101
|
Abstract
The eucaryotic cell cycle is regulated by the periodic synthesis and destruction of cyclins that associate with and activate cyclin-dependent kinases. Cyclin-dependent kinase inhibitors, such as p21 and p16, also play important roles in cell cycle control by coordinating internal and external signals and impeding proliferation at several key checkpoints. Understanding how these proteins interact to regulate the cell cycle has become increasingly important to researchers and clinicians with the discovery that many of the genes that encode cell cycle regulatory activities are targets for alterations that underlie the development of cancer. Several therapeutic agents, such as DNA-damaging drugs, microtubule inhibitors, antimetabolites, and topoisomerase inhibitors, take advantage of this disruption in normal cell cycle regulation to target checkpoint controls and ultimately induce growth arrest or apoptosis of neoplastic cells. Other therapeutic drugs being developed, such as UCN-01, specifically inhibit cell cycle regulatory proteins.
Collapse
Affiliation(s)
- D G Johnson
- M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | | |
Collapse
|
102
|
Noble ME, Endicott JA. Chemical inhibitors of cyclin-dependent kinases: insights into design from X-ray crystallographic studies. Pharmacol Ther 1999; 82:269-78. [PMID: 10454204 DOI: 10.1016/s0163-7258(98)00051-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cyclin-dependent kinases (CDKs) are a family of protein kinases that regulate progression through the eukaryotic cell cycle. Aberrant CDK activity or function is a common defect in human tumours, resulting in unrestrained cellular proliferation. X-ray crystallographic analysis of monomeric CDK2 and CDK2 complexes has revealed how phosphorylation and cyclin binding mediate enzyme activation and how this activity can be regulated by further protein association. Current research aims to improve the selectivity and/or potency of small molecule CDK inhibitors, both to develop specific probes to study the roles of the different CDK family members in coordinating cell cycle progression, and as lead molecules for the design of therapeutically useful drugs. This design process has been assisted by the availability of a number of CDK2/inhibitor structures determined using X-ray crystallography. These structures have shown that molecules related to ATP can be accommodated in the ATP-binding site in a number of orientations, utilising interactions observed between CDK2 and its natural ligand, as well as novel interactions with CDK2 residues that lie both within and outside the active site cleft. This site can also bind inhibitors that are structurally unrelated to ATP. These results suggest that it may be possible to design pharmacologically and pharmaceutically important ATP-binding site-directed ligands that act as specific and potent inhibitors of CDK activity.
Collapse
Affiliation(s)
- M E Noble
- Department of Biochemistry and Oxford Centre for Molecular Sciences, University of Oxford, UK
| | | |
Collapse
|
103
|
Suzuki M, Hosaka Y, Matsushima H, Goto T, Kitamura T, Kawabe K. Butyrolactone I induces cyclin B1 and causes G2/M arrest and skipping of mitosis in human prostate cell lines. Cancer Lett 1999; 138:121-30. [PMID: 10378783 DOI: 10.1016/s0304-3835(98)00381-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Several naturally occurring cyclin-dependent kinase (CDK) inhibitors have been isolated from different lower organisms. In this report, we examined the effect of one of the CDK inhibitors, butyrolactone I (BL), on the expression of cyclins D2, A and B1 in three human prostatic cancer cell lines (DU145, PC-3, LNCaP) using two colored flow cytometric analysis. The percentage of DU145 cells in the 4C phase of the cell cycle were increased significantly at both 70 microM and 100 microM BL. Furthermore, an additional 8C peak was observed which had double the DNA content of the 4C phase at these concentrations of BL. The appearance of the 8C peak increased gradually and was more evident in DU145 and PC-3 than LNCaP. Cells in the 8C peak had either two nuclei or abnormal nuclei as observed by Papanicolaou stain. BL also increased the amount of cyclin B1 positive cells in the 4C phase. This increase was apparent on day 1 and returned to normal by day 3. Since BL selectively inhibits cyclin-dependent kinase, cyclin B1 might accumulate without being degraded. Other cyclins were not significantly changed by BL. The data demonstrate that BL inhibited Cdc2 of unsynchronized cultured prostate cancer cells, and interrupted the cell cycle progression toward cell division. The BL inhibition of Cdc2 led to the accumulation of cells in the 4C phase without mitosis resulting in an accumulation of cyclin B1. The appearance of cells in the 8C phase may be due to the progression of cells in the 4C phase through the cell cycle skipping mitosis. Cyclin B1 decreased in correlation with the progression through a new cell cycle. These results suggest that BL does not cause a complete arrest of the cell cycle in G2/M but that BL occasionally allows for the skipping of mitosis and subsequent progression through the cell cycle to occur.
Collapse
Affiliation(s)
- M Suzuki
- Department of Urology, Faculty of Medicine, The University of Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
104
|
Zhai W, Comai L. A kinase activity associated with simian virus 40 large T antigen phosphorylates upstream binding factor (UBF) and promotes formation of a stable initiation complex between UBF and SL1. Mol Cell Biol 1999; 19:2791-802. [PMID: 10082545 PMCID: PMC84072 DOI: 10.1128/mcb.19.4.2791] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 large T antigen is a multifunctional protein which has been shown to modulate the expression of genes transcribed by RNA polymerase I (Pol I), II, and III. In all three transcription systems, a key step in the activation process is the recruitment of large T antigen to the promoter by direct protein-protein interaction with the TATA binding protein (TBP)-TAF complexes, namely, SL1, TFIID, and TFIIIB. However, our previous studies on large T antigen stimulation of Pol I transcription also revealed that the binding to the TBP-TAFI complex SL1 is not sufficient to activate transcription. To further define the molecular mechanism involved in large T antigen-mediated Pol I activation, we examined whether the high-mobility group box-containing upstream binding factor (UBF) plays any role in this process. Here, using cell labeling experiments, we showed that large T antigen expression induces an increase in UBF phosphorylation. Further biochemical analysis demonstrated that UBF is phosphorylated by a kinase activity that is strongly associated with large T antigen, and that the carboxy-terminal activation domain of UBF is required for the phosphorylation to occur. Using in vitro reconstituted transcription assays, we demonstrated that the inability of alkaline phosphatase treated UBF to efficiently activate transcription can be rescued by large T antigen. Moreover, we showed that large T antigen-induced UBF phosphorylation promotes the formation of a stable UBF-SL1 complex. Together, these results provide strong evidence for an important role for the large T antigen-associated kinase in mediating the stimulation of RNA Pol I transcription.
Collapse
Affiliation(s)
- W Zhai
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | |
Collapse
|
105
|
Chun MW, Shin DH, Song SY, Lee YH, Lee CH, Jeong LS, Lee SK. Synthesis of L-Sangivamycin and Toyocamycin Analogues and Their Inhibitory Activities of SER/THR Protein Kinases. ACTA ACUST UNITED AC 1999. [DOI: 10.1080/15257779908041516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
106
|
Belizário JE, Sherwood S, Beçak W. Induction of apoptosis in cancer cells by tumor necrosis factor and butyrolactone, an inhibitor of cyclin-dependent kinases. Braz J Med Biol Res 1999; 32:473-82. [PMID: 10347813 DOI: 10.1590/s0100-879x1999000400016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of apoptosis by tumor necrosis factor (TNF) is modulated by changes in the expression and activity of several cell cycle regulatory proteins. We examined the effects of TNF (1-100 ng/ml) and butyrolactone I (100 microM), a specific inhibitor of cyclin-dependent kinases (CDK) with high selectivity for CDK-1 and CDK-2, on three different cancer cell lines: WEHI, L929 and HeLa S3. Both compounds blocked cell growth, but only TNF induced the common events of apoptosis, i.e., chromatin condensation and ladder pattern of DNA fragmentation in these cell lines. The TNF-induced apoptosis events were increased in the presence of butyrolactone. In vitro phosphorylation assays for exogenous histone H1 and endogenous retinoblastoma protein (pRb) in the total cell lysates showed that treatment with both TNF and butyrolactone inhibited the histone H1 kinase (WEHI, L929 and HeLa) and pRb kinase (WEHI) activities of CDKs, as compared with the controls. The role of proteases in the TNF and butyrolactone-induced apoptosis was evaluated by comparing the number and expression of polypeptides in the cell lysates by gel electrophoresis. TNF and butyrolactone treatment caused the disappearance of several cellular protein bands in the region between 40-200 kDa, and the 110-90- and 50-kDa proteins were identified as the major substrates, whose degradation was remarkably increased by the treatments. Interestingly, the loss of several cellular protein bands was associated with the marked accumulation of two proteins apparently of 60 and 70 kDa, which may be cleavage products of one or more proteins. These findings link the decrease of cyclin-dependent kinase activities to the increase of protease activities within the growth arrest and apoptosis pathways induced by TNF.
Collapse
Affiliation(s)
- J E Belizário
- Laboratório de Genética, Instituto Butantan, São Paulo, Brasil.
| | | | | |
Collapse
|
107
|
Hiromura K, Pippin JW, Fero ML, Roberts JM, Shankland SJ. Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27(Kip1). J Clin Invest 1999; 103:597-604. [PMID: 10074476 PMCID: PMC408127 DOI: 10.1172/jci5461] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Proliferation and apoptosis are increased in many types of inflammatory diseases. A role for the cyclin kinase inhibitor p27(Kip1) (p27) in limiting proliferation has been shown. In this study, we show that p27(-/-) mesangial cells and fibroblasts have strikingly elevated rates of apoptosis, not proliferation, when deprived of growth factors. Apoptosis was rescued by restoration of p27 expression. Cyclin A-cyclin-dependent kinase 2 (CDK2) activity, but not cyclin E-CDK2 activity, was increased in serum-starved p27(-/-) cells, and decreasing CDK2 activity, either pharmacologically (Roscovitine) or by a dominant-negative mutant, inhibited apoptosis. Our results show that a new biological function for the CDK inhibitor p27 is protection of cells from apoptosis by constraining CDK2 activity. These results suggest that CDK inhibitors are necessary for coordinating the cell cycle and cell-death programs so that cell viability is maintained during exit from the cell cycle.
Collapse
Affiliation(s)
- K Hiromura
- Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Seattle, Washington 98195-6521, USA
| | | | | | | | | |
Collapse
|
108
|
Schang LM, Rosenberg A, Schaffer PA. Transcription of herpes simplex virus immediate-early and early genes is inhibited by roscovitine, an inhibitor specific for cellular cyclin-dependent kinases. J Virol 1999; 73:2161-72. [PMID: 9971799 PMCID: PMC104461 DOI: 10.1128/jvi.73.3.2161-2172.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1998] [Accepted: 12/03/1998] [Indexed: 11/20/2022] Open
Abstract
Although herpes simplex virus (HSV) replicates in noncycling as well as cycling cells, including terminally differentiated neurons, it has recently been shown that viral replication requires the activities of cellular cyclin-dependent kinases (cdks) (L. M. Schang, J. Phillips, and P. A. Schaffer, J. Virol. 72:5626-5637, 1998). Since we were unable to isolate HSV mutants resistant to two cdk inhibitors, Olomoucine and Roscovitine (Rosco), we hypothesized that cdks may be required for more than one viral function during HSV replication. In the experiments presented here, we tested this hypothesis by measuring the efficiency of (i) viral replication; (ii) expression of selected immediate-early (IE) (ICP0 and ICP4), early (E) (ICP8 and TK), and late (L) (gC) genes; and (iii) viral DNA synthesis in infected cultures to which Rosco was added after IE or IE and E proteins had already been synthesized. Rosco inhibited HSV replication, transcription of IE and E genes, and viral DNA synthesis when added at 1, 2, or 6 h postinfection or after release from a 6-h cycloheximide block. Transcription of a representative L gene, gC, was also inhibited by Rosco under all conditions examined. We conclude from these studies that cellular cdks are required for transcription of E as well as IE genes. In contrast, steady-state levels of at least one cellular housekeeping gene were not affected by Rosco. The requirement of viral IE and E transcription for cellular cdks may reflect either a requirement for specific cdk-activated cellular and/or viral transcription factors or a more global requirement for cdks in the transcriptional activation of the viral genome.
Collapse
Affiliation(s)
- L M Schang
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | |
Collapse
|
109
|
Abstract
The cell-division cycle is a tightly controlled process that is regulated by the cyclin/CDK family of protein kinase complexes. Stringent control of this process is essential to ensure that DNA synthesis and subsequent mitotic division are accurately and coordinately executed. There is now strong evidence that CDKs, their regulators, and substrates are the targets of genetic alteration in many human cancers. As a result of this, the CDKs have been targeted for drug discovery and a number of small molecule inhibitors of CDKs have been identified.
Collapse
Affiliation(s)
- M D Garrett
- Onyx Pharmaceuticals, 3031 Research Drive, Richmond, California 94806, USA.
| | | |
Collapse
|
110
|
Rickert P, Corden JL, Lees E. Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases. Oncogene 1999; 18:1093-102. [PMID: 10023686 DOI: 10.1038/sj.onc.1202399] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II is important for basal transcriptional processes in vivo and for cell viability. Several kinases, including certain cyclin-dependent kinases, can phosphorylate this substrate in vitro. It has been proposed that differential CTD phosphorylation by different kinases may regulate distinct transcriptional processes. We have found that two of these kinases, cyclin C/CDK8 and cyclin H/CDK7/p36, can specifically phosphorylate distinct residues in recombinant CTD substrates. This difference in specificity may be largely due to their varying ability to phosphorylate lysine-substituted heptapeptide repeats within the CTD, since they phosphorylate the same residue in CTD consensus heptapeptide repeats. Furthermore, this substrate specificity is reflected in vivo where cyclin C/ CDK8 and cyclin H/CDK7/p36 can differentially phosphorylate an endogenous RNA polymerase II substrate. Several small-molecule kinase inhibitors have different specificities for these related kinases, indicating that these enzymes have diverse active-site conformations. These results suggest that cyclin C/CDK8 and cyclin H/CDK7/p36 are physically distinct enzymes that may have unique roles in transcriptional regulation mediated by their phosphorylation of specific sites on RNA polymerase II.
Collapse
Affiliation(s)
- P Rickert
- Department of Cell Signaling, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, California 94304, USA
| | | | | |
Collapse
|
111
|
Nogami A, Mineyuki Y. Loosening of a Preprophase Band of Microtubules in Onion (Allium cepa L.) Root Tip Cells by Kinase Inhibitors. Cell Struct Funct 1999; 24:419-24. [PMID: 15216900 DOI: 10.1247/csf.24.419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Effects of kinase inhibitors on the preprophase band of microtubules in onion (Allium cepa L.) root tip cells were examined. Bundled microtubules in preprophase bands were dispersed on the cell cortex when onion seedlings were incubated with 2.5-5.0 mM 6-dimethylaminopurine. Fifteen min was enough for the bundled microtubules to disappear. Although many preprophase bands remained when the seedlings were incubated with 60 microM staurosporin, these preprophase band microtubules were loosened and the width of the band became broad. These results sugget that some kinases are involved in the microtubule bundling in the preprophase band development.
Collapse
Affiliation(s)
- A Nogami
- Department of Biological Science, Faculty of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | | |
Collapse
|
112
|
Stoeber K, Mills AD, Kubota Y, Krude T, Romanowski P, Marheineke K, Laskey RA, Williams GH. Cdc6 protein causes premature entry into S phase in a mammalian cell-free system. EMBO J 1998; 17:7219-29. [PMID: 9857179 PMCID: PMC1171068 DOI: 10.1093/emboj/17.24.7219] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We exploit an improved mammalian cell-free DNA replication system to analyse quiescence and Cdc6 function. Quiescent 3T3 nuclei cannot initiate replication in S phase cytosol from HeLa or 3T3 cells. Following release from quiescence, nuclei become competent to initiate semiconservative DNA replication in S phase cytosol, but not in G0 phase cytosol. Immunoblots show that quiescent cells lack Cdc6 and that minichromosome maintenance (MCM) proteins are not associated with chromatin. Competence of G1 phase nuclei to replicate in vitro coincides with maximum Cdc6 accumulation and MCM protein binding to chromatin in vivo. Addition of recombinant Cdc6 to permeabilized, but not intact, G1 nuclei causes up to 82% of the nuclei to initiate and accelerates G1 progression, making nuclei competent to replicate prematurely.
Collapse
Affiliation(s)
- K Stoeber
- Wellcome/CRC Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Gil-Gómez G, Berns A, Brady HJ. A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. EMBO J 1998; 17:7209-18. [PMID: 9857178 PMCID: PMC1171067 DOI: 10.1093/emboj/17.24.7209] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Resting thymocytes undergoing apoptosis in response to specific stimuli degrade the cdk inhibitor p27(Kip1) and upregulate Cdk2 kinase activity. Inhibition of Cdk2 kinase activity efficiently blocks cell death via certain apoptosis pathways whereas overexpression of Cdk2 accelerates such cell death, suggesting its involvement in the signal transduction pathways activated by certain apoptotic stimuli. We found that Cdk2 activation during thymocyte apoptosis can be regulated by p53, Bax and Bcl-2. The highly elevated Cdk2 kinase activity in the apoptosing thymocytes is not associated with its canonical cyclins, cyclin E and cyclin A, and requires de novo synthesis of proteins for activation to take place. We therefore propose Cdk2 activation to be a crucial event in distinct pathways of apoptosis and the point at which the cell cycle and cell death pathways interact.
Collapse
Affiliation(s)
- G Gil-Gómez
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
114
|
Binarová P, Dolezel J, Draber P, Heberle-Bors E, Strnad M, Bögre L. Treatment of Vicia faba root tip cells with specific inhibitors to cyclin-dependent kinases leads to abnormal spindle formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:697-707. [PMID: 10069076 DOI: 10.1046/j.1365-313x.1998.00340.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Many events during cell division are triggered by an evolutionary conserved regulator, the cyclin-dependent kinase (Cdk). Here we used two novel drugs, the purine analogues bohemine and roscovitine, to study the role of Cdks in cell cycle progression and microtubule organisation in Vicia faba root tip cells. Both drugs inhibited the activity of immunopurified Vicia faba and alfalfa Cdc2-kinase. The transcript levels of an A- and B-type cyclin, as well as of the cdc2 genes, declined in treated root tips, while the mRNA level of a D-type cyclin gene was not affected. An observed transient arrest at the G1/S and G2/M regulatory points indicated that inhibition of the Cdc2-kinase had an effect on both transitions. In contrast to the regular bipolar spindle in untreated cell, in drug-treated metaphase cells abnormally short and dense kinetochore microtubule fibres were observed. These microtubules were randomly arranged in the vicinity of the kinetochores and connected the chromosomes. Thus, the chromosomes were not aligned on the metaphase plate but were arranged in a circle, with kinetochores pointing inwards and chromosome arms pointing outwards. gamma-Tubulin, which plays a role in microtubule nucleation, also localised to the centre of the monopolar spindle. The observed abnormalities in mitosis, after inhibition of Cdc2-kinase by specific drugs, suggest a role for this enzyme in regulating some of the steps leading to a bipolar spindle structure.
Collapse
Affiliation(s)
- P Binarová
- Norman Borlaug Center for Plant Science De Montfort University, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
115
|
Sánchez Martin C, Díaz-Nido J, Avila J. Regulation of a site-specific phosphorylation of the microtubule-associated protein 2 during the development of cultured neurons. Neuroscience 1998; 87:861-70. [PMID: 9759974 DOI: 10.1016/s0306-4522(98)00195-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The phosphorylation state of cytoskeletal proteins, including certain microtubule-associated proteins, may influence the development and plasticity of axons and dendrites in mammalian neuron in response to appropriate extracellular stimuli. In particular, high molecular weight microtubule-associated protein 2, has been implicated in dendrite growth and synaptic plasticity and is thought to be modulated by phosphorylation and dephosphorylation. We have previously determined that threonines 1620/1623 on the microtubule-associated protein 2 molecule become phosphorylated in vivo and are targets for proline-directed protein kinases in vitro. Using the phosphorylated site-specific antibody 305, we now report the decreased phosphorylation state of high molecular weight microtubule-associated protein 2 during the development of cultured cerebellar granule neurons. Phosphorylation of high molecular weight microtubule-associated protein 2 at this site is significantly inhibited by lithium in short-term cultured neurons, which suggests the implication of glycogen synthase kinase-3. In long-term cultured neurons, it is also partially inhibited by PD098059, an inhibitor of extracellular signal-regulated protein kinase activation, which indicates an additional contribution of this kinase to high molecular weight microtubule-associated protein 2 phosphorylation at this stage. Both in short-term and long-term cultured neurons, okadaic acid augments high molecular weight microtubule-associated protein 2 phosphorylation at this site through the inhibition of protein phosphatases 1 and/or 2A. Finally, glutamate receptor activation leads to a dephosphorylation of high molecular weight microtubule-associated protein 2 at this site which can also be effectively prevented by okadaic acid. These results are consistent with the participation of glycogen synthase kinase-3, extracellular signal-regulated protein kinases and protein phosphatases 1 and 2A, in the regulation of microtubule-associated protein 2 phosphorylation within living neurons, which may be modulated by extracellular signals like the neurotransmitter glutamate.
Collapse
Affiliation(s)
- C Sánchez Martin
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
116
|
Alessi F, Quarta S, Savio M, Riva F, Rossi L, Stivala LA, Scovassi AI, Meijer L, Prosperi E. The cyclin-dependent kinase inhibitors olomoucine and roscovitine arrest human fibroblasts in G1 phase by specific inhibition of CDK2 kinase activity. Exp Cell Res 1998; 245:8-18. [PMID: 9828096 DOI: 10.1006/excr.1998.4216] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The specificity and the temporal location of cell cycle arrest induced by the cyclin-dependent kinase (CDK) inhibitors olomoucine and roscovitine were investigated in normal human fibroblasts. Effects on the cell cycle were compared with those induced by the kinase inhibitor staurosporine, which arrests normal cells in early G1 phase by acting upstream of CDK2. Consistent with their in vitro activity, olomoucine and roscovitine, but not the related compound iso-olomoucine, induced a dose-dependent arrest in G1 phase. Following removal of CDK inhibitors, cells resumed cycle progression entering S phase with a kinetics faster than staurosporine-treated samples. Cellular levels of PCNA, cyclin D1, and cyclin E were not affected by the CDK inhibitors. In contrast, staurosporine significantly reduced the levels of these proteins, as determined by immunocytometry and Western blot analysis. Cyclin A was detectable only in some cells remaining in the G2 + M compartment of samples treated with CDK inhibitors, but not in samples treated with staurosporine. Significant reduction in the hyperphosphorylated forms of retinoblastoma protein was found in samples treated with CDK inhibitors, while only hypophosphorylated forms were observed in staurosporine-treated samples. Concomitantly, CDK2, but not CDK4, activity immunoprecipitated from cells treated with olomoucine or roscovitine was markedly inhibited. These results suggest that in normal cells, CDK2 kinase activity is the specific target of olomoucine and roscovitine.
Collapse
Affiliation(s)
- F Alessi
- Centro di Studio per l'Istochimica del CNR, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Alevizopoulos K, Catarin B, Vlach J, Amati B. A novel function of adenovirus E1A is required to overcome growth arrest by the CDK2 inhibitor p27(Kip1). EMBO J 1998; 17:5987-97. [PMID: 9774342 PMCID: PMC1170925 DOI: 10.1093/emboj/17.20.5987] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show here that the adenovirus E1A oncoprotein prevents growth arrest by the CDK2 inhibitor p27(Kip1) (p27) in rodent fibroblasts. However, E1A neither binds p27 nor prevents inhibition of CDK2 complexes in vivo. In contrast, the amount of free p27 available to inhibit cyclin E/CDK2 is increased in E1A-expressing cells, owing to reduced expression of cyclins D1 and D3. Moreover, E1A allows cell proliferation in the presence of supraphysiological p27 levels, while c-Myc, known to induce a cellular p27-inhibitory activity, is only effective against physiological p27 concentrations. E1A also bypasses G1 arrest by roscovitine, a chemical inhibitor of CDK2. Altogether, these findings imply that E1A can act downstream of p27 and CDK2. Retinoblastoma (pRb)-family proteins are known CDK substrates; as expected, association of E1A with these proteins (but not with p300/CBP) is required for E1A to prevent growth arrest by either p27 or the CDK4/6 inhibitor p16(INK4a). Bypassing CDK2 inhibition requires an additional function of E1A: the mutant E1A Delta26-35 does not overcome p27-induced arrest, while it binds pRb-family proteins, prevents p16-induced arrest, and alleviates pRb-mediated repression of E2F-1 transcriptional activity (although E1A Delta26-35 fails to restore expression of E2F-regulated genes in p27-arrested cells). We propose that besides the pRb family, E1A targets specific effector(s) of CDK2 in G1-S control.
Collapse
Affiliation(s)
- K Alevizopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland
| | | | | | | |
Collapse
|
118
|
Abstract
Cellular microbiology is a newly developing science born from the realization that many different aspects of eukaryotic cell biology are targeted by microbial virulence mechanisms. One example of this is the emerging evidence that several bacteria can interfere, directly or indirectly, with the eukaryotic cell cycle. This article discusses the cell-cycle effects of bacterially generated molecules, their role in virulence and their possible therapeutic potential.
Collapse
Affiliation(s)
- B Henderson
- Cellular Microbiology Research Group, Eastman Dental Institute, London, UK.
| | | | | |
Collapse
|
119
|
|
120
|
Eriksson JE, Toivola DM, Sahlgren C, Mikhailov A, Härmälä-Braskén AS. Strategies to assess phosphoprotein phosphatase and protein kinase-mediated regulation of the cytoskeleton. Methods Enzymol 1998; 298:542-69. [PMID: 9751907 DOI: 10.1016/s0076-6879(98)98044-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J E Eriksson
- Turku Centre for Biotechnology, University of Turku, Finland
| | | | | | | | | |
Collapse
|
121
|
Gray NS, Wodicka L, Thunnissen AM, Norman TC, Kwon S, Espinoza FH, Morgan DO, Barnes G, LeClerc S, Meijer L, Kim SH, Lockhart DJ, Schultz PG. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 1998; 281:533-8. [PMID: 9677190 DOI: 10.1126/science.281.5376.533] [Citation(s) in RCA: 585] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening, potent inhibitors of the human CDK2-cyclin A kinase complex and of Saccharomyces cerevisiae Cdc28p were identified. The structural basis for the binding affinity and selectivity was determined by analysis of a three-dimensional crystal structure of a CDK2-inhibitor complex. The cellular effects of these compounds were characterized in mammalian cells and yeast. In the latter case the effects were characterized on a genome-wide scale by monitoring changes in messenger RNA levels in treated cells with high-density oligonucleotide probe arrays. Purine libraries could provide useful tools for analyzing a variety of signaling and regulatory pathways and may lead to the development of new therapeutics.
Collapse
Affiliation(s)
- N S Gray
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Joel PB, Traish AM, Lannigan DA. Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem 1998; 273:13317-23. [PMID: 9582378 DOI: 10.1074/jbc.273.21.13317] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of Ser118 of human estrogen receptor alpha (ER) enhances ER-mediated transcription and is induced by hormone binding and by activation of the mitogen-activated protein kinase (MAPK) pathway. We discovered that phosphorylation of Ser118 reduces the electrophoretic mobility of the ER. Using this mobility shift as an assay, we determined the in vivo stoichiometry and kinetics of Ser118 phosphorylation in response to estradiol, ICI 182,780, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA). In human breast cancer MCF-7 cells, estradiol induced a steady state phosphorylation of Ser118 within 20 min with a stoichiometry of 0.67 mol of phosphate/mol of ER. Estradiol did not activate p42/p44 MAPK, and basal p42/p44 MAPK activity was not sufficient to account for phosphorylation of Ser118 in response to estradiol. In contrast, both EGF and PMA induced a rapid, transient phosphorylation of Ser118 with a stoichiometry of approximately 0. 25, and the onset of Ser118 phosphorylation correlated with the onset of p42/p44 MAPK activation by these agents. Either the EGF- or PMA-induced Ser118 phosphorylation could be inhibited without influencing estradiol-induced Ser118 phosphorylation. The data suggest that a kinase other than p42/p44 MAPK is involved in the estradiol-induced Ser118 phosphorylation. We propose that the hormone-induced change in ER conformation exposes Ser118 for phosphorylation by a constitutively active kinase.
Collapse
Affiliation(s)
- P B Joel
- Center for Cell Signaling and Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
123
|
Grant KM, Hassan P, Anderson JS, Mottram JC. The crk3 gene of Leishmania mexicana encodes a stage-regulated cdc2-related histone H1 kinase that associates with p12. J Biol Chem 1998; 273:10153-9. [PMID: 9553063 DOI: 10.1074/jbc.273.17.10153] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cdc2-related protein kinase gene, crk3, has been isolated from the parasitic protozoan Leishmania mexicana. Data presented here suggests that crk3 is a good candidate to be the leishmanial cdc2 homologue but that the parasite protein has some characteristics which distinguish it from mammalian cdc2. crk3 is predicted to encode a 35.6-kDa protein with 54% sequence identity with the human cyclin-dependent kinase cdc2 and 78% identity with the Trypanosoma brucei CRK3. The trypanosomatid CRK3 proteins have an unusual, poorly conserved 19-amino acid N-terminal extension not present in human cdc2. crk3 is single copy, and there is 5-fold higher mRNA in the replicative promastigote life-cycle stage than in the non-dividing metacyclic form or mammalian amastigote form. A leishmanial suc-binding cdc2-related kinase (SBCRK) histone H1 kinase, has previously been described which binds the yeast protein, p13(suc1), and that has stage-regulated activity (Mottram J. C., Kinnaird, J., Shiels, B. R., Tait, A., and Barry, J. D. (1993) J. Biol. Chem. 268, 21044-21051). CRK3 from cell extracts of the three life-cycle stages was found to bind p13(suc1) and the leishmanial homologue p12(cks1). CRK3 fused with six histidines at the C terminus was expressed in L. mexicana and shown to have SBCRK histone H1 kinase activity. Depletion of histidine-tagged CRK3 from L. mexicana cell extracts, by Ni-nitrilotriacetic acid agarose selection, reduced histone H1 kinase activity binding to p13(suc1). These data imply that crk3 encodes the kinase subunit of SBCRK. SBCRK and histidine-tagged CRK3 activities were inhibited by the purine analogue olomoucine with an IC50 of 28 and 42 microM, respectively, 5-6-fold higher than human p34(cdc2)/cyclinB.
Collapse
Affiliation(s)
- K M Grant
- Wellcome Unit of Molecular Parasitology, University of Glasgow, The Anderson College, Glasgow G11 6NU, Scotland, United Kingdom
| | | | | | | |
Collapse
|
124
|
Legraverend M, Ludwig O, Bisagni E, Leclerc S, Meijer L. Synthesis of C2 alkynylated purines, a new family of potent inhibitors of cyclin-dependent kinases. Bioorg Med Chem Lett 1998; 8:793-8. [PMID: 9871543 DOI: 10.1016/s0960-894x(98)00097-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of a new family of inhibitors of the cell cycle regulating cyclin-dependent kinases (CDK's) is reported. These compounds, related to the purines olomoucine and roscovitine, are characterised by the presence of alkynylated side chains at C2. They inhibit CDK's with IC50's in the 200 nM range.
Collapse
Affiliation(s)
- M Legraverend
- UMR 176 CNRS, Institut Curie, Section de Recherche, Centre Universitaire, Orsay, France.
| | | | | | | | | |
Collapse
|
125
|
Thomas CF, Anders RA, Gustafson MP, Leof EB, Limper AH. Pneumocystis carinii contains a functional cell-division-cycle Cdc2 homologue. Am J Respir Cell Mol Biol 1998; 18:297-306. [PMID: 9490647 DOI: 10.1165/ajrcmb.18.3.3122] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pneumocystis carinii causes life-threatening pneumonia in immunocompromised patients. The inability to culture P. carinii has hampered basic investigations of the organism's life cycle, limiting the development of new therapies directed against it. Recent investigations indicate that P. carinii is a fungus phylogenetically related to other ascomycetes such as Schizosaccharomyces pombe. The cell cycles of S. pombe and homologous fungi are carefully regulated by cell-division-cycle molecules (cdc), particularly cell-division-cycle 2 (Cdc2), a serine-threonine kinase with essential activity at the G1 restriction point and for entry into mitosis. Antibodies to the proline-serine-threonine-alanine-isoleucine-arginine (PSTAIR) amino-acid sequence conserved in Cdc2 proteins specifically precipitated, from P. carinii extracts, a molecule with kinase activity consistent with a Cdc2-like protein. Cdc2 molecules exhibit differential activity throughout the life cycle of the organisms in which they occur. In accord with this, the P. carinii Cdc2 showed greater specific activity in P. carinii trophic forms (trophozoites) than in spore-case forms (cysts). In addition, complete genomic and complementary DNA (cDNA) sequences of P. carinii Cdc2 were cloned and found to be most closely homologus to the corresponding sequences of other pathogenic fungi. The function of P. carinii cdc2 cDNA was further documented through its ability to complement the DNA of mutant strains of S. pombe with temperature-sensitive deficiencies in Cdc2 activity. The P. carinii cdc2 cDNA restored normal Cdc2 function in these mutant strains of S. pombe, and promoted fungal proliferation. These studies represent the first molecular analysis of the cell-cycle-regulatory machinery in P. carinii. Further understanding of P. carinii's life cycle promises novel insights for preventing and treating the intractable infection it causes in immunocompromised patients.
Collapse
Affiliation(s)
- C F Thomas
- Division of Pulmonary, Critical Care and Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
126
|
Walker DH. Small-molecule inhibitors of cyclin-dependent kinases: molecular tools and potential therapeutics. Curr Top Microbiol Immunol 1998; 227:149-65. [PMID: 9479830 DOI: 10.1007/978-3-642-71941-7_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- D H Walker
- Department of Cancer Biology, Glaxo Wellcome, RTP NC 27709, USA
| |
Collapse
|
127
|
Yakisich JS, Sidén A, Idoyaga Vargas V, Eneroth P, Cruz M. Early inhibition of DNA synthesis in the developing rat cerebral cortex by the purine analogues olomoucine and roscovitine. Biochem Biophys Res Commun 1998; 243:674-7. [PMID: 9500988 DOI: 10.1006/bbrc.1998.8157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of the cyclin-dependent kinase (CDK) inhibitors olomoucine and roscovitine on DNA synthesis were studied using short time incubation (30-90 minutes). Both purine analogues at concentrations from 1-100 microM decreased the DNA synthesis of rat brain cortex in a dose-dependent manner and the maximum effect occurred within 30 min of incubation. Staurosporine, another potent CDK inhibitor did not affect the DNA synthesis in the concentration range 1-250 nM. These results indicate that olomoucine and roscovitine block DNA synthesis by a mechanism independent of CDK inhibition. We propose that the cellular effects of olomuocine and roscovitine on the cell cycle are at least in part due to this early inhibitory effect on DNA synthesis.
Collapse
Affiliation(s)
- J S Yakisich
- Clinical Research Center, Karolinska Institute, Novum, Sweden
| | | | | | | | | |
Collapse
|
128
|
Abstract
AbstractFlavopiridol (NSC 649890; Behringwerke L86-8275, Marburg, Germany), is a potent inhibitor of cyclin dependent kinases (CDKs) 1, 2, and 4. It has potent antiproliferative effects in vitro and is active in tumor models in vivo. While surveying the effect of flavopiridol on cell cycle progression in different cell types, we discovered that hematopoietic cell lines, including SUDHL4, SUDHL6 (B-cell lines), Jurkat, and MOLT4 (T-cell lines), and HL60 (myeloid), displayed notable sensitivity to flavopiridol-induced apoptosis. For example, after 100 nmol/L for 12 hours, SUDHL4 cells displayed a similar degree of DNA fragmentation to that shown by the apoptosis-resistant PC3 prostate carcinoma cells only after 3,000 nmol/L for 48 hours. After exposure to 1,000 nmol/L flavopiridol for 12 hours, typical apoptotic morphology was observed in SUDHL4 cells, but not in PC3 prostate carcinoma cells despite comparable potency (SUDHL4:120 nmol/L; PC3: 203 nmol/L) in causing growth inhibition by 50% (IC50). Flavopiridol did not induce topoisomerase I or II cleavable complex activity. A relation of p53, bcl2, or bax protein levels to apoptosis in SUDHL4 was not appreciated. While flavopiridol caused cell cycle arrest with decline in CDK1 activity in PC3 cells, apoptosis of SUDHL4 cells occurred without evidence of cell cycle arrest. These results suggest that antiproliferative activity of flavopiridol (manifest by cell cycle arrest) may be separated in different cell types from a capacity to induce apoptosis. Cells from hematopoietic neoplasms appear in this limited sample to be very susceptible to flavopiridol-induced apoptosis and therefore clinical trials in hematopoietic neoplasms should be of high priority.
Collapse
|
129
|
Abstract
Flavopiridol (NSC 649890; Behringwerke L86-8275, Marburg, Germany), is a potent inhibitor of cyclin dependent kinases (CDKs) 1, 2, and 4. It has potent antiproliferative effects in vitro and is active in tumor models in vivo. While surveying the effect of flavopiridol on cell cycle progression in different cell types, we discovered that hematopoietic cell lines, including SUDHL4, SUDHL6 (B-cell lines), Jurkat, and MOLT4 (T-cell lines), and HL60 (myeloid), displayed notable sensitivity to flavopiridol-induced apoptosis. For example, after 100 nmol/L for 12 hours, SUDHL4 cells displayed a similar degree of DNA fragmentation to that shown by the apoptosis-resistant PC3 prostate carcinoma cells only after 3,000 nmol/L for 48 hours. After exposure to 1,000 nmol/L flavopiridol for 12 hours, typical apoptotic morphology was observed in SUDHL4 cells, but not in PC3 prostate carcinoma cells despite comparable potency (SUDHL4:120 nmol/L; PC3: 203 nmol/L) in causing growth inhibition by 50% (IC50). Flavopiridol did not induce topoisomerase I or II cleavable complex activity. A relation of p53, bcl2, or bax protein levels to apoptosis in SUDHL4 was not appreciated. While flavopiridol caused cell cycle arrest with decline in CDK1 activity in PC3 cells, apoptosis of SUDHL4 cells occurred without evidence of cell cycle arrest. These results suggest that antiproliferative activity of flavopiridol (manifest by cell cycle arrest) may be separated in different cell types from a capacity to induce apoptosis. Cells from hematopoietic neoplasms appear in this limited sample to be very susceptible to flavopiridol-induced apoptosis and therefore clinical trials in hematopoietic neoplasms should be of high priority.
Collapse
|
130
|
Iseki H, Ko TC, Xue XY, Seapan A, Townsend CM. A novel strategy for inhibiting growth of human pancreatic cancer cells by blocking cyclin-dependent kinase activity. J Gastrointest Surg 1998; 2:36-43. [PMID: 9841966 DOI: 10.1016/s1091-255x(98)80101-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic cancers frequently carry mutations in the K-ras, p53, and p16 genes, which regulate cell proliferation. Transition from G1 to S phase of the cell cycle requires activation of cyclin-dependent kinase 2 (Cdk2) which is inhibited by olomoucine and roscovitine. The purpose of this study was to determine whether olomoucine and roscovitine can block Cdk2 kinase activity and inhibit proliferation of four human pancreatic cancer cell lines with various genetic alterations. Human pancreatic carcinoma cell lines BxPC-3, PANC-1 Capan-2, and CAV were treated with olomoucine or roscovitine. Cdk2 kinase activity was determined using histone H1 as the substrate. Cell cycle distribution was analyzed by DNA flow cytometry. Cell numbers were quantitated by Coulter counter. Olomoucine and roscovitine blocked Cdk2 activity in all four pancreatic cancer cell lines. Both compounds also inhibited cell proliferation in a dose-dependent fashion. Roscovitine was at least threefold more potent than olomoucine for both Cdk2 activity and cell proliferation. We have shown that Cdk inhibitors, olomoucine and roscovitine, block proliferation of human pancreatic cancer cells regardless of their mutations in K-ras p53, or p16 genes. These compounds represent a novel therapeutic strategy with potential therapeutic benefits for pancreatic cancers.
Collapse
Affiliation(s)
- H Iseki
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | |
Collapse
|
131
|
Pippin JW, Qu Q, Meijer L, Shankland SJ. Direct in vivo inhibition of the nuclear cell cycle cascade in experimental mesangial proliferative glomerulonephritis with Roscovitine, a novel cyclin-dependent kinase antagonist. J Clin Invest 1997; 100:2512-20. [PMID: 9366565 PMCID: PMC508451 DOI: 10.1172/jci119793] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glomerular injury is characterized by mesangial cell (MC) proliferation and matrix formation. We sought to determine if reducing the activity of cyclin-dependent kinase 2 (CDK2) with the purine analogue, Roscovitine, decreased MC proliferation in vitro and in vivo. Roscovitine (25 microM) inhibited FCS-induced proliferation (P < 0.0001) in cultured MC. Rats with experimental mesangial proliferative glomerulonephritis (Thy1 model) were divided into two groups. A prevention group received daily intraperitoneal injections of Roscovitine in DMSO (2.8 mg/kg) starting at day 1. A treatment group received daily Roscovitine starting at day 3, when MC proliferation was established. Control Thy1 rats received DMSO alone. MC proliferation (PCNA +/OX7 + double immunostaining) was reduced by > 50% at days 5 and 10 in the Roscovitine prevention group, and at day 5 in the treatment group (P < 0.0001). Early administration of Roscovitine reduced immunostaining for collagen type IV, laminin, and fibronectin at days 5 and 10 (r = 0.984; P < 0.001), which was associated with improved renal function (urinary protein/creatinine, blood urea nitrogen, P < 0.05). We conclude that reducing the activity of CDK2 with Roscovitine in experimental glomerulonephritis decreases cell proliferation and matrix production, resulting in improved renal function, and may be a useful therapeutic intervention in disease characterized by proliferation.
Collapse
Affiliation(s)
- J W Pippin
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
132
|
Soucek T, Pusch O, Wienecke R, DeClue JE, Hengstschläger M. Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gene-2 induces quiescent cells to enter S phase. J Biol Chem 1997; 272:29301-8. [PMID: 9361010 DOI: 10.1074/jbc.272.46.29301] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tuberous sclerosis is an autosomal dominant disorder characterized by the development of benign growths in many tissues and organs. Linkage analysis revealed two disease-determining genes on chromosome 9 and chromosome 16. The TSC2 gene on chromosome 16 encodes a 1784-amino acid tumor suppressor protein, tuberin, that functions as a GTPase-activating protein for Rap1, a member of the superfamily of Ras-related proteins. By immunoblot analyses, we found TSC2 expression to be high in G0 as well as in early small G1 cells. Analyses after different cell synchronization procedures revealed that TSC2 mRNA and protein expression do not fluctuate throughout the cell cycle. Using inducible expression systems we further demonstrated that TSC2 expression is not affected by overexpression of the mitogenic transcription factor E2F-1 or c-Myc. Nevertheless, antisense inhibition of tuberin expression in logarithmically growing cells markedly decreased the percentage of cells in G1. Furthermore, we found that cells exposed to TSC2 antisense oligonucleotides did not undergo G0 arrest after serum withdrawal. Antisense inhibition of TSC2 expression also induced quiescent G0-arrested fibroblasts to reenter the cell cycle. Our data show for the first time that the absence of tuberin can both induce cells to pass through the G1/S transition of the eukaryotic cell cycle and prevent them from entering a quiescent state. These results have clear implications for the tumor suppressor function of TSC2. We further found that reentry into the cell cycle upon loss of TSC2 is dependent on the activity of the G1 cyclin-dependent kinases (CDKs), Cdk2 or Cdk4. Taken together with our finding that antisense inhibition of TSC2 causes up-regulation of cyclin D1 expression, these results provide the first evidence for a connection between tuberin/Rap1 and the G1 CDK-dependent regulation of the transition from G0/G1 to S phase.
Collapse
Affiliation(s)
- T Soucek
- Obstetrics and Gynecology, University of Vienna, Department of Prenatal Diagnosis and Therapy, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
133
|
Lawrie AM, Noble ME, Tunnah P, Brown NR, Johnson LN, Endicott JA. Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. NATURE STRUCTURAL BIOLOGY 1997; 4:796-801. [PMID: 9334743 DOI: 10.1038/nsb1097-796] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Staurosporine exhibits nanomolar IC50 values against a wide range of protein kinases. The structure of a CDK2 staurosporine complex explains the tight binding of this inhibitor, and suggests features to be exploited in the design of specific inhibitors of CDKs.
Collapse
|
134
|
Vlach J, Hennecke S, Amati B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 1997; 16:5334-44. [PMID: 9311993 PMCID: PMC1170165 DOI: 10.1093/emboj/16.17.5334] [Citation(s) in RCA: 548] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The p27(Kip1) protein associates with G1-specific cyclin-CDK complexes and inhibits their catalytic activity. p27(Kip1) is regulated at various levels, including translation, degradation by the ubiquitin/proteasome pathway and non-covalent sequestration. Here, we describe point mutants of p27 deficient in their interaction with either cyclins (p27(c-)), CDKs (p27(k-)) or both (p27(ck-)), and demonstrate that each contact is critical for kinase inhibition and induction of G1 arrest. Through its intact cyclin contact, p27(k-) associated with active cyclin E-CDK2 and, unlike wild type p27, p27(c-) or p27(ck-), was efficiently phosphorylated by CDK2 on a conserved C-terminal CDK target site (TPKK). Retrovirally expressed p27(k-) was rapidly degraded through the proteasome in Rat1 cells, but was stabilized by secondary mutation of the TPKK site to VPKK. In this experimental setting, exogenous wild-type p27 formed inactive ternary complexes with cellular cyclin E-CDK2, was not degraded through the proteasome, and was not further stabilized by the VPKK mutation. p27(ck-), which was not recruited to cyclin E-CDK2, also remained stable in vivo. Thus, selective degradation of p27(k-) depended upon association with active cyclin E-CDK2 and subsequent phosphorylation. Altogether, these data show that p27 must be phosphorylated by CDK2 on the TPKK site in order to be degraded by the proteasome. We propose that cellular p27 must also exist transiently in a cyclin-bound non-inhibitory conformation in vivo.
Collapse
Affiliation(s)
- J Vlach
- Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges, Switzerland
| | | | | |
Collapse
|
135
|
Collas P, Thompson L, Fields AP, Poccia DL, Courvalin JC. Protein kinase C-mediated interphase lamin B phosphorylation and solubilization. J Biol Chem 1997; 272:21274-80. [PMID: 9261138 DOI: 10.1074/jbc.272.34.21274] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Disassembly of the sperm nuclear envelope at fertilization is one of the earliest events in the development of the male pronucleus. We report that nuclear lamina disassembly in interphase sea urchin egg cytosol is a result of lamin B phosphorylation mediated by protein kinase C (PKC). Lamin B of permeabilized sea urchin sperm nuclei incubated in fertilized egg G1 phase cytosolic extract is phosphorylated within 1 min of incubation and solubilized prior to sperm chromatin decondensation. Phosphorylation is Ca2+-dependent. It is reversibly inhibited by the PKC-specific inhibitor chelerythrine, a PKC pseudosubstrate inhibitor peptide, and a PKC substrate peptide, but not by inhibitors of PKA, p34(cdc2) or calmodulin kinase II. Phosphorylation is inhibited by immunodepletion of cytosolic PKC and restored by addition of purified rat brain PKC. Sperm lamin B is a substrate for rat brain PKC in vitro, resulting in lamin B solubilization. Two-dimensional phosphopeptide maps of lamin B phosphorylated by the cytosolic kinase and by purified rat PKC are virtually identical. These data suggest that PKC is the major kinase required for interphase disassembly of the sperm lamina.
Collapse
Affiliation(s)
- P Collas
- Department of Biochemistry, Norwegian College of Veterinary Medicine, 0033 Oslo, Norway.
| | | | | | | | | |
Collapse
|
136
|
Iseki H, Ko TC, Xue XY, Seapan A, Hellmich MR, Townsend CM. Cyclin-dependent kinase inhibitors block proliferation of human gastric cancer cells. Surgery 1997; 122:187-94; discussion 194-5. [PMID: 9288122 DOI: 10.1016/s0039-6060(97)90008-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Olomoucine and roscovitine are novel compounds that are designed to inhibit cyclin-dependent kinases (e.g., Cdk2 and cdc2). Cdks regulate progression through key checkpoints of the cell cycle. The purpose of this study was to determine (1) whether olomoucine and roscovitine inhibit Cdk2 and cdc2 kinase activities of the human gastric cancer cell line SIIA and (2) whether olomoucine and roscovitine block cell proliferation and cell cycle progression. METHODS SIIA cells were treated with olomoucine or roscovitine and examined for Cdk2 and cdc2 activities by using histone H1 as the substrate. Cell numbers were counted with a Coulter counter. Cell cycle distribution was analyzed by DNA flow cytometry. RESULTS Olomoucine and roscovitine completely blocked Cdk2 and cdc2 activities in SIIA cells. Both compounds were also able to inhibit proliferation of SIIA cells, as well as three other human gastric cancer cell lines (AGS, MKN45-630, and SNU-1). Cell cycle analysis showed that treatment with olomoucine or roscovitine for 24 hours led to a decrease in the S phase population and an increase in the G2/M population. CONCLUSIONS We have shown that Cdk inhibitors, olomoucine and roscovitine, are a new class of antineoplastic molecules with potential therapeutic benefits for gastric cancers.
Collapse
Affiliation(s)
- H Iseki
- Department of Surgery, University of Texas Medical Branch, Galveston 77555-0542, USA
| | | | | | | | | | | |
Collapse
|
137
|
Boix J, Llecha N, Yuste VJ, Comella JX. Characterization of the cell death process induced by staurosporine in human neuroblastoma cell lines. Neuropharmacology 1997; 36:811-21. [PMID: 9225309 DOI: 10.1016/s0028-3908(97)00030-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Staurosporine is a potent and non-specific inhibitor of protein kinases. There is also evidence of staurosporine being a potent inducer of apoptosis. In several human neuroblastoma cell lines (SH-SY5Y, NB69, IMR-5 and IMR-32) we have found 100 nM staurosporine to induce cell death in half the population (EC50). Electron microscopy of these cells, fluorescence microscopy after Hoechst-33258 staining of chromatin and agarose-electrophoresis of DNA, show two different types of cell death. SH-SY5Y and NB69 die by apoptosis and display all the characteristic features of it. IMR-5 and IMR-32 lack some of these features and a ladder pattern of DNA degradation is not found. Different morphological types of apoptosis have been described during the development of vertebrates; the possibility of finding a similar diversity in cell culture is suggested. On the other hand, staurosporine is a potent promoter of neurite outgrowth. In all the neuroblastoma cell lines we have tested, neurite-promoting and cell death-inducing staurosporine concentrations mostly overlap. This fact has not been reported before, probably because of an early versus late timing of these two different phenomena. The neuritogenic effect has prompted the suggestion that staurosporine could be a prototype of drugs for neurodegenerative diseases; the present study raises several concerns about such a proposal.
Collapse
Affiliation(s)
- J Boix
- Department de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Catalunya, Spain
| | | | | | | |
Collapse
|
138
|
Bresnahan WA, Boldogh I, Chi P, Thompson EA, Albrecht T. Inhibition of cellular Cdk2 activity blocks human cytomegalovirus replication. Virology 1997; 231:239-47. [PMID: 9168886 DOI: 10.1006/viro.1997.8489] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human cytomegalovirus is a herpesvirus that induces numerous cellular processes upon infection. Among these are activation of cyclin-dependent kinase 2, which regulates cell cycle progression in G1 and S phase. We report here that inhibition of cellular Cdk2 activity blocks HCMV replication. Inhibition of Cdk2 activity by roscovitine inhibits HCMV DNA synthesis, production of infectious progeny, and late antigen expression in infected cells in a dose-dependent manner. HCMV replication is also inhibited by the expression of a Cdk2 dominant negative mutant, whereas expression of wild-type Cdk2 has no effect on viral replication. These data indicate that activation of cellular Cdk2 is necessary for HCMV replication.
Collapse
Affiliation(s)
- W A Bresnahan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77550, USA
| | | | | | | | | |
Collapse
|
139
|
Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G. The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 1997; 89:445-55. [PMID: 9150144 DOI: 10.1016/s0092-8674(00)80225-1] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The docking of transport vesicles with their target membrane is thought to be mediated by p115. We show here that GM130, a cis-Golgi matrix protein, interacts specifically with p115 and so could provide a membrane docking site. Deletion analysis showed that the N-terminus binds to p115, whereas the C-terminus binds to Golgi membranes. Mitotic phosphorylation of GM130 or a peptide derived from the N-terminus prevented binding to p115. The peptide also inhibited the NSF- but not the p97-dependent reassembly of Golgi cisternae from mitotic fragments, unless it was mitotically phosphorylated. Together, these data provide a molecular explanation for the COPI-mediated fragmentation of the Golgi apparatus at the onset of mitosis.
Collapse
Affiliation(s)
- N Nakamura
- Cell Biology Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | | | |
Collapse
|
140
|
Affiliation(s)
- D Corda
- Consorzio Mario Negri Sud, Department of Cell Biology and Oncology, Santa Maria Imbaro, Chieti, Italy
| | | |
Collapse
|
141
|
Andersen G, Busso D, Poterszman A, Hwang JR, Wurtz JM, Ripp R, Thierry JC, Egly JM, Moras D. The structure of cyclin H: common mode of kinase activation and specific features. EMBO J 1997; 16:958-67. [PMID: 9118957 PMCID: PMC1169696 DOI: 10.1093/emboj/16.5.958] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The crystal structure of human cyclin H refined at 2.6 A resolution is compared with that of cyclin A. The core of the molecule consists of two repeats containing five helices each and forming the canonical cyclin fold also observed in TFIIB. One hundred and thirty-two out of the 217 C alpha atoms from the cyclin fold can be superposed with a root-mean-square difference of 1.8 A. The structural homology is even higher for the residues at the interface with the kinase, which is of functional significance, as shown by our observation that cyclin H binds to cyclin-dependent kinase 2 (cdk2) and that cyclin A is able to activate cdk7 in the presence of MAT1. Based on this superposition, a new signature sequence for cyclins was found. The specificity of the cyclin H molecule is provided mainly by two long helices which extend the cyclin fold at its N- and C-termini and pack together against the first repeat on the side opposite to the kinase. Deletion mutants show that the terminal helices are required for a functionally active cyclin H.
Collapse
Affiliation(s)
- G Andersen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CU de Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:518-26. [PMID: 9030780 DOI: 10.1111/j.1432-1033.1997.0518a.x] [Citation(s) in RCA: 515] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclin-dependent kinases (cdk) control the cell division cycle (cdc). These kinases and their regulators are frequently deregulated in human tumours. A potent inhibitor of cdks, roscovitine [2-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurin e], was identified by screening a series of C2,N6,N9-substituted adenines on purified cdc2/cyclin B. Roscovitine displays high efficiency and high selectivity (Meijer, L., Borgne, A., Mulner, O., Chong, J. P. J., Blow, J. J., Inagaki, N., Inagaki, M., Delcros, J.-G. & Moulinoux, J.-P. (1997) Eur. J. Biochem. 243, 527-536). It behaves as a competitive inhibitor for ATP binding to cdc2. We determined the crystal structure of a complex between cdk2 and roscovitine at 0.24-nm (2.4 A) resolution and refined to an Rfactor of 0.18. The purine portion of the inhibitor binds to the adenine binding pocket of cdk2. The position of the benzyl ring group of the inhibitor enables the inhibitor to make contacts with the enzyme not observed in the ATP-complex structure. Analysis of the position of this benzyl ring explains the specificity of roscovitine in inhibiting cdk2. The structure also reveals that the (R)-stereoisomer of roscovitine is bound to cdk2. The (R)-isomer is about twice as potent in inhibiting cdc2/cyclin B than the (S)-isomer. Results from structure/activity studies and from analysis of the cdk2/roscovitine complex crystal structure should allow the design of even more potent cdk inhibitors.
Collapse
Affiliation(s)
- W F De Azevedo
- Department of Chemistry, University of California, Berkeley, USA
| | | | | | | | | | | |
Collapse
|
143
|
Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:527-36. [PMID: 9030781 DOI: 10.1111/j.1432-1033.1997.t01-2-00527.x] [Citation(s) in RCA: 1085] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclin-dependent kinases (cdk) play an essential role in the intracellular control of the cell division cycle (cdc). These kinases and their regulators are frequently deregulated in human tumours. Enzymatic screening has recently led to the discovery of specific inhibitors of cyclin-dependent kinases, such as butyrolactone I, flavopiridol and the purine olomoucine. Among a series of C2, N6, N9-substituted adenines tested on purified cdc2/cyclin B, 2-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (roscovitine) displays high efficiency and high selectivity towards some cyclin-dependent kinases. The kinase specificity of roscovitine was investigated with 25 highly purified kinases (including protein kinase A, G and C isoforms, myosin light-chain kinase, casein kinase 2, insulin receptor tyrosine kinase, c-src, v-abl). Most kinases are not significantly inhibited by roscovitine. cdc2/cyclin B, cdk2/cyclin A, cdk2/cyclin E and cdk5/p35 only are substantially inhibited (IC50 values of 0.65, 0.7, 0.7 and 0.2 microM, respectively). cdk4/cyclin D1 and cdk6/cyclin D2 are very poorly inhibited by roscovitine (IC50 > 100 microM). Extracellular regulated kinases erk1 and erk2 are inhibited with an IC50 of 34 microM and 14 microM, respectively. Roscovitine reversibly arrests starfish oocytes and sea urchin embryos in late prophase. Roscovitine inhibits in vitro M-phase-promoting factor activity and in vitro DNA synthesis in Xenopus egg extracts. It blocks progesterone-induced oocyte maturation of Xenopus oocytes and in vivo phosphorylation of the elongation factor eEF-1. Roscovitine inhibits the proliferation of mammalian cell lines with an average IC50 of 16 microM. In the presence of roscovitine L1210 cells arrest in G1 and accumulate in G2. In vivo phosphorylation of vimentin on Ser55 by cdc2/cyclin B is inhibited by roscovitine. Through its unique selectivity for some cyclin-dependent kinases, roscovitine provides a useful antimitotic reagent for cell cycle studies and may prove interesting to control cells with deregulated cdc2, cdk2 or cdk5 kinase activities.
Collapse
Affiliation(s)
- L Meijer
- CNRS, Station Biologique, Roscoff, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Coleman KG, Lyssikatos JP, Yang BV. Chapter 17. Chemical Inhibitors of Cyclin-dependent Kinases. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0065-7743(08)61475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
145
|
Affiliation(s)
- L Meijer
- Centre National de la Recherche Scientifique, Station Biologique de Roscoff, France
| | | |
Collapse
|