101
|
Musatov A, Robinson NC. Bound cardiolipin is essential for cytochrome c oxidase proton translocation. Biochimie 2014; 105:159-64. [PMID: 25038566 DOI: 10.1016/j.biochi.2014.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022]
Abstract
The proton pumping activity of bovine heart cytochrome c oxidase (CcO) is completely inhibited when all of the cardiolipin (CL) is removed from the enzyme to produce monomeric CcO containing only 11 subunits. Only dimeric enzyme containing all 13 subunits and 2-4 cardiolipin per CcO monomer exhibits a "normal" proton translocating stoichiometry of ∼1.0 H(+) per/e(-) when reconstituted into phospholipid vesicles. These fully active proteoliposomes have high respiratory control ratios (RCR = 7-15) with 75-85% of the CcO oriented with the cytochrome c binding sites exposed to the external medium. In contrast, reconstitution of CL-free CcO results in low respiratory control ratios (RCR < 5) with the enzyme randomly oriented in the vesicles, i.e., ∼50 percent oriented with the cytochrome c binding site exposed on the outside of the vesicle. Addition of exogenous CL to the CL-free enzyme completely restores electron transport activity, but restoration of proton pumping activity does not occur. This is true whether CL is added to CL-free CcO prior to reconstitution into phospholipid vesicles, or whether CL is included in the phospholipid mixture that is used to form the vesicles. Another consequence of CL removal is the inability of the 11-subunit, CL-free enzyme to dimerize upon exposure to either cholate or the cholate/PC/PE/CL mixture used during proteoliposome formation (monomeric, 13-subunit, CL-containing CcO completely dimerizes under these conditions). Therefore, a major difference between reconstitution of CL-free and CL-containing CcO is the incorporation of monomeric, rather than dimeric CcO into the vesicles. We conclude that bound CL is necessary for proper insertion of CcO into phospholipid vesicles and normal proton translocation.
Collapse
Affiliation(s)
- Andrej Musatov
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, TX 78229-3900, USA.
| | - Neal C Robinson
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, TX 78229-3900, USA.
| |
Collapse
|
102
|
Kuo YC, Liu YC. Cardiolipin-incorporated liposomes with surface CRM197 for enhancing neuronal survival against neurotoxicity. Int J Pharm 2014; 473:334-44. [PMID: 24999054 DOI: 10.1016/j.ijpharm.2014.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
Abstract
CRM197-grafted liposomes containing cardiolipin (CL) (CRM197/CL-liposomes) were used to enhance the permeability of neuron growth factor (NGF) across the blood-brain barrier (BBB) for promoting the neuroprotective effect of NGF. CRM197/CL-liposoms were incubated with a monolayer of human astrocyte (HA)-regulated human brain-microvascular endothelial cells (HBMECs) and employed to rescue SK-N-MC cells with insult of fibrillar β-amyloid peptide (1-42) (Aβ1-42). An increase in the CL mole percentage enhanced the particle size, absolute value of zeta potential, NGF entrapment efficiency, CRM197 grafting efficiency, viability of HBMECs, HAs, and SK-N-MC cells, and BBB permeability of propidium iodide (PI) and NGF, and reduced the transendothelial electrical resistance (TEER). In addition, an increase in the CRM197 weight percentage increased the particle size, absolute value of zeta potential, viability of HBMECs and HAs, and BBB permeability of PI and NGF, and decreased the CRM197 grafting efficiency and TEER. CRM197/CL-liposomes have the ability to target the BBB and to reduce neurotoxicity of Aβ142 and can be promising formulations for treating Alzheimer's disease in future medicinal application.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Yu-Chuan Liu
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| |
Collapse
|
103
|
Amoscato AA, Sparvero LJ, He RR, Watkins S, Bayir H, Kagan VE. Imaging mass spectrometry of diversified cardiolipin molecular species in the brain. Anal Chem 2014; 86:6587-95. [PMID: 24949523 PMCID: PMC4082390 DOI: 10.1021/ac5011876] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/10/2014] [Indexed: 01/08/2023]
Abstract
MALDI imaging mass spectrometry (MALDI-IMS) has been used successfully in mapping different lipids in tissue sections, yet existing protocols fail to detect the diverse species of mitochondria-unique cardiolipins (CLs) in the brain which are essential for cellular and mitochondrial physiology. We have developed methods enabling the imaging of individual CLs in brain tissue. This was achieved by eliminating ion suppressive effects by (i) cross-linking carboxyl/amino containing molecules on tissue with 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride and (ii) removing highly abundant phosphatidylcholine head groups via phospholipase C treatment. These treatments allowed the detection of CL species at 100 μm resolution and did not affect the amount or molecular species distribution of brain tissue CLs. When combined with augmented matrix application, these modifications allowed the visualization and mapping of multiple CL species in various regions of the brain including the thalamus, hippocampus, and cortex. Areas such as the dentate and stratum radiatum exhibited higher CL signals than other areas within the hippocampal formation. The habenular nuclear (Hb)/dorsal third ventricle (D3 V) and lateral ventricle (LV) areas were identified as CL "hot spots". Our method also allowed structural MS/MS fragmentation and mapping of CLs with identified fatty acid residues and demonstrated a nonrandom distribution of individual oxidizable (polyunsaturated fatty acid containing) and nonoxidizable (nonpolyunsaturated containing) CLs in different anatomical areas of the brain. To our knowledge, this method is the first label-free approach for molecular mapping of diversified CLs in brain tissue.
Collapse
Affiliation(s)
- A. A. Amoscato
- Department
of Environmental and Occupational Health, Center for Free Radical and Antioxidant
Health, Department of Critical Care Medicine and Safar Center for Resuscitation
Research, and Department of Cell Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - L. J. Sparvero
- Department
of Environmental and Occupational Health, Center for Free Radical and Antioxidant
Health, Department of Critical Care Medicine and Safar Center for Resuscitation
Research, and Department of Cell Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - R. R. He
- Department
of Environmental and Occupational Health, Center for Free Radical and Antioxidant
Health, Department of Critical Care Medicine and Safar Center for Resuscitation
Research, and Department of Cell Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Pharmacy
College, Jinan University, Guangzhou, Guangdong 510632, China
| | - S. Watkins
- Department
of Environmental and Occupational Health, Center for Free Radical and Antioxidant
Health, Department of Critical Care Medicine and Safar Center for Resuscitation
Research, and Department of Cell Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - H. Bayir
- Department
of Environmental and Occupational Health, Center for Free Radical and Antioxidant
Health, Department of Critical Care Medicine and Safar Center for Resuscitation
Research, and Department of Cell Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - V. E. Kagan
- Department
of Environmental and Occupational Health, Center for Free Radical and Antioxidant
Health, Department of Critical Care Medicine and Safar Center for Resuscitation
Research, and Department of Cell Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
104
|
Tsesin N, Khalfin B, Nathan I, Parola AH. Cardiolipin plays a role in KCN-induced necrosis. Chem Phys Lipids 2014; 183:159-68. [PMID: 24995676 DOI: 10.1016/j.chemphyslip.2014.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/12/2014] [Accepted: 06/22/2014] [Indexed: 01/28/2023]
Abstract
Cardiolipin (CL) is a unique anionic, dimeric phospholipid found almost exclusively in the inner mitochondrial membrane and is essential for the function of numerous enzymes that are involved in mitochondrial energy metabolism. While the role of cardiolipin in apoptosis is well established, its involvement in necrosis is enigmatic. In the present study, KCN-induced necrosis in U937 cells was used as an experimental model to assess the role of CL in necrosis. KCN addition to U937 cells induced reactive oxygen species (ROS) formation, while the antioxidants inhibited necrosis, indicating that ROS play a role in KCN-induced cell death. Further, CL oxidation was confirmed by the monomer green fluorescence of 10-N-nonyl acridine orange (NAO) and by TLC. Utilizing the red fluorescence of the dimeric NAO, redistribution of CL in mitochondrial membrane during necrosis was revealed. We also showed that the catalytic activity of purified adenosine triphosphate (ATP) synthase complex, known to be modulated by cardiolipin, decreased following KCN treatment. All these events occurred at an early phase of the necrotic process prior to rupture of the cell membrane. Furthermore, CL-deficient HeLa cells were found to be resistant to KCN-induced necrosis as compared with the wild type cells. We suggest that KCN, an effective reversible inhibitor of cytochrome oxidase and thereby of the respiratory chain leads to ROS increase, which in turn oxidizes CL (amongst other membrane phospholipids) and leads to mitochondrial membrane lipid reorganization and loss of CL symmetry. Finally, the resistance of CL-deficient cells to necrosis further supports the notion that CL, which undergoes oxidation during necrotic cell death, is an integral part of the milieu of events taking place in mitochondria leading to membrane disorganization and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Natalia Tsesin
- Departments of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Boris Khalfin
- Departments of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Hematology Institute, Soroka University Medical Center, Beer-Sheva, Israel.
| | - Abraham H Parola
- Departments of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
105
|
Impact of high dietary lipid intake and related metabolic disorders on the abundance and acyl composition of the unique mitochondrial phospholipid, cardiolipin. J Bioenerg Biomembr 2014; 46:447-57. [DOI: 10.1007/s10863-014-9555-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022]
|
106
|
Abstract
Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.
Collapse
|
107
|
Almaida-Pagán PF, Lucas-Sánchez A, Tocher DR. Changes in mitochondrial membrane composition and oxidative status during rapid growth, maturation and aging in zebrafish, Danio rerio. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1003-11. [PMID: 24769342 DOI: 10.1016/j.bbalip.2014.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/01/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022]
Abstract
Considering membranes and membrane components as possible pacemakers of the main processes taking place inside mitochondria, changes in phospholipids or fatty acids could play a central role linking different mechanisms involved in cumulative damage to cell molecules and dysfunction during periods of high stress, such as rapid growth and aging. Changes affecting either lipid class or fatty acid compositions could affect phospholipid and membrane properties and alter mitochondrial function and cell viability. In the present study, mitochondrial oxidative status and mitochondrial membrane phospholipid compositions were analyzed throughout the life-cycle of zebrafish. TBARS content significantly increased in 18-month-old fish while aconitase activity decreased in 24-month-old fish, which have been related with oxidative damage to molecules. Mitochondria-specific superoxide dismutase decreased in 24-month-old animals although this change was not statistically significant. Age affected both mitochondrial phospholipid content and the peroxidation index of most phospholipid classes suggesting that oxidative damage to mitochondrial lipids was occurring.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagán
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom.
| | | | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| |
Collapse
|
108
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Cardiolipin and mitochondrial function in health and disease. Antioxid Redox Signal 2014; 20:1925-53. [PMID: 24094094 DOI: 10.1089/ars.2013.5280] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiolipin (CL) is a unique phospholipid that is almost exclusively localized at the level of the inner mitochondrial membrane (IMM), where it is biosynthesized. This phospholipid is associated with membranes which are designed to generate an electrochemical gradient that is used to produce ATP. Such membranes include the bacterial plasma membrane and IMM. This ubiquitous and intimate association between CL and energy-transducing membranes suggests an important role for CL in mitochondrial bioenergetic processes. CL has been shown to interact with a number of IMM proteins, including the respiratory chain complexes and substrate carriers. Moreover, CL is involved in different stages of the mitochondrial apoptosis process as well as in mitochondrial membrane stability and dynamics. Alterations in CL structure, content, and acyl chain composition have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we provide an overview of the roles of CL in mitochondrial function and bioenergetics in health and disease.
Collapse
Affiliation(s)
- Giuseppe Paradies
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | | | | | | |
Collapse
|
109
|
Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 2014; 171:2029-50. [PMID: 24117165 PMCID: PMC3976620 DOI: 10.1111/bph.12461] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/06/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
A decline in energy is common in aging, and the restoration of mitochondrial bioenergetics may offer a common approach for the treatment of numerous age-associated diseases. Cardiolipin is a unique phospholipid that is exclusively expressed on the inner mitochondrial membrane where it plays an important structural role in cristae formation and the organization of the respiratory complexes into supercomplexes for optimal oxidative phosphorylation. The interaction between cardiolipin and cytochrome c determines whether cytochrome c acts as an electron carrier or peroxidase. Cardiolipin peroxidation and depletion have been reported in a variety of pathological conditions associated with energy deficiency, and cardiolipin has been identified as a target for drug development. This review focuses on the discovery and development of the first cardiolipin-protective compound as a therapeutic agent. SS-31 is a member of the Szeto-Schiller (SS) peptides known to selectively target the inner mitochondrial membrane. SS-31 binds selectively to cardiolipin via electrostatic and hydrophobic interactions. By interacting with cardiolipin, SS-31 prevents cardiolipin from converting cytochrome c into a peroxidase while protecting its electron carrying function. As a result, SS-31 protects the structure of mitochondrial cristae and promotes oxidative phosphorylation. SS-31 represents a new class of compounds that can recharge the cellular powerhouse and restore bioenergetics. Extensive animal studies have shown that targeting such a fundamental mechanism can benefit highly complex diseases that share a common pathogenesis of bioenergetics failure. This review summarizes the mechanisms of action and therapeutic potential of SS-31 and provides an update of its clinical development programme.
Collapse
Affiliation(s)
- Hazel H Szeto
- Research Program in Mitochondrial Therapeutics, Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell UniversityNew York, NY, USA
| |
Collapse
|
110
|
Kagan VE, Chu CT, Tyurina YY, Cheikhi A, Bayir H. Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 2014; 179:64-9. [PMID: 24300280 PMCID: PMC3973441 DOI: 10.1016/j.chemphyslip.2013.11.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 01/16/2023]
Abstract
Cardiolipins (CLs) are ancient and unusual dimeric phospholipids localized in the plasma membrane of bacteria and in the inner mitochondrial membrane of eukaryotes. In mitochondria, two types of asymmetries--trans-membrane and molecular--are essential determinants of CL functions. In this review, we describe CL-based signaling mitochondrial pathways realized via modulation of trans-membrane asymmetry and leading to externalization and peroxidation of CLs in mitophagy and apoptosis, respectively. We discuss possible mechanisms of CL translocations from the inner leaflet of the inner to the outer leaflet of the outer mitochondrial membranes. We present redox reaction mechanisms of cytochrome c-catalyzed CL peroxidation as a required stage in the execution of apoptosis. We also emphasize the significance of CL-related metabolic pathways as new targets for drug discovery. Finally, a remarkable diversity of polyunsaturated CL species and their oxidation products have evolved in eukaryotes vs. prokaryotes. This diversity--associated with CL molecular asymmetry--is presented as the basis for mitochondrial communications language.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Neuroscience, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Amin Cheikhi
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
111
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
112
|
Boscia AL, Treece BW, Mohammadyani D, Klein-Seetharaman J, Braun AR, Wassenaar TA, Klösgen B, Tristram-Nagle S. X-ray structure, thermodynamics, elastic properties and MD simulations of cardiolipin/dimyristoylphosphatidylcholine mixed membranes. Chem Phys Lipids 2014; 178:1-10. [PMID: 24378240 PMCID: PMC4026202 DOI: 10.1016/j.chemphyslip.2013.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
Abstract
Cardiolipins (CLs) are important biologically for their unique role in biomembranes that couple phosphorylation and electron transport like bacterial plasma membranes, chromatophores, chloroplasts and mitochondria. CLs are often tightly coupled to proteins involved in oxidative phosphorylation. The first step in understanding the interaction of CL with proteins is to obtain the pure CL structure, and the structure of mixtures of CL with other lipids. In this work we use a variety of techniques to characterize the fluid phase structure, material properties and thermodynamics of mixtures of dimyristoylphosphatidylcholine (DMPC) with tetramyristoylcardiolipin (TMCL), both with 14-carbon chains, at several mole percentages. X-ray diffuse scattering was used to determine structure, including bilayer thickness and area/lipid, the bending modulus, KC, and SXray, a measure of chain orientational order. Our results reveal that TMCL thickens DMPC bilayers at all mole percentages, with a total increase of ∼6 Å in pure TMCL, and increases AL from 64 Å(2) (DMPC at 35 °C) to 109 Å(2) (TMCL at 50 °C). KC increases by ∼50%, indicating that TMCL stiffens DMPC membranes. TMCL also orders DMPC chains by a factor of ∼2 for pure TMCL. Coarse grain molecular dynamics simulations confirm the experimental thickening of 2 Å for 20mol% TMCL and locate the TMCL headgroups near the glycerol-carbonyl region of DMPC; i.e., they are sequestered below the DMPC phosphocholine headgroup. Our results suggest that TMCL plays a role similar to cholesterol in that it thickens and stiffens DMPC membranes, orders chains, and is positioned under the umbrella of the PC headgroup. CL may be necessary for hydrophobic matching to inner mitochondrial membrane proteins. Differential scanning calorimetry, SXray and CGMD simulations all suggest that TMCL does not form domains within the DMPC bilayers. We also determined the gel phase structure of TMCL, which surprisingly displays diffuse X-ray scattering, like a fluid phase lipid. AL=40.8 Å(2) for the ½TMCL gel phase, smaller than the DMPC gel phase with AL=47.2 Å(2), but similar to AL of DLPE=41 Å(2), consistent with untilted chains in gel phase TMCL.
Collapse
Affiliation(s)
- Alexander L Boscia
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Bradley W Treece
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Dariush Mohammadyani
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Judith Klein-Seetharaman
- Metabolic & Vascular Health, Medical School, University of Warwick, Coventry, England CV4 7AL, United Kingdom
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Beate Klösgen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
113
|
Raja V, Greenberg ML. The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype. Chem Phys Lipids 2014; 179:49-56. [PMID: 24445246 DOI: 10.1016/j.chemphyslip.2013.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/30/2022]
Abstract
The phospholipid cardiolipin (CL) plays a role in many cellular functions and signaling pathways both inside and outside of mitochondria. This review focuses on the role of CL in energy metabolism. Many reactions of electron transport and oxidative phosphorylation, the transport of metabolites required for these processes, and the stabilization of electron transport chain supercomplexes require CL. Recent studies indicate that CL is required for the synthesis of iron-sulfur (Fe-S) co-factors, which are essential for numerous metabolic pathways. Activation of carnitine shuttle enzymes that are required for fatty acid metabolism is CL dependent. The presence of substantial amounts of CL in the peroxisomal membrane suggests that CL may be required for peroxisomal functions. Understanding the role of CL in energy metabolism may identify physiological modifiers that exacerbate the loss of CL and underlie the variation in symptoms observed in Barth syndrome, a genetic disorder of CL metabolism.
Collapse
Affiliation(s)
- Vaishnavi Raja
- Department of Biological Sciences, Wayne State University, Detroit, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, United States.
| |
Collapse
|
114
|
Unsay JD, Cosentino K, Subburaj Y, García-Sáez AJ. Cardiolipin effects on membrane structure and dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15878-87. [PMID: 23962277 DOI: 10.1021/la402669z] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.
Collapse
Affiliation(s)
- Joseph D Unsay
- Max Planck Institute for Intelligent Systems , Heisenbergstr. 3, 70569 Stuttgart, Germany , and German Cancer Research Center , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
115
|
Hypothesis of lipid-phase-continuity proton transfer for aerobic ATP synthesis. J Cereb Blood Flow Metab 2013; 33:1838-42. [PMID: 24084698 PMCID: PMC3851912 DOI: 10.1038/jcbfm.2013.175] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
The basic processes harvesting chemical energy for life are driven by proton (H(+)) movements. These are accomplished by the mitochondrial redox complex V, integral membrane supramolecular aggregates, whose structure has recently been described by advanced studies. These did not identify classical aqueous pores. It was proposed that H(+) transfer for oxidative phosphorylation (OXPHOS) does not occur between aqueous sources and sinks, where an energy barrier would be insurmountable. This suggests a novel hypothesis for the proton transfer. A lipid-phase-continuity H(+) transfer is proposed in which H(+) are always bound to phospholipid heads and cardiolipin, according to Mitchell's hypothesis of asymmetric vectorial H(+) diffusion. A phase separation is proposed among the proton flow, following an intramembrane pathway, and the ATP synthesis, occurring in the aqueous phase. This view reminiscent of Grotthus mechanism would better account for the distance among the Fo and F1 moieties of FoF1-ATP synthase, for its mechanical coupling, as well as the necessity of a lipid membrane. A unique active role for lipids in the evolution of life can be envisaged. Interestingly, this view would also be consistent with the evidence of an OXPHOS outside mitochondria also found in non-vesicular membranes, housing the redox complexes.
Collapse
|
116
|
Renault TT, Chipuk JE. Death upon a kiss: mitochondrial outer membrane composition and organelle communication govern sensitivity to BAK/BAX-dependent apoptosis. ACTA ACUST UNITED AC 2013; 21:114-23. [PMID: 24269152 DOI: 10.1016/j.chembiol.2013.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/03/2013] [Accepted: 10/21/2013] [Indexed: 01/24/2023]
Abstract
For stressed cells to induce the mitochondrial pathway of apoptosis, a cohort of pro-apoptotic BCL-2 proteins must collaborate with the outer mitochondrial membrane to permeabilize it. BAK and BAX are the two pro-apoptotic BCL-2 family members that are required for mitochondrial outer membrane permeabilization. While biochemical and structural insights of BAK/BAX function have expanded in recent years, very little is known about the role of the outer mitochondrial membrane in regulating BAK/BAX activity. In this review, we will highlight the impact of mitochondrial composition (both protein and lipid) and mitochondrial interactions with cellular organelles on BAK/BAX function and cellular commitment to apoptosis. A better understanding of how BAK/BAX and mitochondrial biology are mechanistically linked will likely reveal novel insights into homeostatic and pathological mechanisms associated with apoptosis.
Collapse
Affiliation(s)
- Thibaud T Renault
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.
| |
Collapse
|
117
|
Autosomal dominant inheritance of brain cardiolipin fatty acid abnormality in VM/DK mice: association with hypoxic-induced cognitive insensitivity. Lipids 2013; 49:113-7. [PMID: 24243001 DOI: 10.1007/s11745-013-3857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Cardiolipin is a complex polyglycerol phospholipid found almost exclusively in the inner mitochondrial membrane and regulates numerous enzyme activities especially those related to oxidative phosphorylation and coupled respiration. Abnormalities in cardiolipin can impair mitochondrial function and bioenergetics. We recently demonstrated that the ratio of shorter chain saturated and monounsaturated fatty acids (C16:0; C18:0; C18:1) to longer chain polyunsaturated fatty acids (C18:2; C20:4; C22:6) was significantly greater in the brains of adult VM/DK (VM) inbred mice than in the brains of C57BL/6 J (B6) mice. The cardiolipin fatty acid abnormalities in VM mice are also associated with alterations in the activity of mitochondrial respiratory complexes. In this study we found that the abnormal brain fatty acid ratio in the VM strain was inherited as an autosomal dominant trait in reciprocal B6 × VM F1 hybrids. To evaluate the potential influence of brain cardiolipin fatty acid composition on cognitive sensitivity, we placed the parental B6 and VM mice and their reciprocal male and female B6VMF1 hybrid mice (3-month-old) in a hypoxic chamber (5 % O2). Cognitive awareness (conscientiousness) under hypoxia was significantly lower in the VM parental mice and F1 hybrid mice (11.4 ± 0.4 and 11.0 ± 0.4 min, respectively) than in the parental B6 mice (15.3 ± 1.4 min), indicating an autosomal dominant inheritance like that of the brain cardiolipin abnormalities. These findings suggest that impaired cognitive awareness under hypoxia is associated with abnormalities in neural lipid composition.
Collapse
|
118
|
Chen Y, Hagopian K, Bibus D, Villalba JM, López-Lluch G, Navas P, Kim K, Ramsey JJ. The influence of dietary lipid composition on skeletal muscle mitochondria from mice following eight months of calorie restriction. Physiol Res 2013; 63:57-71. [PMID: 24182343 DOI: 10.33549/physiolres.932529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Calorie restriction (CR) has been shown to decrease reactive oxygen species (ROS) production and retard aging in a variety of species. It has been proposed that alterations in membrane saturation are central to these actions of CR. As a step towards testing this theory, mice were assigned to 4 dietary groups (control and 3 CR groups) and fed AIN-93G diets at 95 % (control) or 60 % (CR) of ad libitum for 8 months. To manipulate membrane composition, the primary dietary fats for the CR groups were soybean oil (also used in the control diet), fish oil or lard. Skeletal muscle mitochondrial lipid composition, proton leak, and H(2)O(2) production were measured. Phospholipid fatty acid composition in CR mice was altered in a manner that reflected the n-3 and n-6 fatty acid profiles of their respective dietary lipid sources. Dietary lipid composition did not alter proton leak kinetics between the CR groups. However, the capacity of mitochondrial complex III to produce ROS was decreased in the CR lard compared to the other CR groups. The results of this study indicate that dietary lipid composition can influence ROS production in muscle mitochondria of CR mice. It remains to be determined if lard or other dietary oils can maximize the CR-induced decreases in ROS production.
Collapse
Affiliation(s)
- Y Chen
- VM Molecular Biosciences, University of California, Davis, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
120
|
Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:408-17. [PMID: 24183692 DOI: 10.1016/j.bbabio.2013.10.006] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022]
Abstract
Cardiolipin is a unique phospholipid which is almost exclusively located in the inner mitochondrial membrane where it is biosynthesized. Considerable progress has recently been made in understanding the role of cardiolipin in mitochondrial function and bioenergetics. This phospholipid is associated with membranes designed to generate an electrochemical gradient that is used to produce ATP, such as bacterial plasma membranes and inner mitochondrial membrane. This ubiquitous and intimate association between cardiolipin and energy transducing membranes indicates an important role for cardiolipin in mitochondrial bioenergetic processes. Cardiolipin has been shown to interact with a number of proteins, including the respiratory chain complexes and substrate carrier proteins. Over the past decade, the significance of cardiolipin in the organization of components of the electron transport chain into higher order assemblies, termed respiratory supercomplexes, has been established. Moreover, cardiolipin is involved in different stages of the mitochondrial apoptotic process, as well as in mitochondrial membrane stability and dynamics. This review discusses the current understanding of the functional role that cardiolipin plays in several reactions and processes involved in mitochondrial bioenergetics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Valeria Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Valentina De Benedictis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| |
Collapse
|
121
|
Seydlová G, Fišer R, Cabala R, Kozlík P, Svobodová J, Pátek M. Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2370-8. [PMID: 23845875 DOI: 10.1016/j.bbamem.2013.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Surfactin is a cyclic lipopeptide antibiotic that disturbs the integrity of the cytoplasmic membrane. In this study, the role of membrane lipids in the adaptation and possible surfactin tolerance of the surfactin producer Bacillus subtilis ATCC 21332 was investigated. During a 1-day cultivation, the phospholipids of the cell membrane were analyzed at the selected time points, which covered both the early and late stationary phases of growth, when surfactin concentration in the medium gradually rose from 2 to 84μmol·l(-1). During this time period, the phospholipid composition of the surfactin producer's membrane (Sf(+)) was compared to that of its non-producing mutant (Sf(-)). Substantial modifications of the polar head group region in response to the presence of surfactin were found, while the fatty acid content remained unaffected. Simultaneously with surfactin production, a progressive accumulation up to 22% of the stress phospholipid cardiolipin was determined in the Sf(+) membrane, whereas the proportion of phosphatidylethanolamine remained constant. At 24h, cardiolipin was found to be the second major phospholipid of the membrane. In parallel, the Laurdan generalized polarization reported an increasing rigidity of the lipid bilayer. We concluded that an enhanced level of cardiolipin is responsible for the membrane rigidification that hinders the fluidizing effect of surfactin. At the same time cardiolipin, due to its negative charge, may also prevent the surfactin-membrane interaction or surfactin pore formation activity.
Collapse
Affiliation(s)
- Gabriela Seydlová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic.
| | | | | | | | | | | |
Collapse
|
122
|
Borutaite V, Toleikis A, Brown GC. In the eye of the storm: mitochondrial damage during heart and brain ischaemia. FEBS J 2013; 280:4999-5014. [PMID: 23710974 DOI: 10.1111/febs.12353] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/02/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023]
Abstract
We review research investigating mitochondrial damage during heart and brain ischaemia, focusing on the mechanisms and consequences of ischaemia-induced and/or reperfusion-induced: (a) inhibition of mitochondrial respiratory complex I; (b) release of cytochrome c from mitochondria; (c) changes to mitochondrial phospholipids; and (d) nitric oxide inhibition of mitochondria. Heart ischaemia causes inhibition of cytochrome oxidase and complex I, release of cytochrome c, and induction of permeability transition and hydrolysis and oxidation of mitochondrial phospholipids, but some of the mechanisms are unclear. Brain ischaemia causes inhibition of complexes I and IV, but other effects are less clear.
Collapse
Affiliation(s)
- Vilmante Borutaite
- Institute of Neurosciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | |
Collapse
|
123
|
Nina S, Ludmila D, Svetlana B, Olga N, Olga P, Tamara S, Valery S, Mikhail B. Effect of phenol-induced changes in lipid composition on conformation of OmpF-like porin of Yersinia pseudotuberculosis. FEBS Lett 2013; 587:2260-5. [DOI: 10.1016/j.febslet.2013.05.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 11/30/2022]
|
124
|
Pöyry S, Cramariuc O, Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T. Atomistic simulations indicate cardiolipin to have an integral role in the structure of the cytochrome bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:769-78. [DOI: 10.1016/j.bbabio.2013.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
|
125
|
Stavrovskaya IG, Bird SS, Marur VR, Sniatynski MJ, Baranov SV, Greenberg HK, Porter CL, Kristal BS. Dietary macronutrients modulate the fatty acyl composition of rat liver mitochondrial cardiolipins. J Lipid Res 2013; 54:2623-35. [PMID: 23690505 DOI: 10.1194/jlr.m036285] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The interaction of dietary fats and carbohydrates on liver mitochondria were examined in male FBNF1 rats fed 20 different low-fat isocaloric diets. Animal growth rates and mitochondrial respiratory parameters were essentially unaffected, but mass spectrometry-based mitochondrial lipidomics profiling revealed increased levels of cardiolipins (CLs), a family of phospholipids essential for mitochondrial structure and function, in rats fed saturated or trans fat-based diets with a high glycemic index. These mitochondria showed elevated monolysocardiolipins (a CL precursor/product of CL degradation), elevated ratio of trans-phosphocholine (PC) (18:1/18:1) to cis-PC (18:1/18:1) (a marker of thiyl radical stress), and decreased ubiquinone Q9; the latter two of which imply a low-grade mitochondrial redox abnormality. Extended analysis demonstrated: i) dietary fats and, to a lesser extent, carbohydrates induce changes in the relative abundance of specific CL species; ii) fatty acid (FA) incorporation into mature CLs undergoes both positive (>400-fold) and negative (2.5-fold) regulation; and iii) dietary lipid abundance and incorporation of FAs into both the CL pool and specific mature tetra-acyl CLs are inversely related, suggesting previously unobserved compensatory regulation. This study reveals previously unobserved complexity/regulation of the central lipid in mitochondrial metabolism.
Collapse
Affiliation(s)
- Irina G Stavrovskaya
- Department of Neurosurgery, Brigham and Women's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Lucas-Sánchez A, Almaida-Pagán PF, Tocher DR, Mendiola P, de Costa J. Age-related changes in mitochondrial membrane composition of Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 2013; 69:142-51. [PMID: 23685767 DOI: 10.1093/gerona/glt066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial membrane composition may be a critical factor in the mechanisms of the aging process by influencing the propagation of reactions involved in mitochondrial function during periods of high stress. Changes affecting either lipid class or fatty acid compositions could affect phospholipid properties and alter mitochondrial function and cell viability. In the present study, mitochondrial membrane phospholipid compositions were analyzed throughout the life cycle of Nothobranchius rachovii. Mitochondrial phospholipids showed several changes with age. Proportions of cardiolipin decreased and those of sphingomyelin increased between 11- and 14-month-old fish. Fatty acid compositions of individual phospholipids in mitochondria were also significantly affected with age. These data suggest increasing damage to mitochondrial lipids during the life cycle of N. rachovii that could be one of the main factors related with and contributing to degraded mitochondrial function associated with the aging process.
Collapse
Affiliation(s)
- Alejandro Lucas-Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | | | | | | | | |
Collapse
|
127
|
Decline in cytochrome c oxidase activity in rat-brain mitochondria with aging. Role of peroxidized cardiolipin and beneficial effect of melatonin. J Bioenerg Biomembr 2013; 45:431-40. [PMID: 23494666 DOI: 10.1007/s10863-013-9505-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/26/2013] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are considered a key factor in mitochondrial dysfunction associated with brain aging process. Mitochondrial respiration is an important source of ROS and hence a potential contributor to brain functional changes with aging. In this study, we examined the effect of aging on cytochrome c oxidase activity and other bioenergetic processes such as oxygen consumption, membrane potential and ROS production in rat brain mitochondria. We found a significant age-dependent decline in the cytochrome c oxidase activity which was associated with parallel changes in state 3 respiration, membrane potential and with an increase in H2O2 generation. The cytochrome aa3 content was practically unchanged in mitochondria from young and aged animals. The age-dependent decline of cytochrome c oxidase activity could be restored, in situ, to the level of young animals, by exogenously added cardiolipin. In addition, exposure of brain mitochondria to peroxidized cardiolipin resulted in an inactivation of this enzyme complex. It is suggested that oxidation/depletion of cardiolipin could be responsible, at least in part, for the decline of cytochrome c oxidase and mitochondrial dysfunction in brain aging. Melatonin treatment of old animals largely prevented the age-associated alterations of mitochondrial bioenergetic parameters. These results may prove useful in elucidating the molecular mechanisms underlying mitochondrial dysfunction associated with brain aging process, and may have implications in etiopathology of age-associated neurodegenerative disorders and in the development of potential treatment strategies.
Collapse
|
128
|
Kiebish MA, Yang K, Liu X, Mancuso DJ, Guan S, Zhao Z, Sims HF, Cerqua R, Cade WT, Han X, Gross RW. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J Lipid Res 2013; 54:1312-25. [PMID: 23410936 DOI: 10.1194/jlr.m034728] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Barth syndrome is a complex metabolic disorder caused by mutations in the mitochondrial transacylase tafazzin. Recently, an inducible tafazzin shRNA knockdown mouse model was generated to deconvolute the complex bioenergetic phenotype of this disease. To investigate the underlying cause of hemodynamic dysfunction in Barth syndrome, we interrogated the cardiac structural and signaling lipidome of this mouse model as well as its myocardial bioenergetic phenotype. A decrease in the distribution of cardiolipin molecular species and robust increases in monolysocardiolipin and dilysocardiolipin were demonstrated. Additionally, the contents of choline and ethanolamine glycerophospholipid molecular species containing precursors for lipid signaling at the sn-2 position were altered. Lipidomic analyses revealed specific dysregulation of HETEs and prostanoids, as well as oxidized linoleic and docosahexaenoic metabolites. Bioenergetic interrogation uncovered differential substrate utilization as well as decreases in Complex III and V activities. Transgenic expression of cardiolipin synthase or iPLA2γ ablation in tafazzin-deficient mice did not rescue the observed phenotype. These results underscore the complex nature of alterations in cardiolipin metabolism mediated by tafazzin loss of function. Collectively, we identified specific lipidomic, bioenergetic, and signaling alterations in a murine model that parallel those of Barth syndrome thereby providing novel insights into the pathophysiology of this debilitating disease.
Collapse
Affiliation(s)
- Michael A Kiebish
- Division of Bioorganic Chemistry and Molecular Pharmacology, Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Arnarez C, Mazat JP, Elezgaray J, Marrink SJ, Periole X. Evidence for cardiolipin binding sites on the membrane-exposed surface of the cytochrome bc1. J Am Chem Soc 2013; 135:3112-20. [PMID: 23363024 DOI: 10.1021/ja310577u] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The respiratory chain is located in the inner membrane of mitochondria and produces the major part of the ATP used by a cell. Cardiolipin (CL), a double charged phospholipid composing ~10-20% of the mitochondrial membrane, plays an important role in the function and supramolecular organization of the respiratory chain complexes. We present an extensive set of coarse-grain molecular dynamics (CGMD) simulations aiming at the determination of the preferential interfaces of CLs on the respiratory chain complex III (cytochrome bc(1), CIII). Six CL binding sites are identified, including the CL binding sites known from earlier structural studies and buried into protein cavities. The simulations revealed the importance of two subunits of CIII (G and K in bovine heart) for the structural integrity of these internal CL binding sites. In addition, new binding sites are found on the membrane-exposed protein surface. The reproducibility of these binding sites over two species (bovine heart and yeast mitochondria) points to an important role for the function of the respiratory chain. Interestingly the membrane-exposed CL binding sites are located on the matrix side of CIII in the inner membrane and thus may provide localized sources of proton ready for uptake by CIII. Furthermore, we found that CLs bound to those membrane-exposed sites bridge the proteins during their assembly into supercomplexes by sharing the binding sites.
Collapse
Affiliation(s)
- Clement Arnarez
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
130
|
Visualizing a multidrug resistance protein, EmrE, with major bacterial lipids using Brewster angle microscopy. Chem Phys Lipids 2013; 167-168:33-42. [DOI: 10.1016/j.chemphyslip.2013.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/22/2012] [Accepted: 01/18/2013] [Indexed: 11/17/2022]
|
131
|
Bhatt DP, Houdek HM, Watt JA, Rosenberger TA. Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis. Neurochem Int 2013; 62:296-305. [PMID: 23321384 DOI: 10.1016/j.neuint.2013.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
Acetate supplementation in rats increases plasma acetate and brain acetyl-CoA levels. Although acetate is used as a marker to study glial energy metabolism, the effect that acetate supplementation has on normal brain energy stores has not been quantified. To determine the effect(s) that an increase in acetyl-CoA levels has on brain energy metabolism, we measured brain nucleotide, phosphagen and glycogen levels, and quantified cardiolipin content and mitochondrial number in rats subjected to acetate supplementation. Acetate supplementation was induced with glyceryl triacetate (GTA) by oral gavage (6 g/kg body weight). Rats used for biochemical analysis were euthanized using head-focused microwave irradiation at 2, and 4h following treatment to immediately stop metabolism. We found that acetate did not alter brain ATP, ADP, NAD, GTP levels, or the energy charge ratio [ECR, (ATP+½ ADP)/(ATP+ADP+AMP)] when compared to controls. However, after 4h of treatment brain phosphocreatine levels were significantly elevated with a concomitant reduction in AMP levels with no change in glycogen levels. In parallel studies where rats were treated with GTA for 28 days, we found that acetate did not alter brain glycogen and mitochondrial biogenesis as determined by measuring brain cardiolipin content, the fatty acid composition of cardiolipin and using quantitative ultra-structural analysis to determine mitochondrial density/unit area of cytoplasm in hippocampal CA3 neurons. Collectively, these data suggest that an increase in brain acetyl-CoA levels by acetate supplementation does increase brain energy stores however it has no effect on brain glycogen and neuronal mitochondrial biogenesis.
Collapse
Affiliation(s)
- Dhaval P Bhatt
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | | | | | |
Collapse
|
132
|
Patil VA, Greenberg ML. Cardiolipin-mediated cellular signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:195-213. [PMID: 23775697 DOI: 10.1007/978-94-007-6331-9_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
This review focuses on recent studies showing that cardiolipin (CL), a unique mitochondrial phospholipid, regulates many cellular functions and signaling pathways, both inside and outside the mitochondria. Inside the mitochondria, CL is a critical target of mitochondrial generated reactive oxygen species (ROS) and regulates signaling events related to apoptosis and aging. CL deficiency causes perturbation of signaling pathways outside the mitochondria, including the PKC-Slt2 cell integrity pathway and the high osmolarity glycerol (HOG) pathway, and is a key player in the cross-talk between the mitochondria and the vacuole. Understanding these connections may shed light on the pathology of Barth syndrome, a disorder of CL remodeling.
Collapse
Affiliation(s)
- Vinay A Patil
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
133
|
Changes in the mitochondrial permeability transition pore in aging and age-associated diseases. Mech Ageing Dev 2012; 134:1-9. [PMID: 23287740 DOI: 10.1016/j.mad.2012.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 12/26/2022]
Abstract
Aging is a biological process associated with impairment of mitochondrial bioenergetic function, increased oxidative stress, attenuated ability to respond to stresses and increased risk in contracting age-associated diseases. When mitochondria are subjected to oxidative stress, accompanied by calcium overload and ATP depletion, they undergo "a permeability transition", characterized by sudden induced change of the inner mitochondrial membrane permeability for water as well as for low-molecular weight solutes (≤1.5kDa), resulting in membrane depolarization and uncoupling of oxidative phosphorylation. Research interest in the entity responsible for this phenomenon, the "mitochondrial permeability transition pore" (MPTP) has dramatically increased after demonstration that it plays a key role in the life and death decision in cells. The molecular structure and identity of MPTP is not yet known, although the pore is thought to exist as multiprotein complex. Some evidence indicate that the sensitivity of mitochondria to Ca(2+)-induced MPTP opening increases with aging; however the basis of this difference is unknown. Changes in MPTP structure and/or function may have important implications in the aging process and aged-associated diseases. This article examines data relevant to this issue. The important role of a principal lipidic counter-partner of the MPTP, cardiolipin, will also be discussed.
Collapse
|
134
|
Lemmin T, Bovigny C, Lançon D, Dal Peraro M. Cardiolipin Models for Molecular Simulations of Bacterial and Mitochondrial Membranes. J Chem Theory Comput 2012; 9:670-8. [PMID: 26589063 DOI: 10.1021/ct300590v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Present in bacterial and mitochondrial membranes, cardiolipins have a unique dimeric structure, which carries up to two charges (i.e., one per phosphate group) and, under physiological conditions, can be unprotonated or singly protonated. Exhaustive models and characterization of cardiolipins are to date scarce; therefore we propose an ab initio parametrization of cardiolipin species for molecular simulation consistent with commonly used force fields. Molecular dynamics simulations using these models indicate a protonation dependent lipid packing. A peculiar interaction with solvating mono- and divalent cations is also observed. The proposed models will contribute to the study of the assembly of more realistic bacterial and mitochondrial membranes and the investigation of the role of cardiolipins for the biophysical and biochemical properties of membranes and membrane-embedded proteins.
Collapse
Affiliation(s)
- Thomas Lemmin
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Switzerland
| | - Christophe Bovigny
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Switzerland
| | - Diane Lançon
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Switzerland
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Switzerland
| |
Collapse
|
135
|
The influence of dietary lipid composition on liver mitochondria from mice following 1 month of calorie restriction. Biosci Rep 2012; 33:83-95. [PMID: 23098316 PMCID: PMC3522480 DOI: 10.1042/bsr20120060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To investigate the role mitochondrial membrane lipids play in the actions of CR (calorie restriction), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and the CR groups were fed diets containing soya bean oil (also in the control diet), fish oil or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak and H2O2 production were measured in liver mitochondria following 1 month of CR. The results indicate that mitochondrial phospholipid fatty acids reflect the PUFA (polyunsaturated fatty acid) profile of the dietary lipid sources. CR significantly decreased the capacity of ROS (reactive oxygen species) production by Complex III but did not markedly alter proton leak and ETC (electron transport chain) enzyme activities. Within the CR regimens, the CR-fish group had decreased ROS production by both Complexes I and III, and increased proton leak when compared with the other CR groups. The CR-lard group showed the lowest proton leak compared with the other CR groups. The ETC enzyme activity measurements in the CR regimens showed that Complex I activity was decreased in both the CR-fish and CR-lard groups. Moreover, the CR-fish group also had lower Complex II activity compared with the other CR groups. These results indicate that dietary lipid composition does influence liver mitochondrial phospholipid composition, ROS production, proton leak and ETC enzyme activities in CR animals.
Collapse
|
136
|
Lopes SC, Ribeiro C, Gameiro P. A New Approach to Counteract Bacteria Resistance: A Comparative Study Between Moxifloxacin and a New Moxifloxacin Derivative in Different Model Systems of Bacterial Membrane. Chem Biol Drug Des 2012; 81:265-74. [DOI: 10.1111/cbdd.12071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
137
|
Cordeiro RM, Miotto R, Baptista MS. Photodynamic Efficiency of Cationic meso-Porphyrins at Lipid Bilayers: Insights from Molecular Dynamics Simulations. J Phys Chem B 2012; 116:14618-27. [DOI: 10.1021/jp308179h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rodrigo M. Cordeiro
- Centro de
Ciências Naturais
e Humanas, Universidade Federal do ABC,
Rua Santa Adélia 166, CEP 09210-170, Santo André (SP),
Brazil
| | - Ronei Miotto
- Centro de
Ciências Naturais
e Humanas, Universidade Federal do ABC,
Rua Santa Adélia 166, CEP 09210-170, Santo André (SP),
Brazil
| | - Maurício S. Baptista
- Departamento
de
Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes
748, CEP 05508-900, São Paulo (SP), Brazil
| |
Collapse
|
138
|
Perron NR, Beeson C, Rohrer B. Early alterations in mitochondrial reserve capacity; a means to predict subsequent photoreceptor cell death. J Bioenerg Biomembr 2012; 45:101-9. [PMID: 23090843 DOI: 10.1007/s10863-012-9477-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/20/2012] [Indexed: 02/03/2023]
Abstract
Although genetic and environmental factors contribute to neurodegenerative disease, the underlying etiology common to many diseases might be based on metabolic demand. Mitochondria are the main producer of ATP, but are also the major source of reactive oxygen species. Under normal conditions, these oxidants are neutralized; however, under environmental insult or genetic susceptibility conditions, oxidative stress may exceed cellular antioxidant capacities, leading to degeneration. We tested the hypothesis that loss in mitochondrial reserve capacity plays a causative role in neuronal degeneration and chose a cone photoreceptor cell line as our model. 661W cells were exposed to agents that mimic oxidant stress or calcium overload. Real-time changes in cellular metabolism were assessed using the multi-well Seahorse Biosciences XF24 analyzer that measures oxygen consumption (OCR) and extracellular acidification rates (ECAR). Cellular stress resulted in an early loss of mitochondrial reserve capacity, without affecting basal respiration; and ECAR was increased, representing a compensatory shift of ATP productions toward glycolysis. The degree of change in energy metabolism was correlated with the amount of subsequent cell death 24-hours post-treatment, the concentration-dependent loss in mitochondrial reserve capacity correlated with the number of live cells. Our data suggested first, that loss in mitochondrial reserve capacity is a major contributor in disease pathogenesis; and second, that the XF24 assay might represent a useful surrogate assay amenable to the screening of agents that protect against loss of mitochondrial reserve capacity. In future experiments, we will explore these concepts for the development of neuroprotective agents.
Collapse
Affiliation(s)
- Nathan R Perron
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
139
|
White MY, Edwards AVG, Cordwell SJ, Van Eyk JE. Mitochondria: A mirror into cellular dysfunction in heart disease. Proteomics Clin Appl 2012; 2:845-61. [PMID: 21136884 DOI: 10.1002/prca.200780135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiovascular (CV) disease is the single most significant cause of morbidity and mortality worldwide. The emerging global impact of CV disease means that the goals of early diagnosis and a wider range of treatment options are now increasingly pertinent. As such, there is a greater need to understand the molecular mechanisms involved and potential targets for intervention. Mitochondrial function is important for physiological maintenance of the cell, and when this function is altered, the cell can begin to suffer. Given the broad range and significant impacts of the cellular processes regulated by the mitochondria, it becomes important to understand the roles of the proteins associated with this organelle. Proteomic investigations of the mitochondria are hampered by the intrinsic properties of the organelle, including hydrophobic mitochondrial membranes; high proportion of basic proteins (pI greater than 8.0); and the relative dynamic range issues of the mitochondria. For these reasons, many proteomic studies investigate the mitochondria as a discrete subproteome. Once this has been achieved, the alterations that result in functional changes with CV disease can be observed. Those alterations that lead to changes in mitochondrial function, signaling and morphology, which have significant implications for the cardiomyocyte in the development of CV disease, are discussed.
Collapse
Affiliation(s)
- Melanie Y White
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia; Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
140
|
Samhan-Arias AK, Ji J, Demidova OM, Sparvero LJ, Feng W, Tyurin V, Tyurina YY, Epperly MW, Shvedova AA, Greenberger JS, Bayir H, Kagan VE, Amoscato AA. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:2413-23. [PMID: 22200675 PMCID: PMC3398793 DOI: 10.1016/j.bbamem.2012.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/20/2012] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
Oxidized phospholipid species are important, biologically relevant, lipid signaling molecules that usually exist in low abundance in biological tissues. Along with their inherent stability issues, these oxidized lipids present themselves as a challenge in their detection and identification. Often times, oxidized lipid species can co-chromatograph with non-oxidized species making the detection of the former extremely difficult, even with the use of mass spectrometry. In this study, a normal-phase and reverse-phase two dimensional high performance liquid chromatography (HPLC)-mass spectrometric system was applied to separate oxidized phospholipids from their non-oxidized counterparts, allowing unambiguous detection in a total lipid extract. We have utilized bovine heart cardiolipin as well as commercially available tetralinoleoyl cardiolipin oxidized with cytochrome c (cyt c) and hydrogen peroxide as well as with lipoxygenase to test the separation power of the system. Our findings indicate that oxidized species of not only cardiolipin, but other phospholipid species, can be effectively separated from their non-oxidized counterparts in this two dimensional system. We utilized three types of biological tissues and oxidative insults, namely rotenone treatment of lymphocytes to induce mitochondrial damage and cell death, pulmonary inhalation exposure to single walled carbon nanotubes, as well as total body irradiation, in order to identify cardiolipin oxidation products, critical to the cell damage/cell death pathways in these tissues following cellular stress/injury. Our results indicate that selective cardiolipin (CL) oxidation is a result of a non-random free radical process. In addition, we assessed the ability of the system to identify CL oxidation products in the brain, a tissue known for its extreme complexity and diversity of CL species. The ability of the two dimensional HPLC-mass spectrometric system to detect and characterize oxidized lipid products will allow new studies to be formulated to probe the answers to biologically important questions with regard to oxidative lipidomics and cellular insult. This article is part of a Special Issue entitled: Oxidized phospholipids - their properties and interactions with proteins.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Jing Ji
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Olga M. Demidova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Louis J. Sparvero
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Weihong Feng
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Vladimir Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Michael W. Epperly
- Department of Radiation Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anna A. Shvedova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV
| | - Joel S. Greenberger
- Department of Radiation Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hülya Bayir
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
141
|
Lopes SC, Neves CS, Eaton P, Gameiro P. Improved model systems for bacterial membranes from differing species: Theimportance of varying composition in PE/PG/cardiolipin ternary mixtures. Mol Membr Biol 2012; 29:207-17. [DOI: 10.3109/09687688.2012.700491] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
142
|
Aoun M, Fouret G, Michel F, Bonafos B, Ramos J, Cristol JP, Carbonneau MA, Coudray C, Feillet-Coudray C. Dietary fatty acids modulate liver mitochondrial cardiolipin content and its fatty acid composition in rats with non alcoholic fatty liver disease. J Bioenerg Biomembr 2012; 44:439-52. [PMID: 22689144 DOI: 10.1007/s10863-012-9448-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/29/2012] [Indexed: 12/23/2022]
Abstract
No data are reported on changes in mitochondrial membrane phospholipids in non-alcoholic fatty liver disease. We determined the content of mitochondrial membrane phospholipids from rats with non alcoholic liver steatosis, with a particular attention for cardiolipin (CL) content and its fatty acid composition, and their relation with the activity of the mitochondrial respiratory chain complexes. Different dietary fatty acid patterns leading to steatosis were explored. With high-fat diet, moderate macrosteatosis was observed and the liver mitochondrial phospholipid class distribution and CL fatty acids composition were modified. Indeed, both CL content and its C18:2n-6 content were increased with liver steatosis. Moreover, mitochondrial ATP synthase activity was positively correlated to the total CL content in liver phospholipid and to CL C18:2n-6 content while other complexes activity were negatively correlated to total CL content and/or CL C18:2n-6 content of liver mitochondria. The lard-rich diet increased liver CL synthase gene expression while the fish oil-rich diet increased the (n-3) polyunsaturated fatty acids content in CL. Thus, the diet may be a significant determinant of both the phospholipid class content and the fatty acid composition of liver mitochondrial membrane, and the activities of some of the respiratory chain complex enzymes may be influenced by dietary lipid amount in particular via modification of the CL content and fatty acid composition in phospholipid.
Collapse
Affiliation(s)
- Manar Aoun
- INRA UMR 866, Dynamique Musculaire et Métabolisme, 34060, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Age-related changes in mitochondrial membrane composition of rainbow trout (Oncorhynchus mykiss) heart and brain. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:129-37. [PMID: 22634369 DOI: 10.1016/j.cbpb.2012.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/21/2022]
Abstract
Membrane composition, particularly of mitochondria, could be a critical factor by determining the propagation of reactions involved in mitochondrial function during periods of high oxidative stress such as rapid growth and aging. Considering that phospholipids not only contribute to the structural and physical properties of biological membranes, but also participate actively in cell signaling and apoptosis, changes affecting either class or fatty acid compositions could affect phospholipid properties and, thus, alter mitochondrial function and cell viability. In the present study, heart and brain mitochondrial membrane phospholipid compositions were analyzed in rainbow trout during the four first years of life, a period characterized by rapid growth and a sustained high metabolic rate. Specifically, farmed fish of three ages (1-, 2- and 4-years) were studied, and phospholipid class compositions of heart and brain mitochondria, and fatty acid compositions of individual phospholipid classes were determined. Rainbow trout heart and brain mitochondria showed different phospholipid compositions (class and fatty acid), likely related to tissue-specific functions. Furthermore, changes in phospholipid class and fatty acid compositions with age were also tissue-dependent. Heart mitochondria had lower proportions of cardiolipin (CL), phosphatidylserine (PS) and phosphatidylinositol, and higher levels of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) with age. Heart mitochondrial membranes became more unsaturated with age, with a significative increase of peroxidation index in CL, PS and sphingomyelin (SM). Therefore, heart mitochondria became more susceptible to oxidative damage with age. In contrast, brain mitochondrial PC and PS content decreased in 4-year-old animals while there was an increase in the proportion of SM. The three main phospholipid classes in brain (PC, PE and PS) showed decreased n-3 polyunsaturated fatty acids, docosahexaenoic acid and peroxidation index, which indicate a different response of brain mitochondrial lipids to rapid growth and maturation.
Collapse
|
144
|
Kiebish MA, Yang K, Sims HF, Jenkins CM, Liu X, Mancuso DJ, Zhao Z, Guan S, Abendschein DR, Han X, Gross RW. Myocardial regulation of lipidomic flux by cardiolipin synthase: setting the beat for bioenergetic efficiency. J Biol Chem 2012; 287:25086-97. [PMID: 22584571 DOI: 10.1074/jbc.m112.340521] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic stress, thereby identifying cardiolipin synthase as a novel therapeutic target to attenuate mitochondrial dysfunction in diabetic myocardium.
Collapse
Affiliation(s)
- Michael A Kiebish
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Novel cardiolipins from uncultured methane-metabolizing archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:832097. [PMID: 22654563 PMCID: PMC3359654 DOI: 10.1155/2012/832097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
Abstract
Novel cardiolipins from Archaea were detected by screening the intact polar lipid (IPL) composition of microbial communities associated with methane seepage in deep-sea sediments from the Pakistan margin by high-performance liquid chromatography electrospray ionization mass spectrometry. A series of tentatively identified cardiolipin analogues (dimeric phospholipids or bisphosphatidylglycerol, BPG) represented 0.5% to 5% of total archaeal IPLs. These molecules are similar to the recently described cardiolipin analogues with four phytanyl chains from extreme halophilic archaea. It is worth noting that cardiolipin analogues from the seep archaeal communities are composed of four isoprenoidal chains, which may contain differences in chain length (20 and 25 carbon atoms) and degrees of unsaturation and the presence of a hydroxyl group. Two novel diether lipids, structurally related to the BPGs, are described and interpreted as degradation products of archaeal cardiolipin analogues. Since archaeal communities in seep sediments are dominated by anaerobic methanotrophs, our observations have implications for characterizing structural components of archaeal membranes, in which BPGs are presumed to contribute to modulation of cell permeability properties. Whether BPGs facilitate interspecies interaction in syntrophic methanotrophic consortia remains to be tested.
Collapse
|
146
|
Aguayo D, González-Nilo FD, Chipot C. Insight into the Properties of Cardiolipin Containing Bilayers from Molecular Dynamics Simulations, Using a Hybrid All-Atom/United-Atom Force Field. J Chem Theory Comput 2012; 8:1765-73. [PMID: 26593668 DOI: 10.1021/ct200849k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simulation of three models of cardiolipin (CL) containing membranes using a new set of parameters for tetramyristoyl and tetraoleoyl CLs has been developed in the framework of the united-atom CHARMM27-UA and the all-atom CHARMM36 force fields with the aim of performing molecular dynamics (MD) simulations of cardiolipin-containing mixed-lipid membranes. The new parameters use a hybrid representation of all-atom head groups in conjunction with implicit-hydrogen united-atom (UA) to describe the oleoyl and myristoyl chains of the CLs, in lieu of the fully atomistic description, thereby allowing longer simulations to be undertaken. The physicochemical properties of the bilayers were determined and compared with previously reported data. Furthermore, using tetramyristoyl CL mixed with POPG and POPE lipids, a mitochondrial membrane was simulated. The results presented here show the different behavior of the bilayers as a result of the lipid composition, where the length of the acyl chain and the conformation of the headgroup can be associated with the mitochondrial membrane properties. The new hybrid CL parameters prove to be well suited for the simulation of the molecular structure of CL-containing bilayers and can be extended to other lipid bilayers composed of CLs with different acyl chains or alternate head groups.
Collapse
Affiliation(s)
- Daniel Aguayo
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería en Bioinformática, Universidad de Talca , 2 Norte 685, Casilla 721, Talca, Chile.,Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bello , República 239, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso , Valparaíso, Chile
| | - Fernando D González-Nilo
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bello , República 239, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso , Valparaíso, Chile
| | - Christophe Chipot
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign , 405 North Mathews, Urbana, Illinois 61801, United States.,Équipe de dynamique des assemblages membranaires, UMR 7565, Université de Lorraine , BP 239, 54506 Vandoeuvre-lès-Nancy cedex, France
| |
Collapse
|
147
|
Schild L, Lendeckel U, Gardemann A, Wiswedel I, Schmidt CA, Wolke C, Walther R, Grabarczyk P, Busemann C. Composition of molecular cardiolipin species correlates with proliferation of lymphocytes. Exp Biol Med (Maywood) 2012; 237:372-9. [PMID: 22490512 DOI: 10.1258/ebm.2011.011311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial phospholipid cardiolipin (CL) is required for oxidative phosphorylation. Oxidation of CL results in the disruption of CL-cytochrome c binding and the induction of apoptosis. Large variations in the acyl-chain residues of CL have been reported, but evidence as to whether these variants exert distinct biological effects has been limited. We have studied the acyl-chain composition of CL in lymphocytes, and found marked differences between highly and slowly proliferating cells. In fast growing cells, we detected a decreased number of double bonds, and a higher amount of C16 acyl-chain residues in CL, compared with slower growing cells. However, fewer C18 acyl-chain residues were found in CL from fast growing cells compared with slower proliferating cells. Our results suggest a functional link between acyl-chain composition of CL and cell proliferation.
Collapse
Affiliation(s)
- Lorenz Schild
- Department of Pathobiochemistry, Medical Faculty, Institute of Clinical Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Almaida-Pagán PF, de Costa J, Mendiola P, Tocher DR. Changes in tissue and mitochondrial membrane composition during rapid growth, maturation and aging in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:404-12. [DOI: 10.1016/j.cbpb.2012.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
149
|
Karo J, Peterson P, Vendelin M. Molecular dynamics simulations of creatine kinase and adenine nucleotide translocase in mitochondrial membrane patch. J Biol Chem 2012; 287:7467-76. [PMID: 22241474 PMCID: PMC3293576 DOI: 10.1074/jbc.m111.332320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies.
Collapse
Affiliation(s)
- Jaanus Karo
- Laboratory of Systems Biology, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
| | | | | |
Collapse
|
150
|
Ischemia-induced inhibition of mitochondrial complex I in rat brain: effect of permeabilization method and electron acceptor. Neurochem Res 2012; 37:965-76. [PMID: 22219133 DOI: 10.1007/s11064-011-0689-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/18/2011] [Accepted: 12/23/2011] [Indexed: 12/23/2022]
Abstract
In this study we have examined the effect of global brain ischemia/reperfusion on biochemical properties of the mitochondrial respiratory complex I (CI) in rat hippocampus and cortex. Since the inner mitochondrial membrane forms the permeability barrier for NADH, the methodology of enzymatic activity determinations employs membrane permeabilization methods. This action affects the basic character of electrostatic and hydrophobic interactions inside the membrane and might influence functional properties of membrane embedded proteins. Therefore we have performed the comparative analysis of two permeabilization methods (sonication, detergent) and their impact on CI enzymatic activities under global brain ischemic-reperfusion conditions. We have observed that ischemia led to significant decrease of CI activities using both permeabilization methods in both brain areas. However, significant differencies in enzymatic activities were registered during reperfusion intervals according to used permeabilization method. We have also tested the effect of electron acceptors (decylubiquinone, potassium ferricyanide, nitrotetrazolium blue) on CI activities during I/R. Based on our results we assume that the critical site where ischemia affects CI activities is electron transfer to electron acceptor. Further, the observed mitochondrial dysfunction was analyzed by means of one and 2-dimensional BN PAGE/SDS PAGE with the focus on 3-nitrotyrosine immunodetection as a marker of oxidative damage to proteins. Add to this, initialization of p53 mitochondrial apoptosis through p53, Bax, Bcl-X(L) proteins and a possible involvement of GRIM-19, the CI structural subunit, in apoptotic processes were also studied.
Collapse
|