101
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
102
|
Sanchaniya JV, Lasenko I, Kanukuntla SP, Mannodi A, Viluma-Gudmona A, Gobins V. Preparation and Characterization of Non-Crimping Laminated Textile Composites Reinforced with Electrospun Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1949. [PMID: 37446465 DOI: 10.3390/nano13131949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
This research investigated the use of electrospun nanofibers as reinforcing laminates in textiles to enhance their mechanical properties for use as smart and technical textile applications. Crimping plays a crucial role in textiles. Because of crimp, fabrics have extensibility, compressibility, and improved quality. Although crimping is inevitable for fabrics used in smart textiles, it is also a disadvantage as it could weaken the fibers and reduce their strength and efficiency. The study focused on preparing laminated textile composites by electrospinning a polyacrylonitrile (PAN) polymer onto textile fabric. The research examined the effect of electrospun nanofibers on the fabric by using a tensile testing machine and scanning electron microscopy. The results revealed that the prepared laminated textile was crimp-free because of the orientation of the nanofibers directly electrospun on the fabric, which exhibited perfect bonding between the laminates. Additionally, the nanofiber-reinforced composite fabrics demonstrated a 75.5% increase in the elastic moduli and a 20% increase in elongation at breaking. The study concluded that the use of electrospun nanofibers as laminates in textile composites could enhance the elastic properties, and prepared laminated composites will have the advantages of nanofibers, such as crimp-free elastic regions. Furthermore, the mechanical properties of the laminated textile composite were compared with those of the micromechanical models, providing a deeper understanding of the behavior of these laminated composites.
Collapse
Affiliation(s)
- Jaymin Vrajlal Sanchaniya
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
- Department of Theoretical Mechanics and Strength of Materials, Institute of Mechanics and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Inga Lasenko
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
| | - Sai Pavan Kanukuntla
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
- Department of Theoretical Mechanics and Strength of Materials, Institute of Mechanics and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Anunand Mannodi
- Department of Theoretical Mechanics and Strength of Materials, Institute of Mechanics and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Arta Viluma-Gudmona
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
| | - Valters Gobins
- Laboratory of Environmental Genetics, Institute of Biology, Faculty of Biology, Latvian University, Jelgavas Street 1, LV-1004 Riga, Latvia
| |
Collapse
|
103
|
Hashemi SS, Mohammadi AA, Rajabi SS, Sanati P, Rafati A, Kian M, Zarei Z. Preparation and evaluation of a polycaprolactone/chitosan/propolis fibrous nanocomposite scaffold as a tissue engineering skin substitute. BIOIMPACTS : BI 2023; 13:275-287. [PMID: 37645024 PMCID: PMC10460768 DOI: 10.34172/bi.2023.26317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 08/31/2023]
Abstract
Introduction Recently, the application of nanofibrous mats for dressing skin wounds has received great attention. In this study, we aimed to fabricate and characterize an electrospun nanofibrous mat containing polycaprolactone (PCL), chitosan (CTS), and propolis for use as a tissue-engineered skin substitute. Methods Raw propolis was extracted, and its phenolic and flavonoid contents were measured. The physiochemical and biological properties of the fabricated mats, including PCL, PCL/CTS, and PCL/CTS/Propolis were evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), mechanical analysis, swelling and degradation behaviors, contact angle measurement, cell attachment, DAPI staining, and MTT assay. On the other hand, the drug release pattern of propolis from the PCL/CTS/Propolis scaffold was determined. A deep second-degree burn wound model was induced in rats to investigate wound healing using macroscopical and histopathological evaluations. Results The results revealed that the propolis extract contained high amounts of phenolic and flavonoid compounds. The fabricated scaffold had suitable physicochemical and mechanical properties. Uniform, bead-free, and well-branched fibers were observed in SEM images of mats. AFM analysis indicated that the addition of CTS and propolis to PCL elevated the surface roughness. MTT results revealed that the electrospun PCL/CTS/Propolis mat was biocompatible. The presence of fibroblast cells on the PCL/CTS/Propolis mats was confirmed by DAPI staining and SEM images. Also, propolis was sustainably released from the PCL/CTS/Propolis mat. The animal study revealed that addition of propolis significantly improved wound healing. Conclusion The nanofibrous PCL/CTS/Propolis mat can be applied as a tissue-engineered skin substitute for healing cutaneous wounds, such as burn wounds.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Akbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Seyedeh-Somayeh Rajabi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Parisa Sanati
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Iran National Elite Foundation, Tehran, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Fars, Iran
| | - Mehdi Kian
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Zahra Zarei
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
104
|
Santander S, Padilla-Manzano N, Díaz B, Bacchiega R, Jara E, Álvarez LF, Pinto C, Forero JC, Santana P, Hamm E, Urzúa M, Tamayo L. Wettability of Amino Acid-Functionalized PSMA Electrospun Fibers for the Modulated Release of Active Agents and Its Effect on Their Bioactivity. Pharmaceutics 2023; 15:1659. [PMID: 37376107 DOI: 10.3390/pharmaceutics15061659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The ideal treatment for chronic wounds is based on the use of bioactive dressings capable of releasing active agents. However, the control of the rate at which these active agents are released is still a challenge. Bioactive polymeric fiber mats of poly(styrene-co-maleic anhydride) [PSMA] functionalized with amino acids of different hydropathic indices and L-glutamine, L-phenylalanine and L-tyrosine levels allowed obtaining derivatives of the copolymers named PSMA@Gln, PSMA@Phe and PSMA@Tyr, respectively, with the aim of modulating the wettability of the mats. The bioactive characteristics of mats were obtained by the incorporation of the active agents Calendula officinalis (Cal) and silver nanoparticles (AgNPs). A higher wettability for PSMA@Gln was observed, which is in accordance with the hydropathic index value of the amino acid. However, the release of AgNPs was higher for PSMA and more controlled for functionalized PSMA (PSMAf), while the release curves of Cal did not show behavior related to the wettability of the mats due to the apolar character of the active agent. Finally, the differences in the wettability of the mats also affected their bioactivity, which was evaluated in bacterial cultures of Staphylococcus aureus ATCC 25923 and methicillin-resistant Staphylococcus aureus ATCC 33592, an NIH/3T3 fibroblast cell line and red blood cells.
Collapse
Affiliation(s)
- Sebastián Santander
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Nicolás Padilla-Manzano
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Bastián Díaz
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Renato Bacchiega
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Elizabeth Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Luis Felipe Álvarez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Cristóbal Pinto
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Juan C Forero
- Escuela de Ciencias de la Salud, Universidad de Viña del Mar, Viña del Mar 2572007, Chile
| | - Paula Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Eugenio Hamm
- Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile, Av. Víctor Jara 3493, Estación Central, Santiago 9160000, Chile
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| |
Collapse
|
105
|
Huang SM, Liu SM, Tseng HY, Chen WC. Development and In Vitro Analysis of Layer-by-Layer Assembled Membranes for Potential Wound Dressing: Electrospun Curcumin/Gelatin as Middle Layer and Gentamicin/Polyvinyl Alcohol as Outer Layers. MEMBRANES 2023; 13:564. [PMID: 37367768 PMCID: PMC10304541 DOI: 10.3390/membranes13060564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Nanofibrous membranes made of hydrogels have high specific surface areas and are suitable as drug carriers. Multilayer membranes fabricated by continuous electrospinning could delay drug release by increasing diffusion pathways, which is beneficial for long-term wound care. In this experiment, polyvinyl alcohol (PVA) and gelatin were used as membrane substrates, and a sandwich PVA/gelatin/PVA structure of layer-by-layer membranes was prepared by electrospinning under different drug loading concentrations and spinning times. The outer layers on both sides were citric-acid-crosslinked PVA membranes loaded with gentamicin as an electrospinning solution, and the middle layer was a curcumin-loaded gelatin membrane for the study of release behavior, antibacterial activity, and biocompatibility. According to the in vitro release results, the multilayer membrane could release curcumin slowly; the release amount was about 55% less than that of the single layer within 4 days. Most of the prepared membranes showed no significant degradation during immersion, and the phosphonate-buffered saline absorption rate of the multilayer membrane was about five to six times its weight. The results of the antibacterial test showed that the multilayer membrane loaded with gentamicin had a good inhibitory effect on Staphylococcus aureus and Escherichia coli. In addition, the layer-by-layer assembled membrane was non-cytotoxic but detrimental to cell attachment at all gentamicin-carrying concentrations. This feature could be used as a wound dressing to reduce secondary damage to the wound when changing the dressing. This multilayer wound dressing could be applied to wounds in the future to reduce the risk of bacterial infection and help wounds heal.
Collapse
Affiliation(s)
- Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Hua-Yi Tseng
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; (S.-M.H.); (S.-M.L.); (H.-Y.T.)
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
106
|
Miron A, Giurcaneanu C, Mihai MM, Beiu C, Voiculescu VM, Popescu MN, Soare E, Popa LG. Antimicrobial Biomaterials for Chronic Wound Care. Pharmaceutics 2023; 15:1606. [PMID: 37376055 DOI: 10.3390/pharmaceutics15061606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds encompass a myriad of lesions, including venous and arterial leg ulcers, diabetic foot ulcers (DFUs), pressure ulcers, non-healing surgical wounds and others. Despite the etiological differences, chronic wounds share several features at a molecular level. The wound bed is a convenient environment for microbial adherence, colonization and infection, with the initiation of a complex host-microbiome interplay. Chronic wound infections with mono- or poly-microbial biofilms are frequent and their management is challenging due to tolerance and resistance to antimicrobial therapy (systemic antibiotic or antifungal therapy or antiseptic topicals) and to the host's immune defense mechanisms. The ideal dressing should maintain moisture, allow water and gas permeability, absorb wound exudates, protect against bacteria and other infectious agents, be biocompatible, be non-allergenic, be non-toxic and biodegradable, be easy to use and remove and, last but not least, it should be cost-efficient. Although many wound dressings possess intrinsic antimicrobial properties acting as a barrier to pathogen invasion, adding anti-infectious targeted agents to the wound dressing may increase their efficiency. Antimicrobial biomaterials may represent a potential substitute for systemic treatment of chronic wound infections. In this review, we aim to describe the available types of antimicrobial biomaterials for chronic wound care and discuss the host response and the spectrum of pathophysiologic changes resulting from the contact between biomaterials and host tissues.
Collapse
Affiliation(s)
- Adrian Miron
- Department of General Surgery, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of General Surgery, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Mara Madalina Mihai
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, ICUB-Research Institute, University of Bucharest, No. 90 Panduri Str., 050663 Bucharest, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Vlad Mihai Voiculescu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Marius Nicolae Popescu
- Department of Microbiology, Faculty of Biology, ICUB-Research Institute, University of Bucharest, No. 90 Panduri Str., 050663 Bucharest, Romania
- Department of Physical and Rehabilitation Medicine, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Physical and Rehabilitation Medicine, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Elena Soare
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| |
Collapse
|
107
|
T A, Prabhu A, Baliga V, Bhat S, Thenkondar ST, Nayak Y, Nayak UY. Transforming Wound Management: Nanomaterials and Their Clinical Impact. Pharmaceutics 2023; 15:pharmaceutics15051560. [PMID: 37242802 DOI: 10.3390/pharmaceutics15051560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Wound healing is a complex process that can be further complicated in chronic wounds, leading to prolonged healing times, high healthcare costs, and potential patient morbidity. Nanotechnology has shown great promise in developing advanced wound dressings that promote wound healing and prevent infection. The review article presents a comprehensive search strategy that was applied to four databases, namely Scopus, Web of Science, PubMed, and Google Scholar, using specific keywords and inclusion/exclusion criteria to select a representative sample of 164 research articles published between 2001 and 2023. This review article provides an updated overview of the different types of nanomaterials used in wound dressings, including nanofibers, nanocomposites, silver-based nanoparticles, lipid nanoparticles, and polymeric nanoparticles. Several recent studies have shown the potential benefits of using nanomaterials in wound care, including the use of hydrogel/nano silver-based dressings in treating diabetic foot wounds, the use of copper oxide-infused dressings in difficult-to-treat wounds, and the use of chitosan nanofiber mats in burn dressings. Overall, developing nanomaterials in wound care has complemented nanotechnology in drug delivery systems, providing biocompatible and biodegradable nanomaterials that enhance wound healing and provide sustained drug release. Wound dressings are an effective and convenient method of wound care that can prevent wound contamination, support the injured area, control hemorrhaging, and reduce pain and inflammation. This review article provides valuable insights into the potential role of individual nanoformulations used in wound dressings in promoting wound healing and preventing infections, and serves as an excellent resource for clinicians, researchers, and patients seeking improved healing outcomes.
Collapse
Affiliation(s)
- Ashwini T
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ashlesh Prabhu
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vishal Baliga
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shreesha Bhat
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Siddarth T Thenkondar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
108
|
Eghbalifam N, Shojaosadati SA, Hashemi-Najafabadi S. Role of bioactive magnetic nanoparticles in the prevention of wound pathogenic biofilm formation using smart nanocomposites. J Nanobiotechnology 2023; 21:161. [PMID: 37211593 DOI: 10.1186/s12951-023-01905-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Biofilm formation and its resistance to various antibiotics is a serious health problem in the treatment of wound infections. An ideal wound dressing should have characteristics such as protection of wound from microbial infection, suitable porosity (to absorb wound exudates), proper permeability (to maintain wound moisture), nontoxicity, and biocompatibility. Although silver nanoparticles (AgNPs) have been investigated as antimicrobial agents, their limitations in penetrating into the biofilm, affecting their efficiency, have consistently been an area for further research. RESULTS Consequently, in this study, the optimal amounts of natural and synthetic polymers combination, along with AgNPs, accompanied by iron oxide nanoparticles (IONPs), were utilized to fabricate a smart bionanocomposite that meets all the requirements of an ideal wound dressing. Superparamagnetic IONPs (with the average size of 11.8 nm) were synthesized through co-precipitation method using oleic acid to improve their stability. It was found that the addition of IONPs to bionanocomposites had a synergistic effect on their antibacterial and antibiofilm properties. Cytotoxicity assay results showed that nanoparticles does not considerably affect eukaryotic cells compared to prokaryotic cells. Based on the images obtained by confocal laser scanning microscopy (CLSM), significant AgNPs release was observed when an external magnetic field (EMF) was applied to the bionanocomposites loaded with IONPs, which increased the antibacterial activity and inhibited the formation of biofilm significantly. CONCLUSION These finding indicated that the nanocomposite recommended can have an efficient properties for the management of wounds through prevention and treatment of antibiotic-resistant biofilm.
Collapse
Affiliation(s)
- Naeimeh Eghbalifam
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-4838, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-4838, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
109
|
Zafar S, Sohail Arshad M, Jafar Rana S, Patel M, Yousef B, Ahmad Z. Engineering of clarithromycin loaded stimulus responsive dissolving microneedle patches for the treatment of biofilms. Int J Pharm 2023; 640:123003. [PMID: 37146953 DOI: 10.1016/j.ijpharm.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
This study aimed to fabricate clarithromycin laden Eudragit S-100-based microfibers (MF), microfibers coated film (MB), clarithromycin loaded polyvinyl pyrollidone, hyaluronic acid and sorbitol-based dissolving microneedle patches (CP) and microfibers coated microneedle patches (MP). Morphological and phase analysis of formulations were carried out by scanning electron microscopy and differential scanning calorimetry, X-ray diffraction, respectively. Substrate liquefaction test, in vitro drug release, antimicrobial assay and in vivo antibiofilm studies were performed. MF exhibited a uniform surface and interconnected network. Morphological analysis of CP revealed sharp-tipped and uniform-surfaced microstructures. Clarithromycin was incorporated within MF and CP as amorphous solid. Liquefaction test indicated hyaluronate lyase enzyme responsiveness of hyaluronic acid. Fibers-based formulations (MF, MB and MP) provided an alkaline pH (7.4) responsive drug release; ∼79 %, ∼78 % and ∼81 %, respectively within 2 hours. CP showed a drug release of ∼82 % within 2 hours. MP showed ∼13 % larger inhibitory zone against Staphylococcus aureus (S. aureus) as compared to MB and CP. A relatively rapid eradication of S. aureus in infected wounds and subsequent skin regeneration was observed following MP application as compared to MB and CP indicating its usefulness for the management of microbial biofilms.
Collapse
Affiliation(s)
- Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Bushra Yousef
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
110
|
Zhang Z, Deng Z, Zhu L, Zeng J, Cai XM, Qiu Z, Zhao Z, Tang BZ. Aggregation-induced emission biomaterials for anti-pathogen medical applications: detecting, imaging and killing. Regen Biomater 2023; 10:rbad044. [PMID: 37265605 PMCID: PMC10229374 DOI: 10.1093/rb/rbad044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 06/03/2023] Open
Abstract
Microbial pathogens, including bacteria, fungi and viruses, greatly threaten the global public health. For pathogen infections, early diagnosis and precise treatment are essential to cut the mortality rate. The emergence of aggregation-induced emission (AIE) biomaterials provides an effective and promising tool for the theranostics of pathogen infections. In this review, the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized. With the excellent sensitivity and photostability, AIE biomaterials have been widely applied for precise diagnosis of pathogens. Besides, different types of anti-pathogen methods based on AIE biomaterials will be presented in detail, including chemotherapy and phototherapy. Finally, the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.
Collapse
Affiliation(s)
- Zicong Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lixun Zhu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Jialin Zeng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xu Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- Correspondence address. E-mail: (Z.Z.); (B.Z.T.)
| | | |
Collapse
|
111
|
Chen Y, Zhang Y, Wang Q, Dan N, Li Y, Li Z, Dan W, Wang Y. Converting Acellular Dermal Matrix into On-Demand Versatile Skin Scaffolds by a Balanceable Crosslinking Approach for Integrated Infected Wounds Therapy. Biomacromolecules 2023; 24:2342-2355. [PMID: 37094104 DOI: 10.1021/acs.biomac.3c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Ideal tissue-engineered skin scaffolds should possess integrated therapeutic effects and multifunctionality, such as broad-spectrum antibacterial properties, adjustable mechanical properties, and bionic structure. Acellular dermal matrix (ADM) has been broadly used in many surgical applications as an alternative treatment to the "gold standard" tissue transplantation. However, insufficient broad-spectrum antibacterial and mechanical properties for therapeutic efficacy limit the practical clinical applications of ADM. Herein, a balanceable crosslinking approach based on oxidized 2-hydroxypropyltrimethyl ammonium chloride chitosan (OHTCC) was developed for converting ADM into on-demand versatile skin scaffolds for integrated infected wounds therapy. Comprehensive experiments show that different oxidation degrees of OHTCC have significative influences on the specific origins of OHTCC-crosslinked ADM scaffolds (OHTCC-ADM). OHTCC with an oxidation degree of about 13% could prosperously balance the physiochemical properties, antibacterial functionality, and cytocompatibility of the OHTCC-ADM scaffolds. Owing to the natural features and comprehensive crosslinking effects, the proposed OHTCC-ADM scaffolds possessed the desirable multifunctional properties, including adjustable mechanical, degradable characteristics, and thermal stability. In vitro/in vivo biostudies indicated that OHTCC-ADM scaffolds own well-pleasing broad-spectrum antibacterial performances and play effectively therapeutic roles in treating infection, inhibiting inflammation, promoting angiogenesis, and promoting collagen deposition to enhance the infected wound healing. This study proposes a facile balanceable crosslinking approach for the design of ADM-based versatile skin scaffolds for integrated infected wounds therapy.
Collapse
Affiliation(s)
- Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengjun Li
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weihua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
112
|
Chappidi S, Buddolla V, Ankireddy SR, Lakshmi BA, Kim YJ. Recent trends in diabetic wound healing with nanofibrous scaffolds. Eur J Pharmacol 2023; 945:175617. [PMID: 36841285 DOI: 10.1016/j.ejphar.2023.175617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023]
Abstract
There is an emphasis in this review on nanofibrous scaffolds (NFSs) in diabetic wound healing, as well as their mechanisms and recent advancements. Diabetes-related complex wounds pose an important problem to humanity, due to the fact that their chronic nature can lead to serious complications including sepsis and amputations. Despite the fact that there are certain therapy options available for diabetic wound healing, these options are either ineffective or intrusive, making clinical intervention difficult. Clinical research is also challenged by the emergence of bacterial resistance to standard antibiotics. However, research into nanotechnology, in particular NFSs, is growing swiftly and has a positive impact on the treatment of diabetic wounds. For instance, SpinCare™, developed by Nanomedic Technologies Ltd, has successfully finished clinical testing and can re-epithelialize second-degree burns and chronic diabetic wounds in 7 and 14 days, respectively. In this review, we discussed homologous studies as well as other recent research studies on diabetic wound healing using NFSs.
Collapse
Affiliation(s)
| | - Viswanath Buddolla
- Dr. Buddolla's Institute of Life Sciences, Tirupati, 517503, Andhra Pradesh, India
| | | | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do, 13120, Republic of Korea.
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do, 13120, Republic of Korea.
| |
Collapse
|
113
|
Vivcharenko V, Trzaskowska M, Przekora A. Wound Dressing Modifications for Accelerated Healing of Infected Wounds. Int J Mol Sci 2023; 24:ijms24087193. [PMID: 37108356 PMCID: PMC10139077 DOI: 10.3390/ijms24087193] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Infections that occur during wound healing involve the most frequent complications in the field of wound care which not only inhibit the whole process but also lead to non-healing wound formation. The diversity of the skin microbiota and the wound microenvironment can favor the occurrence of skin infections, contributing to an increased level of morbidity and even mortality. As a consequence, immediate effective treatment is required to prevent such pathological conditions. Antimicrobial agents loaded into wound dressings have turned out to be a great option to reduce wound colonization and improve the healing process. In this review paper, the influence of bacterial infections on the wound-healing phases and promising modifications of dressing materials for accelerated healing of infected wounds are discussed. The review paper mainly focuses on the novel findings on the use of antibiotics, nanoparticles, cationic organic agents, and plant-derived natural compounds (essential oils and their components, polyphenols, and curcumin) to develop antimicrobial wound dressings. The review article was prepared on the basis of scientific contributions retrieved from the PubMed database (supported with Google Scholar searching) over the last 5 years.
Collapse
Affiliation(s)
- Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Marta Trzaskowska
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
114
|
Effect of molecular weight and content of polyvinylpyrrolidone on cell proliferation, loading capacity and properties of electrospun green tea essential oil-incorporated polyamide-6/polyvinylpyrrolidone nanofibers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
115
|
Yuan N, Shao K, Huang S, Chen C. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review. Int J Biol Macromol 2023; 240:124321. [PMID: 37019198 DOI: 10.1016/j.ijbiomac.2023.124321] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Wound healing is a complex project, and effectively promoting skin repair is a huge clinical challenge. Hydrogels have great prospect in the field of wound dressings because their physical properties are very similar to those of living tissue and have excellent properties such as high water content, oxygen permeability and softness. However, the single performance of traditional hydrogels limits their application as wound dressings. Therefore, natural polymers such as chitosan, alginate and hyaluronic acid, which are non-toxic and biocompatible, are individually or combined with other polymer materials, and loaded with typical drugs, bioactive molecules or nanomaterials. Then, the development of novel multifunctional hydrogel dressings with good antibacterial, self-healing, injectable and multi-stimulation responsiveness by using advanced technologies such as 3D printing, electrospinning and stem cell therapy has become a hot topic of current research. This paper focuses on the functional properties of novel multifunctional hydrogel dressings such as chitosan, alginate and hyaluronic acid, which lays the foundation for the research of novel hydrogel dressings with better performance.
Collapse
|
116
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
117
|
Elsherbiny DA, Abdelgawad AM, Shaheen TI, Abdelwahed NAM, Jockenhoevel S, Ghazanfari S. Thermoresponsive nanofibers loaded with antimicrobial α-aminophosphonate-o/w emulsion supported by cellulose nanocrystals for smart wound care patches. Int J Biol Macromol 2023; 233:123655. [PMID: 36780965 DOI: 10.1016/j.ijbiomac.2023.123655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Long-term topical application of antibiotics on wounds has led to the emergence of drug-resistant bacterial infections. Antibiotic incorporation into the wound dressing requires enormous advancement of the field to ensure that the needed dose is released when the infection arises. This study synthesized a series of antimicrobial α-aminophosphonate derivatives, and the most effective compound was incorporated into thermoresponsive wound dressing patches. Wound dressing mats were fabricated by needleless electrospinning, and the resultant nanofiber mats were coated with a thermoresponsive eicosane/cellulose nanocrystals o/w system loaded with active α-aminophosphonate derivatives. Chemical, physical, thermal, and antimicrobial properties of the wound dressings were characterized wound dressings. Using SEM analysis, Nanofibers spun with 20 % w/v solutions were selected for drug-emulsion loading since they showed lower diameters with higher surface area. Furthermore, the drug-emulsion coating on the electrospun dressings improved the hydrophilicity of the wound dressings, and the thermoresponsive behavior of the mats was proved using differential scanning calorimetry data. Finally, the drug-loaded electrospun meshes were found active against tested microorganisms, and clear inhibition zones were observed. In conclusion, this novel approach of synthesizing a new family of antimicrobial molecules and their incorporation into nanofibers from renewable sources exhibits great potential for smart and innovative dressings.
Collapse
Affiliation(s)
- Dalia A Elsherbiny
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom, Menoufia, Egypt; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Abdelrahman M Abdelgawad
- Textile Research and Technology Institute, National Research Center (Affiliation ID: 60014618), 12622, Dokki, Giza, Egypt; Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City 35511, Egypt.
| | - Tharwat I Shaheen
- Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City 35511, Egypt
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany.
| |
Collapse
|
118
|
Sheokand B, Vats M, Kumar A, Srivastava CM, Bahadur I, Pathak SR. Natural polymers used in the dressing materials for wound healing: Past, present and future. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
119
|
Nehra P, Chauhan RP. Antimicrobial activity of nanocellulose composite hydrogel isolated from an agricultural waste. Arch Microbiol 2023; 205:133. [PMID: 36959521 DOI: 10.1007/s00203-023-03454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/25/2023] [Indexed: 03/25/2023]
Abstract
Infectious diseases and antimicrobial resistance have become one of the extreme health threats of this century. Overuse of antibiotics leads to pollution. To overcome this threat, the current strategy is to develop a substitute for these antibiotics that are extracted from natural sources. In this study, nanocellulose (NC) was isolated from an agricultural waste (wheat straw) and then oxidized with the help of sodium periodate to obtain dialdehyde nanocellulose (DA-NC). Then, chitosan (Ch) and DA-NC are both crosslinked with each other in different weight ratios, to obtain NC/Ch composite hydrogels. The resulted hydrogel is also characterized to confirm its structure, morphology and composition. The hydrogel was also tested for antimicrobial activities against bacteria, algae as well as fungal species to check its applicability for biomedical applications. The six microbes used for the ananlysis are Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, Candida albicans, Aspergillus niger and Fusarium solani. The antimicrobial assessment of the hydrogel is evaluated via inhibition zone and optical density analysis. The resulted nanocellulose/chitosan (NC/Ch) hydrogel shows the uniform distribution of nanocellulose in the composite and the synergistic effect of their properties. Hydrogel serves excellent antimicrobial results which makes it a promising candidate for various biomedical applications.
Collapse
Affiliation(s)
- Poonam Nehra
- School of Biomedical Engineering, National Institute of Technology, Kurukshetra, 136119, India.
| | - Rishi Pal Chauhan
- Department of Physics, National Institute of Technology, Kurukshetra, 136119, India
| |
Collapse
|
120
|
Yeh YW, Huang CC, Kuo WS, Liao TL, Tsai TL, Wu PC. Multifunctional Hydrogel Dressing That Carries Three Antibiotics Simultaneously and Enables Real-Time Ultrasound Bacterial Colony Detection. ACS OMEGA 2023; 8:10278-10287. [PMID: 36969425 PMCID: PMC10034778 DOI: 10.1021/acsomega.2c07806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
We have developed a multifunctional hydrogel that can carry three synergistic antibiotics commonly used in clinical practice. This hydrogel was discovered to have drug encapsulation efficiencies of 94% for neomycin, 97% for bacitracin, and 88% for polymyxin B. Drug release data indicated that the release profiles of these three antibiotics were different. A swelling test demonstrated that the hydrogel absorbed liquid after the release of its antibiotics until it became saturated, which occurred within 48 h. Moreover, this hydrogel exhibited excellent antibacterial effects against Escherichia coli and Pseudomonas aeruginosa and biocompatibility; it can thus protect a wound from microbial invasion. When the alginate hydrogel is used to cover a wound, the wound can be checked for colonization at any time using ultrasound imaging; this can thus enable the prevention of wound biofilm formation in the early stages of infection. We evaluated the hydrogel against commercially available wound dressings and discovered that these wound dressings did not have the aforementioned desirable features. In conclusion, our multifunctional hydrogel can carry three types of antibiotics simultaneously and is a suitable medium through which an ultrasound can be performed to detect the growth of colonies in wounds. The hydrogel is expected to make a valuable contribution to the prevention of wound infections in the future.
Collapse
Affiliation(s)
- Yao-Wei Yeh
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
| | - Chih-Chung Huang
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
- Medical
Device Innovation Center, National Cheng
Kung University, Tainan 701401, Taiwan
| | - Wen-Shuo Kuo
- Center
for Allergy, Immunology and Microbiome (AIM), China Medical University Children’s Hospital/China Medical
University Hospital, China Medical University, Taichung 404327, Taiwan
| | - Tzu-Lung Liao
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
| | - Tsung-Lin Tsai
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
- Department
of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701401, Taiwan
| | - Ping-Ching Wu
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
- Medical
Device Innovation Center, National Cheng
Kung University, Tainan 701401, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701401, Taiwan
- Institute
of Oral Medicine and Department of Stomatology, National Cheng Kung
University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
121
|
Yusuf Aliyu A, Adeleke OA. Nanofibrous Scaffolds for Diabetic Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030986. [PMID: 36986847 PMCID: PMC10051742 DOI: 10.3390/pharmaceutics15030986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic wounds are one of the secondary health complications that develop in individuals who have poorly managed diabetes mellitus. This is often associated with delays in the wound healing process, resulting from long-term uncontrolled blood glucose levels. As such, an appropriate therapeutic approach would be maintaining blood glucose concentration within normal ranges, but this can be quite challenging to achieve. Consequently, diabetic ulcers usually require special medical care to prevent complications such as sepsis, amputation, and deformities, which often develop in these patients. Although several conventional wound dressings, such as hydrogels, gauze, films, and foams, are employed in the treatment of such chronic wounds, nanofibrous scaffolds have gained the attention of researchers because of their flexibility, ability to load a variety of bioactive compounds as single entities or combinations, and large surface area to volume ratio, which provides a biomimetic environment for cell proliferation relative to conventional dressings. Here, we present the current trends on the versatility of nanofibrous scaffolds as novel platforms for the incorporation of bioactive agents suitable for the enhancement of diabetic wound healing.
Collapse
Affiliation(s)
- Anna Yusuf Aliyu
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
122
|
Jiang M, Li S, Ming P, Guo Y, Yuan L, Jiang X, Liu Y, Chen J, Xia D, He Y, Tao G. Rational design of porous structure-based sodium alginate/chitosan sponges loaded with green synthesized hybrid antibacterial agents for infected wound healing. Int J Biol Macromol 2023; 237:123944. [PMID: 36898466 DOI: 10.1016/j.ijbiomac.2023.123944] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
An ideal wound dressing should have excellent antimicrobial properties and provide a suitable microenvironment for regenerating damaged skin tissue. In this study, we utilized sericin to biosynthesize silver nanoparticles in situ and introduced curcumin to obtain Sericin-AgNPs/Curcumin (Se-Ag/Cur) antimicrobial agent. The hybrid antimicrobial agent was then encapsulated in a physically double cross-linking 3D structure network (Sodium alginate-Chitosan, SC) to obtain the SC/Se-Ag/Cur composite sponge. The 3D structural networks were constructed through electrostatic interactions between sodium alginate and chitosan and ionic interactions between sodium alginate and calcium ions. The prepared composite sponges have excellent hygroscopicity (contact angle 51.3° ± 5.6°), moisture retention ability, porosity (67.32 % ± 3.37 %), and mechanical properties (>0.7 MPa) and exhibit good antibacterial ability against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). In addition, in vivo experiments have shown that the composite sponge promotes epithelial regeneration and collagen deposition in wounds infected with S. aureus or P. aeruginosa. Tissue immunofluorescence staining analysis confirmed that the SC/Se-Ag/Cur complex sponge stimulated upregulated expression of CD31 to promote angiogenesis while downregulating TNF-α expression to reduce inflammation. These advantages make it an ideal candidate for infectious wound repair materials, providing an effective repair strategy for clinical skin trauma infections.
Collapse
Affiliation(s)
- Min Jiang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Silei Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Piaoye Ming
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ye Guo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lingling Yuan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xueyu Jiang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yunfei Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Junliang Chen
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Delin Xia
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yun He
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China.
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
123
|
Wu J, Liu F, Chen C, Zhao Z, Du Y, Shi X, Wu Y, Deng H. Long-term antibacterial activity by synergistic release of biosafe lysozyme and chitosan from LBL-structured nanofibers. Carbohydr Polym 2023; 312:120791. [PMID: 37059531 DOI: 10.1016/j.carbpol.2023.120791] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Biosafe antibacterial agents are urgently demanded in treating infection especially chronic infection. However, efficient and controlled release of those agents remains great challenging. Two nature-derived agents, lysozyme (LY) and chitosan (CS), are selected to establish a facile method for long-term bacterial inhibition. We incorporated LY into the nanofibrous mats, then deposited CS and polydopamine (PDA) on the surface by layer-by-layer (LBL) self-assembly. In this vein, LY is gradually released with the degradation of nanofibers, and CS is rapidly disassociated from the nanofibrous mats to synergistically result in a potent inhibition against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) over a period of 14 days. Besides long-term antibacterial capacity, LBL-structured mats could readily achieve a strong tensile stress of 6.7 MPa with an increase percentage of up to 103%. The enhanced proliferation of L929 cells arrives at 94% with help of CS and PDA on the surface of nanofibers. In this vein, our nanofiber has a variety of advantages including biocompatibility, strong long-term antibacterial effect, and skin adaptability, revealing the significant potential to be used as highly safe biomaterial for wound dressings.
Collapse
Affiliation(s)
- Jun Wu
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan 430205, China
| | - Fangtian Liu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Ze Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yang Wu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
124
|
Jayabal P, Kannan Sampathkumar V, Vinothkumar A, Mathapati S, Pannerselvam B, Achiraman S, Venkatasubbu GD. Fabrication of a Chitosan-Based Wound Dressing Patch for Enhanced Antimicrobial, Hemostatic, and Wound Healing Application. ACS APPLIED BIO MATERIALS 2023; 6:615-627. [PMID: 36723448 DOI: 10.1021/acsabm.2c00903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Wounds are a serious life threat that occurs in daily life. The complex cascade of synchronized cellular and molecular phases in wound healing is impaired by different means, involving infection, neuropathic complexes, abnormal blood circulation, and cell proliferation at the wound region. Thus, to overcome these problems, a multifunctional wound dressing material is fabricated. In the current research work, we have fabricated a wound dressing polymeric patch, with poly(vinyl alcohol) (PVA) and chitosan (Cs) incorporated with a photocatalytic graphene nanocomposite (GO/TiO2(V-N)) and curcumin by a gel casting method, that focuses on multiple stages of the healing process. The morphology, swelling, degradation, moisture vapor transmission rate (MVTR), porosity, light-induced antibacterial activity, hemolysis, blood clotting, blood abortion, light-induced biocompatibility, migration assay, and drug release were analyzed for the polymeric patches under in vitro conditions. PVA/Cs/GO/TiO2(V-N)/Cur patches have shown enhanced wound healing in in vivo wound healing experiments on Wister rats. They show higher collagen deposition, thicker granulation tissue, and higher fibroblast density than conventional dressing. A histological study shows excellent re-epithelialization ability and dense collagen deposition. In vitro and in vivo analysis confirmed that PVA/Cs/GO/TiO2(V-N) and PVA/Cs/GO/TiO2(V-N)/Cur patches enhance the wound healing process.
Collapse
Affiliation(s)
- Prakash Jayabal
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur603203, Chengalpattu District, Tamil Nadu, India.,Translational Health Science and Technology Institute, Faridabad121001, Haryana, India
| | - Venkataprasanna Kannan Sampathkumar
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur603203, Chengalpattu District, Tamil Nadu, India.,Department of Physics, University of Tübingen, Geschwister-Scholl-Platz, 72074Tübingen, Germany
| | - Arumagam Vinothkumar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli620024, Tamil Nadu, India
| | - Santosh Mathapati
- Translational Health Science and Technology Institute, Faridabad121001, Haryana, India
| | | | - Shanmugam Achiraman
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli620024, Tamil Nadu, India
| | - G Devanand Venkatasubbu
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur603203, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
125
|
Kavousi Heidari M, Pourmadadi M, Yazdian F, Rashedi H, Ebrahimi SAS, Bagher Z, Navaei-Nigjeh M, Haghirosadat BF. Wound dressing based on PVA nanofiber containing silk fibroin modified with GO/ZnO nanoparticles for superficial wound healing: In vitro and in vivo evaluations. Biotechnol Prog 2023:e3331. [PMID: 36751979 DOI: 10.1002/btpr.3331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Silk fibroin (SF), extracted from Bombyx mori, has unique physicochemical properties to achieve an efficient wound dressing. In this study, reduced graphene oxide (RGO)/ZnO NPs/silk fibroin nanocomposite was made, and an innovative nanofiber of SF/polyvinyl alcohol (PVA)/RGO/ZnO NPs was ready with the electrospinning technique and successfully characterized. The results of MIC and OD analyses were used to investigate the synthesized materials' antibacterial effects and displayed that the synthesized materials could inhibit growth against Staphylococcus aureus and Escherichia coli bacteria. However, both in vitro cytotoxicity (MTT) and scratch wound studies have shown that RGO/ZnO NPs and SF/PVA/RGO/ZnO NPs are not only non-toxic to NIH 3T3 fibroblasts, but also can cause cell viability, cell proliferation, and cell migration. Furthermore, improving the synthesized nanofiber's structural properties in the presence of RGO and ZnO NPs has been confirmed by performing tensile strength, contact angle, and biodegradation analyses. Also, in a cell attachment analysis, fibroblast cells had migrated and expanded well in the nanofibrous structures. Moreover, in vivo assay, SF/PVA/RGO/ZnO NPs nanofiber treated rats and has been shown significant healing activity and tissue regeneration compared with other treated groups. Therefore, this study suggests that SF/PVA/RGO/ZnO NPs nanofiber is a hopeful wound dressing for preventing bacteria growth and improving superficial wound repair.
Collapse
Affiliation(s)
- Maryam Kavousi Heidari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Hamid Rashedi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Sayed Ali Seyyed Ebrahimi
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Science Research Center, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran
| | - Bibi Fatemeh Haghirosadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
126
|
Razdan K, Kanta S, Chaudhary E, Kumari S, Rahi DK, Yadav AK, Sinha VR. Levofloxacin loaded clove oil nanoscale emulgel promotes wound healing in Pseudomonas aeruginosa biofilm infected burn wound in mice. Colloids Surf B Biointerfaces 2023; 222:113113. [PMID: 36566688 DOI: 10.1016/j.colsurfb.2022.113113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Owing to their tolerance to antibiotics, bacterial biofilms continue to pose a threat to mankind and are leading cause for non-healing of burn wounds. Within the biofilm matrix, antibiotics become functionally inactive due to restricted penetration and enzymatic degradation leading to rise of antimicrobial resistance. The objective of present investigation was to develop and characterize levofloxacin (LFX) loaded clove oil nanoscale emulgel (LFX-NE gel) and evaluate its in vivo therapeutic efficacy in Pseudomonas aeruginosa biofilm infected burn wound in mice. The optimized emulgel was found to possess good texture profile and showed shear thinning behavior. In vitro release study demonstrated complete drug release in 8 h and emulgel was found to be stable for 3 months at 25 °C and 40 °C. In vivo study revealed biofilm dispersal, complete wound closure, re-epithelialization and collagen deposition by LFX-NE gel in comparison to various control groups. LFX-NE gel was able to clear the infection within 7 days of treatment and promote wound healing as well. Therefore, administration of LFX-incorporated NE gel could be a beneficial treatment strategy for P. aeruginosa biofilm-infected burn wounds.
Collapse
Affiliation(s)
- Karan Razdan
- Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Shashi Kanta
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Ekta Chaudhary
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Seema Kumari
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Deepak Kumar Rahi
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Ashok Kumar Yadav
- Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Vivek Ranjan Sinha
- Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
127
|
Wang Z, Hu W, Wang W, Xiao Y, Chen Y, Wang X. Antibacterial Electrospun Nanofibrous Materials for Wound Healing. ADVANCED FIBER MATERIALS 2023; 5:107-129. [DOI: 10.1007/s42765-022-00223-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 08/25/2024]
|
128
|
Anthocyanin/Honey-Incorporated Alginate Hydrogel as a Bio-Based pH-Responsive/Antibacterial/Antioxidant Wound Dressing. J Funct Biomater 2023; 14:jfb14020072. [PMID: 36826871 PMCID: PMC9961009 DOI: 10.3390/jfb14020072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Infection is a major problem that increases the normal pH of the wound bed and interferes with wound healing. Natural biomaterials can serve as a suitable environment to acquire a great practical effect on the healing process. In this context, anthocyanin-rich red cabbage (Brassica oleracea var. capitata F. rubra) extract and honey-loaded alginate hydrogel was fabricated using calcium chloride as a crosslinking agent. The pH sensitivity of anthocyanins can be used as an indicator to monitor possible infection of the wound, while honey would promote the healing process by its intrinsic properties. The mechanical properties of the hydrogel film samples showed that honey acts as a plasticizer and that increasing the incorporation from 200% to 400% enhances the tensile strength from 3.22 to 6.15 MPa and elongation at break from 0.69% to 4.75%. Moreover, a water absorption and retention study showed that the hydrogel film is able to absorb about 250% water after 50 min and retain 40% of its absorbed water after 12 h. The disk diffusion test showed favorable antibacterial activity of the honey-loaded hydrogel against both Gram-positive and Gram-negative Staphylococcus aureus and Escherichia coli, respectively. In addition, the incorporation of honey significantly improved the mechanical properties of the hydrogel. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay proved the antioxidant activity of the honey and anthocyanin-containing hydrogel samples with more than 95% DPPH scavenging efficiency after 3 h. The pH-dependent property of the samples was investigated and recorded by observing the color change at different pH values of 4, 7, and 9 using different buffers. The result revealed a promising color change from red at pH = 4 to blue at pH = 7 and purple at pH = 9. An in vitro cell culture study of the samples using L929 mouse fibroblast cells showed excellent biocompatibility with significant increase in cell proliferation. Overall, this study provides a promising start and an antibacterial/antioxidant hydrogel with great potential to meet wound-dressing requirements.
Collapse
|
129
|
Hamdan N, Khodir WKWA, Hamid SA, Nasir MHM, Hamzah AS, Cruz-Maya I, Guarino V. PCL/Gelatin/Graphene Oxide Electrospun Nanofibers: Effect of Surface Functionalization on In Vitro and Antibacterial Response. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:488. [PMID: 36770449 PMCID: PMC9921190 DOI: 10.3390/nano13030488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The emergence of resistance to pathogenic bacteria has resulted from the misuse of antibiotics used in wound treatment. Therefore, nanomaterial-based agents can be used to overcome these limitations. In this study, polycaprolactone (PCL)/gelatin/graphene oxide electrospun nanofibers (PGO) are functionalized via plasma treatment with the monomeric groups diallylamine (PGO-M1), acrylic acid (PGO-M2), and tert-butyl acrylate (PGO-M3) to enhance the action against bacteria cells. The surface functionalization influences the morphology, surface wettability, mechanical properties, and thermal stability of PGO nanofibers. PGO-M1 and PGO-M2 exhibit good antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas PGO-M3 tends to reduce their antibacterial properties compared to PGO nanofibers. The highest proportion of dead bacteria cells is found on the surface of hydrophilic PGO-M1, whereas live cells are colonized on the surface of hydrophobic PGO-M3. Likewise, PGO-M1 shows a good interaction with L929, which is confirmed by the high levels of adhesion and proliferation with respect to the control. All the results confirm that surface functionalization can be strategically used as a tool to engineer PGO nanofibers with controlled antibacterial properties for the fabrication of highly versatile devices suitable for different applications (e.g., health, environmental pollution).
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Sazali Hamzah
- Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
130
|
Fabrication and Characterization of Electrospun Poly(Caprolactone)/Tannic Acid Scaffold as an Antibacterial Wound Dressing. Polymers (Basel) 2023; 15:polym15030593. [PMID: 36771894 PMCID: PMC9921954 DOI: 10.3390/polym15030593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Antibacterial wound dressings are promising materials to treat infected skin wounds, which greatly affect the wound-healing process. In this study, tannic acid (TA), a natural antibacterial agent, was successfully loaded by electrospinning into poly(caprolactone) (PCL) fibers in a high concentration. It is suggested that the addition of TA was beneficial for producing uniform and continuous PCL nanofibers. Hydrogen bonds existed between the PCL and TA molecules based on the analysis of FTIR spectra and DSC results. The interactions and continuous network improved the mechanical properties of the scaffolds. Meanwhile, increasing the amount of TA also enhanced the hydrophilicity and water absorption capacity of the scaffold, both of which are beneficial for accelerating wound healing. Moreover, a burst release of the TA in the initial stage and a controlled, steady release behavior over time contributed to the highly antibacterial properties of the PCL/TA scaffolds. The fabrication of the composite scaffold supplies a facile, efficient, and controllable approach to address the issue of antibacterial treatment in wound dressing.
Collapse
|
131
|
Chen Z, Yao J, Zhao J, Wang S. Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis. Int J Biol Macromol 2023; 225:1235-1245. [PMID: 36435472 DOI: 10.1016/j.ijbiomac.2022.11.184] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Currently, hydrogels are widely studied for wound dressings. However, wound healing is often hindered by bacterial infection. In this study, in situ cross-linked carboxymethyl chitosan (CMCS)/oxidized dextran (OD)/poly-γ-glutamic acid (γ-PGA) (COP) hydrogel was prepared for antimicrobial and hemostasis of diffuse wounds. In the COP hydrogel, γ-PGA was able to drain the surface moisture of the wound to enhance the surface adhesion. Moreover, γ-PGA could concentrate blood by absorbing plasma, and CMCS could electrostatically adsorb negative RBCs. The antibacterial properties of CMCS and OD endowed the COP hydrogel with certain antibacterial effects. In the inhibition zone experiment, an obvious inhibition zone appeared around the COP hydrogel. In vivo studies showed that the COP hydrogel significantly inhibited bacterial growth and promoted wound healing. In the rat tail diffuse hemorrhage wound model, the COP hydrogel showed superior hemostasis ability. Therefore, the multifunctional COP hydrogel is expected to find different applications in wound hemostasis and healing.
Collapse
Affiliation(s)
- Zheng Chen
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Jinpeng Yao
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, PR China; Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Shige Wang
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
132
|
Huang W, Yang G, Xu Q, Zhan M, Yao L, Li H, Xiao F, Chen Z, Zhao X, Li W, Zhao W, Zhang F, Li Y, Lu L. One-Pot, Open-Air Synthesis of Flexible and Degradable Multifunctional Polymer Composites with Adhesion, Water Resistance, Self-Healing, Facile Drug Loading, and Sustained Release Properties. Macromol Biosci 2023; 23:e2200442. [PMID: 36623250 DOI: 10.1002/mabi.202200442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/17/2022] [Indexed: 01/11/2023]
Abstract
Developing proper wound management via wound dressings represents a global challenge. Ideal wound dressings shall encompass multiple integrated functionalities for variable, complex scenarios; however, this is challenging due to the complex molecular design and synthesis process. Here, polymer composites, cross-linked poly(styrene oxide-co-hexaphenylcyclotrisiloxane)/crosslinked poly(hexaphenylcyclotrisiloxane) (cP(SO-co-HPCTS)/cPHPCTS) with multiple functionalities are prepared by a one-step, open-air method using catalytic ring-opening polymerization. The introduction of a mobile polymer cP(SO-co-HPCTS) endows the composite with good flexibility and self-healing properties at human body temperature. The hydrophobic groups in the main chain provide hydrophobicity and good water resistance, while the hydroxyl groups contained in the end groups enable good adhesion properties. Drugs can be efficiently loaded by blending and then sustainably release from the polymer composite. The material can rapidly degrade in a tetrahydrofuran solution of tetrabutylammonium fluoride due to its SiOSi bonds. The facile, one-step, open-air synthesis procedure and multiple functional properties integrated into the composites provide good prospects for their extensive application and batch production as wound dressing materials.
Collapse
Affiliation(s)
- Wen Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P. R. China
| | - Guang Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Qingbo Xu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Lijuan Yao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Honghui Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Fengfeng Xiao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Zirun Chen
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou, 535011, P. R. China
| | - Xiaoguang Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Wenting Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Fujun Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, P. R. China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai, 519000, P. R. China
| |
Collapse
|
133
|
Liu M, Wang X, Cui J, Wang H, Sun B, Zhang J, Rolauffs B, Shafiq M, Mo X, Zhu Z, Wu J. Electrospun flexible magnesium-doped silica bioactive glass nanofiber membranes with anti-inflammatory and pro-angiogenic effects for infected wounds. J Mater Chem B 2023; 11:359-376. [PMID: 36507933 DOI: 10.1039/d2tb02002e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Antibacterial, anti-inflammatory, and pro-angiogenic properties are prerequisites for dressing materials that accelerate the healing process of infected wounds. Herein, we report a magnesium-doped silica bioactive glass (SiO2/MgO) nanofiber membrane prepared by electrospinning. Our results demonstrate that this SiO2/MgO nanofiber membrane has good flexibility and hydrophilicity, which give it intimate contact with wound beds. In vitro assessments illustrate its good cytocompatibility and bioactivity that contribute to its robust cell proliferation and angiogenesis. It shows capacity in modulating the cellular inflammatory response of murine macrophages. In addition, in vitro assays prove its good antibacterial activity against both Gram-positive and Gram-negative strains. In a full-thickness skin defect inoculated with Staphylococcus aureus in mice, it effectively inhibits bacterial infection. Both gene expression and histological/immunohistochemical analyses confirmed the down-regulated pro-inflammatory factors, up-regulated anti-inflammatory factors, and enhanced angiogenesis. Taken together, these desirable properties work in concert to contribute to the rapid healing of infected wounds and make it a good candidate for wound dressing materials.
Collapse
Affiliation(s)
- Mingyue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Xiangsheng Wang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, P. R. China
| | - Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Hongsheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, P. R. China
| | - Bernd Rolauffs
- G. E. R. N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085, Freiburg im Breisgau, Germany
| | - Muhammad Shafiq
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China.
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| |
Collapse
|
134
|
Characterization and evaluation of antibacterial and wound healing activity of naringenin-loaded polyethylene glycol/polycaprolactone electrospun nanofibers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
135
|
Liu M, Zhang W, Chen Z, Ding Y, Sun B, Wang H, Mo X, Wu J. Mechanisms of magnesium oxide-incorporated electrospun membrane modulating inflammation and accelerating wound healing. J Biomed Mater Res A 2023; 111:132-151. [PMID: 36205298 DOI: 10.1002/jbm.a.37453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Previously, we demonstrated that magnesium oxide (MgO)-incorporated electrospun membranes show powerful antibacterial activity and promote wound healing, but the underlying mechanisms have not been entirely understood. Herein, we investigated the relationship between structure and function of MgO-incorporated membranes and interrogated critical bioactive cues that contribute to accelerated wound healing and functional restoration. Our results show that MgO-incorporated membranes exhibit good flexibility and improved water vapor transmission rates (WVTRs) and sustained Mg2+ release in a simulated model of wounds. MgO-incorporated membranes modulate macrophage phenotype to downregulate inflammatory response, contributing to alleviated inflammation and creating a favorable microenvironment for wound healing. Specifically, MgO-incorporated membranes stimulate macrophages to shift to a pro-healing M2 phenotype and upregulate pro-healing cytokine of transforming growth factor-beta 1 (TGF-β1) and downregulate pro-inflammatory cytokines under lipopolysaccharide (LPS) challenge conditions. Together with increased TGF-β1 by macrophages, MgO-incorporated membranes significantly boost the proliferation of fibroblasts and upregulate collagen production, thus driving granulation tissue formation and wound closure. MgO-incorporated membranes promote angiogenesis by promoting tube formation and upregulating vascular endothelial growth factor (VEGF) production of endothelial cells. Rapid epithelialization of regenerated skin tissue is attributed to the balanced phenotype of keratinocytes between proliferative and terminally differentiated populations. In addition to coordinating keratinocyte phenotype, MgO-incorporated membranes reduce the expression of inflammatory cytokine interleukin 1-alpha (IL-1α) therefore promoting hair follicle regeneration. These data provide mechanisms of MgO-incorporated membranes that inhibit bacterial infection, alleviate inflammation, facilitate extracellular matrix production and epithelialization, and potentiate hair follicle regeneration.
Collapse
Affiliation(s)
- Mingyue Liu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Weixing Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yangfan Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Hongsheng Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
136
|
Ahmady AR, Razmjooee K, Saber-Samandari S, Toghraie D. Fabrication of chitosan-gelatin films incorporated with thymol-loaded alginate microparticles for controlled drug delivery, antibacterial activity and wound healing: In-vitro and in-vivo studies. Int J Biol Macromol 2022; 223:567-582. [PMID: 36356874 DOI: 10.1016/j.ijbiomac.2022.10.249] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
Previously, studies have demonstrated the unique characteristics of chitosan-gelatin films as wound dressings applications. However, their application has been limited due to their inadequacy of antimicrobial and anti-inflammatory characteristics. To improve the intended multifunctional characteristics of chitosan-gelatin film, in this study, we designed a novel composite film with the capability of controlled and prolonged release of thymol as a natural antioxidant and antimicrobial drug. Here, thymol-loaded ALG MPs (Thymol-ALG MPs) were prepared by electrospraying method and incorporated into the chitosan-gelatin film. The composite wound dressings of Thymol-ALG MPs incorporated in chitosan-gelatin film (CS-GEL/Thymol-ALG MPs) were characterized by in vitro and in vivo evaluations. The Thymol-ALG MPs demonstrated spherical and uniform morphology, with high encapsulation efficiency (88.9 ± 1.1 %). The CS-GEL/Thymol-ALG MPs exhibited high antibacterial activity against both Gram-positive and Gram-negative bacteria and no cytotoxicity for the L929 fibroblast cells. The release trend of thymol from CS-GEL/Thymol-ALG MPs and Thymol-ALG MPs followed a pseudo-Fickian diffusion mechanism. This wound dressing effectively accelerates the wound healing process at rats' full-thickness skin excisions. Also, the histological analysis demonstrated that the CS-GEL/Thymol-ALG MPs could significantly enhance epithelialization, collagen deposition, and induce skin regeneration. The present antibacterial composite film has promising characteristics for wound dressings applications.
Collapse
Affiliation(s)
- Azin Rashidy Ahmady
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Kavoos Razmjooee
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Saber-Samandari
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran.
| |
Collapse
|
137
|
Yadav S, Arya DK, Pandey P, Anand S, Gautam AK, Ranjan S, Saraf SA, Mahalingam Rajamanickam V, Singh S, Chidambaram K, Alqahtani T, Rajinikanth PS. ECM Mimicking Biodegradable Nanofibrous Scaffold Enriched with Curcumin/ZnO to Accelerate Diabetic Wound Healing via Multifunctional Bioactivity. Int J Nanomedicine 2022; 17:6843-6859. [PMID: 36605559 PMCID: PMC9809174 DOI: 10.2147/ijn.s388264] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction Foot ulceration is one of the most severe and debilitating complications of diabetes, which leads to the cause of non-traumatic lower-extremity amputation in 15-24% of affected individuals. The healing of diabetic foot (DF) is a significant therapeutic problem due to complications from the multifactorial healing process. Electrospun nanofibrous scaffold loaded with various wound dressing materials has excellent wound healing properties due to its multifunctional action. Purpose This work aimed to develop and characterize chitosan (CS)-polyvinyl alcohol (PVA) blended electrospun multifunctional nanofiber loaded with curcumin (CUR) and zinc oxide (ZnO) to accelerate diabetic wound healing in STZ-induced diabetic rats. Results In-vitro characterization results revealed that nanofiber was fabricated successfully using the electrospinning technique. SEM results confirmed the smooth surface with web-like fiber nanostructure diameter ranging from 200 - 250 nm. An in-vitro release study confirmed the sustained release of CUR and ZnO for a prolonged time. In-vitro cell-line studies demonstrated significantly low cytotoxicity of nanofiber in HaCaT cells. Anti-bacterial studies demonstrated good anti-bacterial and anti-biofilm activities of nanofiber. In-vivo animal studies demonstrated an excellent wound-healing efficiency of the nanofibers in STZ-induced diabetic rats. Furthermore, the ELISA assay revealed that the optimized nanofiber membrane terminated the inflammatory phases successfully by downregulating the pro-inflammatory cytokines (TNF-α, MMP-2, and MMP-9) in wound healing. In-vitro and in-vivo studies conclude that the developed nanofiber loaded with bioactive material can promote diabetic wound healing efficiently via multifunction action such as the sustained release of bioactive molecules for a prolonged time of duration, proving anti-bacterial/anti-biofilm properties and acceleration of cell migration and proliferation process during the wound healing. Discussion CUR-ZnO electrospun nanofibers could be a promising drug delivery platform with the potential to be scaled up to treat diabetic foot ulcers effectively.
Collapse
Affiliation(s)
- Sachin Yadav
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Anand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shivendu Ranjan
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | | - Taha Alqahtani
- Department of Pharmacology and Toxicology, King Khalid University, Abha, Saudi Arabia
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India,Department of Pharmaceutical Technology, School of Pharmacy, Taylor’s University Lakeside Campus, Kuala LumpurMalaysia,Correspondence: Paruvathanahalli Siddalingam Rajinikanth, Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India, Email
| |
Collapse
|
138
|
Wang W, Pan CY, Huang EY, Peng BJ, Hsu J, Clapper JC. Electrospun Polyacrylonitrile Silver(I,III) Oxide Nanoparticle Nanocomposites as Alternative Antimicrobial Materials. ACS OMEGA 2022; 7:48173-48183. [PMID: 36591150 PMCID: PMC9798751 DOI: 10.1021/acsomega.2c06208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/30/2022] [Indexed: 05/23/2023]
Abstract
Infectious microbial diseases can easily be transferred from person to person in the air or via high contact surfaces. As a result, researchers must aspire to create materials that can be implemented in surface contact applications to disrupt pathogen growth and transmission. This study examines the antimicrobial properties of polyacrylonitrile (PAN) nanofibers coated with silver nanoparticles (AgNPs) and silver(I,III) oxide. PAN was homogenized with varied weight concentrations of silver nitrate (AgNO3) in N,N-dimethylformamide solution, a common organic solvent that serves as both an electrospinning solvent and as a reducing agent that forms AgNPs. The subsequent colloids were electrospun into nanofibers, which were then characterized via various analysis techniques, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, dynamic light scattering, and X-ray photoelectron spectroscopy. A total of 10 microbes, including 7 strains of Gram-positive bacteria, 2 strains of Gram-negative bacteria, and Candida albicans, were incubated with cutouts of various PAN-AgNP nanocomposites using disk diffusion methods to test for the nanocomposites' antimicrobial efficiency. We report that our electrospun PAN-AgNP nanocomposites contain 100% AgO, a rare, mixed oxidation state of silver(I,III) oxide that is a better sterilizing agent than conventional nanosilver. PAN-AgNP nanocomposites also retain a certain degree of antimicrobial longevity; samples stored for approximately 90 days demonstrate a similar antimicrobial activity against Escherichia coli (E. coli) and Lactobacillus crispatus (L. crispatus) when compared to their newly electrospun counterparts. Moreover, our results indicate that PAN-AgNP nanocomposites successfully display antimicrobial activity against various bacteria and fungi strains regardless of their resistance to conventional antibiotics. Our study demonstrates that PAN-AgNP nanocomposites, a novel polymer material with long-term universal antimicrobial stability, can potentially be applied as a universal antimicrobial on surfaces at risk of contracting microbial infections and alleviate issues related to antibiotic overuse and microbial mutability.
Collapse
Affiliation(s)
- William
B. Wang
- Department
of Scientific Research, Taipei American
School, Taipei 11152, Taiwan
| | - Chieh-Yu Pan
- Department
and Graduate Institute of Aquaculture, National
Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Eng-Yen Huang
- Department
of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- School
of Traditional Chinese Medicine, Chang Gung
University, Kaohsiung 833401, Taiwan
| | - Bai-Jing Peng
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Jonathan Hsu
- Department
of Scientific Research, Taipei American
School, Taipei 11152, Taiwan
| | - Jude C. Clapper
- Department
of Scientific Research, Taipei American
School, Taipei 11152, Taiwan
| |
Collapse
|
139
|
Wang M, Deng Z, Guo Y, Xu P. Engineering functional natural polymer-based nanocomposite hydrogels for wound healing. NANOSCALE ADVANCES 2022; 5:27-45. [PMID: 36605790 PMCID: PMC9765432 DOI: 10.1039/d2na00700b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Skin injury occurs due to acute trauma, chronic trauma, infection, and surgical intervention, which can result in severe dysfunction and even death in humans. Therefore, clinical intervention is critical for the treatment of skin wounds. One idealized method is to use wound dressings to protect skin wounds and promote wound healing. Among these wound dressings, nanocomposite natural polymer hydrogels (NNPHs) are multifunctional wound dressings for wound healing. The combination of nanomaterials and natural polymer hydrogels avoids the shortcomings of a single component. Moreover, nanomaterials could provide improved antibacterial, anti-inflammatory, antioxidant, stimuli-responsive, electrically conductive and mechanical properties of hydrogels to accelerate wound healing. This review focuses on recent advancements in NNPHs for skin wound healing and repair. Initially, the functions and requirements of NNPHs as wound dressings were introduced. Second, the design, preparation and capacities of representative NNPHs are classified based on their nanomaterial. Third, skin wound repair applications of NNPHs have been summarized based on the types of wounds. Finally, the potential issues of NNPHs are discussed, and future research is proposed to prepare idealized multifunctional NNPHs for skin tissue regeneration.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University Xi'an 710000 China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Yi Guo
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University Xi'an 710021 China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University Xi'an 710000 China
| |
Collapse
|
140
|
Li L, Zhou Y, Li P, Xu Q, Li K, Hu H, Bing W, Zhang Z. Peptide hydrogel based sponge patch for wound infection treatment. Front Bioeng Biotechnol 2022; 10:1066306. [PMID: 36588952 PMCID: PMC9797970 DOI: 10.3389/fbioe.2022.1066306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Dressing with the function of anti-wound infection and promoting skin repair plays an important role in medicine, beauty industry, etc. In terms of anti-wound infection, traditional dressings, such as gauze, have problems such as excessive bleeding in the process of contact or removal, and slow wound healing due to poor biological compatibility. The development of new functional and biocompatible dressings has essential application value in biomedical fields. In this study, a new type of dressing based on polypeptide functional sponge patch was constructed. The porous sponge patch is made of antimicrobial peptide and medical agarose through gel and freeze-drying technology. In vitro antibacterial experiments and small animal skin wound infection model experiments show that the porous sponge has excellent antibacterial and anti-skin infection activities, as well as the function of promoting wound healing.
Collapse
Affiliation(s)
- Lanxin Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Yuan Zhou
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China,College of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Peizhe Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Xu
- Shanghai Beautyart Biotechnology Co., Ltd., Shanghai, China
| | - Kaiyan Li
- Shanghai Beautyart Biotechnology Co., Ltd., Shanghai, China
| | - Hai Hu
- Shanghai Beautyart Biotechnology Co., Ltd., Shanghai, China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China,*Correspondence: Wei Bing, ; Zhijun Zhang,
| | - Zhijun Zhang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China,*Correspondence: Wei Bing, ; Zhijun Zhang,
| |
Collapse
|
141
|
Holsback VSS, Lima LL, d'Ávila MA, Leonardi GR. Perspectives of using electrospun nanofibers for dermatological application. Int J Dermatol 2022; 61:1552-1554. [PMID: 35834657 DOI: 10.1111/ijd.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Valeria S S Holsback
- Faculty of Pharmaceutical Sciences, University of Campinas - Unicamp, Campinas, Brazil
| | - Lonetá L Lima
- Faculty of Pharmaceutical Sciences, University of Campinas - Unicamp, Campinas, Brazil.,3D Technologies Research Group, (NT3D), Renato Archer Information Technology Center (CTI), Campinas, Brazil
| | - Marcos A d'Ávila
- School of Mechanical Engineering, University of Campinas - Unicamp, Campinas, Brazil
| | - Gislaine R Leonardi
- Faculty of Pharmaceutical Sciences, University of Campinas - Unicamp, Campinas, Brazil
| |
Collapse
|
142
|
Liu Z, Wei W, Tremblay PL, Zhang T. Electrostimulation of fibroblast proliferation by an electrospun poly (lactide-co-glycolide)/polydopamine/chitosan membrane in a humid environment. Colloids Surf B Biointerfaces 2022; 220:112902. [DOI: 10.1016/j.colsurfb.2022.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022]
|
143
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
144
|
Analyzing and mapping the research status, hotspots, and frontiers of biological wound dressings: An in-depth data-driven assessment. Int J Pharm 2022; 629:122385. [DOI: 10.1016/j.ijpharm.2022.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
145
|
Wang X, Tang M. Bioceramic materials with ion-mediated multifunctionality for wound healing. SMART MEDICINE 2022; 1:e20220032. [PMID: 39188732 PMCID: PMC11235610 DOI: 10.1002/smmd.20220032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 08/28/2024]
Abstract
Regeneration of both anatomic and functional integrity of the skin tissues after injury represents a huge challenge considering the sophisticated healing process and variability of specific wounds. In the past decades, numerous efforts have been made to construct bioceramic-based wound dressing materials with ion-mediated multifunctionality for facilitating the healing process. In this review, the state-of-the-art progress on bioceramic materials with ion-mediated bioactivity for wound healing is summarized. Followed by a brief discussion on the bioceramic materials with ion-mediated biological activities, the emerging bioceramic-based materials are highlighted for wound healing applications owing to their ion-mediated bioactivities, including anti-infection function, angiogenic activity, improved skin appendage regeneration, antitumor effect, and so on. Finally, concluding remarks and future perspectives of bioceramic-based wound dressing materials for clinical practice are briefly discussed.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Min Tang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
146
|
Jaberifard F, Ramezani S, Ghorbani M, Arsalani N, Mortazavi Moghadam F. Investigation of wound healing efficiency of multifunctional eudragit/soy protein isolate electrospun nanofiber incorporated with ZnO loaded halloysite nanotubes and allantoin. Int J Pharm 2022; 630:122434. [PMID: 36435502 DOI: 10.1016/j.ijpharm.2022.122434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
One significant aspect of the current therapeutic agents employed in wound healing involves the engineering of nano polymeric scaffolds to mimic the properties of extracellular matrix (ECM). The present work aimed to prepare and evaluate Eudragit® L100 (EU) nanofibers in combination with soy protein isolate (SPI). Allantoin (Ala) with a 2 wt% was encapsulated as a model drug renowned for its anti-inflammatory and antioxidant agents. Moreover, the synthesized ZnO-halloysite nanotubes (ZHNTs) with different concentrations of 1, 3, and 5 wt% were incorporated into the EU/SPI/Ala nanofiber as a reinforcing filler and a remarkable antibacterial agent. The scanning electron microscope (SEM) analysis showed that by increasing the weight percentage of SPI from 1 % to 2.5 %, the average diameter of nanofibers decreased from 132.3 ± 51.3 nm to 126.7 ± 47.2 nm. It was 223.5 ± 95.6 nm for nanofibers containing 5 wt% ZHNTs (the optimal sample). The evaluation of in vitro release kinetics of Ala for 24 h, showed a burst release during the first 2 h and a sustained release during the subsequent times. Moreover, the structure, crystallinity, and thermal stability of synthesized nanofibers were characterized by Fourier Transform Infrared Spectrometry (FTIR), X-ray diffraction (XRD), and Thermo gravimetric analysis (TGA), respectively. In vitro degradation and mechanical characteristics of these nanofibers were studied. Furthermore, the capability of the nanofibers for cell proliferation was revealed through the MTT test and field emission scanning electron microscopy (FESEM) images of cell attachment. The antimicrobial activity of EU/SPI/Ala/ZHNTs showed that this sample with high ZHNTs content (5 w%t) had the most remarkable antibacterial activity against S. aureus. The results revealed that EU/SPI/Ala/ZHNTs mats could be promising potential wound dressings.
Collapse
Affiliation(s)
- Farnaz Jaberifard
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Ramezani
- Nanofiber Research Center, Asian Nanostructures Technology Co. (ANSTCO), Zanjan, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasser Arsalani
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Fatemeh Mortazavi Moghadam
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
147
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
148
|
Merzougui C, Miao F, Liao Z, Wang L, Wei Y, Huang D. Electrospun nanofibers with antibacterial properties for wound dressings. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2165-2183. [PMID: 36001387 DOI: 10.1080/09205063.2022.2099662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The antibacterial nanofibers have been proposed as an interesting material for wound healing management, since the majority of traditional wound dressings exhibit issues and complications such as infection, pain, discomfort, and poor adhesive proprieties. It allows the organism's passage through the dressing and delay the wound healing progression. Electrospun nanofibers have been intensively investigated for wound dressings in tissue engineering applications due to their distinctive features and structural similarities to the extracellular matrix including the various available methods to load the antibacterial compounds onto the nanofiber webs. To construct an effective electrospun wound dressing, various efforts have been made to design different strategies to develop advanced polymers, such as employing synthetic and/or natural materials, modifying fiber orientation, and incorporating chemicals and metallic nanoparticles (NPs) as intriguing materials for antibacterial bandages. Thus, this review summarizes the relevant recent studies on the production of electrospun antibacterial nanofibers from a wide variety of polymers used in biomedical applications for wound dressings.
Collapse
Affiliation(s)
- Chaima Merzougui
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Fenyan Miao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Ziming Liao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Longfei Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P.R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, P.R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P.R. China
| |
Collapse
|
149
|
Ganesan A, Jaiganesh R. A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
150
|
Sudhakar K, Ji SM, Kummara MR, Han SS. Recent Progress on Hyaluronan-Based Products for Wound Healing Applications. Pharmaceutics 2022; 14:2235. [PMID: 36297670 PMCID: PMC9609759 DOI: 10.3390/pharmaceutics14102235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Hyaluronic acid (HA) based nanocomposites are considered excellent for improving wound healing. HA is biocompatible, biodegradable, non-toxic, biologically active, has hemostatic ability, and resists bacterial adhesion. HA-based nanocomposites promote wound healing in four different sequential phases hemostasis, inflammation, proliferation, and maturation. The unique biological characteristics of HA enable it to serve as a drug, an antibacterial agent, and a growth factor, which combine to accelerate the healing process. In this review, we focus on the use of HA-based nanocomposites for wound healing applications and we describe the importance of HA for the wound healing process in each sequential phase, such as hemostasis, inflammation, proliferation, and maturation. Metal nanoparticles (MNPs) or metal oxide nanoparticles (MO-NPs) loaded with HA nanocomposite are used for wound healing applications. Insights into important antibacterial mechanisms are described in HA nanocomposites. Furthermore, we explain antibiotics loaded with HA nanocomposite and its combination with the MNPs/MO-NPs used for wound healing applications. In addition, HA derivatives are discussed and used in combination with the other polymers of the composite for the wound healing process, as is the role of the polymer in wound healing applications. Finally, HA-based nanocomposites used for clinical trials in animal models are presented for wound healing applications.
Collapse
Affiliation(s)
- Kuncham Sudhakar
- Correspondence: (K.S.); (S.S.H.); Tel.: +8253-810-2773 (S.S.H.); Fax: +8253-810-4686 (S.S.H.)
| | | | | | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
| |
Collapse
|