101
|
Dougherty EJ, Elinoff JM, Ferreyra GA, Hou A, Cai R, Sun J, Blaine KP, Wang S, Danner RL. Mineralocorticoid Receptor (MR) trans-Activation of Inflammatory AP-1 Signaling: DEPENDENCE ON DNA SEQUENCE, MR CONFORMATION, AND AP-1 FAMILY MEMBER EXPRESSION. J Biol Chem 2016; 291:23628-23644. [PMID: 27650495 DOI: 10.1074/jbc.m116.732248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 01/21/2023] Open
Abstract
Glucocorticoids are commonly used to treat inflammatory disorders. The glucocorticoid receptor (GR) can tether to inflammatory transcription factor complexes, such as NFκB and AP-1, and trans-repress the transcription of cytokines, chemokines, and adhesion molecules. In contrast, aldosterone and the mineralocorticoid receptor (MR) primarily promote cardiovascular inflammation by incompletely understood mechanisms. Although MR has been shown to weakly repress NFκB, its role in modulating AP-1 has not been established. Here, the effects of GR and MR on NFκB and AP-1 signaling were directly compared using a variety of ligands, two different AP-1 consensus sequences, GR and MR DNA-binding domain mutants, and siRNA knockdown or overexpression of core AP-1 family members. Both GR and MR repressed an NFκB reporter without influencing p65 or p50 binding to DNA. Likewise, neither GR nor MR affected AP-1 binding, but repression or activation of AP-1 reporters occurred in a ligand-, AP-1 consensus sequence-, and AP-1 family member-specific manner. Notably, aldosterone interactions with both GR and MR demonstrated a potential to activate AP-1. DNA-binding domain mutations that eliminated the ability of GR and MR to cis-activate a hormone response element-driven reporter variably affected the strength and polarity of these responses. Importantly, MR modulation of NFκB and AP-1 signaling was consistent with a trans-mechanism, and AP-1 effects were confirmed for specific gene targets in primary human cells. Steroid nuclear receptor trans-effects on inflammatory signaling are context-dependent and influenced by nuclear receptor conformation, DNA sequence, and the expression of heterologous binding partners. Aldosterone activation of AP-1 may contribute to its proinflammatory effects in the vasculature.
Collapse
Affiliation(s)
- Edward J Dougherty
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Jason M Elinoff
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Gabriela A Ferreyra
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Angela Hou
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Rongman Cai
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Junfeng Sun
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Kevin P Blaine
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Shuibang Wang
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert L Danner
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
102
|
Gould DA, Moscoso GJ, Young MPA, Barton DPJ. Human First Trimester Fetal Ovaries Express Oncofetal Antigens and Steroid Receptors. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760000700209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | - M. P. A. Young
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Division of Early Human Development, Department of Obstetrics and Gynecology; Department of Histopathology, St. George's Hospital, London, United Kingdom
| | - D. P. J. Barton
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Division of Early Human Development, Department of Obstetrics and Gynecology; Department of Histopathology, St. George's Hospital, London, United Kingdom
| |
Collapse
|
103
|
Appikonda S, Thakkar KN, Barton MC. Regulation of gene expression in human cancers by TRIM24. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:57-63. [PMID: 27769359 DOI: 10.1016/j.ddtec.2016.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 01/21/2023]
Abstract
Tripartite Motif-containing protein 24 (TRIM24) functions as an E3 ligase targeting p53 for ubiquitination, a histone 'reader' that interacts with a specific signature of histone post-translational modifications and a co-regulator of nuclear receptor-regulated transcription. Although mouse models of Trim24 depletion suggest that TRIM24 may be a liver-specific tumor suppressor, several studies show that human TRIM24 is an oncogene when aberrantly over expressed. This review focuses on the mechanisms of TRIM24 functions in oncogenesis and metabolic reprogramming, which underlie recent interest in therapeutic targeting of aberrant TRIM24 in human cancers.
Collapse
Affiliation(s)
- Srikanth Appikonda
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Kaushik N Thakkar
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, TX 77030, USA; University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle Craig Barton
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, TX 77030, USA; University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
104
|
Graziottin A, Serafini A. Perimenstrual asthma: from pathophysiology to treatment strategies. Multidiscip Respir Med 2016; 11:30. [PMID: 27482380 PMCID: PMC4967997 DOI: 10.1186/s40248-016-0065-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
The prevalence of asthma is about 9,7 % in women and 5,5 % in men. Asthma can deteriorate during the perimenstrual period, a phenomenon known as perimenstrual asthma (PMA), which represents a unique, highly symptomatic asthma phenotype. It is distinguished from traditional allergic asthma by aspirin sensitivity, less atopy, and lower lung capacity. PMA incidence is reported to vary between 19 and 40 % of asthmatic women. The presence of PMA has been related to increases in asthma-related emergency department visits, hospitalizations and emergency treatment including intubations. It is hypothesized that hormonal status may influence asthma in women, focusing on the role of sex hormones, and specifically on the impact of estrogens' fluctuations at ovulation and before periods. This paper will focus on the pathophysiology of hormone triggered cycle related inflammatory/allergic events and their relation with asthma. We reviewed the scientific literature on Pubmed database for studies on PMA. Key word were PMA, mastcells, estrogens, inflammation, oral contraception, hormonal replacement therapy (HRT), and hormone free interval (HFI). Special attention will be devoted to the possibility of reducing the perimenstrual worsening of asthma and associated symptoms by reducing estrogens fluctuations, with appropriate hormonal contraception and reduced HFI. This novel therapeutical approach will be finally discussed.
Collapse
Affiliation(s)
- Alessandra Graziottin
- Center of Gynecology and Medical Sexology, San Raffaele Resnati Hospital, Milan, Italy
- Via Enrico Panzacchi 6, 20123 Milan, Italy
| | | |
Collapse
|
105
|
Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I. Discovery of Compound A--a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 2016; 6:30730-44. [PMID: 26436695 PMCID: PMC4741564 DOI: 10.18632/oncotarget.5078] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids are among the most effective anti-inflammatory drugs, and are widely used for cancer therapy. Unfortunately, chronic treatment with glucocorticoids results in multiple side effects. Thus, there was an intensive search for selective glucocorticoid receptor (GR) activators (SEGRA), which retain therapeutic potential of glucocorticoids, but with fewer adverse effects. GR regulates gene expression by transactivation (TA), by binding as homodimer to gene promoters, or transrepression (TR), via diverse mechanisms including negative interaction between monomeric GR and other transcription factors. It is well accepted that metabolic and atrophogenic effects of glucocorticoids are mediated by GR TA. Here we summarized the results of extensive international collaboration that led to discovery and characterization of Compound A (CpdA), a unique SEGRA with a proven “dissociating” GR ligand profile, preventing GR dimerization and shifting GR activity towards TR both in vitro and in vivo. We outlined here the unusual story of compound's discovery, and presented a comprehensive overview of CpdA ligand properties, its anti-inflammatory effects in numerous animal models of inflammation and autoimmune diseases, as well as its anti-cancer effects. Finally, we presented mechanistic analysis of CpdA and glucocorticoid effects in skin, muscle, bone, and regulation of glucose and fat metabolism to explain decreased CpdA side effects compared to glucocorticoids. Overall, the results obtained by our and other laboratories underline translational potential of CpdA and its derivatives for treatment of inflammation, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alexander Yemelyanov
- Pulmonary Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
106
|
Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc 2016; 92:1459-1474. [DOI: 10.1111/brv.12291] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Chloe C. Josefson
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
107
|
Abstract
Recent events have drawn attention to the hypothesis that some xenobiotics in the environment may elicit toxicities in humans by modulating endocrine pathways. From the perspective of regulatory toxicology, pursuit of this hypothesis w ill prove difficult, because current risk assessment m ethods do not readily apply to substances with very high potencies, reversibility, transgener-ational effects, and subtle biological outcomes. Such xenobiotics typically persist in the body and bioaccumulate in the food chain. Yet the exposures are important only during critical periods of vulnerability, and no sustained bio-markers of these important exposures currently exist. This article describes some recent efforts by federal agencies to pursue the hypothesis, including research planning and screening of potential endocrine modulating xenobiotics and risk assessment of dioxin conflicts with its policy for substances that cause thyroid follicular carcinomas.
Collapse
Affiliation(s)
- Daniel M. Byrd
- Center for the Study of Environmental Endocrine Effects, Federal Focus, Inc., Washington, DC, USA
| | - M. Luann Roegner
- Novartis Seeds, Cornwalis Drive, Research Triangle Park, North Carolina, USA
| |
Collapse
|
108
|
Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network. Oncotarget 2016; 7:37906-37919. [PMID: 27191267 PMCID: PMC5122359 DOI: 10.18632/oncotarget.9353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases.
Collapse
|
109
|
Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev 2016; 96:409-47. [PMID: 26842265 DOI: 10.1152/physrev.00011.2015] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cartilage and bone are severely affected by glucocorticoids (GCs), steroid hormones that are frequently used to treat inflammatory diseases. Major complications associated with long-term steroid therapy include impairment of cartilaginous bone growth and GC-induced osteoporosis. Particularly in arthritis, GC application can increase joint and bone damage. Contrarily, endogenous GC release supports cartilage and bone integrity. In the last decade, substantial progress in the understanding of the molecular mechanisms of GC action has been gained through genome-wide binding studies of the GC receptor. These genomic approaches have revolutionized our understanding of gene regulation by ligand-induced transcription factors in general. Furthermore, specific inactivation of GC signaling and the GC receptor in bone and cartilage cells of rodent models has enabled the cell-specific effects of GCs in normal tissue homeostasis, inflammatory bone diseases, and GC-induced osteoporosis to be dissected. In this review, we summarize the current view of GC action in cartilage and bone. We further discuss future research directions in the context of new concepts for optimized steroid therapies with less detrimental effects on bone.
Collapse
Affiliation(s)
- Kerstin Hartmann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mascha Koenen
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schauer
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Wittig-Blaich
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mubashir Ahmad
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
110
|
Sakkiah S, Ng HW, Tong W, Hong H. Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery. Expert Opin Ther Targets 2016; 20:1267-82. [PMID: 27195510 DOI: 10.1080/14728222.2016.1192131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Androgen receptor (AR) is a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. It plays a vital role in male sexual development and regulates gene expression in various tissues, including prostate. Androgens are compounds that exert their biological effects via interaction with AR. Binding of androgens to AR initiates conformational changes in AR that affect binding of co-regulator proteins and DNA. AR agonists and antagonists are widely used in a variety of clinical applications (i.e. hypogonadism and prostate cancer therapy). AREAS COVERED This review provides a close look at structures of AR-ligand complexes and mutations in the receptor that have been revealed, discusses current challenges in the field, and sheds light on future directions. EXPERT OPINION AR is one of the primary targets for the treatment of prostate cancer, as AR antagonists inhibit prostate cancer growth. However, these drugs are not effective for long-term treatment and lead to castration-resistant prostate cancer. The structures of AR-ligand complexes are an invaluable scientific asset that enhances our understanding of biological functions and mechanisms of androgenic and anti-androgenic chemicals as well as promotes the discovery of superior drug candidates.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Hui Wen Ng
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Weida Tong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Huixiao Hong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| |
Collapse
|
111
|
Zhang R, Hu Y, Wang H, Yan P, Zhou Y, Wu R, Wu X. Molecular cloning, characterization, tissue distribution and mRNA expression changes during the hibernation and reproductive periods of estrogen receptor alpha (ESR1) in Chinese alligator, Alligator sinensis. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:28-35. [PMID: 27212643 DOI: 10.1016/j.cbpb.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023]
Abstract
Chinese alligator, Alligator sinensis, is a critically endangered reptile species unique to China. Little is known about the mechanism of growth- and reproduction-related hormones gene expression in Chinese alligator. Estrogens play important roles in regulating multiple reproduction- and non-reproduction-related functions by binding to their corresponding receptors. Here, the full-length cDNA of estrogen receptor alpha (ERα/ESR1) was cloned and sequenced from Chinese alligator for the first time, which comprises 1764bp nucleotides and encodes a predicted protein of 587 amino acids. Phylogenetic analysis of ESR1 showed that crocodilians and turtles were the sister-group of birds. The results of real-time quantitative PCR indicated that the ESR1 mRNA was widely expressed in the brain and peripheral tissues. In the brain and pituitary gland, ESR1 was most highly transcribed in the cerebellum. But in other peripheral tissues, ESR1 mRNA expression level was the highest in the ovary. Compared with hibernation period, ESR1 mRNA expression levels were increased significantly in the reproductive period (P<0.05) in cerebellum, pituitary gland, liver, spleen, lung, kidney and ovary, while no significant change in other examined tissues (P>0.05). The ESR1 mRNA expression levels changes during the two periods of different tissues suggested that ESR1 might play an important role in mediation of estrogenic multiple reproductive effects in Chinese alligator. Furthermore, it was the first time to quantify ESR1 mRNA level in the brain of crocodilians, and the distribution and expression of ESR1 mRNA in the midbrain, cerebellum and medulla oblongata was also reported for the first time in reptiles.
Collapse
Affiliation(s)
- Ruidong Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Yuehong Hu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Huan Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Peng Yan
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou 242000, People's Republic of China
| | - Rong Wu
- Alligator Research Center of Anhui Province, Xuanzhou 242000, People's Republic of China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
| |
Collapse
|
112
|
Wagenfeld A, Saunders PTK, Whitaker L, Critchley HOD. Selective progesterone receptor modulators (SPRMs): progesterone receptor action, mode of action on the endometrium and treatment options in gynecological therapies. Expert Opin Ther Targets 2016; 20:1045-54. [PMID: 27138351 PMCID: PMC4989858 DOI: 10.1080/14728222.2016.1180368] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: The progesterone receptor plays an essential role in uterine physiology and reproduction. Selective progesterone receptor modulators (SPRMs) have emerged as a valuable treatment option for hormone dependent conditions like uterine fibroids, which have a major impact on women’s quality of life. SPRMs offer potential for longer term medical treatment and thereby patients may avoid surgical intervention. Areas covered: The authors have reviewed the functional role of the progesterone receptor and its isoforms and their molecular mechanisms of action via genomic and non-genomic pathways. The current knowledge of the interaction of the PR and different SPRMs tested in clinical trials has been reviewed. The authors focused on pharmacological effects of selected SPRMs on the endometrium, their anti-proliferative action, and their suppression of bleeding. Potential underlying molecular mechanisms and the specific histological changes in the endometrium induced by SPRMs (PAEC; Progesterone receptor modulator Associated Endometrial Changes) have been discussed. The clinical potential of this compound class including its impact on quality of life has been covered. Expert Opinion: Clinical studies indicate SPRMs hold promise for treatment of benign gynecological complaints (fibroids, heavy menstrual bleeding; HMB). There however remains a knowledge gap concerning mechanism of action.
Collapse
Affiliation(s)
- Andrea Wagenfeld
- a Bayer HealthCare , Drug Discovery, TRG Gynecological Therapies , Berlin , Germany
| | - Philippa T K Saunders
- b MRC Centre for Inflammation Research , The University of Edinburgh , Edinburgh , UK
| | - Lucy Whitaker
- c MRC Centre for Reproductive Health , The University of Edinburgh , Edinburgh , UK
| | - Hilary O D Critchley
- c MRC Centre for Reproductive Health , The University of Edinburgh , Edinburgh , UK
| |
Collapse
|
113
|
McKay TB, Hjortdal J, Sejersen H, Asara JM, Wu J, Karamichos D. Endocrine and Metabolic Pathways Linked to Keratoconus: Implications for the Role of Hormones in the Stromal Microenvironment. Sci Rep 2016; 6:25534. [PMID: 27157003 PMCID: PMC4860577 DOI: 10.1038/srep25534] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022] Open
Abstract
Hormones play a critical role in regulating tissue function by promoting cell survival, proliferation, and differentiation. Our study explores the influence of endocrine function in regulating metabolism and inflammatory pathways in Keratoconus (KC), which is a corneal thinning disease associated with reduced stromal deposition. KC is known to be a multifactorial disease with an elusive pathogenesis. We utilized a cross-sectional study analyzing clinical features and saliva samples from sixty-four KC patients and fourteen healthy controls. In order to determine if endocrine function varied between healthy controls and KC, we measured hormone levels in saliva and found significantly increased dehydroepiandrosterone sulfate (DHEA-S) and reduced estrone levels in KC patients compared to healthy controls. We measured significant variations in metabolites associated with pro-inflammatory processes, including myoinositol and 1-methyl-histidine, by targeted mass spectrometry. We also measured significantly increased IL-16 and stem cell factor in KC saliva samples compared to healthy controls, with higher expression of these pro-inflammatory proteins correlating with increased KC clinical grade, corneal curvature, and stromal thinning. Our results identify a novel mechanism linking KC and pro-inflammatory markers and suggest that altered hormone levels modulate metabolism, cytokine, and growth factor expression leading to increased severity of the KC condition.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Cell Biology/ University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jesper Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C DK-8000, Denmark
| | - Henrik Sejersen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C DK-8000, Denmark
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical and Department of Medicine, Harvard Medical School, Boston, MA USA
| | - Jennifer Wu
- Department of Ophthalmology/Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Dimitrios Karamichos
- Department of Cell Biology/ University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Ophthalmology/Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
114
|
Wartalski K, Knet-Seweryn M, Hoja-Lukowicz D, Tabarowski Z, Duda M. Androgen receptor-mediated non-genomic effects of vinclozolin on porcine ovarian follicles and isolated granulosa cells: Vinclozolin and non-genomic effects in porcine ovarian follicles. Acta Histochem 2016; 118:377-86. [PMID: 27094116 DOI: 10.1016/j.acthis.2016.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 01/08/2023]
Abstract
The present study investigated the influence of the androgen receptor (AR) agonists testosterone (T) and dihydrotestosterone (DHT), and vinclozolin (Vnz), a fungicide with antiandrogenic activity, on non-genomic signal transduction within ovarian follicles. Porcine granulosa cells (GCs) isolated from mature follicles were cultured for 48h. For the last 24h of culture, they were exposed to T (10(-7)M), DHT (10(-7)M), Vnz (1.4×10(-5)M), T and Vnz (T+Vnz), or DHT and Vnz (DHT+Vnz) at the same concentrations. To better imitate in vivo conditions, whole follicles (4-6mm in diameter) were incubated (24h) in an organ culture system with the same factors. Expression of AR mRNA and protein was determined by real-time PCR and western blot analyses. To demonstrate AR localization in cultured GCs and whole follicles, immunocytochemistry and immunohistochemistry were performed, respectively. To elucidate the possible non-genomic action of Vnz in GCs, protein expression and the activity of ERK1/2 and Akt kinases were determined by western blot and ELISA analyses. The immunocytochemistry and immunohistochemistry results showed that exposure of GCs and follicles to Vnz resulted in cytoplasmic and perinuclear AR localization. Real-time PCR and western blot analysis showed that AR mRNA and protein expression increased (P≤0.001) in GC cultures after combined treatment with an androgen and Vnz. In whole follicles, such treatment also increased AR mRNA with a decrease in the respective protein expression (P≤0.001). Moreover, addition of T or DHT with Vnz increased the activity of ERK1/2 and Akt kinases in cultured GCs (P≤0.001). The results suggest a novel mechanism for Vnz action in porcine ovarian follicles on both AR mRNA and protein levels. Thus, this environmental antiandrogen activates non-genomic signaling pathways, as indicated by the increased activity of both investigated kinases observed within minutes of Vnz addition. Given the widespread presence of Vnz in the environment, elucidation of its non-genomic action should be the subject of studies on female fertility.
Collapse
|
115
|
Robertshaw I, Bian F, Das SK. Mechanisms of uterine estrogen signaling during early pregnancy in mice: an update. J Mol Endocrinol 2016; 56:R127-38. [PMID: 26887389 PMCID: PMC4889031 DOI: 10.1530/jme-15-0300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/17/2016] [Indexed: 01/17/2023]
Abstract
Adherence of an embryo to the uterus represents the most critical step of the reproductive process. Implantation is a synchronized event between the blastocyst and the uterine luminal epithelium, leading to structural and functional changes for further embryonic growth and development. The milieu comprising the complex process of implantation is mediated by estrogen through diverse but interdependent signaling pathways. Mouse models have demonstrated the relevance of the expression of estrogen-modulated paracrine factors to uterine receptivity and implantation window. More importantly, some factors seem to serve as molecular links between different estrogen pathways, promoting cell growth, acting as molecular chaperones, or amplifying estrogenic effects. Abnormal expression of these factors can lead to implantation failure and infertility. This review provides an overview of several well-characterized signaling pathways that elucidates the molecular cross talk involved in the uterus during early pregnancy.
Collapse
Affiliation(s)
- I Robertshaw
- Department of Obstetrics and GynecologyUniversity of Cincinnati, West Chester, Ohio, USA Division of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - F Bian
- Division of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Perinatal InstituteCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - S K Das
- Division of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Perinatal InstituteCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Department of PediatricsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
116
|
The Lipid Bilayer Provides a Site for Cortisone Crystallization at High Cortisone Concentrations. Sci Rep 2016; 6:22425. [PMID: 26936102 PMCID: PMC4776104 DOI: 10.1038/srep22425] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Cortisone is an injected anti-inflammatory drug that can cause painful side effects known as "steroid flares" which are caused by cortisone crystallizing at the injection site. We used molecular dynamics simulations and X-ray diffraction to study the interaction of cortisone with model lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at drug concentrations from 0 mol% to 50 mol%. Cortisone was found to partition in the lipid bilayer and locate in the hydrophilic to hydrophobic interface of the membranes. Cortisone strongly affects the integrity of the membrane, as quantified by a decreased membrane thickness, increased area per lipid, and decreased lipid tail order parameters. At cortisone concentrations of more than 20 mol%, signals from crystallized cortisone were observed. These crystallites are embedded in the bilayers and orient with the membranes. While the cortisone molecules align parallel to the bilayers at low concentrations, they start to penetrate the hydrophobic core at higher concentrations. Trans-membrane crystallites start to nucleate when the membrane thickness has decreased such that cortisone molecules in the different leaflets can find partners from the opposite leaflet resulting in a non-zero density of cortisone molecules in the bilayer center. We suggest that the lipid bilayer provides a site for cortisone crystallization.
Collapse
|
117
|
Wang Q, Xu C, Zhao Y, Xu Z, Zhang Y, Jiang J, Yan B, Gu D, Wu M, Wang Y, Liu H. miR-26b-3p Regulates Human Umbilical Cord-Derived Mesenchymal Stem Cell Proliferation by Targeting Estrogen Receptor. Stem Cells Dev 2016; 25:415-26. [PMID: 26723394 DOI: 10.1089/scd.2015.0267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSC) have been considered as promising candidates for cell-based regeneration medicine. However, the application was limited to its poor in vitro proliferation ability against the huge demand of cells. MicroRNA plays important roles in the regulation of cell proliferation, apoptosis, and differentiation. The objective of this study is to explore the roles of miRNAs in regulating the in vitro proliferation of hUC-MSC and unveil their possible mechanism. In this study, we found that miR-26b-3p was significantly upregulated during serial in vitro passage of hUC-MSC and was correlated with cellular senescence and cell cycle genes. The overexpression of miR-26b-3p greatly inhibited the proliferation of hUC-MSC in vitro, which is indicated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, cell cycle, and cell growth curve analyses. miR-26b-3p suppression partly rescued this phenotype by maintaining its proliferation ability in vitro. For mechanism studies, we predicted and validated that miR-26b-3p suppresses estrogen receptor 1 (ESR1) expression by directly binding to the coding sequence (CDS) region of its message RNA (mRNA), thus subsequently changing the expression of its downstream effector Cyclin D1. In conclusion, we found that miR-26b-3p played an important role in the regulation of hUC-MSC proliferation in vitro by targeting the ESR-CCND1 pathway.
Collapse
Affiliation(s)
- Qiaoling Wang
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Chen Xu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China .,3 Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University , Shanghai, People's Republic of China
| | - Yunpeng Zhao
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Zhenyu Xu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Yan Zhang
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Junfeng Jiang
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Binghao Yan
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Daolan Gu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Minjuan Wu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China
| | - Yue Wang
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| | - Houqi Liu
- 1 Translational Medicine Center, Second Military Medical University , Shanghai, People's Republic of China .,2 Department of Histology and Embryology, Research Center of Developmental Biology, Second Military Medical University , Shanghai, People's Republic of China
| |
Collapse
|
118
|
Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:277-84. [PMID: 26111720 DOI: 10.1016/j.pnpbp.2015.06.008] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022]
Abstract
Cytokines are pleiotropic molecules with important roles in inflammatory responses. Pro-inflammatory cytokines and neuroinflammation are important not only in inflammatory responses but also in neurogenesis and neuroprotection. Sustained stress and the subsequent release of pro-inflammatory cytokines lead to chronic neuroinflammation, which contributes to depression. Hippocampal glucocorticoid receptors (GRs) and the associated hypothalamus-pituitary-adrenal (HPA) axis have close interactions with pro-inflammatory cytokines and neuroinflammation. Elevated pro-inflammatory cytokine levels and GR functional resistance are among the most widely investigated factors in the pathophysiology of depression. These two major components create a vicious cycle. In brief, chronic neuroinflammation inhibits GR function, which in turn exacerbates pro-inflammatory cytokine activity and aggravates chronic neuroinflammation. On the other hand, neuroinflammation causes an imbalance between oxidative stress and the anti-oxidant system, which is also associated with depression. Although current evidence strongly suggests that cytokines and GRs have important roles in depression, they are essential components of a whole system of inflammatory and endocrine interactions, rather than playing independent parts. Despite the evidence that a dysfunctional immune and endocrine system contributes to the pathophysiology of depression, much research remains to be undertaken to clarify the cause and effect relationship between depression and neuroinflammation.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| | - Aye-Mu Myint
- Laboratory for Psychoneuroimmunology, Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Brian E Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland; Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
119
|
Piotrowski Z, Greenberg RE. Antiandrogen Monotherapy in the Treatment of Prostate Cancer. Prostate Cancer 2016. [DOI: 10.1016/b978-0-12-800077-9.00055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
120
|
Klopot A, Baida G, Bhalla P, Haegeman G, Budunova I. Selective Activator of the Glucocorticoid Receptor Compound A Dissociates Therapeutic and Atrophogenic Effects of Glucocorticoid Receptor Signaling in Skin. J Cancer Prev 2015; 20:250-9. [PMID: 26734587 PMCID: PMC4699752 DOI: 10.15430/jcp.2015.20.4.250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 01/20/2023] Open
Abstract
Background: Glucocorticoids are effective anti-inflammatory drugs widely used in dermatology and for the treatment of blood cancer patients. Unfortunately, chronic treatment with glucocorticoids results in serious metabolic and atrophogenic adverse effects including skin atrophy. Glucocorticoids act via the glucocorticoid receptor (GR), a transcription factor that causes either gene transactivation (TA) or transrepression (TR). Compound A (CpdA), a novel non-steroidal GR ligand, does not promote GR dimerization and TA, retains anti-inflammatory potential but induces fewer metabolic side effects compared to classical glucocorticoids when used systemically. As topical effects of CpdA have not been well studied, this work goal was to compare the anti-inflammatory and side effects of topical CpdA and glucocorticoids and to assess their effect on GR TA and TR in keratinocytes. Methods: We used murine immortalized keratinocytes and F1 C57BlxDBA mice. Effect of glucocorticoid fluocinolone acetonide (FA) and CpdA on gene expression in keratinocytes in vitro and in vivo was evaluated by reverse transcription-PCR. The anti-inflammatory effects were assessed in the model of tumor promoter 12-O-tertradecanoyl-acetate (TPA)-induced dermatitis and in croton oil-induced ear edema test. Skin atrophy was assessed by analysis of epidermal thickness, keratinocyte proliferation, subcutaneous adipose hypoplasia, and dermal changes after chronic treatment with FA and CpdA. Results: In mouse keratinocytes in vitro and in vivo, CpdA did not activate GR-dependent genes but mimicked closely the inhibitory effect of glucocorticoid FA on the expression of inflammatory cytokines and matrix metalloproteinases. When applied topically, CpdA inhibited TPA-induced skin inflammation and hyperplasia. Unlike glucocorticoids, CpdA itself did not induce skin atrophy which correlated with lack of induction of atrophogene regulated in development and DNA damage response 1 (REDD1) causatively involved in skin and muscle steroid-induced atrophy. Conclusions: Overall, our results suggest that CpdA and its derivatives represent novel promising class of anti-inflammatory compounds with reduced topical side effects.
Collapse
Affiliation(s)
- Anna Klopot
- Department of Dermatology, Northwestern University, Chicago, IL, USA; Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Pankaj Bhalla
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Guy Haegeman
- Department of Clinical Chemistry, Chulalonkorn University, Bangkok, Thailand
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
121
|
Tailoring steroid-sensitive virus-specific T cells with TALEN. Blood 2015; 126:2767-8. [PMID: 26705336 DOI: 10.1182/blood-2015-11-679837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
122
|
Thomas AL, Coarfa C, Qian J, Wilkerson JJ, Rajapakshe K, Krett NL, Gunaratne PH, Rosen ST. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma. NUCLEAR RECEPTOR SIGNALING 2015; 13:e006. [PMID: 26715915 PMCID: PMC4693629 DOI: 10.1621/nrs.13006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 10/27/2015] [Indexed: 12/29/2022]
Abstract
Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death.
Collapse
Affiliation(s)
- Alexandra L Thomas
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (ALT, JQ, NLK, STR); Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas (CC, JJW, KR); University of Houston, Department of Biology and Biochemistry, Houston, Texas (JJW, PHG) and Feinberg School of Medicine, Northwestern University, Department of Medicine, Chicago, Illinois (STR)
| | - Cristian Coarfa
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (ALT, JQ, NLK, STR); Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas (CC, JJW, KR); University of Houston, Department of Biology and Biochemistry, Houston, Texas (JJW, PHG) and Feinberg School of Medicine, Northwestern University, Department of Medicine, Chicago, Illinois (STR)
| | - Jun Qian
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (ALT, JQ, NLK, STR); Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas (CC, JJW, KR); University of Houston, Department of Biology and Biochemistry, Houston, Texas (JJW, PHG) and Feinberg School of Medicine, Northwestern University, Department of Medicine, Chicago, Illinois (STR)
| | - Joseph J Wilkerson
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (ALT, JQ, NLK, STR); Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas (CC, JJW, KR); University of Houston, Department of Biology and Biochemistry, Houston, Texas (JJW, PHG) and Feinberg School of Medicine, Northwestern University, Department of Medicine, Chicago, Illinois (STR)
| | - Kimal Rajapakshe
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (ALT, JQ, NLK, STR); Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas (CC, JJW, KR); University of Houston, Department of Biology and Biochemistry, Houston, Texas (JJW, PHG) and Feinberg School of Medicine, Northwestern University, Department of Medicine, Chicago, Illinois (STR)
| | - Nancy L Krett
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (ALT, JQ, NLK, STR); Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas (CC, JJW, KR); University of Houston, Department of Biology and Biochemistry, Houston, Texas (JJW, PHG) and Feinberg School of Medicine, Northwestern University, Department of Medicine, Chicago, Illinois (STR)
| | - Preethi H Gunaratne
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (ALT, JQ, NLK, STR); Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas (CC, JJW, KR); University of Houston, Department of Biology and Biochemistry, Houston, Texas (JJW, PHG) and Feinberg School of Medicine, Northwestern University, Department of Medicine, Chicago, Illinois (STR)
| | - Steven T Rosen
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (ALT, JQ, NLK, STR); Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas (CC, JJW, KR); University of Houston, Department of Biology and Biochemistry, Houston, Texas (JJW, PHG) and Feinberg School of Medicine, Northwestern University, Department of Medicine, Chicago, Illinois (STR)
| |
Collapse
|
123
|
Quetglas EG, Mujagic Z, Wigge S, Keszthelyi D, Wachten S, Masclee A, Reinisch W. Update on pathogenesis and predictors of response of therapeutic strategies used in inflammatory bowel disease. World J Gastroenterol 2015; 21:12519-12543. [PMID: 26640330 PMCID: PMC4658608 DOI: 10.3748/wjg.v21.i44.12519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
The search for biomarkers that characterize specific aspects of inflammatory bowel disease (IBD), has received substantial interest in the past years and is moving forward rapidly with the help of modern technologies. Nevertheless, there is a direct demand to identify adequate biomarkers for predicting and evaluating therapeutic response to different therapies. In this subset, pharmacogenetics deserves more attention as part of the endeavor to provide personalized medicine. The ultimate goal in this area is the adjustment of medication for a patient’s specific genetic background and thereby to improve drug efficacy and safety rates. The aim of the following review is to utilize the latest knowledge on immunopathogenesis of IBD and update the findings on the field of Immunology and Genetics, to evaluate the response to the different therapies. In the present article, more than 400 publications were reviewed but finally 287 included based on design, reproducibility (or expectancy to be reproducible and translationable into humans) or already measured in humans. A few tests have shown clinical applicability. Other, i.e., genetic associations for the different therapies in IBD have not yet shown consistent or robust results. In the close future it is anticipated that this, cellular and genetic material, as well as the determination of biomarkers will be implemented in an integrated molecular diagnostic and prognostic approach to manage IBD patients.
Collapse
|
124
|
Montes-Cobos E, Li X, Fischer HJ, Sasse A, Kügler S, Didié M, Toischer K, Fassnacht M, Dressel R, Reichardt HM. Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload. PLoS One 2015; 10:e0143954. [PMID: 26605921 PMCID: PMC4659617 DOI: 10.1371/journal.pone.0143954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/11/2015] [Indexed: 01/17/2023] Open
Abstract
Mineralocorticoid receptor (MR) inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox). Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes.
Collapse
Affiliation(s)
- Elena Montes-Cobos
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Xiao Li
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Henrike J. Fischer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - André Sasse
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, Center for Molecular Physiology of the Brain, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Michael Didié
- Institute of Pharmacology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Partner site Göttingen, German Center for Cardiovascular Research (DZHK), 37073 Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Partner site Göttingen, German Center for Cardiovascular Research (DZHK), 37073 Göttingen, Germany
| | - Martin Fassnacht
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University of Würzburg, 97080 Würzburg, Germany
| | - Ralf Dressel
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Partner site Göttingen, German Center for Cardiovascular Research (DZHK), 37073 Göttingen, Germany
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
- * E-mail:
| |
Collapse
|
125
|
Esposito T, Tammaro P, Paolisso G, Varriale B. Hormonal regulation and characterization of MHG30 gene, a desaturase-like gene of hamster harderian gland. J Steroid Biochem Mol Biol 2015; 154:267-73. [PMID: 26344639 DOI: 10.1016/j.jsbmb.2015.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
The harderian gland (HG) is an orbital gland of the vast majority of land vertebrates. In the Syrian hamster these glands display a marked sexual dimorphism. Here we present data on a male specific clone named MHG30. The MHG30 cDNA (1470 bp) has significant sequence homologies with human #15μ10#Δ6-desaturase enzymes. The expression of MHG30 has been found in male HG and in the liver of both sexes, no other tissue showing the presence of MHG30 mRNA. Castration brings the MHG30 levels below detectable level in about 7 days. In in vitro cultures of male hamster HG cells, androgens (A) determine an enhancement of MHG30 expression in a time-dependent manner. Conversely, a continuous decrement has been observed in control cells and in cells treated with A plus flutamide (F) or with A and cycloheximide (Cy). Incubation of cells in cultures supplemented with desamethason (Dex) or thyroid hormone (T3) also increases MHG30 expression while 17β-estradiol prevents the stimulatory effect exerted by A, Dex and T3. Findings strongly suggest that the MHG30 gene could be involved in supporting the sexual dimorphism and its expression is likely triggered by a series of hormonal interactions.
Collapse
Affiliation(s)
- T Esposito
- Department of Experimental Medicine School of Medicine, II University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - P Tammaro
- Department of Experimental Medicine School of Medicine, II University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - G Paolisso
- Department of Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Second University of Naples, Naples, Italy
| | - B Varriale
- Department of Experimental Medicine School of Medicine, II University of Naples, Via Costantinopoli 16, 80138 Naples, Italy.
| |
Collapse
|
126
|
TALEN-mediated genetic inactivation of the glucocorticoid receptor in cytomegalovirus-specific T cells. Blood 2015; 126:2781-9. [PMID: 26508783 DOI: 10.1182/blood-2015-08-664755] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Cytomegalovirus (CMV) infection is responsible for substantial morbidity and mortality after allogeneic hematopoietic stem cell transplant. T-cell immunity is critical for control of CMV infection, and correction of the immune deficiency induced by transplant is now clinically achievable by the adoptive transfer of donor-derived CMV-specific T cells. It is notable, however, that most clinical studies of adoptive T- cell therapy exclude patients with graft-versus-host disease (GVHD) from receiving systemic corticosteroid therapy, which impairs cellular immunity. This group of patients remains the highest clinical risk group for recurrent and problematic infections. Here, we address this unmet clinical need by genetic disruption of the glucocorticoid receptor (GR) gene using electroporation of transcription activator-like effector nuclease (TALEN) messenger RNA. We demonstrate efficient inactivation of the GR gene without off-target activity in Streptamer-selected CMV-specific CD8(+) T cells (HLA-A02/NLV peptide), conferring resistance to glucocorticoids. TALEN-modified CMV-specific T cells retained specific killing of target cells pulsed with the CMV peptide NLV in the presence of dexamethasone (DEX). Inactivation of the GR gene also conferred resistance to DEX in a xenogeneic GVHD model in sublethally irradiated NOD-scid IL2rγ(null) mice. This proof of concept provides the rationale for the development of clinical protocols for producing and administering high-purity genetically engineered virus-specific T cells that are resistant to the suppressive effects of corticosteroids.
Collapse
|
127
|
Liu H, An X, Li S, Wang Y, Li J, Liu H. Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2015; 11:3347-54. [PMID: 26442831 DOI: 10.1039/c5mb00499c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
R-Bicalutamide is a first generation antiandrogen used to treat prostate cancer, which inhibits androgen action by competitively binding to the androgen receptor (AR). However, R-bicalutamide was discovered to exhibit some agonistic properties in clinical application. According to reports, the W741L AR mutation may lead to resistance towards R-bicalutamide. But the mechanism of the R-bicalutamide switch from an antagonist to an agonist due to the mutation of AR W741L is still not so clear. Another molecule, S-1, owing to a very similar structure to R-bicalutamide, is always agonistic to both the wild type and W741L AR. The main difference between these two chemicals is that S-1 has an ether linkage while R-bicalutamide has a sulfonyl group. To study the drug-resistant mechanism caused by W741L mutation and the opposite effects arising from subtle structure differences, molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations were employed to explore the interaction mechanisms between R-bicalutamide/S-1 and WT/W741L AR. The calculated binding free energies are in accordance with the reported experimental values. The obtained results indicate that M895 and W741 are vital amino acids in the antagonism of R-bicalutamide. The bulkier substitution of sulfonyl and tryptophan push aside M895, together with helix 12 (H12), to expose the ligand-binding domain resulting in the antagonistic conformation of the AR. If W741 is mutated to L741, the B-ring of these two chemicals would shift toward L741. At the same time, M895 dragging helix H12, would also move closer to L741. So H12 tends to cover the AR ligand-binding domain to a certain degree, changing the androgen receptor from an antagonistic to an agonistic conformation, which may explain the agonism of R-bicalutamide to the mutant W741L AR.
Collapse
Affiliation(s)
- Hongli Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd, 730000 Lanzhou, China.
| | | | | | | | | | | |
Collapse
|
128
|
Wei XL, Dou XW, Bai JW, Luo XR, Qiu SQ, Xi DD, Huang WH, Du CW, Man K, Zhang GJ. ERα inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer. Oncotarget 2015; 6:21704-17. [PMID: 26023734 PMCID: PMC4673297 DOI: 10.18632/oncotarget.3966] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
In human breast cancer, estrogen receptor-α (ERα) suppresses epithelial-mesenchymal transition (EMT) and stemness, two crucial parameters for tumor metastasis; however, the underlying mechanism by which ERα regulates these two processes remains largely unknown. Bmi1, the polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog, regulates EMT transition, maintains the self-renewal capacity of stem cells, and is frequently overexpressed in human cancers. In the present study, ERα upregulated the expression of the epithelial marker, E-cadherin, in breast cancer cells through the transcriptional down-regulation of Bmi1. Furthermore, ERα overexpression suppressed the migration, invasion, and EMT of breast cancer cells. Notably, overexpression of ERα significantly decreased the CD44high/CD24low cell population and inhibited the capacity for mammosphere formation in ERα-negative breast cancer cells. In addition, overexpression of Bmi1 attenuated the ERα-mediated suppression of EMT and cell stemness. Immunohistochemistry revealed an inverse association of ERα and Bmi1 expression in human breast cancer tissue. Taken together, our findings suggest that ERα inhibits EMT and stemness through the downregulation of Bmi1.
Collapse
Affiliation(s)
- Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Xiao-Wei Dou
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Jing-Wen Bai
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Xiang-Rong Luo
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Si-Qi Qiu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Di-Di Xi
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Wen-He Huang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Cai-Wen Du
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Kwan Man
- Department of Surgery and Transplantation, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong 999077, China
| | - Guo-Jun Zhang
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| |
Collapse
|
129
|
Ito-Harashima S, Shiizaki K, Kawanishi M, Kakiuchi K, Onishi K, Yamaji R, Yagi T. Construction of sensitive reporter assay yeasts for comprehensive detection of ligand activities of human corticosteroid receptors through inactivation of CWP and PDR genes. J Pharmacol Toxicol Methods 2015; 74:41-52. [DOI: 10.1016/j.vascn.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/12/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
|
130
|
Buxant F, Kindt N, Laurent G, Noël JC, Saussez S. Antiproliferative effect of dexamethasone in the MCF-7 breast cancer cell line. Mol Med Rep 2015; 12:4051-4054. [PMID: 26080744 PMCID: PMC4526043 DOI: 10.3892/mmr.2015.3920] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 02/27/2015] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoids (GCs) are used in the treatment of cancer to induce programmed cell death in the transformed cells of the hematopoietic system and to reduce side effects. Additionally, GCs are described as an inhibitor of certain chemotherapy or radiation-induced apoptosis and also an inhibitor of cancer progression by downregulating or upregulating the expression of several genes. The present study used immunofluorescence to investigate the presence of the glucocorticoid receptor (GR) in MCF-7 cells, and the cell culture growth was determined by cell counting the number of cells following exposure to GC and/or dexamethasone (Dex). The presence and immunoreactivity of the GR were confirmed, and treatment with Dex (10−8–10−7 M) caused an inhibitory effect (30–35%) on the proliferative activity of the MCF-7 cells. This growth inhibitory effect was possibly produced by the pro-apopotic effect of Dex. Since Dex is administered systematically prior to breast cancer chemotherapy, the possible interactions between these drugs require further investigation.
Collapse
Affiliation(s)
- Frederic Buxant
- Department of Gynecology, Iris South Hospital, 1050 Brussels, Belgium
| | - Nadège Kindt
- Laboratory of Anatomy and Cell Biology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Guy Laurent
- Laboratory of Histology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| | - Jean-Christophe Noël
- Department of Pathology, Erasme Hospital, Free University of Brussels, 1070 Brussels, Belgium
| | - Sven Saussez
- Laboratory of Anatomy and Cell Biology, Faculty of Medicine and Pharmacy, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
131
|
Autophagy may contribute to the recovery of rat mesothelium following acute inflammation in vivo. Cell Tissue Res 2015; 362:127-37. [DOI: 10.1007/s00441-015-2188-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 03/24/2015] [Indexed: 01/05/2023]
|
132
|
Altered mRNA Levels of Glucocorticoid Receptor, Mineralocorticoid Receptor, and Co-Chaperones (FKBP5 and PTGES3) in the Middle Frontal Gyrus of Autism Spectrum Disorder Subjects. Mol Neurobiol 2015; 53:2090-9. [DOI: 10.1007/s12035-015-9178-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/13/2015] [Indexed: 01/20/2023]
|
133
|
Hayes EL, Lewis-Wambi JS. Mechanisms of endocrine resistance in breast cancer: an overview of the proposed roles of noncoding RNA. Breast Cancer Res 2015; 17:40. [PMID: 25849966 PMCID: PMC4362832 DOI: 10.1186/s13058-015-0542-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/19/2015] [Indexed: 12/19/2022] Open
Abstract
Endocrine therapies such as tamoxifen and aromatase inhibitors are the standard treatment options for estrogen receptor-positive breast cancer patients. However, resistance to these agents has become a major clinical obstacle. Potential mechanisms of resistance to endocrine therapies have been identified, often involving enhanced growth factor signaling and changes in the expression or action of the estrogen receptor, but few studies have addressed the role of noncoding RNA (ncRNA). Two important types of ncRNA include microRNA (miRNA) and long noncoding RNA (lncRNA). miRNAs are small RNA molecules that regulate gene expression via translational inhibition or degradation of mRNA transcripts, while lncRNAs are larger RNA molecules that have been shown to play a role in multiple cellular maintenance functions such as protein scaffolding, chromatin looping, and regulation of mRNA stability. Both miRNA and lncRNA have recently impacted the field of breast cancer research as important pieces in the mechanistic puzzle of the genes and pathways involved in breast cancer development and progression. This review serves as an overview of the roles of miRNA and lncRNA in breast cancer progression and the development of endocrine resistance. Ideally, future experiments in the field should include identification of ncRNAs that could be potential therapeutic targets in endocrine-resistant tumors, as well as ncRNA biomarkers that facilitate more tumor-specific treatment options for endocrine-resistant breast cancer patients.
Collapse
|
134
|
Endometrial cancer-associated mutants of SPOP are defective in regulating estrogen receptor-α protein turnover. Cell Death Dis 2015; 6:e1687. [PMID: 25766326 PMCID: PMC4385925 DOI: 10.1038/cddis.2015.47] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 02/07/2023]
Abstract
Increasing amounts of evidence strongly suggests that dysregulation of ubiquitin-proteasome system is closely associated with cancer pathogenesis. Speckle-type POZ protein (SPOP) is an adapter protein of the CUL3-based E3 ubiquitin ligase complexes. It selectively recruits substrates for their ubiquitination and subsequent degradation. Recently, several exome-sequencing studies of endometrial cancer revealed high frequency somatic mutations in SPOP (5.7–10%). However, how SPOP mutations contribute to endometrial cancer remains unknown. Here, we identified estrogen receptor-α (ERα), a major endometrial cancer promoter, as a substrate for the SPOP-CUL3-RBX1 E3 ubiquitin ligase complex. SPOP specifically recognizes multiple Ser/Thr (S/T)-rich degrons located in the AF2 domain of ERα, and triggers ERα degradation via the ubiquitin-proteasome pathway. SPOP depletion by siRNAs promotes endometrial cells growth. Strikingly, endometrial cancer-associated mutants of SPOP are defective in regulating ERα degradation and ubiquitination. Furthermore, we found that SPOP participates in estrogen-induced ERα degradation and transactivation. Our study revealed novel molecular mechanisms underlying the regulation of ERα protein homeostasis in physiological and pathological conditions, and provided insights in understanding the relationship between SPOP mutations and the development of endometrial cancer.
Collapse
|
135
|
Khan JA, Camac DM, Low S, Tebben AJ, Wensel DL, Wright MC, Su J, Jenny V, Gupta RD, Ruzanov M, Russo KA, Bell A, An Y, Bryson JW, Gao M, Gambhire P, Baldwin ET, Gardner D, Cavallaro CL, Duncia JV, Hynes J. Developing Adnectins that target SRC co-activator binding to PXR: a structural approach toward understanding promiscuity of PXR. J Mol Biol 2015; 427:924-942. [PMID: 25579995 DOI: 10.1016/j.jmb.2014.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 02/08/2023]
Abstract
The human pregnane X receptor (PXR) is a promiscuous nuclear receptor that functions as a sensor to a wide variety of xenobiotics and regulates expression of several drug metabolizing enzymes and transporters. We have generated "Adnectins", derived from 10th fibronectin type III domain ((10)Fn3), that target the PXR ligand binding domain (LBD) interactions with the steroid receptor co-activator-1 (SRC-1) peptide, displacing SRC-1 binding. Adnectins are structurally homologous to the immunoglobulin superfamily. Three different co-crystal structures of PXR LBD with Adnectin-1 and CCR1 (CC chemokine receptor-1) antagonist Compound-1 were determined. This structural information was used to modulate PXR affinity for a related CCR1 antagonist compound that entered into clinical trials for rheumatoid arthritis. The structures of PXR with Adnectin-1 reveal specificity of Adnectin-1 in not only targeting the interface of the SRC-1 interactions but also engaging the same set of residues that are involved in binding of SRC-1 to PXR. Substituting SRC-1 with Adnectin-1 does not alter the binding conformation of Compound-1 in the ligand binding pocket. The structure also reveals the possibility of using Adnectins as crystallization chaperones to generate structures of PXR with compounds of interest.
Collapse
Affiliation(s)
- Javed A Khan
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA.
| | - Daniel M Camac
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Simon Low
- Adnexus, 100 Beaver Street, Waltham, MA 02453, USA
| | - Andrew J Tebben
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | | | | | - Julie Su
- Adnexus, 100 Beaver Street, Waltham, MA 02453, USA
| | | | | | - Max Ruzanov
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | | | - Aneka Bell
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Yongmi An
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - James W Bryson
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Mian Gao
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | | | - Eric T Baldwin
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Daniel Gardner
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Cullen L Cavallaro
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - John V Duncia
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - John Hynes
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| |
Collapse
|
136
|
Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 2015; 36:3-23. [PMID: 24909511 PMCID: PMC4571323 DOI: 10.1038/aps.2014.18] [Citation(s) in RCA: 549] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/05/2014] [Indexed: 12/15/2022] Open
Abstract
Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein.
Collapse
|
137
|
Keeler GD, Durdik JM, Stenken JA. Localized delivery of dexamethasone-21-phosphate via microdialysis implants in rat induces M(GC) macrophage polarization and alters CCL2 concentrations. Acta Biomater 2015; 12:11-20. [PMID: 25449921 DOI: 10.1016/j.actbio.2014.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/19/2014] [Accepted: 10/17/2014] [Indexed: 11/27/2022]
Abstract
Microdialysis sampling probes were implanted into the subcutaneous space on the dorsal side of male Sprague Dawley rats to locally deliver dexamethasone-21-phosphate (Dex) with the aim of altering in vivo macrophage polarization. Macrophage polarization is of significant interest in the field of biomaterials since wound-healing macrophages are a possible means to extend implant life as well as improve tissue remodeling to an implant. Quantitative analysis of CCL2 in collected dialysates, gene expression and immunohistochemistry performed on the tissue surrounding the microdialysis implant were used to evaluate if Dex polarized macrophages. Dex infusion down-regulated IL-6 and CCL2 gene expression and decreased CCL2 concentrations in dialysates collected at the implant site. Dex appeared to have no significant effect on the gene regulation of CD163, a commonly used M2c macrophage surface marker; Arg2; and iNOS2. However, Dex infusion was effective at increasing the number of CD163(+) cells surrounding the implanted microdialysis probe. This work demonstrates the use of microdialysis sampling to deliver agents such as Dex to alter macrophage polarization in vivo while allowing the ability to collect cytokines in the surrounding microenvironment.
Collapse
|
138
|
Martinkovich S, Shah D, Planey SL, Arnott JA. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging 2014; 9:1437-52. [PMID: 25210448 PMCID: PMC4154886 DOI: 10.2147/cia.s66690] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) are a diverse group of nonsteroidal compounds that function as agonists or antagonists for estrogen receptors (ERs) in a target gene-specific and tissue-specific fashion. SERM specificity involves tissue-specific expression of ER subtypes, differential expression of co-regulatory proteins in various tissues, and varying ER conformational changes induced by ligand binding. To date, the major clinical applications of SERMs are their use in the prevention and treatment of breast cancer, the prevention of osteoporosis, and the maintenance of beneficial serum lipid profiles in postmenopausal women. However, SERMs have also been found to promote adverse effects, including thromboembolic events and, in some cases, carcinogenesis, that have proven to be obstacles in their clinical utility. In this review, we discuss the mechanisms of SERM tissue specificity and highlight the therapeutic application of well-known and emergent SERMs.
Collapse
Affiliation(s)
- Stephen Martinkovich
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - Darshan Shah
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - Sonia Lobo Planey
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - John A Arnott
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
139
|
Chi Y, Huang S, Wang L, Zhou R, Wang L, Xiao X, Li D, Cai Y, Zhou X, Wu J. CDK11p58 inhibits ERα-positive breast cancer invasion by targeting integrin β3 via the repression of ERα signaling. BMC Cancer 2014; 14:577. [PMID: 25106495 PMCID: PMC4138392 DOI: 10.1186/1471-2407-14-577] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Background CDK11p58, a Ser/Thr kinase that belongs to the cell division cycle 2-like 1 (CDC2L1) subfamily, is associated with cell cycle progression, tumorigenesis and apoptotic signaling. CDK11p58 is also involved in the regulation of steroid receptors, such as androgen and estrogen receptors. We previously found that CDK11p58 was abnormally expressed in prostate cancer. However, its role in breast cancer remains unclear. Methods CDK11p58 expression was evaluated by immunohistochemical staining in a tissue array. A Transwell assay was used to detect invasion and metastasis in breast cancer cells. The TaqMan® Metastasis Gene Expression Assay was used to search for potential downstream factors in the CDK11p58 signaling pathway. qRT-PCR was used to evaluate mRNA levels, and the dual luciferase array was used to analyze promoter activity. Western blotting was used to detect the protein level. Results CDK11p58 expression was negatively correlated with node status (P = 0.012), relapse status (P = 0.002) and metastasis status (P = 0.023). Kaplan-Meier survival curves indicated that the disease-free survival (DFS) was significantly poor in breast cancer patients with low CDK11 expression. Interestingly, using the breast cancer cell lines ZR-75-30 and MDA-MB-231, we found that CDK11p58 was capable of repressing the migration and invasion of ERα-positive breast cancer cells, but not ERα-negative breast cancer cells, in a kinase-dependent manner. Gene expression assays demonstrated that integrin β3 mRNA was dramatically repressed by CDK11p58, and luciferase results confirmed that the integrin β3 promoter was inhibited by CDK11p58 through ERα repression. The expression of integrin β3 was highly related to ERα signaling; ERα overexpression stimulated integrin β3 expression, whereas siRNA-mediated knockdown of ERα attenuated integrin β3 expression. Conclusions These data indicate that CDK11p58 is an anti-metastatic gene in ERα-positive breast cancer and that the regulation of integrin β3 by CDK11p58 via the repression of ERα signaling may constitute part of a signaling pathway underlying breast cancer invasion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiong Wu
- Breast Cancer Institute; Department of Breast Surgery, Fudan University Shanghai Cancer Center, Building 7, No, 270 Dong An Road, Shanghai 200032, China.
| |
Collapse
|
140
|
Payton-Stewart F, Tilghman SL, Williams LG, Winfield LL. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells. Biochem Biophys Res Commun 2014; 450:1358-62. [PMID: 24997336 PMCID: PMC4190015 DOI: 10.1016/j.bbrc.2014.06.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022]
Abstract
Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules upregulate ERβ activity while down regulating that of ERα.
Collapse
Affiliation(s)
- Florastina Payton-Stewart
- Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA, USA
| | - Syreeta L Tilghman
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - LaKeisha G Williams
- Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA, USA
| | | |
Collapse
|
141
|
Chakraborty S, Biswas PK. Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha. J Mol Model 2014; 20:2338. [PMID: 25060147 PMCID: PMC4379705 DOI: 10.1007/s00894-014-2338-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/08/2014] [Indexed: 12/27/2022]
Abstract
Tamoxifen-an anti-estrogenic ligand in breast tissues used as a first-line treatment in estrogen receptor (ER)-positive breast cancers-is associated with the development of resistance followed by resumption of tumor growth in about 30 % of cases. Whether tamoxifen assists in proliferation in such cases or whether any ligand-independent pathway to transcription exists is not fully understood; also, no ERα mutants have been detected so far that could lead to tamoxifen resistance. Using in silico conformational analysis of the ERα ligand binding domain (LBD), in the absence and presence of selective agonist (diethylstilbestrol; DES), antagonist (Faslodex; ICI), and selective estrogen receptor modulator (SERM; 4-hydroxy tamoxifen; 4-OHT) ligands, we have elucidated ligand-responsive structural modulations of the ERα-LBD dimer in its agonist and antagonist complexes to address the issue of "tamoxifen resistance". DES and ICI were found to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also led to a stable structure in agonist conformation. However, binding of 4-OHT to the antagonist structure led to a flexible conformation allowing the protein to visit conformations populated by agonists as was evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein exhibited a diminished size of the co-repressor binding pocket in the LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT-bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at the LBD provide crucial structural insights into tamoxifen-resistance that complement our existing understanding.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- Laboratory of Computational Biophysics & Bioengineering Department of Physics, Tougaloo College, Tougaloo MS 39174, USA
- Saroj Mohan Institute of Technology, Hooghly, West Bengal, India
| | - P. K. Biswas
- Laboratory of Computational Biophysics & Bioengineering Department of Physics, Tougaloo College, Tougaloo MS 39174, USA
| |
Collapse
|
142
|
Burek M, Steinberg K, Förster CY. Mechanisms of transcriptional activation of the mouse claudin-5 promoter by estrogen receptor alpha and beta. Mol Cell Endocrinol 2014; 392:144-51. [PMID: 24846172 DOI: 10.1016/j.mce.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 11/26/2022]
Abstract
Claudin-5 is an integral membrane protein and a critical component of endothelial tight junctions that control paracellular permeability. Claudin-5 is expressed at high levels in the brain vascular endothelium. Estrogens have multiple effects on vascular physiology and function. The biological actions of estrogens are mediated by two different estrogen receptor (ER) subtypes, ER alpha and ER beta. Estrogens have beneficial effects in several vascular disorders. Recently we have cloned and characterized a murine claudin-5 promoter and demonstrated 17beta-estradiol (E2)-mediated regulation of claudin-5 in brain and heart microvascular endothelium on promoter, mRNA and protein level. Sequence analysis revealed a putative estrogen response element (ERE) and a putative Sp1 transcription factor binding site in the claudin-5 promoter. The aim of the present study was to further characterize the estrogen-responsive elements of claudin-5 promoter. First, we introduced point mutations in ERE or Sp1 site in -500/+111 or in Sp1 site of -268/+111 claudin-5 promoter construct, respectively. Basal and E2-mediated transcriptional activation of mutated constructs was abrogated in the luciferase reporter gene assay. Next, we examined whether estrogen receptor subtypes bind to the claudin-5 promoter region. For this purpose we performed chromatin immunoprecipitation assays using anti-estrogen receptor antibodies and cellular lysates of E2-treated endothelial cells followed by quantitative PCR analysis. We show enrichment of claudin-5 promoter fragments containing the ERE- and Sp1-binding site in immunoprecipitates after E2 treatment. Finally, in a gel mobility shift assay, we demonstrated DNA-protein interaction of both ER subtypes at ERE. In summary, this study provides evidence that both a non-consensus ERE and a Sp1 site in the claudin-5 promoter are functional and necessary for the basal and E2-mediated activation of the promoter.
Collapse
Affiliation(s)
- Malgorzata Burek
- University of Wurzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany.
| | - Katrin Steinberg
- University of Wurzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany.
| | - Carola Y Förster
- University of Wurzburg, Department of Anaesthesia and Critical Care, Würzburg, Germany.
| |
Collapse
|
143
|
Sau S, Banerjee R. Cationic lipid-conjugated dexamethasone as a selective antitumor agent. Eur J Med Chem 2014; 83:433-47. [PMID: 24992071 DOI: 10.1016/j.ejmech.2014.06.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/07/2023]
Abstract
Dexamethasone (Dex) is one of the highly potent synthetic glucocorticoids. It exhibits prominent anti-inflammatory but moderate anti-proliferative activities. It is widely used along side chemotherapy to alleviate toxic side effects. Additionally, Dex is also a potent inducer of gluconeogenesis. However, its overuse critically desensitizes cells against chemotherapy. Herein, we report on the development of a new class of cationic lipid-Dex conjugates in which the C-8 carbon chain analogue (DX8) exhibited glucocorticoid receptor (GR)-mediated, caspase-3-assisted, cancer cell-selective anti-proliferative activity. Melanoma tumors in DX8-treated mice exhibited significantly reduced tumor aggressiveness with respect to tumors in Dex-treated mice. Tumor lysates prepared from DX8-treated group showed elevated levels of p53. DX8-treated cancer cells showed clear degradation of kinase JAK3/STAT3 protein levels. Additionally, DX8-treatment decreased the level of VEGFR2 in tumor-endothelial cells implying DX8's anti-proliferative roles in both tumor cells and tumor neovascular cells. Collectively, our results demonstrate potent anti-angiogenic, and selective JAK3/STAT3 down-regulating anticancer characteristics of DX8, a new dexamethasone-based antitumor molecule.
Collapse
Affiliation(s)
- Samaresh Sau
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad, Andhra Pradesh 500007, India
| | - Rajkumar Banerjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad, Andhra Pradesh 500007, India; Academy of Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India.
| |
Collapse
|
144
|
Vallejo G, La Greca AD, Tarifa-Reischle IC, Mestre-Citrinovitz AC, Ballaré C, Beato M, Saragüeta P. CDC2 mediates progestin initiated endometrial stromal cell proliferation: a PR signaling to gene expression independently of its binding to chromatin. PLoS One 2014; 9:e97311. [PMID: 24859236 PMCID: PMC4032247 DOI: 10.1371/journal.pone.0097311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/17/2014] [Indexed: 01/11/2023] Open
Abstract
Although non-genomic steroid receptor pathways have been studied over the past decade, little is known about the direct gene expression changes that take place as a consequence of their activation. Progesterone controls proliferation of rat endometrial stromal cells during the peri-implantation phase of pregnancy. We showed that picomolar concentration of progestin R5020 mimics this control in UIII endometrial stromal cells via ERK1-2 and AKT activation mediated by interaction of Progesterone Receptor (PR) with Estrogen Receptor beta (ERb) and without transcriptional activity of endogenous PR and ER. Here we identify early downstream targets of cytoplasmic PR signaling and their possible role in endometrial stromal cell proliferation. Microarray analysis of global gene expression changes in UIII cells treated for 45 min with progestin identified 97 up- and 341 down-regulated genes. The most over-represented molecular functions were transcription factors and regulatory factors associated with cell proliferation and cell cycle, a large fraction of which were repressors down-regulated by hormone. Further analysis verified that progestins regulate Ccnd1, JunD, Usf1, Gfi1, Cyr61, and Cdkn1b through PR-mediated activation of ligand-free ER, ERK1-2 or AKT, in the absence of genomic PR binding. ChIP experiments show that progestin promoted the interaction of USF1 with the proximal promoter of the Cdc2 gene. Usf1 knockdown abolished Cdc2 progestin-dependent transcriptional regulation and cell proliferation, which also blocked Cdc2 knockdown. We conclude that progestin-induced proliferation of endometrial stromal cells is mediated by ERK1-2 and AKT dependent early regulation of USF1, which directly induces Cdc2. To our knowledge, this is the first description of early target genes of progestin-activated classical PR via crosstalk with protein kinases and independently of hormone receptor binding to the genomic targets.
Collapse
Affiliation(s)
- Griselda Vallejo
- Instituto de Biología y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina
| | - Alejandro D. La Greca
- Instituto de Biología y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina
| | | | | | | | - Miguel Beato
- Centre de Regulació Genòmica, (CRG), Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Patricia Saragüeta
- Instituto de Biología y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina
| |
Collapse
|
145
|
Biased, non-equivalent gene-proximal and -distal binding motifs of orphan nuclear receptor TR4 in primary human erythroid cells. PLoS Genet 2014; 10:e1004339. [PMID: 24811540 PMCID: PMC4014424 DOI: 10.1371/journal.pgen.1004339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 03/17/2014] [Indexed: 02/04/2023] Open
Abstract
We previously reported that TR2 and TR4 orphan nuclear receptors bind to direct repeat (DR) elements in the ε- and γ-globin promoters, and act as molecular anchors for the recruitment of epigenetic corepressors of the multifaceted DRED complex, thereby leading to ε- and γ-globin transcriptional repression during definitive erythropoiesis. Other than the ε- and γ-globin and the GATA1 genes, TR4-regulated target genes in human erythroid cells remain unknown. Here, we identified TR4 binding sites genome-wide using chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) as human primary CD34+ hematopoietic progenitors differentiated progressively to late erythroid precursors. We also performed whole transcriptome analyses by RNA-seq to identify TR4 downstream targets after lentiviral-mediated TR4 shRNA knockdown in erythroid cells. Analyses from combined ChIP-seq and RNA-seq datasets indicate that DR1 motifs are more prevalent in the proximal promoters of TR4 direct target genes, which are involved in basic biological functions (e.g., mRNA processing, ribosomal assembly, RNA splicing and primary metabolic processes). In contrast, other non-DR1 repeat motifs (DR4, ER6 and IR1) are more prevalent at gene-distal TR4 binding sites. Of these, approximately 50% are also marked with epigenetic chromatin signatures (such as P300, H3K27ac, H3K4me1 and H3K27me3) associated with enhancer function. Thus, we hypothesize that TR4 regulates gene transcription via gene-proximal DR1 sites as TR4/TR2 heterodimers, while it can associate with novel nuclear receptor partners (such as RXR) to bind to distant non-DR1 consensus sites. In summary, this study reveals that the TR4 regulatory network is far more complex than previously appreciated and that TR4 regulates basic, essential biological processes during the terminal differentiation of human erythroid cells. Sequential genome-wide binding studies investigated by deep sequencing (ChIP-seq) represent a powerful tool for investigating the temporal sequence of gene activation and repression events that take place as cells differentiate. Here, we report the binding of an “orphan” nuclear receptor (one for which no ligand has been identified) to its cognate genomic regulatory sites and perform the functional analysis to validate its downstream targets as precursor cells differentiate from very early human hematopoietic progenitors into red blood cells. We discovered that when this receptor is bound at gene proximal promoters, it recognizes a different DNA sequence than when it binds to more distant regulatory sites (enhancers and silencers). Since this receptor can either activate or repress specific target genes, the data suggest the intriguing possibility that the two different modes of DNA recognition may reflect association of the receptor with different partner molecules when regulating gene expression from proximal or distal sequences.
Collapse
|
146
|
Xue R, Zakharov MN, Xia Y, Bhasin S, Costello JC, Jasuja R. Research resource: EPSLiM: ensemble predictor for short linear motifs in nuclear hormone receptors. Mol Endocrinol 2014; 28:768-77. [PMID: 24678734 DOI: 10.1210/me.2014-1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors central to regulating many biological processes, including cell growth, death, metabolism, and immune responses. NR-mediated gene expression can be modulated by coactivators and corepressors through direct physical interaction or protein complexes with functional domains in NRs. One class of these domains includes short linear motifs (SLiMs), which facilitate protein-protein interactions, phosphorylation, and ligand binding primarily in the intrinsically disordered regions (IDRs) of proteins. Across all proteins, the number of known SLiMs is limited due to the difficulty in studying IDRs experimentally. Computational tools provide a systematic and data-driven approach for predicting functional motifs that can be used to prioritize experimental efforts. Accordingly, several tools have been developed based on sequence conservation or biophysical features; however, discrepancies in predictions make it difficult to determine the true candidate SLiMs. In this work, we present the ensemble predictor for short linear motifs (EPSLiM), a novel strategy to prioritize the residues that are most likely to be SLiMs in IDRs. EPSLiM applies a generalized linear model to integrate predictions from individual methodologies. We show that EPSLiM outperforms individual predictors, and we apply our method to NRs. The androgen receptor is an example with an N-terminal domain of 559 disordered amino acids that contains several validated SLiMs important for transcriptional activation. We use the androgen receptor to illustrate the predictive performance of EPSLiM and make the results of all human and mouse NRs publically available through the web service http://epslim.bwh.harvard.edu.
Collapse
Affiliation(s)
- Ran Xue
- Research Program in Men's Health: Aging and Metabolism (R.X., S.B., J.C.C., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215; The National Library of Medicine (M.N.Z.), National Center for Bioinformation Technology, The National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892; and Department of Bioengineering (Y.X.), Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | | | | | | | | | | |
Collapse
|
147
|
Sivukhina EV, Jirikowski GF. Adrenal steroids in the brain: role of the intrinsic expression of corticosteroid-binding globulin (CBG) in the stress response. Steroids 2014; 81:70-3. [PMID: 24246737 DOI: 10.1016/j.steroids.2013.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The complex interaction between hypothalamus, pituitary and adrenal glands is a key component of the neuroendocrine stress response. The major stress hormones--glucocorticoids--have both central and peripheral effects. Among the factors regulating their availability to target tissues are levels of corticosteroid-binding globulin, as the major transport protein for glucocorticoids in systemic circulation. Our recent findings demonstrated expression of corticosteroid-binding globulin in various brain regions and in different cell populations (neurons and glial cells). We showed at the cellular level the presence of corticosteroid-binding globulin in the human hypothalamus, where it was co-localized with the classical neurohypophyseal neurohormones--vasopressin and oxytocin. For the first time we demonstrated in mouse that the same gene encodes brain and liver corticosteroid-binding globulin. The full-length sequencing of hypothalamic corticosteroid-binding globulin revealed a full homology with liver corticosteroid-binding globulin cDNA. Thus, we confirmed that corticosteroid-binding globulin mRNA is produced locally within various cerebral regions and thus not transported from blood. However, the amounts of mRNA encoding corticosteroid-binding globulin are in liver about 200 times higher than in brain. The wide distribution of corticosteroid-binding globulin, distinct from the localization of glucocorticoid receptors, observed in our comparative study in rodents, led us to propose two possibilities: (1) corticosteroid-binding globulin is made in certain neurons to deliver glucocorticoids into the cell and within the cell in the absence of cytoplasmic glucocorticoid receptors or (2) is internalized into neurons specifically to deliver glucocorticoids to classical glucocorticoid receptors. Brain corticosteroid-binding globulin may be involved in the response to changing systemic glucocorticoid levels either additionally to known nuclear and membrane corticosteroid receptors or in glucocorticoid responsive brain regions devoid of these receptors. Clearly the multiple locations of corticosteroid-binding globulin within the central nervous system of humans and rodents imply multiple functional properties in normal and/or pathological conditions, which are yet to be determined. Most likely, the importance of brain corticosteroid-binding globulin exceeds the function of a mere steroid transporter.
Collapse
Affiliation(s)
- Elena V Sivukhina
- Institute of Anatomy II, Friedrich-Schiller University Jena, Germany
| | | |
Collapse
|
148
|
Yanagihara N, Zhang H, Toyohira Y, Takahashi K, Ueno S, Tsutsui M, Takahashi K. New insights into the pharmacological potential of plant flavonoids in the catecholamine system. J Pharmacol Sci 2014; 124:123-8. [PMID: 24492414 DOI: 10.1254/jphs.13r17cp] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Flavonoids are biologically active polyphenolic compounds widely distributed in plants. Recent research has focused on high dietary intake of flavonoids because of their potential to reduce the risks of diseases such as cardiovascular diseases, diabetes, and cancers. We report here the effects of plant flavonoids on catecholamine signaling in cultured bovine adrenal medullary cells used as a model of central and peripheral sympathetic neurons. Daidzein (0.01 - 1.0 μM), a soy isoflavone, stimulated (14)C-catecholamine synthesis through plasma membrane estrogen receptors. Nobiletin (1.0 - 100 μM), a citrus polymethoxy flavone, enhanced (14)C-catecholamine synthesis through the phosphorylation of Ser19 and Ser40 of tyrosine hydroxylase, which was associated with (45)Ca(2+) influx and catecholamine secretion. Treatment with genistein (0.01 - 10 μM), another isoflavone, but not daidzein, enhanced [(3)H]noradrenaline uptake by SK-N-SH cells, a human noradrenergic neuroblastoma cell line. Daidzein as well as nobiletin (≥ 1.0 μM) inhibited catecholamine synthesis and secretion induced by acetylcholine, a physiological secretagogue. The present review shows that plant flavonoids have various pharmacological potentials on the catecholamine system in adrenal medullary cells, and probably also in sympathetic neurons.
Collapse
Affiliation(s)
- Nobuyuki Yanagihara
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Japan
| | | | | | | | | | | | | |
Collapse
|
149
|
Li Q, Wang H, Yu L, Zhou J, Chen J, Zhang X, Chen L, Gao Y, Li Q. ChIP-seq predicted estrogen receptor biding sites in human breast cancer cell line MCF7. Tumour Biol 2014; 35:4779-84. [PMID: 24470138 DOI: 10.1007/s13277-014-1627-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/06/2014] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to find estrogen receptor (ER) binding sites of estradiol (E2)-treated and control groups and discuss the roles of ER activation in the tumorigenesis and progression of various human cancers. The ER ChIP-seq data GSE19013 was downloaded from Gene Expression Omnibus database, including E2-treated data GSM470419 and control data GSM470418. MACS software was utilized to identify ER binding sites in two groups. R's ChIPpeakAnno was used to detect ER-regulated target genes. Motif finding was employed to analyze ER concordant transcription factors (TFs) in MCF7 cell. The Gene Ontology (GO) was used to conduct functional enrichment analysis. We identified 9,134 ER binding sites in E2 stimulation group and 1,969 in control group. GO enrichment analysis of target genes showed that ER-regulated target genes mainly participated in mRNA catabolic process, protein complex disassembly, and protein localization to organelle-related biology process; while in E2 stimulation group, the function of ER-regulated target genes sharply changed. The effect of E2 in MCF7 cell suggested that activated ER probably reacted with several TFs and then co-regulated related genes expression. Furthermore, several TFs, such as PAX6, SMAD3, and ESR2, had multiply cellular regulation function. Our results showed that E2 stimulates breast cancer cell growth through ER. This may infer the function of ER in occurrence and development of breast cancer. Together, our study would pave ways for discussing ER concordant TFs and studying other ER-recruited TFs.
Collapse
Affiliation(s)
- Qi Li
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Understanding how eukaryotic gene regulation works implies unraveling the mechanisms used by transcription factors to access DNA information packaged in chromatin. The current view is that different cell types express different parts of the genome because they are equipped with different sets of transcription factors. A few transcription factors are called pioneer factors because they are able to bind to their sites in nucleosomes and to open up chromatin thus enabling access for other transcription factors, which are unable to recognize DNA packaged in nucleosomes. But it is also possible that the way DNA is organized in chromatin differs between cell types and contributes to cell identity by restricting or enhancing access to specific gene cohorts. To unravel these mechanisms we studied the interaction of progesterone receptor with the genome of breast cancer cells and found that it binds preferentially to sites organized in nucleosomes, which contribute to functional interactions leading to gene regulation.
Collapse
|