101
|
Wang YP, Zhang XE, Wei HP. Laboratory detection and diagnosis of filoviruses. Virol Sin 2011; 26:73-80. [PMID: 21468930 DOI: 10.1007/s12250-011-3186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/21/2011] [Indexed: 11/26/2022] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV), belonging to the Filoviridae family, emerged four decades ago and caused severe viral hemorrhagic fever in human and other primates. As high as 50-90% mortality, filoviruses can cause significant threats to public health. However, so far no specific and efficient vaccine has been available, nor have other treatment methods proved to be effective. It is of great importance to detect these pathogens specific, rapidly and sensitively in order to control future filovirus outbreaks. Here, recent progresses in the development of detection and diagnosis methods for EBOV and MARV are summarized.
Collapse
Affiliation(s)
- Yun-peng Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | |
Collapse
|
102
|
Yermolina MV, Wang J, Caffrey M, Rong LL, Wardrop DJ. Discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry. J Med Chem 2011; 54:765-81. [PMID: 21204524 PMCID: PMC3081529 DOI: 10.1021/jm1008715] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the development of an antifiloviral screening system, based on a pseudotyping strategy, and its application in the discovery of a novel group of small molecules that selectively inhibit the Ebola and Marburg glycoprotein (GP)-mediated infection of human cells. Using Ebola Zaire GP-pseudotyped HIV particles bearing a luciferase reporter gene and 293T cells, a library of 237 small molecules was screened for inhibition of GP-mediated viral entry. From this assay, lead compound 8a was identified as a selective inhibitor of filoviral entry with an IC(50) of 30 μM. To analyze functional group requirements for efficacy, a structure-activity relationship analysis of this 3,5-disubstituted isoxazole was then conducted with 56 isoxazole and triazole derivatives prepared using "click" chemistry. This study revealed that while the isoxazole ring can be replaced by a triazole system, the 5-(diethylamino)acetamido substituent found in 8a is required for inhibition of viral-cell entry. Variation of the 3-aryl substituent provided a number of more potent antiviral agents with IC(50) values ranging to 2.5 μM. Lead compound 8a and three of its derivatives were also found to block the Marburg glycoprotein (GP)-mediated infection of human cells.
Collapse
Affiliation(s)
- Maria V. Yermolina
- Department of Chemistry, University of Illinois, 845 West Taylor Street, Chicago, Illinois 60607
| | - Jizhen Wang
- Department of Microbiology & Immunology, University of Illinois at Chicago, 835 South Wolcott, Chicago, Illinois 60612
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL 60607
| | - Lijun L. Rong
- Department of Microbiology & Immunology, University of Illinois at Chicago, 835 South Wolcott, Chicago, Illinois 60612
| | - Duncan J. Wardrop
- Department of Chemistry, University of Illinois, 845 West Taylor Street, Chicago, Illinois 60607
| |
Collapse
|
103
|
Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, Netesov SV, Nichol ST, Palacios G, Peters CJ, Tenorio A, Volchkov VE, Jahrling PB. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 2010; 155:2083-103. [PMID: 21046175 PMCID: PMC3074192 DOI: 10.1007/s00705-010-0814-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/16/2010] [Indexed: 11/30/2022]
Abstract
The taxonomy of the family Filoviridae (marburgviruses and ebolaviruses) has changed several times since the discovery of its members, resulting in a plethora of species and virus names and abbreviations. The current taxonomy has only been partially accepted by most laboratory virologists. Confusion likely arose for several reasons: species names that consist of several words or which (should) contain diacritical marks, the current orthographic identity of species and virus names, and the similar pronunciation of several virus abbreviations in the absence of guidance for the correct use of vernacular names. To rectify this problem, we suggest (1) to retain the current species names Reston ebolavirus, Sudan ebolavirus, and Zaire ebolavirus, but to replace the name Cote d'Ivoire ebolavirus [sic] with Taï Forest ebolavirus and Lake Victoria marburgvirus with Marburg marburgvirus; (2) to revert the virus names of the type marburgviruses and ebolaviruses to those used for decades in the field (Marburg virus instead of Lake Victoria marburgvirus and Ebola virus instead of Zaire ebolavirus); (3) to introduce names for the remaining viruses reminiscent of jargon used by laboratory virologists but nevertheless different from species names (Reston virus, Sudan virus, Taï Forest virus), and (4) to introduce distinct abbreviations for the individual viruses (RESTV for Reston virus, SUDV for Sudan virus, and TAFV for Taï Forest virus), while retaining that for Marburg virus (MARV) and reintroducing that used over decades for Ebola virus (EBOV). Paying tribute to developments in the field, we propose (a) to create a new ebolavirus species (Bundibugyo ebolavirus) for one member virus (Bundibugyo virus, BDBV); (b) to assign a second virus to the species Marburg marburgvirus (Ravn virus, RAVV) for better reflection of now available high-resolution phylogeny; and (c) to create a new tentative genus (Cuevavirus) with one tentative species (Lloviu cuevavirus) for the recently discovered Lloviu virus (LLOV). Furthermore, we explain the etymological derivation of individual names, their pronunciation, and their correct use, and we elaborate on demarcation criteria for each taxon and virus.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, National Interagency Biodefense Campus, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Yasuda J. Marburg virus budding: ESCRT of progeny virion to the outside of the cell. Future Virol 2010. [DOI: 10.2217/fvl.10.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major virion matrix protein of the Marburg virus (MARV), VP40, plays a key role in MARV assembly and budding, and its sole expression can produce enveloped virus-like particles. VP40 possesses only the PPXY motif as an L-domain critical for efficient virus budding, and interacts with the cellular ubiquitin ligase Nedd4. Functional abrogation of the cellular components of the endosomal sorting complexes required for transport complexes that participate in budding of multivesicular bodies into late endosomes by dominant-negative mutants or siRNA inhibited virus-like particle release, suggest that MARV budding utilizes the multivesicular bodies sorting pathway. In addition, tetherin/BST-2 was recently identified as an antiviral cellular factor that reduces MARV virus-like particle production. These findings may contribute to development of novel anti-MARV therapeutic strategies.
Collapse
Affiliation(s)
- Jiro Yasuda
- Fifth Biology Section for Microbiology, First Department of Forensic Science, National Research Institute of Police Science, Kashiwa 277–0882, Japan
| |
Collapse
|
105
|
Krähling V, Dolnik O, Kolesnikova L, Schmidt-Chanasit J, Jordan I, Sandig V, Günther S, Becker S. Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection. PLoS Negl Trop Dis 2010; 4:e802. [PMID: 20808767 PMCID: PMC2927428 DOI: 10.1371/journal.pntd.0000802] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/27/2010] [Indexed: 11/19/2022] Open
Abstract
Background The fruit bat species Rousettus aegyptiacus was identified as a potential reservoir for the highly pathogenic filovirus Marburg virus. To establish a basis for a molecular understanding of the biology of filoviruses in the reservoir host, we have adapted a set of molecular tools for investigation of filovirus replication in a recently developed cell line, R06E, derived from the species Rousettus aegyptiacus. Methodology/Principal Findings Upon infection with Ebola or Marburg viruses, R06E cells produced viral titers comparable to VeroE6 cells, as shown by TCID50 analysis. Electron microscopic analysis of infected cells revealed morphological signs of filovirus infection as described for human- and monkey-derived cell lines. Using R06E cells, we detected an unusually high amount of intracellular viral proteins, which correlated with the accumulation of high numbers of filoviral nucleocapsids in the cytoplasm. We established protocols to produce Marburg infectious virus-like particles from R06E cells, which were then used to infect naïve target cells to investigate primary transcription. This was not possible with other cell lines previously tested. Moreover, we established protocols to reliably rescue recombinant Marburg viruses from R06E cells. Conclusion/Significance These data indicated that R06E cells are highly suitable to investigate the biology of filoviruses in cells derived from their presumed reservoir. Marburg virus and several species of Ebola virus are endemic in central Africa and cause sporadic outbreaks in this region with mortality rates of up to 90%. So far, there is no vaccination or therapy available to protect people at risk in these regions. Recently, different fruit bats have been identified as potential reservoirs. One of them is Rousettus aegyptiacus. It seems that within huge bat populations only relatively small numbers are positive for filovirus-specific antibodies or filoviral RNA, a phenomenon that is currently not understood. As a first step towards understanding the biology of filoviruses in bats, we sought to establish a model system to investigate filovirus replication in cells derived from their natural reservoir. Here, we provide the first insights into this topic by monitoring filovirus infection of a Rousettus aegyptiacus derived cell line, R06E. We were able to show that filoviruses propagate well in R06E cells, which can, therefore, be used to investigate replication and transcription of filovirus RNA and to very efficiently perform rescue of recombinant Marburg virus using reverse genetics. These results emphasize the suitability of the newly established bat cell line for filovirus research.
Collapse
Affiliation(s)
- Verena Krähling
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Olga Dolnik
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | - Stephan Günther
- Institut für Virologie, Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
106
|
Spurgers KB, Alefantis T, Peyser BD, Ruthel GT, Bergeron AA, Costantino JA, Enterlein S, Kota KP, Boltz RCD, Aman MJ, Delvecchio VG, Bavari S. Identification of essential filovirion-associated host factors by serial proteomic analysis and RNAi screen. Mol Cell Proteomics 2010; 9:2690-703. [PMID: 20702783 DOI: 10.1074/mcp.m110.003418] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An assessment of the total protein composition of filovirus (ebolavirus and marburgvirus) virions is currently lacking. In this study, liquid chromatography-linked tandem mass spectrometry of purified ebola and marburg virions was performed to identify associated cellular proteins. Host proteins involved in cell adhesion, cytoskeleton, cell signaling, intracellular trafficking, membrane organization, and chaperones were identified. Significant overlap exists between this data set and proteomic studies of disparate viruses, including HIV-1 and influenza A, generated in multiple cell types. However, the great majority of proteins identified here have not been previously described to be incorporated within filovirus particles. Host proteins identified by liquid chromatography-linked tandem mass spectrometry could lack biological relevance because they represent protein contaminants in the virus preparation, or because they are incorporated within virions by chance. These issues were addressed using siRNA library-mediated gene knockdown (targeting each identified virion-associated host protein), followed by filovirus infection. Knockdown of several host proteins (e.g. HSPA5 and RPL18) significantly interfered with ebolavirus and marburgvirus infection, suggesting specific and relevant virion incorporation. Notably, select siRNAs inhibited ebolavirus, but enhanced marburgvirus infection, suggesting important differences between the two viruses. The proteomic analysis presented here contributes to a greater understanding of filovirus biology and potentially identifies host factors that can be targeted for antiviral drug development.
Collapse
Affiliation(s)
- Kevin B Spurgers
- The United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Welsch S, Kolesnikova L, Krähling V, Riches JD, Becker S, Briggs JAG. Electron tomography reveals the steps in filovirus budding. PLoS Pathog 2010; 6:e1000875. [PMID: 20442788 PMCID: PMC2861712 DOI: 10.1371/journal.ppat.1000875] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/24/2010] [Indexed: 11/23/2022] Open
Abstract
The filoviruses, Marburg and Ebola, are non-segmented negative-strand RNA viruses causing severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. The sequence of events that leads to release of filovirus particles from cells is poorly understood. Two contrasting mechanisms have been proposed, one proceeding via a “submarine-like” budding with the helical nucleocapsid emerging parallel to the plasma membrane, and the other via perpendicular “rocket-like” protrusion. Here we have infected cells with Marburg virus under BSL-4 containment conditions, and reconstructed the sequence of steps in the budding process in three dimensions using electron tomography of plastic-embedded cells. We find that highly infectious filamentous particles are released at early stages in infection. Budding proceeds via lateral association of intracellular nucleocapsid along its whole length with the plasma membrane, followed by rapid envelopment initiated at one end of the nucleocapsid, leading to a protruding intermediate. Scission results in local membrane instability at the rear of the virus. After prolonged infection, increased vesiculation of the plasma membrane correlates with changes in shape and infectivity of released viruses. Our observations demonstrate a cellular determinant of virus shape. They reconcile the contrasting models of filovirus budding and allow us to describe the sequence of events taking place during budding and release of Marburg virus. We propose that this represents a general sequence of events also followed by other filamentous and rod-shaped viruses. The filoviruses, Marburg and Ebola, cause lethal hemorrhagic fever and are highest-priority bioterrorism agents. Filovirus particles contain a rod-like nucleocapsid and are normally filamentous, though other shapes are seen. It is poorly understood how such large filamentous particles are assembled and released from infected cells. Here we have studied Marburg virus production in infected cells using electron tomography. This technique allows virus particles to be visualized in three dimensions at different stages during assembly. We find that in early stages of virus production, highly infectious filamentous viruses are produced, whereas after prolonged infection poorly infectious spherical viruses are released. We also define the sequence of steps in filamentous virus release. The intracellular nucleocapsid first travels to the plasma membrane of the cell, where it binds laterally along its whole length. One end is then wrapped by the plasma membrane and wrapping proceeds rapidly until the virus protrudes vertically from the cell surface. The rear end of the virus particle then pinches off from the cell. We propose that other important filamentous and rod-shaped viruses also follow this series of steps of assembly and budding.
Collapse
Affiliation(s)
- Sonja Welsch
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Verena Krähling
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - James D. Riches
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail: (SB); (JAGB)
| | - John A. G. Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (SB); (JAGB)
| |
Collapse
|
108
|
The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum. J Virol 2010; 84:4782-97. [PMID: 20181718 DOI: 10.1128/jvi.01963-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The morphogenesis of many enveloped viruses, in which viral nucleocapsid complex interacts with envelope (E) protein, is known to take place at various sites along the secretory pathway. How viral E protein retains in a particular intracellular organelle for assembly remains incompletely understood. In this study, we investigated determinants in the E protein of dengue virus (DENV) for its retention and assembly in the endoplasmic reticulum (ER). A chimeric experiment between CD4 and DENV precursor membrane/E constructs suggested that the transmembrane domain (TMD) of E protein contains an ER retention signal. Substitutions of three nonhydrophobic residues at the N terminus of the first helix (T1) and at either the N or C terminus of the second helix of the TMD with three hydrophobic residues, as well as an increase in the length of T1, led to the release of chimeric CD4 and E protein from the ER, suggesting that short length and certain nonhydrophobic residues of the TMD are critical for ER retention. The analysis of enveloped viruses assembled at the plasma membrane and of those assembled in the Golgi complex and ER revealed a trend of decreasing length and increasing nonhydrophobic residues of the TMD of E proteins. Taken together, these findings support a TMD-dependent sorting for viral E proteins along the secretory pathway. Moreover, similar mutations introduced into the TMD of DENV E protein resulted in the increased production of virus-like particles (VLPs), suggesting that modifications of TMD facilitate VLP production and have implications for utilizing flaviviral VLPs as serodiagnostic antigens and vaccine candidates.
Collapse
|
109
|
Wenigenrath J, Kolesnikova L, Hoenen T, Mittler E, Becker S. Establishment and application of an infectious virus-like particle system for Marburg virus. J Gen Virol 2010; 91:1325-34. [PMID: 20071483 DOI: 10.1099/vir.0.018226-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The highly pathogenic Marburg virus (MARV) can only be investigated in high containment laboratories, which is time consuming and expensive. To investigate the MARV life cycle under normal laboratory conditions, an infectious virus-like particle (VLP) system was developed. The infectious VLP system is based on the T7-polymerase driven synthesis of a MARV-specific minigenome that encodes luciferase and is transcribed and replicated by the simultaneously expressed MARV nucleocapsid proteins NP, VP35, L and VP30. Transcription of the minigenome resulted in luciferase activity and replication resulted in encapsidated minigenomes. The encapsidated minigenomes, together with the viral matrix proteins VP40 and VP24 and the surface glycoprotein (GP), formed VLPs at the plasma membrane. Among the released pleomorphic VLPs, filamentous particles of 200-400 nm in length showed the highest capacity to induce reporter activity upon infection of target cells. To characterize the infectious VLP system, the intracellular concentration of one of the components was titrated, while all others were held constant. Intracellular concentrations of nucleocapsid proteins that resulted in highest replication and transcription activities also yielded VLPs with the highest ability to induce luciferase activity in target cells. High intracellular levels of VP40 maximized the release of VLPs, but reduced their ability to induce luciferase activity in target cells. The intracellular concentration of GP positively correlated with its incorporation into VLPs and their infectivity. Finally, we demonstrated that the infectious VLP system was suitable for rapid screening of neutralizing antibodies directed against MARV.
Collapse
Affiliation(s)
- Jörg Wenigenrath
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
110
|
Abstract
Electron microscopy, considered by some to be an old technique, is still on the forefront of both clinical viral diagnoses and viral ultrastructure and pathogenesis studies. In the diagnostic setting, it is particularly valuable in the surveillance of emerging diseases and potential bioterrorism viruses. In the research arena, modalities such as immunoelectron microscopy, cryo-electron microscopy, and electron tomography have demonstrated how viral structural components fit together, attach to cells, assimilate during replication, and associate with the cellular machinery during replication and egression. These studies provide information for treatment and vaccine strategies.
Collapse
Affiliation(s)
- Cynthia S Goldsmith
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | |
Collapse
|
111
|
Functional characterization of Negri bodies (NBs) in rabies virus-infected cells: Evidence that NBs are sites of viral transcription and replication. J Virol 2009; 83:7948-58. [PMID: 19494013 DOI: 10.1128/jvi.00554-09] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies virus infection induces the formation of cytoplasmic inclusion bodies that resemble Negri bodies found in the cytoplasm of some infected nerve cells. We have studied the morphogenesis and the role of these Negri body-like structures (NBLs) during viral infection. The results indicate that these spherical structures (one or two per cell in the initial stage of infection), composed of the viral N and P proteins, grow during the virus cycle before appearing as smaller structures at late stages of infection. We have shown that the microtubule network is not necessary for the formation of these inclusion bodies but is involved in their dynamics. In contrast, the actin network does not play any detectable role in these processes. These inclusion bodies contain Hsp70 and ubiquitinylated proteins, but they are not misfolded protein aggregates. NBLs, in fact, appear to be functional structures involved in the viral life cycle. Specifically, using in situ fluorescent hybridization techniques, we show that all viral RNAs (genome, antigenome, and every mRNA) are located inside the inclusion bodies. Significantly, short-term RNA labeling in the presence of BrUTP strongly suggests that the NBLs are the sites where viral transcription and replication take place.
Collapse
|
112
|
Abstract
VP30 is a phosphoprotein essential for the initiation of Ebola virus transcription. In this work, we have studied the effect of mutations in VP30 phosphorylation sites on the ebolavirus replication cycle by using a reverse genetics system. We demonstrate that VP30 is involved in reinitiation of gene transcription and that this activity is affected by mutations at the phosphorylation sites.
Collapse
|
113
|
A filovirus-unique region of Ebola virus nucleoprotein confers aberrant migration and mediates its incorporation into virions. J Virol 2008; 82:6190-9. [PMID: 18417588 PMCID: PMC2447054 DOI: 10.1128/jvi.02731-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ebola virus nucleoprotein (NP) is an essential component of the nucleocapsid, required for filovirus particle formation and replication. Together with virion protein 35 (VP35) and VP24, this gene product gives rise to the filamentous nucleocapsid within transfected cells. Ebola virus NP migrates aberrantly, with an apparent molecular mass of 115 kDa, although it is predicted to encode an approximately 85-kDa protein. In this report, we show that two domains of this protein determine this aberrant migration and that this region mediates its incorporation into virions. These regions, amino acids 439 to 492 and amino acids 589 to 739, alter the mobility of Ebola virus NP by sodium dodecyl sulfate-polyacrylamide gel electrophoresis by 5 and 15 kDa, respectively, and confer similar effects on a heterologous protein, LacZ, in a position-independent fashion. Furthermore, when coexpressed with VP40, VP35, and VP24, this region mediated incorporation of NP into released viruslike particles. When fused to chimeric paramyxovirus NPs derived from measles or respiratory syncytial virus, this domain directed these proteins into the viruslike particle. The COOH-terminal NP domain comprises a conserved highly acidic region of NP with predicted disorder, distinguishing Ebola virus NPs from paramyxovirus NPs. The acidic character of this domain is likely responsible for its aberrant biochemical properties. These findings demonstrate that this region is essential for the assembly of the filamentous nucleocapsids that give rise to filoviruses.
Collapse
|
114
|
Warfield KL, Swenson DL, Olinger GG, Kalina WV, Viard M, Aitichou M, Chi X, Ibrahim S, Blumenthal R, Raviv Y, Bavari S, Aman MJ. Ebola virus inactivation with preservation of antigenic and structural integrity by a photoinducible alkylating agent. J Infect Dis 2008; 196 Suppl 2:S276-83. [PMID: 17940961 DOI: 10.1086/520605] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Current methods for inactivating filoviruses are limited to high doses of irradiation or formalin treatment, which may cause structural perturbations that are reflected by poor immunogenicity. In this report, we describe a novel inactivation technique for Zaire Ebola virus (ZEBOV) that uses the photoinduced alkylating probe 1,5-iodonaphthylazide (INA). INA is incorporated into lipid bilayers and, when activated by ultraviolet irradiation, alkylates the proteins therein. INA treatment of ZEBOV resulted in the complete loss of infectivity in cells. Results of electron microscopy and virus-capture assays suggested the preservation of conformational surface epitopes. Challenge with 50,000 pfu of INA-inactivated, mouse-adapted ZEBOV did not cause disease or death in mice. A single vaccination with INA-inactivated ZEBOV (equivalent to 5 x 10(4) pfu) protected mice against lethal challenge with 1000 pfu of ZEBOV. INA-inactivated virus induced a protective response in 100% of mice when administered 3 days before challenge. Thus, INA may have significant potential for the development of vaccines and immunotherapeutics for filoviruses and other enveloped viruses.
Collapse
Affiliation(s)
- Kelly L Warfield
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Silvestri LS, Ruthel G, Kallstrom G, Warfield KL, Swenson DL, Nelle T, Iversen PL, Bavari S, Aman MJ. Involvement of vacuolar protein sorting pathway in Ebola virus release independent of TSG101 interaction. J Infect Dis 2008; 196 Suppl 2:S264-70. [PMID: 17940959 DOI: 10.1086/520610] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Budding of Ebola virus (EBOV) particles from the plasma membrane of infected cells requires viral and host proteins. EBOV virus matrix protein VP40 recruits TSG101, an ESCRT-1 (host cell endosomal sorting complex required for transport-1) complex protein in the vacuolar protein sorting (vps) pathway, to the plasma membrane during budding. Involvement of other vps proteins in EBOV budding has not been established. Therefore, we used VP40 deletion analysis, virus-like particle-release assays, and confocal microscopy to investigate the potential role of ESCRT-1 proteins VPS4, VPS28, and VPS37B in EBOV budding. We found that VP40 could redirect each protein from endosomes to the cell surface independently of TSG101 interaction. A lack of VPS4 adenosine triphosphatase activity reduced budding by up to 80%. Inhibition of VPS4 gene expression by use of phosphorodiamidite morpholino antisense oligonucleotides protected mice from lethal EBOV infection. These data show that EBOV can use vps proteins independently of TSG101 for budding and reveal VPS4 as a potential target for filovirus therapeutics.
Collapse
Affiliation(s)
- Lynn S Silvestri
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21704, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Ascenzi P, Bocedi A, Heptonstall J, Capobianchi MR, Di Caro A, Mastrangelo E, Bolognesi M, Ippolito G. Ebolavirus and Marburgvirus: insight the Filoviridae family. Mol Aspects Med 2007; 29:151-85. [PMID: 18063023 DOI: 10.1016/j.mam.2007.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/28/2007] [Indexed: 11/26/2022]
Abstract
Ebolavirus and Marburgvirus (belonging to the Filoviridae family) emerged four decades ago and cause epidemics of haemorrhagic fever with high case-fatality rates. The genome of filoviruses encodes seven proteins. No significant homology is observed between filovirus proteins and any known macromolecule. Moreover, Marburgvirus and Ebolavirus show significant differences in protein homology. The natural maintenance cycle of filoviruses is unknown, the natural reservoir, the mode of transmission, the epidemic disease generation, and temporal dynamics are unclear. Lastly, Ebolavirus and Marburgvirus are considered as potential biological weapons. Vaccine appears the unique therapeutic frontier. Here, molecular and clinical aspects of filoviral haemorrhagic fevers are summarized.
Collapse
Affiliation(s)
- Paolo Ascenzi
- National Institute for Infectious Diseases IRCCS Lazzaro Spallanzani, Via Portuense 292, I-00149 Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol 2007; 81:13378-84. [PMID: 17928356 DOI: 10.1128/jvi.01170-07] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular cathepsins are required for Ebola virus infection and are believed to proteolytically process the Ebola virus glycoprotein (GP) during entry. However, the significance of cathepsin cleavage during infection remains unclear. Here we demonstrate a role for cathepsin L (CatL) cleavage of Ebola virus GP in the generation of a stable 18-kDa GP1 viral intermediate that exhibits increased binding to and infectivity for susceptible cell targets. Cell binding to a lymphocyte line was increased when CatL-proteolysed pseudovirions were used, but lymphocytes remained resistant to Ebola virus GP-mediated infection. Genetic removal of the highly glycosylated mucin domain in Ebola virus GP resulted in cell binding similar to that observed with CatL-treated full-length GP, and no overall enhancement of binding or infectivity was observed when mucin-deleted virions were treated with CatL. These results suggest that cathepsin cleavage of Ebola virus GP facilitates an interaction with a cellular receptor(s) and that removal of the mucin domain may facilitate receptor binding. The influence of CatL in Ebola virus GP receptor binding should be useful in future studies characterizing the mechanism of Ebola virus entry.
Collapse
|
118
|
Martinez O, Valmas C, Basler CF. Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology 2007; 364:342-54. [PMID: 17434557 PMCID: PMC2034500 DOI: 10.1016/j.virol.2007.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/05/2007] [Accepted: 03/09/2007] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs), important early targets of Ebola virus (EBOV) infection in vivo, are activated by Ebola virus-like particles (VLPs). To better understand this phenomenon, we have systematically assessed the response of DCs to VLPs of different compositions. VLPs containing the viral matrix protein (VP40) and the viral glycoprotein (GP), were found to induce a proinflammatory response highly similar to a prototypical DC activator, LPS. This response included the production of several proinflammatory cytokines, activation of numerous transcription factors including NF-kappaB, the functional importance of which was demonstrated by employing inhibitors of NF-kappaB activation, and activation of ERK1/2 MAP kinase. In contrast, VLPs constituted with a mutant GP lacking the heavily glycosylated mucin domain showed impaired NF-kappaB and Erk activation and induced less DC cytokine production. We conclude that the GP mucin domain is required for VLPs to stimulate human dendritic cells through NF-kappaB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Osvaldo Martinez
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
119
|
Shahhosseini S, Das D, Qiu X, Feldmann H, Jones SM, Suresh MR. Production and characterization of monoclonal antibodies against different epitopes of Ebola virus antigens. J Virol Methods 2007; 143:29-37. [PMID: 17368819 DOI: 10.1016/j.jviromet.2007.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/31/2007] [Accepted: 02/05/2007] [Indexed: 01/07/2023]
Abstract
Ebola virus (EBOV) causes hemorrhagic fever in humans and nonhuman primates with up to 90% mortality rate. In this study, Ebola virus like particles (EVLPs) and the aglycosyl subfragment of glycoprotein (GP(1) subfragment D) were used to generate monoclonal antibodies (MAbs) against different epitopes of the viral antigens. Such MAbs could be useful in diagnostics and potential therapeutics of viral infection and its hemorrhagic symptoms. Hybridoma cell fusion technology was used for production of MAbs. The MAbs were characterized using ELISA and Western blot analysis. Furthermore, five recombinant sub-domains of GP(1) subfragment D were produced, which were used as antigen in Western blot analysis for epitope mapping. Seventeen MAbs of different epitope specificities against EBOV antigens [virion protein (VP40), secreted glycoprotein (sGP), and GP(1) subfragment D] were developed. Based on epitope mapping studies, the anti-GP MAbs were categorized into six groups. The binding of the three anti-sGP MAbs with different epitope specificities were mostly between aa 157 and 221. The two anti-VP40 MAbs with the same or overlapping epitopes are potentially good candidates for developing antigen detection assays for early diagnosis of EBOV infection. The anti-GP MAbs with different epitope specificities as an oligoclonal cocktail could be tested for therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Antibody Specificity
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/isolation & purification
- Blotting, Western
- Ebolavirus/genetics
- Ebolavirus/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitope Mapping
- Epitopes/immunology
- Hemorrhagic Fever, Ebola/diagnosis
- Hemorrhagic Fever, Ebola/immunology
- Hybridomas/immunology
- Mice
- Mice, Inbred BALB C
- Recombinant Proteins
Collapse
Affiliation(s)
- Soraya Shahhosseini
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
120
|
Abstract
Both filoviruses and arenaviruses are enveloped viruses with a single-stranded RNA genome. Most human pathogenic arenaviruses, as well as filoviruses, cause severe hemorrhagic fevers with a high rate of case fatalities. Increasing numbers of outbreaks, the possibility of imported infections and the potential use of these viruses as bioterrorism agents have led to increased interest in these viruses and their biology. Virus-like particles are excellent tools to study the life-cycle of filoviruses and arenaviruses and have demonstrated the potential for use as safe and effective vaccines. This review summarizes the recent advances in the production, study and application of filovirus- and arenavirus-like particles, and provides an outlook on possible future directions for research into these viruses using virus-like particles.
Collapse
Affiliation(s)
- Thomas Hoenen
- Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | | | - Stephan Becker
- Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
121
|
Noda T, Ebihara H, Muramoto Y, Fujii K, Takada A, Sagara H, Kim JH, Kida H, Feldmann H, Kawaoka Y. Assembly and budding of Ebolavirus. PLoS Pathog 2006; 2:e99. [PMID: 17009868 PMCID: PMC1579243 DOI: 10.1371/journal.ppat.0020099] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 08/16/2006] [Indexed: 11/30/2022] Open
Abstract
Ebolavirus is responsible for highly lethal hemorrhagic fever. Like all viruses, it must reproduce its various components and assemble them in cells in order to reproduce infectious virions and perpetuate itself. To generate infectious Ebolavirus, a viral genome-protein complex called the nucleocapsid (NC) must be produced and transported to the cell surface, incorporated into virions, and then released from cells. To further our understanding of the Ebolavirus life cycle, we expressed the various viral proteins in mammalian cells and examined them ultrastructurally and biochemically. Expression of nucleoprotein alone led to the formation of helical tubes, which likely serve as a core for the NC. The matrix protein VP40 was found to be critical for transport of NCs to the cell surface and for the incorporation of NCs into virions, where interaction between nucleoprotein and the matrix protein VP40 is likely essential for these processes. Examination of virus-infected cells revealed that virions containing NCs mainly emerge horizontally from the cell surface, whereas empty virions mainly bud vertically, suggesting that horizontal budding is the major mode of Ebolavirus budding. These data form a foundation for the identification and development of potential antiviral agents to combat the devastating disease caused by this virus. Ebolavirus is a causative agent of a severe, mostly fatal hemorrhagic fever in humans. Like all viruses, it must reproduce its various components and assemble them to reproduce progeny virus particles. However, because Ebolavirus needs special containment for biosafety, progress in understanding its morphogenesis has been slow, resulting in no effective therapies currently available for humans. To further our understanding of the Ebolavirus life cycle, the authors examined the specific interactions among viral proteins and the processes of Ebolavirus morphogenesis. It is demonstrated that nucleoprotein likely serves as a core for the nucleocapsid (NC) complex, which is critical for replication and transcription of viral genome. The interaction of nucleoprotein with matrix protein VP40 is found to be essential for transport of NCs to the cell surface and for the incorporation of NCs into virions, resulting in the formation of mature virus particles. Unique among all viruses to our knowledge, Ebolavirus particles containing NCs mainly emerge horizontally from the cell surface, whereas the other viruses bud vertically. These findings form a foundation for the identification and development of potential antiviral agents to combat the devastating disease caused by this virus.
Collapse
Affiliation(s)
- Takeshi Noda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Corporation Agency, Saitama, Japan
| | - Hideki Ebihara
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Corporation Agency, Saitama, Japan
- Division of Virology, Department of Microbiology and Immunology, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Yukiko Muramoto
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Corporation Agency, Saitama, Japan
| | - Ken Fujii
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Corporation Agency, Saitama, Japan
- Division of Virology, Department of Microbiology and Immunology, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Ayato Takada
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Corporation Agency, Saitama, Japan
- Division of Virology, Department of Microbiology and Immunology, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Hiroshi Sagara
- Fine Morphology Laboratory, Department of Basic Medical Science, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Jin Hyun Kim
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hiroshi Kida
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Heinz Feldmann
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yoshihiro Kawaoka
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Corporation Agency, Saitama, Japan
- Division of Virology, Department of Microbiology and Immunology, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
122
|
Mohamadzadeh M, Chen L, Olinger GG, Pratt WD, Schmaljohn AL. Filoviruses and the Balance of Innate, Adaptive, and Inflammatory Responses. Viral Immunol 2006; 19:602-12. [PMID: 17201655 DOI: 10.1089/vim.2006.19.602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Filoviruses Marburg virus and Ebola virus are among the deadliest of human pathogens, causing fulminant hemorrhagic fevers typified by overmatched specific immune responses and profuse inflammatory responses. Keys to both vaccination and treatment may reside, first, in the understanding of immune dysfunctions that parallel Filoviral disease and, second, in devising ways to redirect and restore normal immune function as well as to mitigate inflammation. Here, we describe how Filoviral infections may subvert innate immune responses through perturbances of dendritic cells and neutrophils, with particular emphasis on the downstream effects on adaptive immunity and inflammation. We suggest that pivotal events may be subject to therapeutic intervention as Filoviruses encounter immune processes.
Collapse
Affiliation(s)
- Mansour Mohamadzadeh
- US Army Medical Research Institute for Infectious Diseases, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
123
|
Abstract
Viruses exploit the cytoskeleton of host cells to transport their components and spread to neighbouring cells. Here we show that the actin cytoskeleton is involved in the release of Marburgvirus (MARV) particles. We found that peripherally located nucleocapsids and envelope precursors of MARV are located either at the tip or at the side of filopodial actin bundles. Importantly, viral budding was almost exclusively detected at filopodia. Inhibiting actin polymerization in MARV-infected cells significantly diminished the amount of viral particles released into the medium. This suggested that dynamic polymerization of actin in filopodia is essential for efficient release of MARV. The viral matrix protein VP40 plays a key role in the release of MARV particles and we found that the intracellular localization of recombinant VP40 and its release in form of virus-like particles were strongly influenced by overexpression or inhibition of myosin 10 and Cdc42, proteins important in filopodia formation and function. We suggest that VP40, which is capable of interacting with viral nucleocapsids, provides an interface of MARV subviral particles and filopodia. As filopodia are in close contact with neighbouring cells, usurpation of these structures may facilitate spread of MARV to adjacent cells.
Collapse
|
124
|
Abstract
A taxonomically diverse set of single-stranded ribonucleic acid(ssRNA) viruses from four diverse viral families Arenaviridae,Bunyaviridae, Filoviridae, and Flaviviridae cause an acute systemic febrile syndrome called viral hemorrhagic fever (VHF). The syndrome produces combinations of prostration, malaise, increased vascular permeability, and coagulation maladies. In severe illness,VHF may include generalized bleeding but the bleeding does not typically constitute a life-threatening loss of blood volume. To a certain extent, it is a sign of damage to the vascular endothelium and is an indicator of disease severity in specific target organs. Although the viruses that cause hemorrhagic fever (HF) can productively replicate in endothelial cells, much of the disease pathology including impairment to the vascular system is thought to result primarily from the release of a variety of mediators from virus-infected cells, such as monocytes and macrophages that subsequently alter vascular function and trigger the coagulation disorders that epitomize these infections. While significant progress has been made over the last several years in dissecting out the molecular biology and pathogenesis of the HF viruses, there are currently no vaccines or drugs licensed available for most of the VHFs.
Collapse
Affiliation(s)
- Aileen M Marty
- Battelle Memorial Institute, Suite 601, 1550 Crystal Drive, Arlington, VA 22202-4172, USA.
| | | | | |
Collapse
|
125
|
Mohamadzadeh M, Coberley SS, Olinger GG, Kalina WV, Ruthel G, Fuller CL, Swenson DL, Pratt WD, Kuhns DB, Schmaljohn AL. Activation of triggering receptor expressed on myeloid cells-1 on human neutrophils by marburg and ebola viruses. J Virol 2006; 80:7235-44. [PMID: 16809329 PMCID: PMC1489070 DOI: 10.1128/jvi.00543-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Marburg virus (MARV) and Ebola virus (EBOV), members of the viral family Filoviridae, cause fatal hemorrhagic fevers in humans and nonhuman primates. High viral burden is coincident with inadequate adaptive immune responses and robust inflammatory responses, and virus-mediated dysregulation of early host defenses has been proposed. Recently, a novel class of innate receptors called the triggering receptors expressed in myeloid cells (TREM) has been discovered and shown to play an important role in innate inflammatory responses and sepsis. Here, we report that MARV and EBOV activate TREM-1 on human neutrophils, resulting in DAP12 phosphorylation, TREM-1 shedding, mobilization of intracellular calcium, secretion of proinflammatory cytokines, and phenotypic changes. A peptide specific to TREM-1 diminished the release of tumor necrosis factor alpha by filovirus-activated human neutrophils in vitro, and a soluble recombinant TREM-1 competitively inhibited the loss of cell surface TREM-1 that otherwise occurred on neutrophils exposed to filoviruses. These data imply direct activation of TREM-1 by filoviruses and also indicate that neutrophils may play a prominent role in the immune and inflammatory responses to filovirus infections.
Collapse
Affiliation(s)
- Mansour Mohamadzadeh
- U.S. Army Medical Research Institute for Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Alazard-Dany N, Volchkova V, Reynard O, Carbonnelle C, Dolnik O, Ottmann M, Khromykh A, Volchkov VE. Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. J Gen Virol 2006; 87:1247-1257. [PMID: 16603527 DOI: 10.1099/vir.0.81361-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of β1 and α5 integrins and major histocompatibility complex I molecules. The level of GP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP, expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GP-expressing cells with GP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.
Collapse
Affiliation(s)
- Nathalie Alazard-Dany
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Valentina Volchkova
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Olivier Reynard
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Caroline Carbonnelle
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Olga Dolnik
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Michèle Ottmann
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Alexander Khromykh
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Viktor E Volchkov
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| |
Collapse
|
127
|
Kuhn JH, Radoshitzky SR, Guth AC, Warfield KL, Li W, Vincent MJ, Towner JS, Nichol ST, Bavari S, Choe H, Aman MJ, Farzan M. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 2006; 281:15951-8. [PMID: 16595665 DOI: 10.1074/jbc.m601796200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GP(1,2) envelope glycoproteins (GP) of filoviruses (marburg- and ebolaviruses) mediate cell-surface attachment, membrane fusion, and entry into permissive cells. Here we show that a 151-amino acid fragment of the Lake Victoria marburgvirus GP1 subunit bound filovirus-permissive cell lines more efficiently than full-length GP1. An homologous 148-amino acid fragment of the Zaire ebolavirus GP1 subunit similarly bound the same cell lines more efficiently than a series of longer GP1 truncation variants. Neither the marburgvirus GP1 fragment nor that of ebolavirus bound a nonpermissive lymphocyte cell line. Both fragments specifically inhibited replication of infectious Zaire ebolavirus, as well as entry of retroviruses pseudotyped with either Lake Victoria marburgvirus or Zaire ebolavirus GP(1,2). These studies identify the receptor-binding domains of both viruses, indicate that these viruses utilize a common receptor, and suggest that a single small molecule or vaccine can be developed to inhibit infection of all filoviruses.
Collapse
Affiliation(s)
- Jens H Kuhn
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Hartlieb B, Weissenhorn W. Filovirus assembly and budding. Virology 2006; 344:64-70. [PMID: 16364737 DOI: 10.1016/j.virol.2005.09.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/10/2005] [Indexed: 10/25/2022]
Abstract
Filoviruses belong to the order of negative-stranded non-segmented RNA viruses and are classified into two genera, Ebola and Marburg viruses. They have a characteristic filamentous shape, which is largely determined by the matrix protein VP40. Although VP40 is the main driving force for assembly and budding from the host cell, the production of infectious virus involves an intricate interplay between all viral structural proteins in addition to cellular factors, e.g., those that normally function in multi-vesicular body biogenesis. As a consequence, assembly and budding steps are defined to specific cellular compartments, and the recent progress in understanding how the different components are assembled into stable enveloped virus particles is reviewed.
Collapse
Affiliation(s)
- Bettina Hartlieb
- Institut für Virologie, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | | |
Collapse
|
129
|
Sun X, Yau VK, Briggs BJ, Whittaker GR. Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 2005; 338:53-60. [PMID: 15936793 DOI: 10.1016/j.virol.2005.05.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 11/01/2004] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
Vesicular stomatitis virus (VSV) is well established to enter cells by pH-dependent endocytosis, but mechanistic aspects of its internalization have remained unclear. Here, we examined the functional role of clathrin in VSV entry by expression of a dominant-negative mutant of Eps15 (GFP-Eps15Delta95/295), a protein essential for clathrin-mediated endocytosis. Whereas expression of GFP alone had no effect on VSV infection, expression of GFP-Eps15Delta95/295 severely limited infection. As independent ways to examine clathrin function, we also examined cells that had been treated with chlorpromazine and utilized small interfering RNA (siRNA) techniques. Inhibition of clathrin-mediated endocytosis by chlorpromazine treatment, as well as clathrin knock-down using siRNA duplexes directed against the clathrin heavy chain, also prevented VSV infection. In combination with previous morphological approaches, these experiments establish clathrin as an essential component needed for endocytosis of VSV.
Collapse
Affiliation(s)
- Xiangjie Sun
- Department of Microbiology and Immunology, Cornell University, C4127 Veterinary Medical Center, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
130
|
Burnett JC, Henchal EA, Schmaljohn AL, Bavari S. The evolving field of biodefence: therapeutic developments and diagnostics. Nat Rev Drug Discov 2005; 4:281-97. [PMID: 15803193 PMCID: PMC7096857 DOI: 10.1038/nrd1694] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bioweapons are a clear threat to both military and civilian populations. Here, the latest advances in the pursuit of inhibitors against biothreat threat toxins, current therapeutic strategies for treating biodefence related pathogens, and strategies for improving detection and exposure survivability are covered. There are numerous lead therapeutics that have emerged from drug discovery efforts. However, many of these are toxic and/or fail to possess conventional drug-like properties. One clear advantage of small (non-peptidic) molecules is that they possess scaffolds that are inherently more likely to evolve into real therapeutics. One of the major obstacles impeding the translation of these lead therapeutics into viable drugs is the lack of involvement of the pharmaceutical industry, which has been discovering leads and translating them into drugs for decades. The expertise of the pharmaceutical industry therefore needs to be more effectively engaged in developing drugs against biothreat agents. New methods for rapidly detecting and diagnosing biothreat agents are also in development. The detection and diagnosis of biothreats is inherently linked with treatment. The means for detecting the release of bioweapons are being deployed, and new technologies are shortening the timeframe between initial sample collection and conclusive agent determination. However, the organization of this process is imperfect. At present, a unifying entity that orchestrates the biodefence response is clearly needed to reduce the time-to-drug process and redundancies in drug development efforts. Such a central entity could formulate and implement plans to coordinate all participants, including academic institutions, government agencies and the private sector. This could accelerate the development of countermeasures against high probability biothreat agents.
The threat of bioterrorism and the potential use of biological weapons against both military and civilian populations has become a major concern for governments around the world. For example, in 2001 anthrax-tainted letters resulted in several deaths, caused widespread public panic and exerted a heavy economic toll. If such a small-scale act of bioterrorism could have such a huge impact, then the effects of a large-scale attack would be catastrophic. This review covers recent progress in developing therapeutic countermeasures against, and diagnostics for, such agents.
Collapse
Affiliation(s)
- James C. Burnett
- Developmental Therapeutics Program, Target Structure-Based Drug Discovery Group, National Cancer Institute-SAIC, Frederick, 21702 Maryland USA
| | - Erik A. Henchal
- United States Army Medical Research Institute of Infectious Diseases, Frederick, 21702 Maryland USA
| | - Alan L. Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases, Frederick, 21702 Maryland USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Frederick, 21702 Maryland USA
| |
Collapse
|
131
|
|
132
|
Hoenen T, Volchkov V, Kolesnikova L, Mittler E, Timmins J, Ottmann M, Reynard O, Becker S, Weissenhorn W. VP40 octamers are essential for Ebola virus replication. J Virol 2005; 79:1898-905. [PMID: 15650213 PMCID: PMC544139 DOI: 10.1128/jvi.79.3.1898-1905.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix protein VP40 of Ebola virus is essential for virus assembly and budding. Monomeric VP40 can oligomerize in vitro into RNA binding octamers, and the crystal structure of octameric VP40 has revealed that residues Phe125 and Arg134 are the most important residues for the coordination of a short single-stranded RNA. Here we show that full-length wild-type VP40 octamers bind RNA upon HEK 293 cell expression. While the Phe125-to-Ala mutation resulted in reduced RNA binding, the Arg134-to-Ala mutation completely abolished RNA binding and thus octamer formation. The absence of octamer formation, however, does not affect virus-like particle (VLP) formation, as the VLPs generated from the expression of wild-type VP40 and mutated VP40 in HEK 293 cells showed similar morphology and abundance and no significant difference in size. These results strongly indicate that octameric VP40 is dispensable for VLP formation. The cellular localization of mutant VP40 was different from that of wild-type VP40. While wild-type VP40 was present in small patches predominantly at the plasma membrane, the octamer-negative mutants were found in larger aggregates at the periphery of the cell and in the perinuclear region. We next introduced the Arg134-to-Ala and/or the Phe125-to-Ala mutation into the Ebola virus genome. Recombinant wild-type virus and virus expressing the VP40 Phe125-to-Ala mutation were both rescued. In contrast, no recombinant virus expressing the VP40 Arg134-to-Ala mutation could be recovered. These results suggest that RNA binding of VP40 and therefore octamer formation are essential for the Ebola virus life cycle.
Collapse
Affiliation(s)
- Thomas Hoenen
- Institut für Virologie, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Yonezawa A, Cavrois M, Greene WC. Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha. J Virol 2005; 79:918-26. [PMID: 15613320 PMCID: PMC538559 DOI: 10.1128/jvi.79.2.918-926.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ebola filoviruses are aggressive pathogens that cause severe and often lethal hemorrhagic fever syndromes in humans and nonhuman primates. To date, no effective therapies have been identified. To analyze the entry and fusion properties of Ebola virus, we adapted a human immunodeficiency virus type 1 (HIV-1) virion-based fusion assay by substituting Ebola virus glycoprotein (GP) for the HIV-1 envelope. Fusion was detected by cleavage of the fluorogenic substrate CCF2 by beta-lactamase-Vpr incorporated into virions and released as a result of virion fusion. Entry and fusion induced by the Ebola virus GP occurred with much slower kinetics than with vesicular stomatitis virus G protein (VSV-G) and were blocked by depletion of membrane cholesterol and by inhibition of vesicular acidification with bafilomycin A1. These properties confirmed earlier studies and validated the assay for exploring other properties of Ebola virus GP-mediated entry and fusion. Entry and fusion of Ebola virus GP pseudotypes, but not VSV-G or HIV-1 Env pseudotypes, were impaired in the presence of the microtubule-disrupting agent nocodazole but were enhanced in the presence of the microtubule-stabilizing agent paclitaxel (Taxol). Agents that impaired microfilament function, including cytochalasin B, cytochalasin D, latrunculin A, and jasplakinolide, also inhibited Ebola virus GP-mediated entry and fusion. Together, these findings suggest that both microtubules and microfilaments may play a role in the effective trafficking of vesicles containing Ebola virions from the cell surface to the appropriate acidified vesicular compartment where fusion occurs. In terms of Ebola virus GP-mediated entry and fusion to various target cells, primary macrophages proved highly sensitive, while monocytes from the same donors displayed greatly reduced levels of entry and fusion. We further observed that tumor necrosis factor alpha, which is released by Ebola virus-infected monocytes/macrophages, enhanced Ebola virus GP-mediated entry and fusion to human umbilical vein endothelial cells. Thus, Ebola virus infection of one target cell may induce biological changes that facilitate infection of secondary target cells that play a key role in filovirus pathogenesis. Finally, these studies indicate that pseudotyping in the HIV-1 virion-based fusion assay may be a valuable approach to the study of entry and fusion properties mediated through the envelopes of other viral pathogens.
Collapse
Affiliation(s)
- Akihito Yonezawa
- Gladstone Institute of Virology and Immunology, 1650 Owens St., San Francisco, CA 94158, USA
| | | | | |
Collapse
|
134
|
Volchkov VE, Volchkova VA, Dolnik O, Feldmann H, Klenk HD. Polymorphism of Filovirus Glycoproteins. Adv Virus Res 2005; 64:359-81. [PMID: 16139600 DOI: 10.1016/s0065-3527(05)64011-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Viktor E Volchkov
- Biologie des Filovirus, Claude Bernard University Lyon, INSERM U412 69365 Lyon, France
| | | | | | | | | |
Collapse
|
135
|
Noda T, Aoyama K, Sagara H, Kida H, Kawaoka Y. Nucleocapsid-like Structures of Ebola Virus Reconstructed Using Electron Tomography. J Vet Med Sci 2005; 67:325-8. [PMID: 15805739 DOI: 10.1292/jvms.67.325] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electron tomography (ET) is a new technique for high resolution, three-dimensional (3D) reconstruction of pleiomorphic macromolecular complexes, such as virus components. By employing this technique, we resolved the 3D structure of Ebola virus nucleocapsid-like (NC-like) structures in the cytoplasm of cells expressing NP, VP24, and VP35: the minimum components required to form these NC-like structures. Reconstruction of these tubular NC-like structures of Ebola virus showed them to be composed of left-handed helices spaced at short intervals, which is structurally consistent with other non-segmented negative-strand RNA viruses.
Collapse
Affiliation(s)
- Takeshi Noda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
136
|
Kolesnikova L, Berghöfer B, Bamberg S, Becker S. Multivesicular bodies as a platform for formation of the Marburg virus envelope. J Virol 2004; 78:12277-87. [PMID: 15507615 PMCID: PMC525088 DOI: 10.1128/jvi.78.22.12277-12287.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Marburg virus (MARV) envelope consists of a lipid membrane and two major proteins, the matrix protein VP40 and the glycoprotein GP. Both proteins use different intracellular transport pathways: GP utilizes the exocytotic pathway, while VP40 is transported through the retrograde late endosomal pathway. It is currently unknown where the proteins combine to form the viral envelope. In the present study, we identified the intracellular site where the two major envelope proteins of MARV come together as peripheral multivesicular bodies (MVBs). Upon coexpression with VP40, GP is redistributed from the trans-Golgi network into the VP40-containing MVBs. Ultrastructural analysis of MVBs suggested that they provide the platform for the formation of membrane structures that bud as virus-like particles from the cell surface. The virus-like particles contain both VP40 and GP. Single expression of GP also resulted in the release of particles, which are round or pleomorphic. Single expression of VP40 led to the release of filamentous structures that closely resemble viral particles and contain traces of endosomal marker proteins. This finding indicated a central role of VP40 in the formation of the filamentous structure of MARV particles, which is similar to the role of the related Ebola virusVP40. In MARV-infected cells, VP40 and GP are colocalized in peripheral MVBs as well. Moreover, intracellular budding of progeny virions into MVBs was frequently detected. Taken together, these results demonstrate an intracellular intersection between GP and VP40 pathways and suggest a crucial role of the late endosomal compartment for the formation of the viral envelope.
Collapse
Affiliation(s)
- Larissa Kolesnikova
- Institut für Virologie der Philipps-Universität Marburg, Robert-Koch-Strasse 17, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
137
|
Abstract
The term viral hemorrhagic fever refers to a clinical syndrome characterized by acute onset of fever accompanied by nonspecific findings of malaise, prostration, diarrhea,and headache. Patients frequently show signs of increased vascular permeability, and many develop bleeding diatheses. The hemorrhagic fever viruses represent potential agents for biologic warfare because of capability of aerosol transmission, high morbidity,and mortality associated with infection, and ability to replicate in cell culture in high concentrations. Herein we discuss the Filoviridae, the agents of Ebola and Marburg hemorrhagic fevers.
Collapse
Affiliation(s)
- Michelle R Salvaggio
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 1900 University Boulevard, 229 Tinsley Harrison Tower, Birmingham, AL 35294, USA
| | | |
Collapse
|
138
|
Geisbert TW, Hensley LE, Larsen T, Young HA, Reed DS, Geisbert JB, Scott DP, Kagan E, Jahrling PB, Davis KJ. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2347-70. [PMID: 14633608 PMCID: PMC1892369 DOI: 10.1016/s0002-9440(10)63591-2] [Citation(s) in RCA: 447] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ebola virus (EBOV) infection causes a severe and fatal hemorrhagic disease that in many ways appears to be similar in humans and nonhuman primates; however, little is known about the development of EBOV hemorrhagic fever. In the present study, 21 cynomolgus monkeys were experimentally infected with EBOV and examined sequentially over a 6-day period to investigate the pathological events of EBOV infection that lead to death. Importantly, dendritic cells in lymphoid tissues were identified as early and sustained targets of EBOV, implicating their important role in the immunosuppression characteristic of EBOV infections. Bystander lymphocyte apoptosis, previously described in end-stage tissues, occurred early in the disease-course in intravascular and extravascular locations. Of note, apoptosis and loss of NK cells was a prominent finding, suggesting the importance of innate immunity in determining the fate of the host. Analysis of peripheral blood mononuclear cell gene expression showed temporal increases in tumor necrosis factor-related apoptosis-inducing ligand and Fas transcripts, revealing a possible mechanism for the observed bystander apoptosis, while up-regulation of NAIP and cIAP2 mRNA suggest that EBOV has evolved additional mechanisms to resist host defenses by inducing protective transcripts in cells that it infects. The sequence of pathogenetic events identified in this study should provide new targets for rational prophylactic and chemotherapeutic interventions.
Collapse
Affiliation(s)
- Thomas W Geisbert
- United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Geisbert TW, Young HA, Jahrling PB, Davis KJ, Larsen T, Kagan E, Hensley LE. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2371-82. [PMID: 14633609 PMCID: PMC1892396 DOI: 10.1016/s0002-9440(10)63592-4] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ebola virus (EBOV) infection causes a severe and often fatal hemorrhagic disease in humans and nonhuman primates. Whether infection of endothelial cells is central to the pathogenesis of EBOV hemorrhagic fever (HF) remains unknown. To clarify the role of endothelial cells in EBOV HF, we examined tissues of 21 EBOV-infected cynomolgus monkeys throughout time, and also evaluated EBOV infection of primary human umbilical vein endothelial cells and primary human lung-derived microvascular endothelial cells in vitro. Results showed that endothelial cells were not early cellular targets of EBOV in vivo, as viral replication was not consistently observed until day 5 after infection, a full day after the onset of disseminated intravascular coagulation. Moreover, the endothelium remained relatively intact even at terminal stages of disease. Although human umbilical vein endothelial cells and human lung-derived microvascular endothelial cells were highly permissive to EBOV replication, significant cytopathic effects were not observed. Analysis of host cell gene response at 24 to 144 hours after infection showed some evidence of endothelial cell activation, but changes were unremarkable considering the extent of viral replication. Together, these data suggest that coagulation abnormalities associated with EBOV HF are not the direct result of EBOV-induced cytolysis of endothelial cells, and are likely triggered by immune-mediated mechanisms.
Collapse
Affiliation(s)
- Thomas W Geisbert
- United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA.
| | | | | | | | | | | | | |
Collapse
|
140
|
Swenson DL, Warfield KL, Kuehl K, Larsen T, Hevey MC, Schmaljohn A, Bavari S, Aman MJ. Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. ACTA ACUST UNITED AC 2004; 40:27-31. [PMID: 14734183 DOI: 10.1016/s0928-8244(03)00273-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Marburg virus (MARV), the causative agent of a severe hemorrhagic fever, has a characteristic filamentous morphology. Here we report that co-expression of MARV glycoprotein and matrix protein (VP40) in mammalian cells leads to spontaneous budding of filamentous particles strikingly similar to wild-type MARV. In addition, these particles elicit an immune response in BALB/c mice. The generation of non-replicating Marburg virus-like particles (VLPs) should significantly facilitate the research on molecular mechanisms of MARV assembly and release. Furthermore, VLPs may be an excellent vaccine candidate against Marburg infection.
Collapse
Affiliation(s)
- Dana L Swenson
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Panchal RG, Ruthel G, Kenny TA, Kallstrom GH, Lane D, Badie SS, Li L, Bavari S, Aman MJ. In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc Natl Acad Sci U S A 2003; 100:15936-41. [PMID: 14673115 PMCID: PMC307671 DOI: 10.1073/pnas.2533915100] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The matrix protein VP40 plays a critical role in Ebola virus assembly and budding, a process that utilizes specialized membrane domains known as lipid rafts. Previous studies with purified protein suggest a role for oligomerization of VP40 in this process. Here, we demonstrate VP40 oligomers in lipid rafts of mammalian cells, virus-like particles, and in the authentic Ebola virus. By mutagenesis, we identify several critical C-terminal sequences that regulate oligomerization at the plasma membrane, association with detergent-resistant membranes, and vesicular release of VP40, directly linking these phenomena. Furthermore, we demonstrate the active recruitment of TSG101 into lipid rafts by VP40. We also report the successful application of the biarsenic fluorophore, FlAsH, combined with a tetracysteine tag for imaging of Ebola VP40 in live cells.
Collapse
Affiliation(s)
- Rekha G Panchal
- Developmental Therapeutics Program, Target Structure Based Drug Discovery Group, Science Applications International Corporation, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Ackley CJ, Greene MR, Lowrey CH. Defensive applications of gene transfer technology in the face of bioterrorism: DNA-based vaccines and immune targeting. Expert Opin Biol Ther 2003; 3:1279-89. [PMID: 14640954 DOI: 10.1517/14712598.3.8.1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene transfer involves the introduction of an engineered gene into a person's cells with the expectation that the protein expressed from the gene will produce a therapeutic benefit. Strategies based on this principle have led to the approval of > 600 clinical trials and enrollment of approximately 3500 subjects worldwide in attempts to treat diseases ranging from cancer to AIDS to cystic fibrosis. While gene therapy has met with limited success and still has many hurdles to overcome before it sees wide application, it may be useful as a defensive strategy against bioterrorism agents including infectious microbes and toxins. Although many defensive strategies are possible, immunological strategies are currently the most developed and are being actively applied to the development of strategies against several of the most virulent potential bio-weapons. While most of these strategies are not yet ready for human application, DNA-based vaccines appear to be among the most promising in the fight against bioterrorism.
Collapse
Affiliation(s)
- Catherine J Ackley
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755-1404, USA
| | | | | |
Collapse
|
143
|
Lucht A, Grunow R, Otterbein C, Möller P, Feldmann H, Becker S. Production of monoclonal antibodies and development of an antigen capture ELISA directed against the envelope glycoprotein GP of Ebola virus. Med Microbiol Immunol 2003; 193:181-7. [PMID: 14593476 DOI: 10.1007/s00430-003-0204-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Indexed: 11/25/2022]
Abstract
Ebola virus (EBOV) causes severe outbreaks of Ebola hemorrhagic fever in endemic regions of Africa and is considered to be of impact for other parts of the world as an imported viral disease. To develop a new diagnostic test, monoclonal antibodies to EBOV were produced from mice immunized with inactivated EBOV species Zaire. Antibodies directed against the viral glycoprotein GP were characterized by ELISA, Western blot and immunofluorescence analyses. An antigen capture ELISA was established, which is specific for EBOV-Zaire and shows a sensitivity of approximately 10(3) plaque-forming units/ml. Since the ELISA is able to detect even SDS-inactivated EBOV in spiked human sera, it could complement the existing diagnostic tools in the field and in routine laboratories where high containment facilities are not available.
Collapse
Affiliation(s)
- Andreas Lucht
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
144
|
Timmins J, Schoehn G, Kohlhaas C, Klenk HD, Ruigrok RWH, Weissenhorn W. Oligomerization and polymerization of the filovirus matrix protein VP40. Virology 2003; 312:359-68. [PMID: 12919741 DOI: 10.1016/s0042-6822(03)00260-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The matrix protein VP40 from Ebola virus plays an important role in the assembly process of virus particles by interacting with cellular factors, cellular membranes, and the ribonuclearprotein particle complex. Here we show that the N-terminal domain of VP40 folds into a mixture of two different oligomeric states in vitro, namely hexameric and octameric ringlike structures, as detected by gel filtration chromatography, chemical cross-linking, and electron microscopy. Octamer formation depends largely on the interaction with nucleic acids, which in turn confers in vitro SDS resistance. Refolding experiments with a nucleic acid free N-terminal domain preparation reveal a mostly dimeric form of VP40, which is transformed into an SDS resistant octamer upon incubation with E. coli nucleic acids. In addition, we demonstrate that the N-terminal domain of Marburg virus VP40 also folds into ringlike structures, similar to Ebola virus VP40. Interestingly, Marburg virus VP40 rings reveal a high tendency to polymerize into rods composed of stacked rings. These results may suggest distinct roles for different oligomeric forms of VP40 in the filovirus life cycle.
Collapse
Affiliation(s)
- Joanna Timmins
- European Molecular Biology Laboratory, 6 rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | | | |
Collapse
|
145
|
Lucht A, Grunow R, Möller P, Feldmann H, Becker S. Development, characterization and use of monoclonal VP40-antibodies for the detection of Ebola virus. J Virol Methods 2003; 111:21-8. [PMID: 12821193 DOI: 10.1016/s0166-0934(03)00131-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ebola virus (EBOV) causes uncommon but dramatic outbreaks in remote regions of Africa, where diagnostic facilities are limited. In order to develop diagnostic tests, which can be handled and distributed easily, monoclonal antibodies (mAbs) to EBOV, species Zaire, were produced from mice immunized with inactivated viral particles. Nine stable hybridoma cell lines were obtained producing specific mAbs directed against the viral structural protein VP40. These mAbs were characterized by enzyme-linked immunosorbent, immunoblot and immunofluorescence assays. Subsequently, an antigen capture enzyme-linked immunosorbent assay was established, which detects VP40 of all known species of EBOV. This assay could detect viral material in spiked human serum that has been sodium dodecylsulfate-inactivated. The established enzyme-linked immunosorbent assay therefore has the ability to become a very useful tool for obtaining an accurate diagnosis in the field, limiting the risk of laboratory infections.
Collapse
Affiliation(s)
- Andreas Lucht
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937 Münich, Germany.
| | | | | | | | | |
Collapse
|
146
|
Aman MJ, Bosio CM, Panchal RG, Burnett JC, Schmaljohn A, Bavari S. Molecular mechanisms of filovirus cellular trafficking. Microbes Infect 2003; 5:639-49. [PMID: 12787740 DOI: 10.1016/s1286-4579(03)00095-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The filoviruses, Ebola and Marburg, are two of the most pathogenic viruses, causing lethal hemorrhagic fever in humans. Recent discoveries suggest that filoviruses, along with other phylogenetically or functionally related viruses, utilize a complex mechanism of replication exploiting multiple cellular components including lipid rafts, endocytic compartments, and vacuolar protein sorting machinery. In this review, we summarize these recent findings and discuss the implications for vaccine and therapeutics development.
Collapse
Affiliation(s)
- M Javad Aman
- Clinical Research Management Inc., 1425 Porter Street, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
147
|
Abstract
Ebola and Marburg viruses belong to the family Filoviridae, and cause acute, frequently fatal, haemorrhagic fever in humans and non-human primates. No vaccines are available for human use. This review describes the status of research efforts to develop vaccines for these viruses and to identify the immune mechanisms of protection. The vaccine approaches discussed include DNA-based vaccines, and subunit vaccines vectored by adenovirus, alphavirus replicons, and vaccinia virus.
Collapse
Affiliation(s)
- Mary Kate Hart
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA.
| |
Collapse
|
148
|
Björndal AS, Szekely L, Elgh F. Ebola virus infection inversely correlates with the overall expression levels of promyelocytic leukaemia (PML) protein in cultured cells. BMC Microbiol 2003; 3:6. [PMID: 12697055 PMCID: PMC154099 DOI: 10.1186/1471-2180-3-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Accepted: 04/04/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ebola virus causes severe, often fatal hemorrhagic fever in humans. The mechanism of escape from cellular anti-viral mechanisms is not yet fully understood. The promyelocytic leukaemia (PML) associated nuclear body is part of the interferon inducible cellular defense system. Several RNA viruses have been found to interfere with the anti-viral function of the PML body. The possible interaction between Ebola virus and the PML bodies has not yet been explored. RESULTS We found that two cell lines, Vero E6 and MCF7, support virus production at high and low levels respectively. The expression of viral proteins was visualized and quantified using high resolution immunofluorescence microscopy. Ebola encoded NP and VP35 accumulated in cytoplasmic inclusion bodies whereas VP40 was mainly membrane associated but it was also present diffusely in the cytoplasm as well as in the euchromatic areas of the nucleus. The anti-VP40 antibody also allowed the detection of extracellular virions. Interferon-alpha treatment decreased the production of all three viral proteins and delayed the development of cytopathic effects in both cell lines. Virus infection and interferon-alpha treatment induced high levels of PML protein expression in MCF7 but much less in Vero E6 cells. No disruption of PML bodies, a common phenomenon induced by a variety of different viruses, was observed. CONCLUSION We have established a simple fixation and immunofluorescence staining procedure that allows specific co-detection and precise sub-cellular localization of the PML nuclear bodies and the Ebola virus encoded proteins NP, VP35 and VP40 in formaldehyde treated cells. Interferon-alpha treatment delays virus production in vitro. Intact PML bodies may play an anti-viral role in Ebola infected cells.
Collapse
Affiliation(s)
- Asa Szekely Björndal
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control (SMI), Nobels väg 18, 17182 Solna, Sweden
- Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Nobels väg 16, 17177 Stockholm, Sweden
| | - Laszlo Szekely
- Microbiology and Tumor Biology Center (MTC), Karolinska Institute, Nobels väg 16, 17177 Stockholm, Sweden
| | - Fredrik Elgh
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control (SMI), Nobels väg 18, 17182 Solna, Sweden
- Swedish Defence Research Agency (FOI), Cementvägen 20, 90182 Umeå, Sweden
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden
| |
Collapse
|
149
|
Gomis-Rüth FX, Dessen A, Timmins J, Bracher A, Kolesnikowa L, Becker S, Klenk HD, Weissenhorn W. The matrix protein VP40 from Ebola virus octamerizes into pore-like structures with specific RNA binding properties. Structure 2003; 11:423-33. [PMID: 12679020 PMCID: PMC7126486 DOI: 10.1016/s0969-2126(03)00050-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Ebola virus membrane-associated matrix protein VP40 is thought to be crucial for assembly and budding of virus particles. Here we present the crystal structure of a disk-shaped octameric form of VP40 formed by four antiparallel homodimers of the N-terminal domain. The octamer binds an RNA triribonucleotide containing the sequence 5'-U-G-A-3' through its inner pore surface, and its oligomerization and RNA binding properties are facilitated by two conformational changes when compared to monomeric VP40. The selective RNA interaction stabilizes the ring structure and confers in vitro SDS resistance to octameric VP40. SDS-resistant octameric VP40 is also found in Ebola virus-infected cells, which suggests that VP40 has an additional function in the life cycle of the virus besides promoting virus assembly and budding off the plasma membrane.
Collapse
Affiliation(s)
- F Xavier Gomis-Rüth
- European Molecular Biology Laboratory (EMBL), 6 rue Jules Horowitz, 38042, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Timmins J, Schoehn G, Ricard-Blum S, Scianimanico S, Vernet T, Ruigrok RWH, Weissenhorn W. Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J Mol Biol 2003; 326:493-502. [PMID: 12559917 DOI: 10.1016/s0022-2836(02)01406-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Ebola virus matrix protein VP40 is a major viral structural protein and plays a central role in virus assembly and budding at the plasma membrane of infected cells. For efficient budding, a full amino terminus of VP40 is required, which includes a PPXY and a PT/SAP motif, both of which have been proposed to interact with cellular proteins. Here, we report that Ebola VP40 can interact with cellular factors human Nedd4 and Tsg101 in vitro. We show that WW domain 3 of human Nedd4 is necessary and sufficient for binding to the PPXY motif of VP40, which requires an oligomeric conformation of VP40. Single particle electron microscopy reconstructions indicate that WW3 of Nedd4 is in close contact with the N-terminal domain of hexameric VP40. In contrast, the ubiquitin enzyme variant domain of Tsg101 was sufficient for binding to the PT/SAP motif of VP40, regardless of the oligomeric state of the matrix protein. These results suggest that hNedd4 and Tsg101 may play complimentary roles at a late stage of the assembly process, by recruiting cellular factors of two independent pathways to the site of budding at the plasma membrane.
Collapse
Affiliation(s)
- Joanna Timmins
- European Molecular Biology Laboratory, 6 rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|