101
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
102
|
Pan M, Wei X, Xiang X, Liu Y, Zhou Q, Yang W. Targeting CXCL9/10/11-CXCR3 axis: an important component of tumor-promoting and antitumor immunity. Clin Transl Oncol 2023; 25:2306-2320. [PMID: 37076663 DOI: 10.1007/s12094-023-03126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 04/21/2023]
Abstract
Chemokines are chemotactic-competent molecules composed of a family of small cytokines, playing a key role in regulating tumor progression. The roles of chemokines in antitumor immune responses are of great interest. CXCL9, CXCL10, and CXCL11 are important members of chemokines. It has been widely investigated that these three chemokines can bind to their common receptor CXCR3 and regulate the differentiation, migration, and tumor infiltration of immune cells, directly or indirectly affecting tumor growth and metastasis. Here, we summarize the mechanism of how the CXCL9/10/11-CXCR3 axis affects the tumor microenvironment, and list the latest researches to find out how this axis predicts the prognosis of different cancers. In addition, immunotherapy improves the survival of tumor patients, but some patients show drug resistance. Studies have found that the regulation of CXCL9/10/11-CXCR3 on the tumor microenvironment is involved in the process of changing immunotherapy resistance. Here we also describe new approaches to restoring sensitivity to immune checkpoint inhibitors through the CXCL9/10/11-CXCR3 axis.
Collapse
Affiliation(s)
- Minjie Pan
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yanhong Liu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Weibing Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
103
|
Wang Y, Zhong X, He X, Hu Z, Huang H, Chen J, Chen K, Zhao S, Wei P, Li D. Liver metastasis from colorectal cancer: pathogenetic development, immune landscape of the tumour microenvironment and therapeutic approaches. J Exp Clin Cancer Res 2023; 42:177. [PMID: 37480104 PMCID: PMC10362774 DOI: 10.1186/s13046-023-02729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023] Open
Abstract
Colorectal cancer liver metastasis (CRLM) is one of the leading causes of death among patients with colorectal cancer (CRC). Although immunotherapy has demonstrated encouraging outcomes in CRC, its benefits are minimal in CRLM. The complex immune landscape of the hepatic tumour microenvironment is essential for the development of a premetastatic niche and for the colonisation and metastasis of CRC cells; thus, an in-depth understanding of these mechanisms can provide effective immunotherapeutic targets for CRLM. This review summarises recent studies on the immune landscape of the tumour microenvironment of CRLM and highlights therapeutic prospects for targeting the suppressive immune microenvironment of CRLM.
Collapse
Affiliation(s)
- Yaxian Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xinyang Zhong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xuefeng He
- ZJU-UCLA Joint Center for Medical Education and Research, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijuan Hu
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Huixia Huang
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Jiayu Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Keji Chen
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ping Wei
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
- Institute of Pathology, Fudan University, Shanghai, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
104
|
Morè L, Privitera L, Cooper DD, Tsogka M, Arthur JSC, Frenguelli BG. MSK1 is required for the beneficial synaptic and cognitive effects of enriched experience across the lifespan. Aging (Albany NY) 2023; 15:6031-6072. [PMID: 37432063 PMCID: PMC10373962 DOI: 10.18632/aging.204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023]
Abstract
Positive experiences, such as social interaction, cognitive training and physical exercise, have been shown to ameliorate some of the harms to cognition associated with ageing. Animal models of positive interventions, commonly known as environmental enrichment, strongly influence neuronal morphology and synaptic function and enhance cognitive performance. While the profound structural and functional benefits of enrichment have been appreciated for decades, little is known as to how the environment influences neurons to respond and adapt to these positive sensory experiences. We show that adult and aged male wild-type mice that underwent a 10-week environmental enrichment protocol demonstrated improved performance in a variety of behavioural tasks, including those testing spatial working and spatial reference memory, and an enhancement in hippocampal LTP. Aged animals in particular benefitted from enrichment, performing spatial memory tasks at levels similar to healthy adult mice. Many of these benefits, including in gene expression, were absent in mice with a mutation in an enzyme, MSK1, which is activated by BDNF, a growth factor implicated in rodent and human cognition. We conclude that enrichment is beneficial across the lifespan and that MSK1 is required for the full extent of these experience-induced improvements of cognitive abilities, synaptic plasticity and gene expression.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel D. Cooper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Marianthi Tsogka
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
105
|
Zhao F, Bai Y, Xiang X, Pang X. The role of fibromodulin in inflammatory responses and diseases associated with inflammation. Front Immunol 2023; 14:1191787. [PMID: 37483637 PMCID: PMC10360182 DOI: 10.3389/fimmu.2023.1191787] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Inflammation is an immune response that the host organism eliminates threats from foreign objects or endogenous signals. It plays a key role in the progression, prognosis as well as therapy of diseases. Chronic inflammatory diseases have been regarded as the main cause of death worldwide at present, which greatly affect a vast number of individuals, producing economic and social burdens. Thus, developing drugs targeting inflammation has become necessary and attractive in the world. Currently, accumulating evidence suggests that small leucine-rich proteoglycans (SLRPs) exhibit essential roles in various inflammatory responses by acting as an anti-inflammatory or pro-inflammatory role in different scenarios of diseases. Of particular interest was a well-studied member, termed fibromodulin (FMOD), which has been largely explored in the role of inflammatory responses in inflammatory-related diseases. In this review, particular focus is given to the role of FMOD in inflammatory response including the relationship of FMOD with the complement system and immune cells, as well as the role of FMOD in the diseases associated with inflammation, such as skin wounding healing, osteoarthritis (OA), tendinopathy, atherosclerosis, and heart failure (HF). By conducting this review, we intend to gain insight into the role of FMOD in inflammation, which may open the way for the development of new anti-inflammation drugs in the scenarios of different inflammatory-related diseases.
Collapse
Affiliation(s)
- Feng Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bai
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuerong Xiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
106
|
Zhang C, Liu X, Xiao J, Jiang F, Fa L, Jiang H, Zhou L, Su W, Xu Z. γδ T cells in autoimmune uveitis pathogenesis: A promising therapeutic target. Biochem Pharmacol 2023; 213:115629. [PMID: 37257721 DOI: 10.1016/j.bcp.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Autoimmune uveitis is a non-infectious, inflammatory intraocular disease that affects the uveal and adjacent tissues. It frequently causes varying degrees of visual loss. Evidence for the strong association between activated γδ T cells and the development of autoimmune uveitis is growing. The innate and adaptive immune response are connected in the early phases by the γδ T cells that contain the γ and δ chains. γδ T cells can identify antigens in a manner that is not constrained by the MHC. When activated by various pathways, γδ T cells can not only secrete pro-inflammatory factors early on (such as IL-17), but they can also promote Th17 cells responses, which ultimately exacerbates autoimmune uveitis. Therefore, we review the mechanisms by which γδ T cells affect autoimmune uveitis in different activation and disease states. Moreover, we also prospect for immunotherapies targeting different γδ T cell-related action pathways, providing a reference for exploring new drug for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Luzhong Fa
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
107
|
Jakovija A, Chtanova T. Skin immunity in wound healing and cancer. Front Immunol 2023; 14:1060258. [PMID: 37398649 PMCID: PMC10312005 DOI: 10.3389/fimmu.2023.1060258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The skin is the body's largest organ. It serves as a barrier to pathogen entry and the first site of immune defense. In the event of a skin injury, a cascade of events including inflammation, new tissue formation and tissue remodeling contributes to wound repair. Skin-resident and recruited immune cells work together with non-immune cells to clear invading pathogens and debris, and guide the regeneration of damaged host tissues. Disruption to the wound repair process can lead to chronic inflammation and non-healing wounds. This, in turn, can promote skin tumorigenesis. Tumors appropriate the wound healing response as a way of enhancing their survival and growth. Here we review the role of resident and skin-infiltrating immune cells in wound repair and discuss their functions in regulating both inflammation and development of skin cancers.
Collapse
Affiliation(s)
- Arnolda Jakovija
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tatyana Chtanova
- Immunity Theme, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
108
|
Zhou Z, Guan B, Xia H, Zheng R, Xu B. Particle radiotherapy in the era of radioimmunotherapy. Cancer Lett 2023:216268. [PMID: 37331583 DOI: 10.1016/j.canlet.2023.216268] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Radiotherapy (RT) is one of the key modalities for cancer treatment, and more than 70% of tumor patients will receive RT during the course of their disease. Particle radiotherapy, such as proton radiotherapy, carbon-ion radiotherapy (CIRT) and boron neutron capture therapy (BNCT), is currently available for the treatment of patients Immunotherapy combined with photon RT has been successfully used in the clinic. The effect of immunotherapy combined with particle RT is an area of interest. However, the molecular mechanisms underlying the effects of combined immunotherapy and particle RT remain largely unknown. In this review, we summarize the properties of different types of particle RT and the mechanisms underlying their radiobiological effects. Additionally, we compared the main molecular players in photon RT and particle RT and the mechanisms involved the RT-mediated immune response.
Collapse
Affiliation(s)
- Zihan Zhou
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Bingjie Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Huang Xia
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China.
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
109
|
Tong C, Liang Y, Han X, Zhang Z, Zheng X, Wang S, Song B. Research Progress of Dendritic Cell Surface Receptors and Targeting. Biomedicines 2023; 11:1673. [PMID: 37371768 DOI: 10.3390/biomedicines11061673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Dendritic cells are the only antigen-presenting cells capable of activating naive T cells in humans and mammals and are the most effective antigen-presenting cells. With deepening research, it has been found that dendritic cells have many subsets, and the surface receptors of each subset are different. Specific receptors targeting different subsets of DCs will cause different immune responses. At present, DC-targeted research plays an important role in the treatment and prevention of dozens of related diseases in the clinic. This article focuses on the current status of DC surface receptors and targeted applications.
Collapse
Affiliation(s)
- Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Yimin Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Xianle Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Zhelin Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Xiaohui Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Sen Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Bocui Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| |
Collapse
|
110
|
Yang G, Cai S, Hu M, Li C, Yang L, Zhang W, Sun J, Sun F, Xing L, Sun X. Functional status and spatial architecture of tumor-infiltrating CD8+ T cells are associated with lymph node metastases in non-small cell lung cancer. J Transl Med 2023; 21:320. [PMID: 37173705 PMCID: PMC10182600 DOI: 10.1186/s12967-023-04154-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Anti-PD-(L)1 immunotherapy has been recommended for non-small cell lung cancer (NSCLC) patients with lymph node metastases (LNM). However, the exact functional feature and spatial architecture of tumor-infiltrating CD8 + T cells remain unclear in these patients. METHODS Tissue microarrays (TMAs) from 279 IA-IIIB NSCLC samples were stained by multiplex immunofluorescence (mIF) for 11 markers (CD8, CD103, PD-1, Tim3, GZMB, CD4, Foxp3, CD31, αSMA, Hif-1α, pan-CK). We evaluated the density of CD8 + T-cell functional subsets, the mean nearest neighbor distance (mNND) between CD8 + T cells and neighboring cells, and the cancer-cell proximity score (CCPS) in invasive margin (IM) as well as tumor center (TC) to investigate their relationships with LNM and prognosis. RESULTS The densities of CD8 + T-cell functional subsets, including predysfunctional CD8 + T cells (Tpredys) and dysfunctional CD8 + T cells (Tdys), in IM predominated over those in TC (P < 0.001). Multivariate analysis identified that the densities of CD8 + Tpredys cells in TC and CD8 + Tdys cells in IM were significantly associated with LNM [OR = 0.51, 95%CI (0.29-0.88), P = 0.015; OR = 5.80, 95%CI (3.19-10.54), P < 0.001; respectively] and recurrence-free survival (RFS) [HR = 0.55, 95%CI (0.34-0.89), P = 0.014; HR = 2.49, 95%CI (1.60-4.13), P = 0.012; respectively], independent of clinicopathological factors. Additionally, shorter mNND between CD8 + T cells and their neighboring immunoregulatory cells indicated a stronger interplay network in the microenvironment of NSCLC patients with LNM and was associated with worse prognosis. Furthermore, analysis of CCPS suggested that cancer microvessels (CMVs) and cancer-associated fibroblasts (CAFs) selectively hindered CD8 + T cells from contacting with cancer cells, and were associated with the dysfunction of CD8 + T cells. CONCLUSION Tumor-infiltrating CD8 + T cells were in a more dysfunctional status and in a more immunosuppressive microenvironment in patients with LNM compared with those without LNM.
Collapse
Affiliation(s)
- Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong Cancer Hospital and Institute and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Wei Zhang
- Shandong Cancer Hospital and Institute and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Fenghao Sun
- Department of Nuclear Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Nuclear Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
| |
Collapse
|
111
|
Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol 2023; 14:1169232. [PMID: 37215125 PMCID: PMC10196194 DOI: 10.3389/fimmu.2023.1169232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive endocrine disorder affecting women, which can lead to infertility. Infertility, obesity, hirsutism, acne, and irregular menstruation are just a few of the issues that PCOS can be linked to. PCOS has a complicated pathophysiology and a range of clinical symptoms. Chronic low-grade inflammation is one of the features of PCOS. The inflammatory environment involves immune and metabolic disturbances. Numerous organ systems across the body, in addition to the female reproductive system, have been affected by the pathogenic role of immunological dysregulation in PCOS in recent years. Insulin resistance and hyperandrogenism are associated with immune cell dysfunction and cytokine imbalance. More importantly, obesity is also involved in immune dysfunction in PCOS, leading to an inflammatory environment in women with PCOS. Hormone, obesity, and metabolic interactions contribute to the pathogenesis of PCOS. Hormone imbalance may also contribute to the development of autoimmune diseases. The aim of this review is to summarize the pathophysiological role of immune dysregulation in various organ systems of PCOS patients and provide new ideas for systemic treatment of PCOS in the future.
Collapse
Affiliation(s)
- Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
112
|
Abstract
T cells and natural killer (NK) cells have complementary roles in tumor immunity, and dual T cell and NK cell attack thus offers opportunities to deepen the impact of immunotherapy. Recent work has also shown that NK cells play an important role in recruiting dendritic cells to tumors and thus enhance induction of CD8 T cell responses, while IL-2 secreted by T cells activates NK cells. Targeting of immune evasion mechanisms from the activating NKG2D receptor and its MICA and MICB ligands on tumor cells offers opportunities for therapeutic intervention. Interestingly, T cells and NK cells share several important inhibitory and activating receptors that can be targeted to enhance T cell- and NK cell-mediated immunity. These inhibitory receptor-ligand systems include CD161-CLEC2D, TIGIT-CD155, and NKG2A/CD94-HLA-E. We also discuss emerging therapeutic strategies based on inhibitory and activating cytokines that profoundly impact the function of both lymphocyte populations within tumors.
Collapse
Affiliation(s)
- Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
113
|
Xie L, Meng Z. Immunomodulatory effect of locoregional therapy in the tumor microenvironment. Mol Ther 2023; 31:951-969. [PMID: 36694462 PMCID: PMC10124087 DOI: 10.1016/j.ymthe.2023.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer immunotherapy appears to be a promising treatment option; however, only a subset of patients with cancer responds favorably to treatment. Locoregional therapy initiates a local antitumor immune response by disrupting immunosuppressive components, releasing immunostimulatory damage-associated molecular patterns, recruiting immune effectors, and remodeling the tumor microenvironment. Many studies have shown that locoregional therapy can produce specific antitumor immunity alone; nevertheless, the effect is relatively weak and transient. Furthermore, increasing research efforts have explored the potential synergy between locoregional therapy and immunotherapy to enhance the long-term systemic antitumor immune effect and improve survival. Therefore, further research is needed into the immunomodulatory effects of locoregional therapy and immunotherapy to augment antitumor effects. This review article summarizes the key components of the tumor microenvironment, discusses the immunomodulatory role of locoregional therapy in the tumor microenvironment, and emphasizes the therapeutic potential of locoregional therapy in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lin Xie
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhiqiang Meng
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China.
| |
Collapse
|
114
|
ElAbd H, Bacher P, Tholey A, Lenz TL, Franke A. Challenges and opportunities in analyzing and modeling peptide presentation by HLA-II proteins. Front Immunol 2023; 14:1107266. [PMID: 37063883 PMCID: PMC10090296 DOI: 10.3389/fimmu.2023.1107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
The human leukocyte antigen (HLA) proteins are an indispensable component of adaptive immunity because of their role in presenting self and foreign peptides to T cells. Further, many complex diseases are associated with genetic variation in the HLA region, implying an important role for specific HLA-presented peptides in the etiology of these diseases. Identifying the specific set of peptides presented by an individual’s HLA proteins in vivo, as a whole being referred to as the immunopeptidome, has therefore gathered increasing attention for different reasons. For example, identifying neoepitopes for cancer immunotherapy, vaccine development against infectious pathogens, or elucidating the role of HLA in autoimmunity. Despite the tremendous progress made during the last decade in these areas, several questions remain unanswered. In this perspective, we highlight five remaining key challenges in the analysis of peptide presentation and T cell immunogenicity and discuss potential solutions to these problems. We believe that addressing these questions would not only improve our understanding of disease etiology but will also have a direct translational impact in terms of engineering better vaccines and in developing more potent immunotherapies.
Collapse
Affiliation(s)
- Hesham ElAbd
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Andreas Tholey
- Proteomics & Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel, Germany
| | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- *Correspondence: Andre Franke,
| |
Collapse
|
115
|
Li M, Yang J, Yao X, Li X, Xu Z, Tang S, Sun B, Lin S, Yang C, Liu J. Multifunctional Mesoporous Silica-Coated Gold Nanorods Mediate Mild Photothermal Heating-Enhanced Gene/Immunotherapy for Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15030854. [PMID: 36986715 PMCID: PMC10057058 DOI: 10.3390/pharmaceutics15030854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths in the world. It is urgent to search for safe and effective therapies to address the CRC crisis. The siRNA-based RNA interference targeted silencing of PD-L1 has extensive potential in CRC treatment but is limited by the lack of efficient delivery vectors. In this work, the novel cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs)/siPD-L1 co-delivery vectors AuNRs@MS/CpG ODN@PEG-bPEI (ASCP) were successfully prepared by two-step surface modification of CpG ODNs-loading and polyethylene glycol-branched polyethyleneimine-coating around mesoporous silica-coated gold nanorods. ASCP promoted dendritic cells (DCs) maturation by delivering CpG ODNs, exhibiting excellent biosafety. Next, mild photothermal therapy (MPTT) mediated by ASCP killed tumor cells and released tumor-associated antigens, further promoting DC maturation. Furthermore, ASCP exhibited mild photothermal heating-enhanced performance as gene vectors, resulting in an increased PD-L1 gene silencing effect. Enhanced DCs maturity and enhanced PD-L1 gene silencing significantly promoted the anti-tumor immune response. Finally, the combination of MPTT and mild photothermal heating-enhanced gene/immunotherapy effectively killed MC38 cells, leading to strong inhibition of CRC. Overall, this work provided new insights into the design of mild photothermal/gene/immune synergies for tumor therapy and may contribute to translational nanomedicine for CRC treatment.
Collapse
Affiliation(s)
- Meirong Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Jingyu Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinhuang Yao
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Xiang Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shiqi Tang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Bangxu Sun
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Suxia Lin
- Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518048, China
| | - Chengbin Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Correspondence: (C.Y.); (J.L.)
| | - Jia Liu
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
- Correspondence: (C.Y.); (J.L.)
| |
Collapse
|
116
|
Ultrasound-targeted microbubble destruction remodels tumour microenvironment to improve immunotherapeutic effect. Br J Cancer 2023; 128:715-725. [PMID: 36463323 PMCID: PMC9977958 DOI: 10.1038/s41416-022-02076-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer immunotherapy (CIT) has gained increasing attention and made promising progress in recent years, especially immune checkpoint inhibitors such as antibodies blocking programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). However, its therapeutic efficacy is only 10-30% in solid tumours and treatment sensitivity needs to be improved. The complex tissue environment in which cancers originate is known as the tumour microenvironment (TME) and the complicated and dynamic TME is correlated with the efficacy of immunotherapy. Ultrasound-targeted microbubble destruction (UTMD) is an emerging technology that integrates diagnosis and therapy, which has garnered much traction due to non-invasive, targeted drug delivery and gene transfection characteristics. UTMD has also been studied to remodel TME and improve the efficacy of CIT. In this review, we analyse the effects of UTMD on various components of TME, including CD8+ T cells, tumour-infiltrating myeloid cells, regulatory T cells, natural killer cells and tumour vasculature. Moreover, UTMD enhances the permeability of the blood-brain barrier to facilitate drug delivery, thus improving CIT efficacy in vivo animal experiments. Based on this, we highlight the potential of immunotherapy against various cancer species and the clinical application prospects of UTMD.
Collapse
|
117
|
Wang L, Jia Q, Chu Q, Zhu B. Targeting tumor microenvironment for non-small cell lung cancer immunotherapy. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:18-29. [PMID: 39170874 PMCID: PMC11332857 DOI: 10.1016/j.pccm.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 08/23/2024]
Abstract
The tumor microenvironment (TME) is composed of different cellular and non-cellular elements. Constant interactions between tumor cells and the TME are responsible for tumor initiation, tumor progression, and responses to therapies. Immune cells in the TME can be classified into two broad categories, namely adaptive and innate immunity. Targeting these immune cells has attracted substantial research and clinical interest. Current research focuses on identifying key molecular players and developing targeted therapies. These approaches may offer more efficient ways of treating different cancers. In this review, we explore the heterogeneity of the TME in non-small cell lung cancer, summarize progress made in targeting the TME in preclinical and clinical studies, discuss the potential predictive value of the TME in immunotherapy, and highlight the promising effects of bispecific antibodies in the era of immunotherapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
118
|
Meng C, Liu J, Kang X, Xu Z, Xu S, Li X, Pan Z, Chen X, Jiao X. Discrepancy in Response of Mouse Dendritic Cells against BCG: Weak Immune Effects of Plasmacytoid Dendritic Cells Compared to Classical Dendritic Cells despite the Uptake of Bacilli. Trop Med Infect Dis 2023; 8:tropicalmed8030140. [PMID: 36977141 PMCID: PMC10057906 DOI: 10.3390/tropicalmed8030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Tuberculosis (TB), a zoonosis characterized by chronic respiratory infections, is mainly caused by Mycobacterium tuberculosis and is associated with one of the heaviest disease burdens in the world. Dendritic cells (DCs) play a key role and act as a bridge between innate and adaptive immune responses against TB. DCs are divided into distinct subsets. Currently, the response of DCs to mycobacterial infections is poorly understood. Herein, we aimed to evaluate the responses of splenic conventional DCs (cDC) and plasmacytoid DCs (pDC), subsets to Bacillus Calmette–Guérin (BCG) infection in mice. Splenic pDC had a significantly higher infection rate and intracellular bacterial count than cDC and the CD8+ and CD8− cDC subsets after BCG infection. However, the expression levels of CD40, CD80, CD86, and MHC-II molecules were significantly upregulated in splenic cDC and the CD8 cDC subsets compared to pDC during BCG infection. Splenic cDC had a higher expression of IFN-γ and IL-12p70 than pDC, whereas pDC had higher levels of TNF-α and MCP-1 than cDC in mice infected with BCG. At early stages of immunization with BCG containing the Ag85A protein, splenic cDC and pDC could present the Ag85A peptide to a specific T hybridoma; however, cDC had a stronger antigen presenting activity than pDC. In summary, splenic cDC and pDC extensively participate in mouse immune responses against BCG infection in vivo. Although pDC had a higher BCG uptake, cDC induced stronger immunological effects, including activation and maturation, cytokine production, and antigen presentation.
Collapse
Affiliation(s)
- Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jun Liu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuangyuan Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xin Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.C.); (X.J.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.C.); (X.J.)
| |
Collapse
|
119
|
Yang X, Xia H, Liu C, Wu Y, Liu X, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Jia R. The novel delivery-exosome application for diagnosis and treatment of rheumatoid arthritis. Pathol Res Pract 2023; 242:154332. [PMID: 36696804 DOI: 10.1016/j.prp.2023.154332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic degenerative disease characterized by persistent systemic synovitis, with a high risk of stiffness, pain, and swelling. It may affect the other extra-articular tissues. There is no ideal treatment for this disease at present, and it can only be controlled by medication to alleviate the prognosis. Exosomes are small vesicles secreted by various cells in the organism under normal or pathological conditions, and play a role in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and so on. Due to the adverse effects of conventional drugs and treatments in the treatment of RA, exosomes, as a nanocarrier with many advantages, can have a great impact on the loading of drugs for the treatment of RA. This article reviews the role of exosomes in the pathogenesis of RA and the progress of exosome-based therapy for RA.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China.
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xinyi Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, People's Republic of China; School of Life Science, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| |
Collapse
|
120
|
Biscari L, Maza MC, Farré C, Kaufman CD, Amigorena S, Fresno M, Gironès N, Alloatti A. Sec22b-dependent antigen cross-presentation is a significant contributor of T cell priming during infection with the parasite Trypanosoma cruzi. Front Cell Dev Biol 2023; 11:1138571. [PMID: 36936692 PMCID: PMC10014565 DOI: 10.3389/fcell.2023.1138571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antigen cross-presentation is a vital mechanism of dendritic cells and other antigen presenting cells to orchestrate the priming of cytotoxic responses towards killing of infected or cancer cells. In this process, exogenous antigens are internalized by dendritic cells, processed, loaded onto MHC class I molecules and presented to CD8+ T cells to activate them. Sec22b is an ER-Golgi Intermediate Compartment resident SNARE protein that, in partnership with sintaxin4, coordinates the recruitment of the transporter associated with antigen processing protein and the peptide loading complex to phagosomes, where antigenic peptides that have been proteolyzed in the cytosol are loaded in MHC class I molecules and transported to the cell membrane. The silencing of Sec22b in dendritic cells primary cultures and conditionally in dendritic cells of C57BL/6 mice, critically impairs antigen cross-presentation, but neither affects other antigen presentation routes nor cytokine production and secretion. Mice with Sec22b conditionally silenced in dendritic cells (Sec22b-/-) show deficient priming of CD8+ T lymphocytes, fail to control tumor growth, and are resistant to anti-checkpoint immunotherapy. In this work, we show that Sec22b-/- mice elicit a deficient specific CD8+ T cell response when challenged with sublethal doses of Trypanosoma cruzi trypomastigotes that is associated with increased blood parasitemia and diminished survival.
Collapse
Affiliation(s)
- Lucía Biscari
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ma Carmen Maza
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cintia Daniela Kaufman
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sebastian Amigorena
- Institut Curie, INSERM U932, Immunity and Cancer, PSL University, Paris, France
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Andrés Alloatti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Andrés Alloatti,
| |
Collapse
|
121
|
Cheng Q, Wang W, Liu J, Lv Z, Ji W, Yu J, Zhang W, Yang Y. Elevated MPP6 expression correlates with an unfavorable prognosis, angiogenesis and immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1173848. [PMID: 37207207 PMCID: PMC10189050 DOI: 10.3389/fimmu.2023.1173848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Background Membrane palmitoylated proteins (MPPs) are engaged in various biological processes, such as cell adhesion and cell polarity. Dysregulated MPP members have different effects on hepatocellular carcinoma (HCC) development. However, the role of MPP6 in HCC has been unknown. Method HCC transcriptome and clinical data from different public databases were downloaded and analyzed, and the results were further validated by qRT-PCR, Western blotting and immunohistochemistry (IHC) using HCC cell lines and tissues. The association between MPP6 and prognosis, potential pathogenic mechanisms, angiogenesis, immune evasion, tumor mutation burden (TMB) and treatment response in HCC patients was analyzed by bioinformatics and IHC staining. Results MPP6 was significantly overexpressed in HCC, and its expression was related to T stage, pathologic stage, histologic grade and adverse prognosis in HCC patients. Gene set enrichment analysis revealed that differentially expressed genes were mainly enriched in the synthesis of genetic materials and the WNT signaling pathway. GEPIA database analysis and IHC staining suggested that MPP6 expression had a positive correlation with angiogenesis. Single-cell dataset analysis indicated that MPP6 was associated with features of the tumor microenvironment. Additional analyses discovered that MPP6 expression was inversely related to immune cell infiltration and was involved in tumor immune evasion. MPP6 expression was positively associated with TMB, and patients with high TMB had an adverse prognosis. Immunotherapy was more effective in HCC patients with low MPP6 expression, whereas those with high MPP6 expression responded better to sorafenib, gemcitabine, 5-FU, and doxorubicin. Conclusions Elevated MPP6 expression is associated with an unfavorable prognosis, angiogenesis and immune evasion in HCC. Moreover, MPP6 has the potential to be used to assess TMB and treatment response. Therefore, MPP6 might serve as a novel prognostic biomarker and therapeutic target for HCC.
Collapse
|
122
|
Liu Y, Zhang J, Feng L. Disrupted metabolic signatures in amniotic fluid associated with increased risk of intestinal inflammation in cesarean section offspring. Front Immunol 2023; 14:1067602. [PMID: 36761749 PMCID: PMC9903135 DOI: 10.3389/fimmu.2023.1067602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Children born by cesarean section (CS) are at a greater risk of inflammatory bowel disease (IBD). However, the mechanisms underlying the association are not yet well understood. Herein, we investigated the impact of CS delivery on colonic inflammation and mechanisms underlying these effects in offspring. Methods CS mice model and dextran sulfate sodium (DSS)-induced colitis model were constructed and used to analyze the impact of CS on the development of colitis. Colonic tight junction markers and epithelium differentiation markers were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Levels of zonulin in serum were detected by enzyme-linked immunosorbent assay (ELISA). Immune cells in colon were analyzed by flow cytometry. Metabolic profiling between human vaginal delivery (VD) and CS AF were analyzed by using mass spectrometry. Transcriptome changes between VD AF- and CS AF-treated human intestine epithelial cells were analyzed by RNA-sequencing. A multi-omics approach that integrated transcriptomics with metabolomics to identify the pathways underlying colonic inflammation associated with delivery modes. Then, the identified pathways were confirmed by immunoblotting and ELISA. Results Mice pups delivered by CS exhibited a defective intestinal homeostasis manifested by decreased expression of tight junction markers of ZO-1 and Occludin in the colons, increased levels of zonulin in serum and dysregulated expression of intestinal epithelium differentiation markers of Lysozyme, Mucin2, and Dipeptidyl peptidase-4. CS pups were more susceptible to DSS-induced colitis compared to VD pups. The proportion of macrophage, dendritic cells (DCs), and natural killer cells (NKs) in the colons were altered in an age-dependent manner compared with pups born naturally. The metabolites in AF differed between CS and VD cases, and the CS AF-induced differentially expressed genes (DEGs) were significantly enriched in pathways underlying IBD. Signal transducer and activator of transcription 3 (STAT3) signaling was downregulated in NCM460 intestinal epithelial cells by CS AF compared to VD AF and in colon of CS pups compared to VD pups. Deficiency in metabolites like vitamin D2 glucosiduronate in CS AF may attribute to the risk of inflammatory intestine through STAT3 signaling. Conclusion Our study provides a novel insight into the underlying mechanisms of CS-associated intestinal inflammation and potential prevention strategies.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
123
|
Guo Q, Chen W, Sun J, Zhao C, Bai X, Zhang Y, Liu K, Zhang L, Shao S. Nocardia rubra cell-wall skeleton activates an immune response in cervical tissue via stimulating FPR3 to enhance dendritic cell-mediated Th1 differentiation. Front Immunol 2023; 14:1117545. [PMID: 36936958 PMCID: PMC10018199 DOI: 10.3389/fimmu.2023.1117545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Nocardia rubra cell wall skeleton (Nr-CWS) has proven to be a successful medicine for therapy of cervical human papillomavirus infection. The mechanism of action of Nr-CWS is unclear but may involve a stimulatory effect on the host immune system. We previously found that CD4+ T cells were increased in cervical tissue after Nr-CWS treatment. Microarray data from these cervical tissues revealed the significant upregulation of formylated peptide receptor 3 (FPR3). This study aimed to explore the role of Nr-CWS in immunomodulatory based on these findings. Examination of CD4+ T cell subsets in cervical tissue from patients who received Nr-CWS revealed substantial increases in Th1 cytokines and transcription factors. The regulatory effects of Nr-CWS on the function and phenotype of dendritic cells (DCs) were assessed in comparison with the traditional DC maturation inducer lipopolysaccharide (LPS). Similar to LPS, Nr-CWS potently induced DC maturation and interleukin-12 (IL-12) secretion. Differentiation of T cells induced by Nr-CWS stimulated DCs was assessed using the mixed lymphocyte reaction assay. Significant differentiation towards Th1 was evident. Finally, FPR3 expression in DCs in response to Nr-CWS and LPS was measured. Nr-CWS potently upregulated FPR3 expression, while the LPS did not. Silencing FPR3 in DCs reduced Nr-CWS-induced IL-12 production and Th1 cell polarization in co-cultured T cells. The collective findings indicate that Nr-CWS may target FPR3 on the surface of DC cells and activate a Th1-type immune response. The findings clarify the basis of the antiviral immune effects of Nr-CWS on human papillomavirus.
Collapse
Affiliation(s)
- Qianyu Guo
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Wei Chen
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Junyi Sun
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Chunfang Zhao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Xue Bai
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanan Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Ke Liu
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Lei Zhang, ; Suxia Shao,
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Lei Zhang, ; Suxia Shao,
| |
Collapse
|
124
|
Soliman AM, Barreda DR. Acute Inflammation in Tissue Healing. Int J Mol Sci 2022; 24:ijms24010641. [PMID: 36614083 PMCID: PMC9820461 DOI: 10.3390/ijms24010641] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
There are well-established links between acute inflammation and successful tissue repair across evolution. Innate immune reactions contribute significantly to pathogen clearance and activation of subsequent reparative events. A network of molecular and cellular regulators supports antimicrobial and tissue repair functions throughout the healing process. A delicate balance must be achieved between protection and the potential for collateral tissue damage associated with overt inflammation. In this review, we summarize the contributions of key cellular and molecular components to the acute inflammatory process and the effective and timely transition toward activation of tissue repair mechanisms. We further discuss how the disruption of inflammatory responses ultimately results in chronic non-healing injuries.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-(780)492-0375
| |
Collapse
|
125
|
Shi C, Tian L, Zheng W, Zhu Y, Sun P, Liu L, Liu W, Song Y, Xia X, Xue X, Zheng X. Recombinant adeno-associated virus serotype 9 AAV-RABVG expressing a Rabies Virus G protein confers long-lasting immune responses in mice and non-human primates. Emerg Microbes Infect 2022; 11:1439-1451. [PMID: 35579916 PMCID: PMC9154782 DOI: 10.1080/22221751.2022.2078226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three or four intramuscular doses of the inactivated human rabies virus vaccines are needed for pre- or post-exposure prophylaxis in humans. This procedure has made a great contribution to prevent human rabies deaths, which bring huge economic burdens in developing countries. Herein, a recombinant adeno-associated virus serotype 9, AAV9-RABVG, harbouring a RABV G gene, was generated to serve as a single dose rabies vaccine candidate. The RABV G protein was stably expressed in the 293T cells infected with AAV9-RABVG. A single dose of 2 × 1011 v.p. of AAV9-RABVG induced robust and long-term positive seroconversions in BALB/c mice with a 100% survival from a lethal RABV challenge. In Cynomolgus Macaques vaccinated with a single dose of 1 × 1013 v.p. of AAV9-RABVG, the titres of rabies VNAs increased remarkably from 2 weeks after immunity, and maintained over 31.525 IU/ml at 52 weeks. More DCs were activated significantly for efficient antigen presentations of RABV G protein, and more B cells were activated to be responsible for antibody responses. Significantly more RABV G specific IFN-γ-secreting CD4+ and CD8+ T cells, and IL-4-secreting CD4+ T cells were activated, and significantly higher levels of IL-2, IFN-γ, IL-4, and IL-10 were secreted to aid immune responses. Overall, the AAV9-RABVG was a single dose rabies vaccine candidate with great promising by inducing robust, long-term humoral responses and both Th1 and Th2 cell-mediated immune responses in mice and non-human primates.
Collapse
Affiliation(s)
- Chenjuan Shi
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yelei Zhu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - Peilu Sun
- Institute of Materia Medical, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenkai Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yanyan Song
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, People's Republic of China
| | - Xianghong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
126
|
Wang J, Liu T, Huang T, Shang M, Wang X. The mechanisms on evasion of anti-tumor immune responses in gastric cancer. Front Oncol 2022; 12:943806. [PMID: 36439472 PMCID: PMC9686275 DOI: 10.3389/fonc.2022.943806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 10/22/2023] Open
Abstract
The immune system and the tumor have been at each other's throats for so long that the neoplasm has learned to avoid detection and avoid being attacked, which is called immune evasion. Malignant tumors, such as gastric cancer (GC), share the ability to evade the body's immune system as a defining feature. Immune evasion includes alterations to tumor-associated antigens (TAAs), antigen presentation mechanisms (APMs), and the tumor microenvironment (TME). While TAA and APM are simpler in nature, they both involve mutations or epigenetic regulation of genes. The TME is comprised of numerous cell types, cytokines, chemokines and extracellular matrix, any one of which might be altered to have an effect on the surrounding ecosystem. The NF-kB, MAPK, PI3K/AKT, JAK/STAT, Wnt/β-catenin, Notch, Hippo and TGF-β/Smad signaling pathways are all associated with gastric cancer tumor immune evasion. In this review, we will delineate the functions of these pathways in immune evasion.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
127
|
Wang S, Sun J, Dastgheyb RM, Li Z. Tumor-derived extracellular vesicles modulate innate immune responses to affect tumor progression. Front Immunol 2022; 13:1045624. [PMID: 36405712 PMCID: PMC9667034 DOI: 10.3389/fimmu.2022.1045624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 04/23/2024] Open
Abstract
Immune cells are capable of influencing tumor progression in the tumor microenvironment (TME). Meanwhile, one mechanism by which tumor modulate immune cells function is through extracellular vesicles (EVs), which are cell-derived extracellular membrane vesicles. EVs can act as mediators of intercellular communication and can deliver nucleic acids, proteins, lipids, and other signaling molecules between cells. In recent years, studies have found that EVs play a crucial role in the communication between tumor cells and immune cells. Innate immunity is the first-line response of the immune system against tumor progression. Therefore, tumor cell-derived EVs (TDEVs) which modulate the functional change of innate immune cells serve important functions in the context of tumor progression. Emerging evidence has shown that TDEVs dually enhance or suppress innate immunity through various pathways. This review aims to summarize the influence of TDEVs on macrophages, dendritic cells, neutrophils, and natural killer cells. We also summarize their further effects on the progression of tumors, which may provide new ideas for developing novel tumor therapies targeting EVs.
Collapse
Affiliation(s)
- Siqi Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Sun
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Raha M. Dastgheyb
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Zhigang Li
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
128
|
Chopra A, Gupta A. Skin as an immune organ and the site of biomimetic, non-invasive vaccination. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
129
|
Flow cytometry analysis of CD11c-positive peripheral blood mononuclear cells in horses. Vet Immunol Immunopathol 2022; 253:110504. [DOI: 10.1016/j.vetimm.2022.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
|
130
|
Chen Y, Hou C, Yang N, Yang Y, Chen Y, Kong D, Jiang Y, Lin M, Zheng S, Li S, Lu M. Regulatory Effect of JAK2/STAT3 on the Immune Function of Endotoxin-tolerant Dendritic Cells and its Involvement in Acute Liver Failure. J Clin Transl Hepatol 2022; 10:879-890. [PMID: 36304491 PMCID: PMC9547265 DOI: 10.14218/jcth.2021.00175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/19/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Acute liver failure (ALF) is a potentially fatal clinical syndrome with no effective treatment. This study aimed to explore the role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in modulating the phenotype and immune function of endotoxin-tolerant dendritic cells (ETDCs). In addition, we explored the use of EDTCs in an experimental model of ALF and investigated the associated mechanisms. METHODS In the in vitro experiment, ETDCs were transfected with adenovirus to induce SOCS1+/+ETDCs and SOCS1-/-ETDCs. Thereafter, costimulatory molecules and mixed lymphocyte reaction were assessed. Experimental mice were randomly divided into normal control, ALF, ALF+mock-ETDCs, ALF+SOCS1+/+ETDCs, ALF+AG490, and ALF+AG490+SOCS1+/+ETDCs groups. We examined the therapeutic effect of adoptive cellular immunotherapy by tail-vein injection of target ETDCs 12 h before ALF modeling. AG490, a JAK2/STAT3 inhibitor, was used in the in vivo experiment to further explore the protective mechanism of SOCS1+/+ETDCs. RESULTS Compared with control ETDCs, SOCS1+/+ETDCs had lower expression of costimulatory molecules, weaker allostimulatory ability, lower levels of IL-6 and TNF-α expression and higher IL-10 secretion. SOCS1-/-ETDCs showed the opposite results. In the in vivo experiments, the ALF+SOCS1+/+ETDCs and ALF+AG490+SOCS1+/+ETDCs groups showed less pathological damage and suppressed activation of JAK2/STAT3 pathway. The changes were more pronounced in the ALF+AG490+SOCS1+/+ETDCs group. Infusion of SOCS1+/+ETDCs had a protective effect against ALF possibly via inhibition of JAK2 and STAT3 phosphorylation. CONCLUSIONS The SOCS1 gene had an important role in induction of endotoxin tolerance. SOCS1+/+ETDCs alleviated lipopolysaccharide/D-galactosamine-induced ALF by downregulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yukai Chen
- Ningbo Puji Hospital, Ningbo, Zhejiang, China
| | - Chaochen Hou
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Naibin Yang
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yanyan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youran Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deyong Kong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchun Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minghao Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sijie Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Correspondence to: Mingqin Lu and Shanshan Li, Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. ORCID: https://orcid.org/0000-0002-8331-5862 (ML) and https://orcid.org/0000-0002-5017-7766 (SL). Tel: +86-577-55579631 (ML) and +86-13736772148 (SL), Fax: +86-577-55578033, E-mail: (ML) and (SL)
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Correspondence to: Mingqin Lu and Shanshan Li, Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. ORCID: https://orcid.org/0000-0002-8331-5862 (ML) and https://orcid.org/0000-0002-5017-7766 (SL). Tel: +86-577-55579631 (ML) and +86-13736772148 (SL), Fax: +86-577-55578033, E-mail: (ML) and (SL)
| |
Collapse
|
131
|
Wang D, Cui Q, Yang YJ, Liu AQ, Zhang G, Yu JC. Application of dendritic cells in tumor immunotherapy and progress in the mechanism of anti-tumor effect of Astragalus polysaccharide (APS) modulating dendritic cells: a review. Biomed Pharmacother 2022; 155:113541. [PMID: 36127221 DOI: 10.1016/j.biopha.2022.113541] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that are essential in mediating the body's natural and adaptive immune responses. The body can regulate the function of DCs in various ways to enhance their antitumor effects. In the tumour microenvironment (TME), antigen-specific T cell responses are initiated through DC processing and delivery of tumour-associated antigens (TAAs); conversely, tumour cells inhibit DC recruitment by releasing metabolites, cytokines and other regulatory TME and function. Different subpopulations of DCs exist in tumour tissues, and their functions vary. Insight into DC subgroups in TME allows assessment of the effectiveness of tumour immunotherapy. Astragalus polysaccharide (APS) is the main component of the Chinese herb Astragalus membranaceus. The study found that the antitumor effects of APS are closely related to DCs. APS can promote the expression of surface molecules CD80 and CD86, promote the maturation of DCs, and activate CTL to exert antitumor effects. We reviewed the application of DCs in tumor immunotherapy and the mechanism of modulation of DCs by Astragalus polysaccharide to provide new directions and strategies for tumor therapy and new drug development.
Collapse
Affiliation(s)
- Dong Wang
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Qian Cui
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Yan Jie Yang
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - A Qing Liu
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Guan Zhang
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Jian Chun Yu
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China.
| |
Collapse
|
132
|
Zhao J, Xu M, Sun R, Zhao J, Zhao Q, Wang Y, Tian G, Jiang T. Single-cell analysis reveals nanosecond pulsed electric field ablation induced myeloid cells remodeling in pancreatic cancer. Bioelectrochemistry 2022; 148:108266. [PMID: 36179391 DOI: 10.1016/j.bioelechem.2022.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022]
Abstract
Nanosecond pulsed electric field (nsPEF) treatment has emerged as a promising and effective approach for pancreatic cancer. Tumor-infiltrating myeloid cells are crucial tumor regulators and potential immunotherapy targets. Understanding the effect of nsPEF on the myeloid cells in tumors is necessary for grasping the anti-tumor impact of nsPEF therapy. This study describes the phenotype and function of myeloid cells in Panc02 pancreatic cancer mouse models on day three after nsPEF using single-cell RNA sequencing (scRNA-Seq). Defining comparable myeloid cells in Panc02 tumors enabled characterization of their response to nsPEF treatment. Treatment with nsPEF increased infiltration by monocytes/macrophages, which participated in forming a immunosuppressive tumor microenvironment. NsPEF also promoted the recruitment of dendritic cells to tumors. Our comprehensive investigation of crucial myeloid subsets and significant cellular interactions regulating tumor immunity indicated that the nsPEF induced a compartmental remodeling of tumor-infiltrating myeloid cells in pancreatic cancer. These results provide information for interpreting the complex immune changes after nsPEF treatment in pancreatic cancer and may guide future therapeutic interventions.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China
| | - Min Xu
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China
| | - Ruiqi Sun
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jun Zhao
- Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Qiyu Zhao
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China
| | - Yujue Wang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China
| | - Guo Tian
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Tianan Jiang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
133
|
Jiang F, Yang R, Xue D, Li R, Tan M, Zeng Z, Xu L, Liu L, Song Y, Lin F. Effects of a natural nutritional supplement on immune cell infiltration and immune gene expression in exercise-induced injury. Front Nutr 2022; 9:987545. [PMID: 36185677 PMCID: PMC9523794 DOI: 10.3389/fnut.2022.987545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory immune response plays a key role in exercise-induced injury and healing; however, the relevant regulatory mechanisms of immune infiltration in exercise-induced injuries remain less studied. In the present study, a highly efficient system for screening immunity-related biomarkers and immunomodulatory ability of natural nutritional supplements was developed by integrating intelligent data acquisition, data mining, network pharmacology, and computer-assisted target fishing. The findings demonstrated that resting natural killer cells showed a higher rate of infiltration after exercise, whereas naive B cells and activated dendritic cells showed higher rate of infiltration before exercise. Four key genes, namely PRF1, GZMB, CCL4, and FASLG, were associated with exercise-induced injuries and inflammatory immune response. In total, 26 natural compounds including echinacoside, eugenol, tocopherol, and casuariin were predicted by using the HERB databases. Molecular docking analysis showed that GZMB, FASLG, and CCL4 bound to echinacoside. In vivo experiments in mice showed that after 30 min swimming, natural killer (NK) cells showed high infiltration rates, and the key genes (GZMB, PRF1, FASLG, and CCL4) were highly expressed; however, echinocandin significantly reduced the level of NK cells and decreased the expression of the four key genes post exercise. This natural nutritional supplement may act to protect against inflammatory injury after exercise by suppressing specific immune infiltration.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Diya Xue
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rong Li
- Department of Obstetrics, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Tan
- Wenhua Community Health Service Center, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Zhicong Zeng
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Luhua Xu
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linling Liu
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yinzhi Song
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fengxia Lin
- Department of Cardiology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Fengxia Lin,
| |
Collapse
|
134
|
Xia T, Wang N, Tang Y, Gao Y, Gao C, Hao J, Jiang Y, Wang X, Shan Z, Li J, Zhou H, Cui W, Qiao X, Tang L, Wang L, Li Y. Delivery of antigen to porcine dendritic cells by fusing antigen with porcine dendritic cells targeting peptide. Front Immunol 2022; 13:926279. [PMID: 36159835 PMCID: PMC9499840 DOI: 10.3389/fimmu.2022.926279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that can recognize, capture, and process antigens. Fusing molecules targeting DCs with antigens can effectively improve the efficiency with which antigens are recognized and captured by DCs. This targeting strategy can be used for vaccine development to effectively improve the efficiency of antigen recognition and capture by DCs. The targeting sequence of porcine cytotoxic T-lymphocyte associated protein 4 (CTLA4), which binds porcine DCs, was identified in this study. Recombinant Lactobacillus reuteri (L. reuteri) expressing CTLA4-6aa (LYPPPY) and CTLA4-87aa fused to the porcine epidemic diarrhea virus (PEDV) protective antigen core neutralizing epitope (COE) were used to evaluate the ability of the two targeting motifs to bind the B7 molecule on DCs. Our results demonstrate that CTLA4-6aa could bind porcine DCs, and recombinant Lactobacillus expressing the CTLA4-6aa captured by porcine DCs was more efficient than those expressing CTLA4-87aa. In addition, the expression of DC markers, toll-like receptors, and cytokines was significantly higher in the 6aa-COE/L. reuteri-stimulated porcine DCs compared to DCs treated with 87aa-COE/L. reuteri (p<0.01) and recombinant Lactobacillus expressing CTLA4-6aa enhanced the ability of porcine DCs to activate T-cell proliferation. Our analysis of the protein structure revealed that CTLA4-87aa contains intramolecular hydrogen bonds, which may have weakened the intermolecular force between the residues on porcine CTLA4 and that on B7. In conclusion, recombinant Lactobacillus expressing CTLA4-6aa were more efficiently captured by porcine DCs and had a stronger ability to promote DC maturation and enhance T-cell proliferation. The LYPPPY motif is the optimal sequence for binding to porcine DCs. Piglets immunized with recombinant Lactobacillus showed that recombinant Lactobacillus expressing CTLA4-6aa induced significant levels of anti-PEDV-specific IgG and IgA antibody responses. Our study may promote research on DC-targeting strategies to enhance the effectiveness of porcine vaccines.
Collapse
Affiliation(s)
- Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuqing Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueyi Gao
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianhui Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| |
Collapse
|
135
|
Zheng H, Guo X, Li N, Qin L, Li X, Lou G. Increased expression of SYCP2 predicts poor prognosis in patients suffering from breast carcinoma. Front Genet 2022; 13:922401. [PMID: 36159998 PMCID: PMC9491682 DOI: 10.3389/fgene.2022.922401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Overexpression of synaptonemal complex protein-2 (SYCP2) has been identified in various human papillomavirus (HPV)–related carcinomas, whereas its significant role in breast carcinoma remains unclear. The aim of this study was to elucidate the prognostic value and potential function of SYCP2 in breast carcinoma. Herein, data for breast carcinoma patients from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas database (TCGA) were analyzed. The enrichment analysis of SYCP2 including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Friends, and GSEA was performed. Kaplan–Meier analysis, Cox regression, and receiver operating characteristic (ROC) curves were employed for determining the predictive value of SYCP2 on clinical outcomes in patients suffering from breast carcinoma. A nomogram was generated to predict the effect arising from SYCP2 on prognosis. The association analysis of SYCP2 gene expression and diverse immune infiltration levels was conducted through ssGSEA and ESTIMATE analysis, which consisted of dendritic cell (DC), neutrophil, eosinophil, macrophage, mast cell, NK cell, and other 18 cell subtypes. The results showed that SYCP2 expression was significantly elevated in breast carcinoma tissues as compared with that of normal tissues (p < 0.001). SYCP2 plays a certain role in pathways related to DNA methylation, keratinocyte differentiation, steroid hormone biosynthesis, and immune infiltration. The high expression of SYCP2 had a significant relationship to age, pathological type, ER expression, and PR expression (p < 0.001). Kaplan–Meier survival analysis showed that patients suffering from breast carcinoma characterized by high-SYCP2 expression had a poorer prognosis than patients with low-SYCP2 expression (p = 0.005). Univariate and multivariate Cox regression analyses revealed that SYCP2 had an independent relationship to overall survival (p = 0.049). Moreover, ROC curves suggested the significant diagnostic ability of SYCP2 for breast carcinoma, and as time went on, SYCP2 had more accurate prognostic efficacy. Furthermore, a high level of SYCP2 expression was found to have a relationship to poor prognosis of breast carcinoma in the subgroups of T3, N0, and M0, and infiltrating ductal carcinoma (HR > 1, p < 0.05). The calibration plot of the nomogram indicated that the SYCP2 model has an effective predictive performance for breast carcinoma patients. Conclusively, SYCP2 plays a vital role in the pathogenesis and progression of human breast carcinoma, so it may serve as a promising prognostic molecular marker of poor survival.
Collapse
Affiliation(s)
- Hongyan Zheng
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyao Qin
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Li
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Ge Lou,
| |
Collapse
|
136
|
Wang Y, Jiang T, Xie L, Wang H, Zhao J, Xu L, Fang C. Effect of pulsed field ablation on solid tumor cells and microenvironment. Front Oncol 2022; 12:899722. [PMID: 36081554 PMCID: PMC9447365 DOI: 10.3389/fonc.2022.899722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Pulsed field ablation can increase membrane permeability and is an emerging non-thermal ablation. While ablating tumor tissues, electrical pulses not only act on the membrane structure of cells to cause irreversible electroporation, but also convert tumors into an immune active state, increase the permeability of microvessels, inhibit the proliferation of pathological blood vessels, and soften the extracellular matrix thereby inhibiting infiltrative tumor growth. Electrical pulses can alter the tumor microenvironment, making the inhibitory effect on the tumor not limited to short-term killing, but mobilizing the collective immune system to inhibit tumor growth and invasion together.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian’an Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- *Correspondence: Tian’an Jiang,
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Huiyang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyu Fang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
137
|
Yu Y, Wang H, Guo B, Wang B, Wan Z, Zhang Y, Sun L, Yang F. Microneedle-based two-step transdermal delivery of Langerhans cell-targeting immunoliposomes induces a Th1-biased immune response. Eur J Pharm Biopharm 2022; 177:68-80. [PMID: 35716853 PMCID: PMC9197786 DOI: 10.1016/j.ejpb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
Novel Coronavirus is affecting human's life globally and vaccines are one of the most effective ways to combat the epidemic. Transcutaneous immunization based on microneedle (MN) has attracted much attention because of its painlessness, rapidity, high efficiency and good compliance. In this study, CD11c monoclonal antibody-immunoliposomes (OVA@CD11c-ILP) actively targeting to Langerhans cells (LCs) were successfully prepared and were delivered by the microchannels of skin produced by MN to induce an immune response in vivo. OVA@CD11c-ILP could be targeted to LCs by conjugating CD11c monoclonal antibody to the surface of the ILP. OVA@CD11c-ILP promoted the maturation of dendritic cells (DCs) and the uptake and endocytosis of antigen by LCs. Moreover, OVA@CD11c-ILP immunization can significantly inhibit tumor growth and prolong overall survival. Furthermore, a higher antibody's titer ratio of IgG1/IgG2a indicated that the immune response stimulated by this immunization method was Th1-biased and the liposomes showed Th1-type adjuvant effect. In conclusion, the combination delivery system of immunoliposomes and microneedle can significantly improve the efficiency of antigen presentation and effectively activate cellular immune responses in the body, which is expected to be a promising transdermal immune strategy.
Collapse
Affiliation(s)
- Yingjie Yu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Beibei Guo
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Bingkai Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Zhan Wan
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Yunchang Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Linhong Sun
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Feng Yang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
138
|
Wang J, Yin Y, Xu N, Zhou B, Qin T. Royal jelly attenuates LPS-induced immune dysfunction of dendritic cells via Nrf2/HO-1 axis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
139
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
140
|
Scopelliti F, Cattani C, Dimartino V, Mirisola C, Cavani A. Platelet Derivatives and the Immunomodulation of Wound Healing. Int J Mol Sci 2022; 23:ijms23158370. [PMID: 35955503 PMCID: PMC9368989 DOI: 10.3390/ijms23158370] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Besides their primary role in hemostasis, platelets contain a plethora of immunomodulatory molecules that profoundly affect the entire process of wound repair. Therefore, platelet derivatives, such as platelet-rich plasma or platelet lysate, have been widely employed with promising results in the treatment of chronic wounds. Platelet derivatives provide growth factors, cytokines, and chemokines targeting resident and immigrated cells belonging to the innate and adaptive immune system. The recruitment and activation of neutrophils and macrophages is critical for pathogen clearance in the early phase of wound repair. The inflammatory response begins with the release of cytokines, such as TGF-β, aimed at damping excessive inflammation and promoting the regenerative phase of wound healing. Dysregulation of the immune system during the wound healing process leads to persistent inflammation and delayed healing, which ultimately result in chronic wound. In this review, we summarize the role of the different immune cells involved in wound healing, particularly emphasizing the function of platelet and platelet derivatives in orchestrating the immunological response.
Collapse
|
141
|
Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, Li C, Li W. The reservoir of latent HIV. Front Cell Infect Microbiol 2022; 12:945956. [PMID: 35967854 PMCID: PMC9368196 DOI: 10.3389/fcimb.2022.945956] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent reservoir of the human immunodeficiency virus (HIV) is currently the major challenge in curing HIV infection. After HIV infects the human body, the latent HIV is unable to be recognized by the body’s immune system. Currently, the widely adopted antiretroviral therapy (ART) is also unble to eliminate it, thus hindering the progress of HIV treatment. This review discusses the existence of latent HIV vault for HIV treatment, its formation and factors affecting its formation, cell, and tissue localization, methods for detection and removing latent reservoir, to provide a comprehensive understanding of latent HIV vault, in order to assist in the future research and play a potential role in achieving HIV treatment.
Collapse
Affiliation(s)
- Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| |
Collapse
|
142
|
Tai J, Kwak J, Han M, Kim TH. Different Roles of Dendritic Cells for Chronic Rhinosinusitis Treatment According to Phenotype. Int J Mol Sci 2022; 23:ijms23148032. [PMID: 35887379 PMCID: PMC9323853 DOI: 10.3390/ijms23148032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells derived from the bone marrow that play an important role in the association between the innate and adaptive immune responses. The onset and development of chronic rhinosinusitis (CRS) involve a serious imbalance in immune regulation and mechanical dysfunction caused by an abnormal remodeling process. Recent studies have shown that an increase in DCs in CRS and their function of shaping the nasal mucosal immune response may play an important role in the pathogenesis of CRS. In this review, we discuss DC subsets in mice and humans, as well as the function of DCs in the nasal sinus mucosa. In addition, the mechanism by which DCs can be used as targets for therapeutic intervention for CRS and potential future research directions are also discussed.
Collapse
Affiliation(s)
- Junhu Tai
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Jiwon Kwak
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Munsoo Han
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-02-920-5486
| |
Collapse
|
143
|
Filipović M, Flegar D, Šućur A, Šisl D, Kavazović I, Antica M, Kelava T, Kovačić N, Grčević D. Inhibition of Notch Signaling Stimulates Osteoclastogenesis From the Common Trilineage Progenitor Under Inflammatory Conditions. Front Immunol 2022; 13:902947. [PMID: 35865541 PMCID: PMC9294223 DOI: 10.3389/fimmu.2022.902947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoclasts, macrophages and dendritic cells (DCs) can be derived from a common trilineage myeloid progenitor of hematopoietic origin. Progenitor commitment is susceptible to regulation through Notch signaling. Our aim was to determine the effects of Notch modulation on trilineage progenitor commitment and functional properties of differentiated cells under inflammatory conditions. We used the conditional inducible CX3CR1CreERT2 mouse strain to achieve overexpression of the Notch 1 intracellular domain (NICD1) or to inhibit Notch signaling via deletion of the transcription factor RBP-J in a bone marrow population, used as a source of the trilineage progenitor (CD45+Ly6G−CD3−B220−NK1.1−CD11b–/loCD115+). Cre-recombinase, under the control of the CX3CR1 promoter, expressed in the monocyte/macrophage lineage, was induced in vitro by 4-hydroxytamoxifen. Differentiation of osteoclasts was induced by M-CSF/RANKL; macrophages by M-CSF; DCs by IL-4/GM-CSF, and inflammation by LPS. Functionally, DCs were tested for the ability to process and present antigen, macrophages to phagocytose E. coli particles, and osteoclasts to resorb bone and express tartrate-resistant acid phosphatase (TRAP). We found that Notch 1 signal activation suppressed osteoclast formation, whereas disruption of the Notch canonical pathway enhanced osteoclastogenesis, resulting in a higher number and size of osteoclasts. RANK protein and Ctsk gene expression were upregulated in osteoclastogenic cultures from RBP-J+ mice, with the opposing results in NICD1+ mice. Notch modulation did not affect the number of in vitro differentiated macrophages and DCs. However, RBP-J deletion stimulated Il12b and Cd86 expression in macrophages and DCs, respectively. Functional assays under inflammatory conditions confirmed that Notch silencing amplifies TRAP expression by osteoclasts, whereas the enhanced phagocytosis by macrophages was observed in both NICD1+ and RBP-J+ strains. Finally, antigen presentation by LPS-stimulated DCs was significantly downregulated with NICD1 overexpression. This experimental setting allowed us to define a cell-autonomous response to Notch signaling at the trilineage progenitor stage. Although Notch signaling modulation affected the activity of all three lineages, the major effect was observed in osteoclasts, resulting in enhanced differentiation and function with inhibition of canonical Notch signaling. Our results indicate that Notch signaling participates as the negative regulator of osteoclast activity during inflammation, which may be relevant in immune and bone diseases.
Collapse
Affiliation(s)
- Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- *Correspondence: Danka Grčević,
| |
Collapse
|
144
|
Cohen AA, Ferrucci L, Fülöp T, Gravel D, Hao N, Kriete A, Levine ME, Lipsitz LA, Olde Rikkert MGM, Rutenberg A, Stroustrup N, Varadhan R. A complex systems approach to aging biology. NATURE AGING 2022; 2:580-591. [PMID: 37117782 DOI: 10.1038/s43587-022-00252-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/08/2022] [Indexed: 04/30/2023]
Abstract
Having made substantial progress understanding molecules, cells, genes and pathways, aging biology research is now moving toward integration of these parts, attempting to understand how their joint dynamics may contribute to aging. Such a shift of perspective requires the adoption of a formal complex systems framework, a transition being facilitated by large-scale data collection and new analytical tools. Here, we provide a theoretical framework to orient researchers around key concepts for this transition, notably emergence, interaction networks and resilience. Drawing on evolutionary theory, network theory and principles of homeostasis, we propose that organismal function is accomplished by the integration of regulatory mechanisms at multiple hierarchical scales, and that the disruption of this ensemble causes the phenotypic and functional manifestations of aging. We present key examples at scales ranging from sub-organismal biology to clinical geriatrics, outlining how this approach can potentially enrich our understanding of aging.
Collapse
Affiliation(s)
- Alan A Cohen
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada.
- Research Center on Aging and Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.
- Butler Columbia Aging Center and Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute on Aging, Baltimore, MD, USA
| | - Tamàs Fülöp
- Research Center on Aging and Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Medicine, Geriatric Division, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dominique Gravel
- Department of Biology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Morgan E Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lewis A Lipsitz
- Beth Israel Deaconess Medical Center, Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, and Harvard Medical School, Boston, MA, USA
| | | | - Andrew Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ravi Varadhan
- Department of Oncology, Quantitative Sciences Division, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
145
|
Carlson KN, Verhagen JC, Jennings H, Verhoven B, McMorrow S, Pavan-Guimaraes J, Chlebeck P, Al-Adra DP. Single-cell RNA sequencing distinguishes dendritic cell subsets in the rat, allowing advanced characterization of the effects of FMS-like tyrosine kinase 3 ligand. Scand J Immunol 2022; 96:e13159. [PMID: 35285040 PMCID: PMC9250598 DOI: 10.1111/sji.13159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/14/2023]
Abstract
Tissue-resident dendritic cells (DCs) are essential for immunological homeostasis and hold promise for a variety of therapeutic interventions. The rare nature of tissue-resident DCs and their suboptimal description in the lab rat model has limited their characterization. To address this limitation, FMS-like tyrosine kinase 3 ligand (FLT3L) has been utilized to expand these population in vitro and in vivo for investigative or therapeutic purposes. However, conflicting reports have suggested that FLT3L can either promote immune tolerance or enhance immunogenicity, necessitating clarification of the effects of FLT3L on DC phenotype and functionality. We first paired single-cell RNA sequencing with multicolour spectral flow cytometry to provide an updated strategy for the identification of tissue-resident classical and plasmacytoid DCs in the rat model. We then administered FLT3L to Lewis rats in vivo to investigate its effect on tissue-resident DC enumeration and phenotype in the liver, spleen, and mesenteric lymph nodes. We found that FLT3L expands classical DCs (cDCs) 1 and 2 in a dose-dependent manner and that cDC1 and cDC2 in secondary lymphoid organs had altered MHC I, MHC II, CD40, CD80, CD86, and PD-L1 cell-surface expression levels following FLT3L administration. These changes were accompanied by an increase in gene expression levels of toll-like receptors 2, 4, 7, and 9 as well as inflammatory cytokines IL-6 and TNF-α. In conclusion, FLT3L administration in vivo increases cDC enumeration in the liver, spleen, and mesenteric lymph nodes accompanied by a tissue-restricted alteration in expression of antigen presentation machinery and inflammatory mediators.
Collapse
Affiliation(s)
- Kristin N Carlson
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joshua C Verhagen
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Heather Jennings
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bret Verhoven
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Stacey McMorrow
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Juliana Pavan-Guimaraes
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter Chlebeck
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David P Al-Adra
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
146
|
Scheib N, Tiemann J, Becker C, Probst HC, Raker VK, Steinbrink K. The Dendritic Cell Dilemma in the Skin: Between Tolerance and Immunity. Front Immunol 2022; 13:929000. [PMID: 35837386 PMCID: PMC9275407 DOI: 10.3389/fimmu.2022.929000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DC) are uniquely capable of initiating and directing immune responses. The range of their activities grounds in the heterogeneity of DC subsets and their functional plasticity. Numerical and functional DC changes influence the development and progression of disease, and correction of such dysregulations has the potential to treat disease causally. In this review, we discuss the major advances in our understanding of the regulation of DC lineage formation, differentiation, and function in the skin. We describe the alteration of DC in disease as well as possibilities for therapeutic reprogramming with a focus on tolerogenic DC. Because regulatory T cells (Treg) are indispensable partners of DC in the induction and control of tolerance, we pay special attention to the interactions with these cells. Above all, we would like to arouse fascination for this cell type and its therapeutic potential in skin diseases.
Collapse
Affiliation(s)
- Nils Scheib
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Jessica Tiemann
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Christian Becker
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Hans Christian Probst
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Verena Katharina Raker
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
- *Correspondence: Verena Katharina Raker,
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| |
Collapse
|
147
|
Xia H, Wang Y, Dai J, Zhang X, Zhou J, Zeng Z, Jia Y. Selenoprotein K Is Essential for the Migration and Phagocytosis of Immature Dendritic Cells. Antioxidants (Basel) 2022; 11:antiox11071264. [PMID: 35883755 PMCID: PMC9311522 DOI: 10.3390/antiox11071264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Selenoprotein K (SELENOK) is an endoplasmic reticulum stress (ERS)-regulated protein required for the calcium (Ca2+) flux-mediated migration of T cells and neutrophils, and the migration and phagocytosis of macrophages and microglia. However, the effect of SELENOK on the regulation of the immune function of dendritic cells (DCs), including immature DCs (imDCs) and mature DCs (mDCs), is still unclear. In this study, imDCs prepared from SELENOK knockout mice were used to evaluate the effect of SELENOK on the migration and phagocytosis of imDCs. The results showed that ERS-induced downregulation of imDCs phenotypic markers led to a reduction in Ras homolog gene family member A (RhoA)-dependent migration and enhanced Ca2+/CD205-mediated phagocytosis. SELENOK deficiency-induced upregulation of selenoprotein S (SELENOS) attenuated ERS levels in imDCs. An increase in Ca2+ levels resulted in increased migration and decreased phagocytosis with or without ERS conditions. The migration was RhoA-dependent, and Ca2+ or CD205 was associated with regulating phagocytosis in imDCs. Our study found that SELENOK is required for imDC migration and phagocytosis.
Collapse
Affiliation(s)
- Huan Xia
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (H.X.); (Y.W.); (J.D.); (X.Z.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
- Department of Pathology, Guizhou Qiannan People’s Hospital, Qiannan 558000, China
| | - Yongmei Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (H.X.); (Y.W.); (J.D.); (X.Z.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Jie Dai
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (H.X.); (Y.W.); (J.D.); (X.Z.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xin Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (H.X.); (Y.W.); (J.D.); (X.Z.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Shenzhen 518057, China
- Correspondence: (J.Z.); (Z.Z.); (Y.J.)
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (H.X.); (Y.W.); (J.D.); (X.Z.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (J.Z.); (Z.Z.); (Y.J.)
| | - Yi Jia
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (H.X.); (Y.W.); (J.D.); (X.Z.)
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (J.Z.); (Z.Z.); (Y.J.)
| |
Collapse
|
148
|
Kaczynska A, Klosinska M, Janeczek K, Zarobkiewicz M, Emeryk A. Promising Immunomodulatory Effects of Bacterial Lysates in Allergic Diseases. Front Immunol 2022; 13:907149. [PMID: 35812388 PMCID: PMC9257936 DOI: 10.3389/fimmu.2022.907149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
In light of an escalating prevalence of allergic disorders, it is crucial to fully comprehend their pathophysiology and etiology. Such knowledge would play a pivotal role in the search for new therapeutic approaches concerning not only diseases’ symptoms, but also their underlying causes. The hygiene hypothesis indicates a high correlation between limited exposure to pathogens in early childhood and the risk of developing allergic disorders. Bearing in mind the significance of respiratory and digestive systems’ mucous membrane’s first-line exposure to pathogens as well as its implications on the host’s immune response, a therapy targeted at aforesaid membranes could guarantee promising and extensive treatment outcomes. Recent years yielded valuable information about bacterial lysates (BLs) known for having immunomodulatory properties. They consist of antigen mixtures obtained through lysis of bacteria which are the most common etiologic agents of respiratory tract infections. They interact with dendritic cells located in the mucous membranes of the upper respiratory tract and the gastrointestinal tract by toll-like receptors. The dendritic cells present acquired antigens resulting in innate immune response development on the release of chemokines, both stimulating monocytes and NK cells maturation and promoting polymorphonuclear neutrophil migration. Moreover, they influence the adaptive immune system by stimulating an increase of specific antibodies against administered bacterial antigens. The significance of BLs includes not only an anti-inflammatory effect on local infections but also restoration of Th1/Th2 balance, as demonstrated mainly in animal models. They decrease Th2-related cytokine levels (IL-4, IL-13) and increase Th1-related cytokine levels (IFN-γ). The reestablishment of the balance of the immune response leads to lowering atopic reactions incidence which, in addition to reduced risk of inflammation, provides the alleviation and improvement of clinical manifestations of allergic disorders. In this review, we hereby describe mechanisms of BLs action, considering their significant immunomodulatory role in innate immunity. The correlation between local, innate, and adaptive immune responses and their impact on the clinical course of allergic disorders are discussed as well. To conclude our review, we present up-to-date literature regarding the outcomes of BLs implemented in atopic dermatitis, allergic rhinitis, and asthma prevention and treatment, especially in children.
Collapse
Affiliation(s)
- Agnieszka Kaczynska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Martyna Klosinska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Kamil Janeczek
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Kamil Janeczek,
| | - Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Emeryk
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
149
|
de Lima Pereira Dos Santos C, Vacani-Martins N, Cascabulho CM, Pereira MCDS, Crispe IN, Henriques-Pons A. In the Acute Phase of Trypanosoma cruzi Infection, Liver Lymphoid and Myeloid Cells Display an Ambiguous Phenotype Combining Pro- and Anti-Inflammatory Markers. Front Immunol 2022; 13:868574. [PMID: 35720410 PMCID: PMC9204308 DOI: 10.3389/fimmu.2022.868574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple cell populations, cellular biochemical pathways, and the autonomic nervous system contribute to maintaining the immunological tolerance in the liver. This tolerance is coherent because the organ is exposed to high levels of bacterial pathogen-associated molecular pattern (PAMP) molecules from the intestinal microbiota, such as lipopolysaccharide endotoxin (LPS). In the case of Trypanosoma cruzi infection, although there is a dramatic acute immune response in the liver, we observed intrahepatic cell populations combining pro- and anti-inflammatory markers. There was loss of fully mature Kupffer cells and an increase in other myeloid cells, which are likely to include monocytes. Among dendritic cells (DCs), the cDC1 population expanded relative to the others, and these cells lost both some macrophage markers (F4/80) and immunosuppressive cytokines (IL-10, TGF-β1). In parallel, a massive T cell response occured with loss of naïve cells and increase in several post-activation subsets. However, these activated T cells expressed both markers programmed cell death protein (PD-1) and cytokines consistent with immunosuppressive function (IL-10, TGF-β1). NK and NK-T cells broadly followed the pattern of T cell activation, while TCR-γδ cells appeared to be bystanders. While no data were obtained concerning IL-2, several cell populations also synthesized IFN-γ and TNF-α, which has been linked to host defense but also to tissue injury. It therefore appears that T. cruzi exerts control over liver immunity, causing T cell activation via cDC1 but subverting multiple populations of T cells into immunosuppressive pathways. In this way, T. cruzi engages a mechanism of hepatic T cell tolerance that is familiar from liver allograft tolerance, in which activation and proliferation are followed by T cell inactivation.
Collapse
Affiliation(s)
| | - Natalia Vacani-Martins
- Laboratório de Inovaçõeses em Terapias, Ensino e Bioprodutos, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cynthia Machado Cascabulho
- Laboratório de Inovaçõeses em Terapias, Ensino e Bioprodutos, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Ian Nicholas Crispe
- Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, United States
| | - Andrea Henriques-Pons
- Laboratório de Inovaçõeses em Terapias, Ensino e Bioprodutos, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
150
|
Baljon JJ, Wilson JT. Bioinspired vaccines to enhance MHC class-I antigen cross-presentation. Curr Opin Immunol 2022; 77:102215. [PMID: 35667222 DOI: 10.1016/j.coi.2022.102215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022]
Abstract
Cross-presentation of exogenous antigen on MHC class-I is a crucial process for generating a CD8+ T cell response, and is therefore an important design consideration in the development of T-cell-engaging vaccines against viruses, intracellular bacteria, and cancers. Here, we briefly summarize known cross-presentation pathways and highlight how synthetic vaccines can be engineered to enhance MHC-I presentation of exogenous peptide and protein antigens by professional antigen-presenting cells (APCs). In particular, we summarize how molecular engineering and nanotechnology are being harnessed to enhance antigen delivery to lymph nodes and to cross-presenting dendritic cells, to bypass endosomal trafficking of exogenous antigen to promote delivery of antigen to the cytosol of APCs, and to coordinate the delivery of antigen with immune-stimulating adjuvants that can act synergistically to augment antigen cross-presentation.
Collapse
Affiliation(s)
- Jessalyn J Baljon
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - John T Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|