritable neurodegenerative disorder caused by expansion of a polyglutamine (polyQ) sequence in the protein huntingtin (Htt). Transgenic models in mice have suggested that the motor and cognitive deficits associated to this disease are triggered by extended neuronal and possibly glial dysfunction, whereas neuronal death occurs late and selectively. Here, we provide in vivo evidence that expanded polyQ peptides antagonize epidermal growth factor receptor (EGFR) signaling in Drosophila glia. We targeted the expression of the polyQ-containing domain of Htt or an extended polyQ peptide alone in a subset of Drosophila glial cells, where the only fly glutamate transporter, dEAAT1, is detected. This resulted in formation of nuclear inclusions, progressive decrease in dEAAT1 transcription and shortened adult lifespan, but no significant glial cell death. We observed that brain expression of dEAAT1 is normally sustained by the EGFR-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, suggesting that polyQ could act by antagonizing this pathway. We found that the presence of polyQ peptides indeed abolished dEAAT1 upregulation by constitutively active EGFR and potently inhibited EGFR-mediated ERK activation in fly glial cells. Long polyQ also limited the effect of activated EGFR on Drosophila eye development. Our results further indicate that the polyQ acts at an upstream step in the pathway, situated between EGFR and ERK activation. This suggests that disruption of EGFR signaling and ensuing glial cell dysfunction could play a direct role in the pathogenesis of HD and other polyQ diseases in humans.
Collapse
|
110
|
Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases. Cell Signal 2004; 16:769-79. [PMID: 15115656 DOI: 10.1016/j.cellsig.2003.12.008] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 12/16/2003] [Indexed: 11/25/2022]
Abstract
MAP kinases (MAPKs), which control mitogenic signal transduction in all eukaryotic organisms, are inactivated by dual specificity MAPK phosphatases (DS-MKPs). Recent studies reveal that substrate specificity and enzymatic activity of MKPs are tightly controlled not only by the conserved C-terminal phosphatase domain but also by an N-terminal (NT) kinase-binding domain. Notably, MKPs that consist of a kinase-binding domain and a phosphatase domain exhibit little phosphatase activity in the absence of their physiological substrates. MKP binding to a specific MAPK results in enzymatic activation of the phosphatase in a substrate-induced activation mechanism. This direct coupling of inactivation of an MAPK to activation of an MKP provides a tightly controlled regulation that enables these two key enzymes to keep each other in check, thus guaranteeing the fidelity of signal transduction. This review discusses the recent understanding of structure and regulation of the large family of dual specificity MKPs, which can be divided into four subgroups according to their functional domains and mechanism of substrate recognition and enzymatic regulation. Moreover, detailed comparison of the structural basis between this unique substrate-induced activation mechanism and the common auto-inhibition mechanism is provided.
Collapse
Affiliation(s)
- Amjad Farooq
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, One Gustave L Levy Place, Box 1677, New York, NY 10029, USA.
| | | |
Collapse
|
111
|
Hasson P, Egoz N, Winkler C, Volohonsky G, Jia S, Dinur T, Volk T, Courey AJ, Paroush Z. EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nat Genet 2004; 37:101-5. [PMID: 15592470 DOI: 10.1038/ng1486] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 11/18/2004] [Indexed: 11/09/2022]
Abstract
Crosstalk between signaling pathways is crucial for the generation of complex and varied transcriptional networks. Antagonism between the EGF-receptor (EGFR) and Notch pathways in particular is well documented, although the underlying mechanism is poorly understood. The global corepressor Groucho (Gro) and its transducin-like Enhancer-of-split (TLE) mammalian homologs mediate repression by a myriad of repressors, including effectors of the Notch, Wnt (Wg) and TGF-beta (Dpp) signaling cascades. Given that there are genetic interactions between gro and components of the EGFR pathway (ref. 9 and P.H. et al., unpublished results), we tested whether Gro is at a crossroad between this and other pathways. Here we show that phosphorylation of Gro in response to MAPK activation weakens its repressor capacity, attenuating Gro-dependent transcriptional silencing by the Enhancer-of-split proteins, effectors of the Notch cascade. Thus, Gro is a new junction between signaling pathways, enabling EGFR signaling to antagonize transcriptional output by Notch and potentially other Gro-dependent pathways.
Collapse
Affiliation(s)
- Peleg Hasson
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, PO Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Zettervall CJ, Anderl I, Williams MJ, Palmer R, Kurucz E, Ando I, Hultmark D. A directed screen for genes involved in Drosophila blood cell activation. Proc Natl Acad Sci U S A 2004; 101:14192-7. [PMID: 15381778 PMCID: PMC521135 DOI: 10.1073/pnas.0403789101] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An attack by a parasitic wasp activates a vigorous cellular immune response in Drosophila larvae. This response is manifested by an increased number of circulating cells, the hemocytes, and by the appearance of a specialized class of hemocyte, the lamellocytes, which participate in the encapsulation and killing of the parasite. To study the molecular mechanisms of this response, we have overexpressed different genes in the hemocytes, by using the GAL4-upstream activating sequence system and a hemocyte-specific Hemese-GAL4 driver. Multiple transgenes were tested, representing several important signaling pathways. We found that the proliferation response and the activation of lamellocyte formation are independent phenomena. A drastic increase in the number of circulating hemocytes is caused by receptor tyrosine kinases, such as Egfr, Pvr, and Alk, as well as by the downstream signaling components Ras85D and pointed, supporting the notion that the Ras-mitogen-activated protein kinase pathway regulates hemocyte numbers. In the case of Pvr and Alk, this phenotype also is accompanied by lamellocyte formation. By contrast, constitutively active hopscotch and hemipterous give massive activation of lamellocyte formation with little or no increase in total hemocyte numbers. This finding indicates that both the Jak/Stat and the Jun kinase pathways affect lamellocyte formation. Still other signals, mediated by aop(ACT), Toll(10b), and Rac1 expression, cause a simultaneous increase in lamellocyte and total cell numbers, and the same effect is seen when WNT signaling is suppressed. We conclude that the activation of a cellular response is complex and affected by multiple signaling pathways.
Collapse
Affiliation(s)
- Carl-Johan Zettervall
- Umeå Centre for Molecular Pathogenesis, Byggnad 6L, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
113
|
Kusari AB, Molina DM, Sabbagh W, Lau CS, Bardwell L. A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1. ACTA ACUST UNITED AC 2004; 164:267-77. [PMID: 14734536 PMCID: PMC2172336 DOI: 10.1083/jcb.200310021] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Saccharomyces cerevisiae mitogen-activated protein kinases (MAPKs) Fus3 and Kss1 bind to multiple regulators and substrates. We show that mutations in a conserved docking site in these MAPKs (the CD/7m region) disrupt binding to an important subset of their binding partners, including the Ste7 MAPK kinase, the Ste5 adaptor/scaffold protein, and the Dig1 and Dig2 transcriptional repressors. Supporting the possibility that Ste5 and Ste7 bind to the same region of the MAPKs, they partially competed for Fus3 binding. In vivo, some of the MAPK mutants displayed reduced Ste7-dependent phosphorylation, and all of them exhibited multiple defects in mating and pheromone response. The Kss1 mutants were also defective in Kss1-imposed repression of Ste12. We conclude that MAPKs contain a structurally and functionally conserved docking site that mediates an overall positively acting network of interactions with cognate docking sites on their regulators and substrates. Key features of this interaction network appear to have been conserved from yeast to humans.
Collapse
Affiliation(s)
- Anasua B Kusari
- Dept. of Developmental and Cell Biology, 5205 McGaugh Hall, University of California, Irvine, Irvine, CA 92697-2300, USA
| | | | | | | | | |
Collapse
|
114
|
Diskin R, Askari N, Capone R, Engelberg D, Livnah O. Active mutants of the human p38alpha mitogen-activated protein kinase. J Biol Chem 2004; 279:47040-9. [PMID: 15284239 DOI: 10.1074/jbc.m404595200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases compose a family of serine/threonine kinases that function in many signal transduction pathways and affect various cellular phenotypes. Despite the abundance of available data, the exact role of each MAP kinase is not completely defined, in part because of the inability to activate MAP kinase molecules individually and specifically. Based on activating mutations found in the yeast MAP kinase p38/Hog1 (Bell, M., Capone, R., Pashtan, I., Levitzki, A., and Engelberg, D. (2001) J. Biol. Chem. 276, 25351-25358), we designed and constructed single and multiple mutants of human MAP kinase p38alpha. Single (p38D176A, p38F327L, and p38F327S) and subsequent double (p38D176A/F327L and p38D176A/F327S) mutants acquired high intrinsic activity independent of any upstream regulation and reached levels of 10 and 25%, respectively, in reference to the dually phosphorylated wild type p38alpha. The active p38 mutants have retained high specificity toward p38 substrates and were inhibited by the specific p38 inhibitors SB-203580 and PD-169316. We also show that similar mutations can render p38gamma active as well. Based on the available structures of p38 and ERK2, we have analyzed the p38 mutants and identified a hydrophobic core stabilized by three aromatic residues, Tyr-69, Phe-327, and Trp-337, in the vicinity of the L16 loop region. Upon activation, a segment of the L16 loop, including Phe-327, becomes disordered. Structural analysis suggests that the active p38 mutants emulate the conformational changes imposed naturally by dual phosphorylation, namely, destabilization of the hydrophobic core. Essentially, the hydrophobic core is an inherent stabilizer that maintains low basal activity level in unphosphorylated p38.
Collapse
Affiliation(s)
- Ron Diskin
- Department of Biological Chemistry, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
115
|
Naoi K, Hashimoto T. A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. THE PLANT CELL 2004; 16:1841-53. [PMID: 15208393 PMCID: PMC514165 DOI: 10.1105/tpc.021865] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 04/12/2004] [Indexed: 05/18/2023]
Abstract
Reversible protein phosphorylation regulates many cellular processes, including the dynamics and organization of the microtubule cytoskeleton, but the events mediating it are poorly understood. A semidominant phs1-1 allele of the Arabidopsis thaliana PROPYZAMIDE-HYPERSENSITIVE 1 locus exhibits phenotypes indicative of compromised cortical microtubule functions, such as left-handed helical growth of seedling roots, defective anisotropic growth at low doses of microtubule-destabilizing drugs, enhancement of the temperature-sensitive microtubule organization1-1 phenotype, and less ordered and more fragmented cortical microtubule arrays compared with the wild type. PHS1 encodes a novel protein similar to mitogen-activated protein kinase (MAPK) phosphatases. In phs1-1, a conserved Arg residue in the noncatalytic N-terminal region is exchanged with Cys, and the mutant PHS1 retained considerable phosphatase activity in vitro. In mammalian MAPK phosphatases, the corresponding region serves as a docking motif for MAPKs, and analogous Arg substitutions severely inhibit the kinase-phosphatase association. Transgenic studies indicate that the phs1-1 mutation acts dominant negatively, whereas the null phs1-2 allele is recessive embryonic lethal. We propose that the PHS1 phosphatase regulates more than one MAPK and that a subset of its target kinases is involved in the organization of cortical microtubules.
Collapse
Affiliation(s)
- Kuniko Naoi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | | |
Collapse
|
116
|
Abstract
DMKP-3 is a Drosophila dual-specificity phosphatase, which has high substrate specificity for Drosophila extracellular signal-regulated kinases (DERK). By in vitro reconstitution experiments, we found that DERK activates DMKP-3. Moreover, DMKP-3 was specifically activated by the addition of DERK but not by DJNK, Dp38, or Sevenmaker DERK D334N, a DMKP-3- binding mutant. The phosphatase activity of DMKP-3-R56A/R57A, a DERK-binding mutant, was not increased by DERK. Significantly, mammalian MKP-3 was also found to be activated by DERK. This cross-reactivity suggests a high level of conservation of the activation mechanism of ERK-specific phosphatases in Drosophila and mammals. When DMKP-3 was co-expressed with DERK in Drosophila Schneider cells, DMKP-3 protein levels increased, but this was not observed for the co-expressions of DJNK or Dp38. The stabilizations of the DERK binding mutants (DMKP-3-RR and DMKP-3-CA-RR) were not increased by DERK co-expression. Our results suggest that DERK specifically regulates DMKP-3 in terms of its enzyme activity and protein stability, and that direct protein-protein interaction is an essential aspect of this regulation.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Biotechnology, Protein Research Center, Yonsei University College of Engineering, Seoul 120-752, South Korea
| | | | | |
Collapse
|
117
|
Kim M, Cha GH, Kim S, Lee JH, Park J, Koh H, Choi KY, Chung J. MKP-3 has essential roles as a negative regulator of the Ras/mitogen-activated protein kinase pathway during Drosophila development. Mol Cell Biol 2004; 24:573-83. [PMID: 14701731 PMCID: PMC343793 DOI: 10.1128/mcb.24.2.573-583.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.
Collapse
Affiliation(s)
- Myungjin Kim
- National Creative Research Initiatives Center for Cell Growth Regulation and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong, Taejon 305-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Yamada T, Okabe M, Hiromi Y. EDL/MAE regulates EGF-mediated induction by antagonizing Ets transcription factor Pointed. Development 2003; 130:4085-96. [PMID: 12874129 DOI: 10.1242/dev.00624] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inductive patterning mechanisms often use negative regulators to coordinate the effects and efficiency of induction. During Spitz EGF-mediated neuronal induction in the Drosophila compound eye and chordotonal organs, Spitz causes activation of Ras signaling in the induced cells, resulting in the activation of Ets transcription factor Pointed P2. We describe developmental roles of a novel negative regulator of Ras signaling, EDL/MAE, a protein with an Ets-specific Pointed domain but not an ETS DNA-binding domain. The loss of EDL/MAE function results in reduced number of photoreceptor neurons and chordotonal organs, suggesting a positive role in the induction by Spitz EGF. However, EDL/MAE functions as an antagonist of Pointed P2, by binding to its Pointed domain and abolishing its transcriptional activation function. Furthermore, edl/mae appears to be specifically expressed in cells with inducing ability. This suggests that inducing cells, which can respond to Spitz they themselves produce, must somehow prevent activation of Pointed P2. Indeed hyperactivation of Pointed P2 in inducing cells interferes with their inducing ability, resulting in the reduction in inducing ability. We propose that EDL/MAE blocks autocrine activation of Pointed P2 so that inducing cells remain induction-competent. Inhibition of inducing ability by Pointed probably represents a novel negative feedback system that can prevent uncontrolled spread of induction of similar cell fates.
Collapse
Affiliation(s)
- Takuma Yamada
- Department of Developmental Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
119
|
Abstract
The ommatidia of the Drosophila eye initiate development by stepwise recruitment of photoreceptors into symmetric ommatidial clusters. As they mature, the clusters become asymmetric, adopting opposite chirality on either side of the dorsoventral midline and rotating exactly 90 degrees (Figures 1A and 1B, ). The choice of chirality is governed by higher activity of the frizzled (fz) gene in one cell of the R3/R4 photoreceptor pair and by Notch-Delta (N-Dl) signaling. The 90 degrees rotation also requires activity of planar polarity genes such as fz as well as the roulette (rlt) locus. We now show that two regulators of EGF signaling, argos and sprouty (sty), and a gain-of-function Ras85D allele, interact genetically with fz in ommatidial polarity. Furthermore, we find that argos is required for ommatidial rotation, but not chirality, and that rlt is a novel allele of argos. We present evidence that there are two pathways by which EGF signaling affects ommatidial rotation. In the first, typified by the rlt phenotype, there is partial transformation of the "mystery cells" toward a neuronal fate. Although most of these mystery cells subsequently fail to develop as neurons, their partial transformation results in inappropriate subcellular localization of the Fz receptor, a likely cue for regulating ommatidial rotation. Secondly, reducing EGF signaling can specifically affect ommatidial rotation without showing transformation of the mystery cells or defects in polarity protein localization.
Collapse
Affiliation(s)
- Helen Strutt
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
120
|
Zhang J, Zhou B, Zheng CF, Zhang ZY. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates. J Biol Chem 2003; 278:29901-12. [PMID: 12754209 DOI: 10.1074/jbc.m303909200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases control gene expression in response to extracellular stimuli and exhibit exquisite specificity for their cognate regulators and substrates. We performed a structure-based mutational analysis of ERK2 to identify surface areas that are important for recognition of its interacting proteins. We show that binding and activation of MKP3 by ERK2 involve two distinct protein-protein interaction sites in ERK2. Thus, the common docking (CD) site composed of Glu-79, Tyr-126, Arg-133, Asp-160, Tyr-314, Asp-316, and Asp-319 are important for high affinity MKP3 binding but not essential for ERK2-induced MKP3 activation. MKP3 activation requires residues Tyr-111, Thr-116, Leu-119, Lys-149, Arg-189, Trp-190, Glu-218, Arg-223, Lys-229, and His-230 in the ERK2 substrate-binding region, located distal to the common docking site. Interestingly, many of the residues important for MKP3 recognition are also used for Elk1 binding and phosphorylation. In addition to the shared residues, there are also residues that are unique to each target recognition. There is evidence indicating that the CD site and the substrate-binding region defined here are also utilized for MEK1 recognition, and indeed, we demonstrate that the binding of MKP3, Elk1, and MEK1 to ERK2 is mutually exclusive. Taken together, our data suggest that the efficiency and fidelity of ERK2 signaling is achieved by a bipartite recognition process. In this model, one part of the ERK2-binding proteins (e.g. the kinase interaction motif sequence) docks to the CD site located on the back side of the ERK2 catalytic pocket for high affinity association, whereas the interaction of the substrate-binding region with another structural element (e.g. the FXFP motif in MKP3 and Elk1) may not only stabilize binding but also provide contacts crucial for modulating the activity and/or specificity of ERK2 target molecules.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
121
|
Kumar JP, Hsiung F, Powers MA, Moses K. Nuclear translocation of activated MAP kinase is developmentally regulated in the developing Drosophila eye. Development 2003; 130:3703-14. [PMID: 12835387 PMCID: PMC2778067 DOI: 10.1242/dev.00556] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In proneural groups of cells in the morphogenetic furrow of the developing Drosophila eye phosphorylated mitogen activated protein kinase (MAPK) antigen is held in the cytoplasm for hours. We have developed a reagent to detect nuclear MAPK non-antigenically and report our use of this reagent to confirm that MAPK nuclear translocation is regulated by a second mechanism in addition to phosphorylation. This "cytoplasmic hold" of activated MAPK has not been observed in cell culture systems. We also show that MAPK cytoplasmic hold has an essential function in vivo: if it is overcome, developmental patterning in the furrow is disrupted.
Collapse
|
122
|
Rintelen F, Hafen E, Nairz K. The Drosophila dual-specificity ERK phosphatase DMKP3 cooperates with the ERK tyrosine phosphatase PTP-ER. Development 2003; 130:3479-90. [PMID: 12810595 DOI: 10.1242/dev.00568] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ERK MAP kinase plays a key role in relaying extracellular signals to transcriptional regulation. As different activity levels or the different duration of ERK activity can elicit distinct responses in one and the same cell, ERK has to be under strict positive and negative control. Although numerous genes acting positively in the ERK signaling pathway have been recovered in genetic screens, mutations in genes encoding negative ERK regulators appear underrepresented. We therefore sought to genetically characterize the dual-specificity phosphatase DMKP3. First, we established a novel assay to elucidate the substrate preferences of eukaryotic phosphatases in vivo and thereby confirmed the specificity of DMKP3 as an ERK phosphatase. The Dmkp3 overexpression phenotype characterized in this assay permitted us to isolate Dmkp3 null mutations. By genetic analysis we show that DMKP3 and the tyrosine phosphatase PTP-ER perform partially redundant functions on the same substrate, ERK. DMKP3 functions autonomously in a subset of photoreceptor progenitor cells in eye imaginal discs. In addition, DMKP3 function appears to be required in surrounding non-neuronal cells for ommatidial patterning and photoreceptor differentiation.
Collapse
Affiliation(s)
- Felix Rintelen
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
123
|
Yaakov G, Bell M, Hohmann S, Engelberg D. Combination of two activating mutations in one HOG1 gene forms hyperactive enzymes that induce growth arrest. Mol Cell Biol 2003; 23:4826-40. [PMID: 12832470 PMCID: PMC162220 DOI: 10.1128/mcb.23.14.4826-4840.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) play key roles in differentiation, growth, proliferation, and apoptosis. Although MAPKs have been extensively studied, the precise function, specific substrates, and target genes of each MAPK are not known. These issues could be addressed by sole activation of a given MAPK, e.g., through the use of constitutively active MAPK enzymes. We have recently reported the isolation of eight hyperactive mutants of the Saccharomyces cerevisiae MAPK Hog1, each of which bears a distinct single point mutation. These mutants acquired high intrinsic catalytic activity but did not impose the full biological potential of the Hog1 pathway. Here we describe our attempt to obtain a MAPK that is more active than the previous mutants both catalytically and biologically. We combined two different activating point mutations in the same gene and found that two of the resulting double mutants acquired unusual properties. These alleles, HOG1(D170A,F318L) and HOG1(D170A,F318S), induced a severe growth inhibition and had to be studied through an inducible expression system. This growth inhibition correlated with very high spontaneous (in the absence of any stimulation) catalytic activity and strong induction of Hog1 target genes. Furthermore, analysis of the phosphorylation status of these active alleles shows that their acquired intrinsic activity is independent of either phospho-Thr174 or phospho-Tyr176. Through fluorescence-activated cell sorting analysis, we show that the effect on cell growth inhibition is not a result of cell death. This study provides the first example of a MAPK that is intrinsically activated by mutations and induces a strong biological effect.
Collapse
Affiliation(s)
- Gilad Yaakov
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
124
|
Park JM, Kunieda T, Kubo T. The activity of Mblk-1, a mushroom body-selective transcription factor from the honeybee, is modulated by the ras/MAPK pathway. J Biol Chem 2003; 278:18689-94. [PMID: 12637500 DOI: 10.1074/jbc.m300486200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a gene, termed Mblk-1, that encodes a putative transcription factor with two DNA-binding motifs expressed preferentially in the mushroom body of the honeybee brain, and its preferred binding sequence, termed Mblk-1-binding element (MBE) (Takeuchi, H., Kage, E., Sawata, M., Kamikouchi, A., Ohashi, K., Ohara, M., Fujiyuki, T., Kunieda, T., Sekimizu, K., Natori, S., and Kubo, T. (2001) Insect Mol Biol 10, 487-494; Park, J.-M., Kunieda. T., Takeuchi, H., and Kubo, T. (2002) Biochem. Biophys. Res. Commun. 291, 23-28). In the present study, the effect of Mblk-1 on transcription of genes containing MBE in Drosophila Schneider's Line 2 cells was examined using a luciferase assay. Mblk-1 expression transactivated promoters containing MBEs approximately 2-7-fold. Deletion experiments revealed that RHF2, the second DNA-binding domain of Mblk-1, was necessary for the transcriptional activity. Furthermore, mitogen-activated protein kinase (MAPK) phosphorylated Mblk-1 at Ser-444 in vitro, and the Mblk-1-induced transactivation was stimulated by phosphorylation of Ser-444 by the Ras/MAPK pathway in the luciferase assay. These results suggest that Mblk-1 is a transcription factor that might function in the mushroom body neuronal circuits downstream of the Ras/MAPK pathway in the honeybee brain.
Collapse
Affiliation(s)
- Jung-Min Park
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
125
|
Abstract
Overactivation of receptor tyrosine kinases (RTKs) has been linked to tumorigenesis. To understand how a hyperactivated RTK functions differently from wild-type RTK, we conducted a genome-wide systematic survey for genes that are required for signaling by a gain-of-function mutant Drosophila RTK Torso (Tor). We screened chromosomal deficiencies for suppression of a gain-of-function mutation tor (tor(GOF)), which led to the identification of 26 genomic regions that, when in half dosage, suppressed the defects caused by tor(GOF). Testing of candidate genes in these regions revealed many genes known to be involved in Tor signaling (such as those encoding the Ras-MAPK cassette, adaptor and structural molecules of RTK signaling, and downstream target genes of Tor), confirming the specificity of this genetic screen. Importantly, this screen also identified components of the TGFbeta (Dpp) and JAK/STAT pathways as being required for Tor(GOF) signaling. Specifically, we found that reducing the dosage of thickveins (tkv), Mothers against dpp (Mad), or STAT92E (aka marelle), respectively, suppressed tor(GOF) phenotypes. Furthermore, we demonstrate that in tor(GOF) embryos, dpp is ectopically expressed and thus may contribute to the patterning defects. These results demonstrate an essential requirement of noncanonical signaling pathways for a persistently activated RTK to cause pathological defects in an organism.
Collapse
Affiliation(s)
- Jinghong Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
126
|
Abstract
The mitogen-activated protein kinase (MAPK) cascades play a pivotal role in many aspects of cellular functions, and are evolutionarily conserved from yeast to mammals. In mammals, there are four subfamily members in the MAPKs. Each MAPK has its own activators, substrates and inactivators. In order to achieve normal cellular functions, the MAPK cascades should transduce signals with high efficiency and fidelity. However, the molecular basis for the mechanism underlying the specific reactions in the MAPK cascades has not been fully understood. The MAPKs form a globular structure without a distinct domain specific for protein-protein interactions. Recent studies revealed two mechanisms regulating the signalling, the docking interaction and the scaffolding. The docking interaction is achieved through the common docking domain (the CD domain) on MAPKs, and is different from a transient enzyme-substrate interaction through the active centre of the enzymes. Almost all the MAPK-interacting molecules have a conserved motif interacting with the CD domain. The scaffolding usually utilizes a third molecule to tether several components of the MAPK cascades. Both of them are thought to regulate the enzymatic specificity and efficiency.
Collapse
Affiliation(s)
- Takuji Tanoue
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | |
Collapse
|
127
|
Ge B, Xiong X, Jing Q, Mosley JL, Filose A, Bian D, Huang S, Han J. TAB1beta (transforming growth factor-beta-activated protein kinase 1-binding protein 1beta ), a novel splicing variant of TAB1 that interacts with p38alpha but not TAK1. J Biol Chem 2003; 278:2286-93. [PMID: 12429732 DOI: 10.1074/jbc.m210918200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) play an important role in a variety of biological processes. Activation of MAPKs is mediated by phosphorylation on specific regulatory tyrosine and threonine sites. We have recently found that activation of p38alpha MAPK can be carried out not only by its upstream MAPK kinases (MKKs) but also by p38alpha autophosphorylation. p38alpha autoactivation requires an interaction of p38alpha with TAB1 (transforming growth factor-beta-activated protein kinase 1-binding protein 1). The autoactivation mechanism of p38alpha has been found to be important in cellular responses to a number of physiologically relevant stimuli. Here, we report the characterization of a splicing variant of TAB1, TAB1beta. TAB1 and TAB1beta share the first 10 exons. The 11th and 12th exons of TAB1 were spliced out in TAB1beta, and an extra exon, termed exon beta, downstream of exons 11 and 12 in the genome was used as the last exon in TAB1beta. The mRNA of TAB1beta was expressed in all cell lines examined. The TAB1beta mRNA encodes a protein with an identical sequence to TAB1 except the C-terminal 69 amino acids were replaced with an unrelated 27-amino acid sequence. Similar to TAB1, TAB1beta interacts with p38alpha but not other MAPKs and stimulates p38alpha autoactivation. Different from TAB1, TAB1beta does not bind or activate TAK1. Inhibition of TAB1beta expression with RNA interference in MDA231 breast cancer cells resulted in the reduction of basal activity of p38alpha and invasiveness of MDA231 cells, suggesting that TauAlphaBeta1beta is involved in regulating p38alpha activity in physiological conditions.
Collapse
Affiliation(s)
- Baoxue Ge
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Lasa M, Abraham SM, Boucheron C, Saklatvala J, Clark AR. Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38. Mol Cell Biol 2002; 22:7802-11. [PMID: 12391149 PMCID: PMC134716 DOI: 10.1128/mcb.22.22.7802-7811.2002] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The stress-activated protein kinase p38 stabilizes a number of mRNAs encoding inflammatory mediators, such as cyclooxygenase 2 (Cox-2). In HeLa cells the anti-inflammatory glucocorticoid dexamethasone destabilizes Cox-2 mRNA by inhibiting p38 function. Here we demonstrate that this effect is phosphatase dependent. Furthermore, in HeLa cells dexamethasone induced the sustained expression of mitogen-activated protein kinase phosphatase 1 (MKP-1), a potent inhibitor of p38 function. The inhibition of p38 and the induction of MKP-1 by dexamethasone occurred with similar dose dependence and kinetics. No other known p38 phosphatases were induced by dexamethasone, and other cell types which failed to express MKP-1 also failed to inhibit p38 in response to dexamethasone. The proinflammatory cytokine interleukin 1 (IL-1) induced MKP-1 expression in a p38-dependent manner and acted synergistically with dexamethasone to induce MKP-1 expression. In HeLa cells treated with IL-1 or IL-1 and dexamethasone, the dynamics of p38 activation mirrored the expression of MKP-1. These observations suggest that MKP-1 participates in a negative-feedback loop which regulates p38 function and that dexamethasone may inhibit proinflammatory gene expression in part by inducing MKP-1 expression.
Collapse
Affiliation(s)
- Marina Lasa
- Kennedy Institute of Rheumatology Division, Imperial College Faculty of Medicine, London W6 8LH, United Kingdom
| | | | | | | | | |
Collapse
|
129
|
Li WX, Agaisse H, Mathey-Prevot B, Perrimon N. Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in Drosophila. Development 2002; 129:4241-8. [PMID: 12183376 PMCID: PMC3090254 DOI: 10.1242/dev.129.18.4241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malignant transformation frequently involves aberrant signaling from receptor tyrosine kinases (RTKs). These receptors commonly activate Ras/Raf/MEK/MAPK signaling but when overactivated can also induce the JAK/STAT pathway, originally identified as the signaling cascade downstream of cytokine receptors. Inappropriate activation of STAT has been found in many human cancers. However, the contribution of the JAK/STAT pathway in RTK signaling remains unclear. We have investigated the requirement of the JAK/STAT pathway for signaling by wild-type and mutant forms of the RTK Torso (Tor) using a genetic approach in Drosophila. Our results indicate that the JAK/STAT pathway plays little or no role in signaling by wild-type Tor. In contrast, we find that STAT, encoded by marelle (mrl; DStat92E), is essential for the gain-of-function mutant Tor (TorGOF) to activate ectopic gene expression. Our findings indicate that the Ras/Raf/MEK/MAPK signaling pathway is sufficient to mediate the normal functions of wild-type RTK, whereas the effects of gain-of-function mutant RTK additionally require STAT activation.
Collapse
Affiliation(s)
- Willis X Li
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
130
|
Baker SE, Lorenzen JA, Miller SW, Bunch TA, Jannuzi AL, Ginsberg MH, Perkins LA, Brower DL. Genetic Interaction Between Integrins and moleskin, a Gene Encoding a Drosophila Homolog of Importin-7. Genetics 2002; 162:285-96. [PMID: 12242240 PMCID: PMC1462259 DOI: 10.1093/genetics/162.1.285] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Drosophila PS1 and PS2 integrins are required to maintain the connection between the dorsal and ventral wing epithelia. If αPS subunits are inappropriately expressed during early pupariation, the epithelia separate, causing a wing blister. Two lines of evidence indicate that this apparent loss-of-function phenotype is not a dominant negative effect, but is due to inappropriate expression of functional integrins: wing blisters are not generated efficiently by misexpression of loss-of-function αPS2 subunits with mutations that inhibit ligand binding, and gain-of-function, hyperactivated mutant αPS2 proteins cause blistering at expression levels well below those required by wild-type proteins. A genetic screen for dominant suppressors of wing blisters generated null alleles of a gene named moleskin, which encodes the protein DIM-7. DIM-7, a Drosophila homolog of vertebrate importin-7, has recently been shown to bind the SHP-2 tyrosine phosphatase homolog Corkscrew and to be important in the nuclear translocation of activated D-ERK. Consistent with this latter finding, homozygous mutant clones of moleskin fail to grow in the wing. Genetic tests suggest that the moleskin suppression of wing blisters is not directly related to inhibition of D-ERK nuclear import. These data are discussed with respect to the possible regulation of integrin function by cytoplasmic ERK.
Collapse
Affiliation(s)
- Scott E Baker
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Rabinow L. The proliferation of Drosophila in cancer research: a system for the functional characterization of tumor suppressors and oncogenes. Cancer Invest 2002; 20:531-56. [PMID: 12094549 DOI: 10.1081/cnv-120002154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Leonard Rabinow
- Laboratoire de Signalisation, Développement et Cancer, CNRS UPRES-A 8080, Bâtiment 445, Université de Paris XI, 91405 Orsay, France.
| |
Collapse
|
132
|
Šamaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluška F, Hirt H. Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J 2002; 21:3296-306. [PMID: 12093731 PMCID: PMC126098 DOI: 10.1093/emboj/cdf349] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2002] [Revised: 03/26/2002] [Accepted: 05/14/2002] [Indexed: 11/14/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are involved in stress signaling to the actin cytoskeleton in yeast and animals. We have analyzed the function of the stress-activated alfalfa MAP kinase SIMK in root hairs. In epidermal cells, SIMK is predominantly nuclear. During root hair formation, SIMK was activated and redistributed from the nucleus into growing tips of root hairs possessing dense F-actin meshworks. Actin depolymerization by latrunculin B resulted in SIMK relocation to the nucleus. Conversely, upon actin stabilization with jasplakinolide, SIMK co-localized with thick actin cables in the cytoplasm. Importantly, latrunculin B and jasplakinolide were both found to activate SIMK in a root-derived cell culture. Loss of tip-focused SIMK and actin was induced by the MAPK kinase inhibitor UO 126 and resulted in aberrant root hairs. UO 126 inhibited targeted vesicle trafficking and polarized growth of root hairs. In contrast, overexpression of gain-of-function SIMK induced rapid tip growth of root hairs and could bypass growth inhibition by UO 126. These data indicate that SIMK plays a crucial role in root hair tip growth.
Collapse
Affiliation(s)
- Jozef Šamaj
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - Miroslav Ovecka
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - Andrej Hlavacka
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - Fatma Lecourieux
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - Irute Meskiene
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - Irene Lichtscheidl
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - Peter Lenart
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - Ján Salaj
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - Dieter Volkmann
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - László Bögre
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - František Baluška
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| | - Heribert Hirt
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Institut of Ecology, University of Vienna, Althanstrasse 14, A-1091 Vienna, Austria, Institute of Botany, Plant Cell Biology Department, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, PO Box 39A, SK-950 07 Nitra, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-842 23 Bratislava, Slovak Republic and School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK Corresponding author e-mail:
| |
Collapse
|
133
|
Kwon HB, Kim SH, Kim SE, Jang IH, Ahn Y, Lee WJ, Choi KY. Drosophila extracellular signal-regulated kinase involves the insulin-mediated proliferation of Schneider cells. J Biol Chem 2002; 277:14853-8. [PMID: 11834735 DOI: 10.1074/jbc.m110366200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila insulin pathway is involved in the control of the proliferation and size of the cell. The stimulation of Schneider cells with human insulin has been observed to activate Drosophila extracellular signal regulated kinase (DERK). However, the role of DERK in the regulation of proliferation is unknown. In this study, we have identified a role of DERK in the proliferation of Drosophila Schneider cells. The inhibition of DERK activity by the overexpression of DMKP-3, an ERK-specific mitogen-activated protein kinase (MAPK) phosphatase, inhibited G(1) to S phase cell cycle progression as well as bromodeoxyuridine (BrdU) incorporation, which were previously increased by human insulin. However, DMKP-3 overexpression did not significantly reduce cell size that was also enlarged by insulin treatment, which suggests the specificity of the ERK pathway in proliferation but not for cell size. G1 to S phase cell cycle progression and BrdU incorporation were also reduced by catalytically inactive DMKP-3 mutant, and they may be acquired by the trapping of DERK into cytosol. The depletion of DERK or DMKP-3 by inhibitory double-stranded RNA decreased and increased BrdU incorporation, respectively. Thus, we propose that DERK is involved in the proliferation of Schneider cells via the insulin pathway.
Collapse
Affiliation(s)
- Hyung-Bae Kwon
- Department of Biotechnology, Yonsei University College of Engineering, 134 Shinchon-dong, Seodaemun-gu, Korea
| | | | | | | | | | | | | |
Collapse
|
134
|
The Ras1-mitogen-activated protein kinase signal transduction pathway regulates synaptic plasticity through fasciclin II-mediated cell adhesion. J Neurosci 2002. [PMID: 11923414 DOI: 10.1523/jneurosci.22-07-02496.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ras proteins are small GTPases with well known functions in cell proliferation and differentiation. In these processes, they play key roles as molecular switches that can trigger distinct signal transduction pathways, such as the mitogen-activated protein kinase (MAPK) pathway, the phosphoinositide-3 kinase pathway, and the Ral-guanine nucleotide dissociation stimulator pathway. Several studies have implicated Ras proteins in the development and function of synapses, but the molecular mechanisms for this regulation are poorly understood. Here, we demonstrate that the Ras-MAPK pathway is involved in synaptic plasticity at the Drosophila larval neuromuscular junction. Both Ras1 and MAPK are expressed at the neuromuscular junction, and modification of their activity levels results in an altered number of synaptic boutons. Gain- or loss-of-function mutations in Ras1 and MAPK reveal that regulation of synapse structure by this signal transduction pathway is dependent on fasciclin II localization at synaptic boutons. These results provide evidence for a Ras-dependent signaling cascade that regulates fasciclin II-mediated cell adhesion at synaptic terminals during synapse growth.
Collapse
|
135
|
Roch F, Jiménez G, Casanova J. EGFR signalling inhibits Capicua-dependent repression during specification of Drosophila wing veins. Development 2002; 129:993-1002. [PMID: 11861482 DOI: 10.1242/dev.129.4.993] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Localised activation of the Ras/Raf pathway by Epidermal Growth Factor Receptor (EGFR) signalling specifies the formation of veins in the Drosophila wing. However, little is known about how the EGFR signal regulates transcriptional responses during the vein/intervein cell fate decision. We provide evidence that EGFR signalling induces expression of vein-specific genes by inhibiting the Capicua (Cic) HMG-box repressor, a known regulator of embryonic body patterning. Lack of Cic function causes ectopic expression of EGFR targets such as argos, ventral veinless and decapentaplegic and leads to formation of extra vein tissue. In vein cells, EGFR signalling downregulates Cic protein levels in the nucleus and relieves repression of vein-specific genes, whereas intervein cells maintain high levels of Cic throughout larval and pupal development, repressing the expression of vein-specific genes and allowing intervein differentiation. However, regulation of some EGFR targets such as rhomboid appears not to be under direct control of Cic, suggesting that EGFR signalling branches out in the nucleus and controls different targets via distinct mediator factors. Our results support the idea that localised inactivation of transcriptional repressors such as Cic is a rather general mechanism for regulation of target gene expression by the Ras/Raf pathway.
Collapse
Affiliation(s)
- Fernando Roch
- University Museum of Zoology, Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EJ.
| | | | | |
Collapse
|
136
|
Abstract
Regulation of cellular functions and responses utilizes a number of the signal transduction pathways. Each pathway should transduce signals with high efficiency and fidelity to avoid unnecessary crosstalks. The mitogen-activated protein kinase (MAPK) cascades regulate a wide variety of cellular functions, including cell proliferation, differentiation, and stress responses. MAPK is activated by MAPK kinase; phosphorylates various targets, including transcription factors and MAPK-activated protein kinases; and is inactivated by several phosphatases. Recent studies have provided a cue to understand the molecular mechanism underlying the signal transduction through the MAPK cascades. In the MAPK cascades, docking interactions, which are achieved through a site outside the catalytic domain of MAPKs, regulate the efficiency and specificity of the enzymatic reactions. The docking interaction is different from a transient enzyme-substrate interaction through the active center. It has been shown that activators, substrates, and inactivators of MAPKs utilize a common site on MAPKs in the docking interaction. Then, the docking interaction may regulate not only the efficiency and specificity of the cascades, but also the ordered and integrated signaling.
Collapse
Affiliation(s)
- Takuji Tanoue
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, 606-8502, Kyoto, Japan
| | | |
Collapse
|
137
|
Bergmann A, Tugentman M, Shilo BZ, Steller H. Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev Cell 2002; 2:159-70. [PMID: 11832242 DOI: 10.1016/s1534-5807(02)00116-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trophic mechanisms in which neighboring cells mutually control their survival by secreting extracellular factors play an important role in determining cell number. However, how trophic signaling suppresses cell death is still poorly understood. We now show that the survival of a subset of midline glia cells in Drosophila depends upon direct suppression of the proapoptotic protein HID via the EGF receptor/RAS/MAPK pathway. The TGFalpha-like ligand SPITZ is activated in the neurons, and glial cells compete for limited amounts of secreted SPITZ to survive. In midline glia that fail to activate the EGFR pathway, HID induces apoptosis by blocking a caspase inhibitor, Diap1. Therefore, a direct pathway linking a specific extracellular survival factor with a caspase-based death program has been established.
Collapse
Affiliation(s)
- Andreas Bergmann
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
138
|
Tárrega C, Blanco-Aparicio C, Muñoz JJ, Pulido R. Two clusters of residues at the docking groove of mitogen-activated protein kinases differentially mediate their functional interaction with the tyrosine phosphatases PTP-SL and STEP. J Biol Chem 2002; 277:2629-36. [PMID: 11711538 DOI: 10.1074/jbc.m108874200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated function of mitogen-activated protein (MAP) kinases involves their selective association through docking sites with both activating MAP kinase kinases and inactivating phosphatases, including dual specificity and protein-tyrosine phosphatases (PTP). Site-directed mutagenesis on the mammalian MAP kinases ERK2 and p38alpha identified within their C-terminal docking grooves two clusters of residues important for association with their regulatory PTPs, PTP-SL and STEP. ERK2 and p38alpha mutations that resembled the sevenmaker gain-of-function mutation in the Rolled D. melanogaster ERK2 homologue failed to associate with PTP-SL, were not retained in the cytosol, and were poorly inactivated by this PTP. Additional ERK2 mutations at the docking groove showed deficient association and dephosphorylation by PTP-SL, although their cytosolic retention was unaffected. Other ERK2 mutations, resembling gain-of-function mutations in the FUS3 yeast ERK2 homologue, associated to PTP-SL and were inactivated normally by this PTP. Our results demonstrate that mutations at distinct regions of the docking groove of ERK2 and p38alpha differentially affect their association and regulation by the PTP-SL and STEP PTPs.
Collapse
Affiliation(s)
- Céline Tárrega
- Instituto de Investigaciones Citológicas, Amadeo de Saboya, 4, 46010 Valencia, Spain
| | | | | | | |
Collapse
|
139
|
Kim SH, Kwon HB, Kim YS, Ryu JH, Kim KS, Ahn Y, Lee WJ, Choi KY. Isolation and characterization of a Drosophila homologue of mitogen-activated protein kinase phosphatase-3 which has a high substrate specificity towards extracellular-signal-regulated kinase. Biochem J 2002; 361:143-51. [PMID: 11742539 PMCID: PMC1222289 DOI: 10.1042/bj3610143] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A partial C-terminal cDNA sequence of a novel Drosophila mitogen-activated protein kinase phosphatase (MKP), designated DMKP-3, was identified from an epitope expressed sequence tag database, and the missing N-terminal cDNA fragment was cloned from a Drosophila cDNA library. DMKP-3 is a protein of 411 amino acids, with a calculated molecular mass of 45.8 kDa; the deduced amino acid sequence is most similar to that of mammalian MKP-3. Recombinant DMKP-3 produced in Escherichia coli retained intrinsic tyrosine phosphatase activity. In addition, DMKP-3 specifically inhibited extracellular-signal-regulated kinase (ERK) activity, but was without a significant affect on c-Jun N-terminal kinase (JNK) and p38 activities, when it was overexpressed in Schneider cells. DMKP-3 interacted specifically with Drosophila ERK (DERK) via its N-terminal domain. In addition, DMKP-3 specifically inhibited Elk-1-dependent trans-reporter gene expression in mammalian CV1 cells, and dephosphorylated activated mammalian ERK in vitro. DMKP-3 is uniquely localized in the cytoplasm within Schneider cells, and gene expression is tightly regulated during development. Thus DMKP-3 is a Drosophila homologue of mammalian MKP-3, and may play important roles in the regulation of various developmental processes.
Collapse
Affiliation(s)
- Sun-Hong Kim
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Smith RK, Carroll PM, Allard JD, Simon MA. MASK, a large ankyrin repeat and KH domain-containing protein involved inDrosophilareceptor tyrosine kinase signaling. Development 2002; 129:71-82. [PMID: 11782402 DOI: 10.1242/dev.129.1.71] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptor tyrosine kinases Sevenless (SEV) and the Epidermal growth factor receptor (EGFR) are required for the proper development of the Drosophila eye. The protein tyrosine phosphatase Corkscrew (CSW) is a common component of many RTK signaling pathways, and is required for signaling downstream of SEV and EGFR. In order to identify additional components of these signaling pathways, mutations that enhanced the phenotype of a dominant negative form of Corkscrew were isolated. This genetic screen identified the novel signaling molecule MASK, a large protein that contains two blocks of ankyrin repeats as well as a KH domain. MASK genetically interacts with known components of these RTK signaling pathways. In the developing eye imaginal disc, loss of MASK function generates phenotypes similar to those generated by loss of other components of the SEV and EGFR pathways. These phenotypes include compromised photoreceptor differentiation, cell survival and proliferation. Although MASK is localized predominantly in the cellular cytoplasm, it is not absolutely required for MAPK activation or nuclear translocation. Based on our results, we propose that MASK is a novel mediator of RTK signaling, and may act either downstream of MAPK or transduce signaling through a parallel branch of the RTK pathway.
Collapse
Affiliation(s)
- Rachel K Smith
- Department of Biological Sciences, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | | | |
Collapse
|
141
|
Emrick MA, Hoofnagle AN, Miller AS, Ten Eyck LF, Ahn NG. Constitutive activation of extracellular signal-regulated kinase 2 by synergistic point mutations. J Biol Chem 2001; 276:46469-79. [PMID: 11591711 DOI: 10.1074/jbc.m107708200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Constitutively active mutant forms of signaling enzymes provide insight into mechanisms of activation as well as useful molecular tools for probing downstream targets. In this study, point mutations in ERK2 at conserved residues L73P and S151D were identified that individually led to 8-12-fold increased specific activity and in combination reached 50-fold, indicating synergistic interactions between these residues. Examination by mass spectrometry, phosphatase sensitivity, and Western blotting revealed that the mutations enhanced ERK2 activity by facilitating intramolecular autophosphorylation predominantly at Tyr-185 and to a lesser extent at Thr-183 and that phosphorylation at both sites is required for activation. A set of short molecular dynamics simulations were carried out using different random seeds to sample locally accessible configurations. Simulations of the active mutant showed potential hydrogen bonding interactions between the phosphoryl acceptor and catalytic nucleophile, which could account for enhanced intramolecular autophosphorylation. In intact cells, the ERK2 mutants were functionally active in phosphorylating Elk-1 and RSK1 and activating the c-fos promoter. This activity was only partially reduced upon treatment of cells with the MKK1/2 inhibitor, U0126, indicating that in vivo the mechanism of ERK2 activation occurs substantially through autophosphorylation and partially through phosphorylation by MKK1/2.
Collapse
Affiliation(s)
- M A Emrick
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
142
|
Johnson Hamlet MR, Perkins LA. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis. Genetics 2001; 159:1073-87. [PMID: 11729154 PMCID: PMC1461857 DOI: 10.1093/genetics/159.3.1073] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.
Collapse
Affiliation(s)
- M R Johnson Hamlet
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
143
|
Abstract
The near-catholic conservation of paired box gene 6 (Pax6) and its supporting cast of retinal determination genes throughout the animal kingdom has sparked a scientific war over the evolutionary origins of the eye. The battle pits those who support a polyphyletic history for the eye against those who argue for a common ancestor for all 'seeing' animals. Recent papers have shed light on how eyes in both vertebrates and invertebrates are patterned. New insights into the roles that signal-transduction cascades might have in determining the Drosophila melanogaster eye indicate that, like many developmental processes, eye specification is an inductive process.
Collapse
Affiliation(s)
- J P Kumar
- Department of Cell Biology, Emory University School of Medicine, 1648 Pierce Drive, Atlanta, Georgia 30033, USA.
| |
Collapse
|
144
|
Rait AS, Pirollo KF, Rait V, Krygier JE, Xiang L, Chang EH. Inhibitory effects of the combination of HER-2 antisense oligonucleotide and chemotherapeutic agents used for the treatment of human breast cancer. Cancer Gene Ther 2001; 8:728-39. [PMID: 11687896 DOI: 10.1038/sj.cgt.7700359] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Indexed: 11/09/2022]
Abstract
Poor response to chemotherapy in patients with breast cancer is often associated with overexpression of HER-2/neu. Interference with HER-2 mRNA translation by means of antisense oligonucleotides might improve the efficacy of chemotherapy. To test this hypothesis, eight breast cancer cell lines and a normal human fibroblast cell line were examined for their level of HER-2 expression, their sensitivity to phosphorothioate antisense oligonucleotides (AS HER-2 ODN), and to various chemotherapeutic agents, and the combination of the two. No correlation was found between the intrinsic HER-2 level and either the sensitivity to a particular chemotherapeutic agent alone, or the amount of growth inhibition observed with a specific AS HER-2 ODN concentration. Although sequence specificity and extent of AS HER-2 ODN inhibition of HER-2 synthesis were somewhat higher in the HER-2 overexpressing MDA-MB-453 and SK-BR-3 cells, we found that antisense treatment significantly sensitized all of the breast cancer cells, even MDA-MB-231 and MDA-MB-435 cells, with approximately basal levels of HER-2, to various chemotherapeutic agents. In addition, the combination of AS HER-2 ODN and taxol was shown to synergistically induce apoptosis in MDA-MB-435. These results demonstrate that overexpression of HER-2 would not be a prerequisite for the effective use of AS HER-2 ODN as a combination treatment modality for breast cancer and suggest that the use of AS HER-2 ODN, as part of a combination treatment modality, need not be limited to breast tumors that display elevated levels of HER-2.
Collapse
Affiliation(s)
- A S Rait
- Departments of Oncology and Otolaryngology, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
145
|
Morey M, Serras F, Baguñà J, Hafen E, Corominas M. Modulation of the Ras/MAPK signalling pathway by the redox function of selenoproteins in Drosophila melanogaster. Dev Biol 2001; 238:145-56. [PMID: 11784000 DOI: 10.1006/dbio.2001.0389] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modulation of reactive oxygen species (ROS) plays a key role in signal transduction pathways. Selenoproteins act controlling the redox balance of the cell. We have studied how the alteration of the redox balance caused by patufet (selD(ptuf)), a null mutation in the Drosophila melanogaster selenophosphate synthetase 1 (sps1) gene, which codes for the SelD enzyme of the selenoprotein biosynthesis, affects the Ras/MAPK signalling pathway. The selD(ptuf) mutation dominantly suppresses the phenotypes in the eye and the wing caused by hyperactivation of the Ras/MAPK cassette and the activated forms of the Drosophila EGF receptor (DER) and Sevenless (Sev) receptor tyrosine kinases (RTKs), which signal in the eye and wing, respectively. No dominant interaction is observed with sensitized conditions in the Wnt, Notch, Insulin-Pi3K, and DPP signalling pathways. Our current hypothesis is that selenoproteins selectively modulate the Ras/MAPK signalling pathway through their antioxidant function. This is further supported by the fact that a selenoprotein-independent increase in ROS caused by the catalase amorphic Cat(n1) allele also reduces Ras/MAPK signalling. Here, we present the first evidence for the role of intracellular redox environment in signalling pathways in Drosophila as a whole organism.
Collapse
Affiliation(s)
- M Morey
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
| | | | | | | | | |
Collapse
|
146
|
Yung Y, Yao Z, Aebersold DM, Hanoch T, Seger R. Altered regulation of ERK1b by MEK1 and PTP-SL and modified Elk1 phosphorylation by ERK1b are caused by abrogation of the regulatory C-terminal sequence of ERKs. J Biol Chem 2001; 276:35280-9. [PMID: 11463794 DOI: 10.1074/jbc.m105995200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERK1b is an alternatively spliced form of ERK1, containing a 26-amino acid insertion between residues 340 and 341 of ERK1. Although under most circumstances the kinetics of ERK1b activation are similar to that of ERK1 and ERK2, we have previously found several conditions under which the activation of ERK1b by extracellular stimuli differs from that of other ERKs. We studied the molecular mechanisms that cause this differential regulation of ERK1b and found that ERK1b is altered in its ability to interact with MEK1 and this influenced its subcellular localization but not its kinetics of activation. ERK1b had a decreased ability to phosphorylate Elk1, but this did not change much the transcriptional activity of the latter. Importantly, the interaction of ERK1b with PTP-SL, which can act as a MAPK phosphatase, shortly after mitogenic stimulation, was significantly affected as well. Using mutants of ERK1b we found that the differential interaction of ERK1b with the three effectors is caused by the site of insertion that abrogates the cytosolic retention sequence/common docking motif of ERKs, and is not dependent on the actual sequence of the insert. Prolonged epidermal growth factor stimulation of Rat1 cells resulted in a differential inactivation and not activation of ERK1b as compared with ERK1 and ERK2. The reduced sensitivity to phosphatases without major differences in the kinetics of activation or activation of substrates, suggests that ERK1b plays a role in the transmission of extracellular signals under conditions of persistent stimulation, where ERK1b and MAPK phosphatases are induced, and the activity of ERK1 and ERK2 is suppressed.
Collapse
Affiliation(s)
- Y Yung
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
147
|
Zhao Y, Zhang ZY. The mechanism of dephosphorylation of extracellular signal-regulated kinase 2 by mitogen-activated protein kinase phosphatase 3. J Biol Chem 2001; 276:32382-91. [PMID: 11432864 DOI: 10.1074/jbc.m103369200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein (MAP) kinase phosphatase-3 (MKP3) is a dual specificity phosphatase that specifically inactivates one subfamily of MAP kinases, the extracellular signal-regulated kinases (ERKs). Inactivation of MAP kinases occurs by dephosphorylation of Thr(P) and Tyr(P) in the TXY kinase activation motif. To gain insight into the mechanism of ERK2 inactivation by MKP3, we have carried out an analysis of the MKP3-catalyzed dephosphorylation of the phosphorylated ERK2. We find that ERK2/pTpY dephosphorylation by MKP3 involves an ordered, distributive mechanism in which MKP3 binds the bisphosphorylated ERK2/pTpY, dephosphorylates Tyr(P) first, dissociates and releases the monophosphorylated ERK2/pT, which is then subjected to dephosphorylation by a second MKP3, yielding the fully dephosphorylated ERK2. The bisphosphorylated ERK2 is a highly specific substrate for MKP3 with a k(cat)/K(m) of 3.8 x 10(6) m(-1) s(-1), which is more than 6 orders of magnitude higher than that for small molecule aryl phosphates and an ERK2-derived phosphopeptide encompassing the pTEpY motif. This strikingly high substrate specificity displayed by MKP3 may result from a combination of high affinity binding interactions between the N-terminal domain of MKP3 and ERK2 and specific ERK2-induced allosteric activation of the MKP3 C-terminal phosphatase domain.
Collapse
Affiliation(s)
- Y Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
148
|
Szedlacsek SE, Aricescu AR, Fulga TA, Renault L, Scheidig AJ. Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation. J Mol Biol 2001; 311:557-68. [PMID: 11493009 DOI: 10.1006/jmbi.2001.4890] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein tyrosine phosphatases PTP-SL and PTPBR7 are isoforms belonging to cytosolic membrane-associated and to receptor-like PTPs (RPTPs), respectively. They represent a new family of PTPs with a major role in activation and translocation of MAP kinases. Specifically, the complex formation between PTP-SL and ERK2 involves an unusual interaction leading to the phosphorylation of PTP-SL by ERK2 at Thr253 and the inactivating dephosphorylation of ERK2 by PTP-SL. This interaction is strictly dependent upon a kinase interaction motif (KIM) (residues 224-239) situated at the N terminus of the PTP-SL catalytic domain. We report the first crystal structure of the catalytic domain for a member of this family (PTP-SL, residues 254-549, identical with residues 361-656 of PTPBR7), providing an example of an RPTP with single cytoplasmic domain, which is monomeric, having an unhindered catalytic site. In addition to the characteristic PTP-core structure, PTP-SL has an N-terminal helix, possibly orienting the KIM motif upon interaction with the target ERK2. An unusual residue in the catalytically important WPD loop promotes formation of a hydrophobically and electrostatically stabilised clamp. This could induce increased rigidity to the WPD loop and therefore reduced catalytic activity, in agreement with our kinetic measurements. A docking model based on the PTP-SL structure suggests that, in the complex with ERK2, the phosphorylation of PTP-SL should be accomplished first. The subsequent dephosphorylation of ERK2 seems to be possible only if a conformational rearrangement of the two interacting partners takes place.
Collapse
Affiliation(s)
- S E Szedlacsek
- Department of Enzymology, Institute of Biochemistry, Spl. Independentei 296, Bucharest, 77700, Romania.
| | | | | | | | | |
Collapse
|
149
|
Bell M, Capone R, Pashtan I, Levitzki A, Engelberg D. Isolation of hyperactive mutants of the MAPK p38/Hog1 that are independent of MAPK kinase activation. J Biol Chem 2001; 276:25351-8. [PMID: 11309396 DOI: 10.1074/jbc.m101818200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) play pivotal roles in growth, development, differentiation, and apoptosis. The exact role of a given MAPK in these processes is not fully understood. This question could be addressed using active forms of these enzymes that are independent of external stimulation and upstream regulation. Yet, such molecules are not available. MAPK activation requires dual phosphorylation, on neighboring Tyr and Thr residues, catalyzed by MAPK kinases (MAPKKs). It is not known how to force MAPK activation independent of MAPKK phosphorylation. Here we describe a series of nine hyperactive (catalytically and biologically), MAPKK-independent variants of the MAPK Hog1. Each of the active molecules contains just a single point mutation. Six mutations are in the conserved L16 domain of the protein. The active Hog1 mutants were obtained through a novel genetic screen that could be applied for isolation of active MAPKs of other families. Equivalent mutations, introduced to the human p38alpha, rendered the enzyme active even when produced in Escherichia coli, showing that the mutations increased the intrinsic catalytic activity of p38. It implies that the activating mutations could be directly used for production of active forms of MAPKs from yeasts to humans and could open the way to revealing their biological functions.
Collapse
Affiliation(s)
- M Bell
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
150
|
Hsiao FC, Williams A, Davies EL, Rebay I. Eyes absent mediates cross-talk between retinal determination genes and the receptor tyrosine kinase signaling pathway. Dev Cell 2001; 1:51-61. [PMID: 11703923 DOI: 10.1016/s1534-5807(01)00011-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eyes absent (eya) encodes a member of a network of nuclear transcription factors that promotes eye development in both vertebrates and invertebrates. Despite extensive studies, the molecular mechanisms whereby cell-cell signaling pathways coordinate the function of this retinal determination gene network remain unknown. Here, we report that Drosophila Eya function is positively regulated by mitogen-activated protein kinase (MAPK)-mediated phosphorylation and that this regulation extends to developmental contexts independent of eye determination. In vivo genetic analyses, together with in vitro kinase assay results, demonstrate that Eya is a substrate for extracellular signal-regulated kinase, the MAPK acting downstream in the receptor tyrosine kinase (RTK) signaling pathway. Thus, phosphorylation of Eya appears to provide a direct regulatory link between the RTK/Ras/MAPK signaling cascade and the retinal determination gene network.
Collapse
Affiliation(s)
- F C Hsiao
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| | | | | | | |
Collapse
|