101
|
Ma Q, Zhao X, Shi A, Wu J. Bioresponsive Functional Phenylboronic Acid-Based Delivery System as an Emerging Platform for Diabetic Therapy. Int J Nanomedicine 2021; 16:297-314. [PMID: 33488074 PMCID: PMC7816047 DOI: 10.2147/ijn.s284357] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
The glucose-sensitive self-adjusting drug delivery system simulates the physiological model of the human pancreas-secreting insulin and then precisely regulates the release of hypoglycemic drugs and controls the blood sugar. Thus, it has good application prospects in the treatment of diabetes. Presently, there are three glucose-sensitive drug systems: phenylboronic acid (PBA) and its derivatives, concanavalin A (Con A), and glucose oxidase (GOD). Among these, the glucose-sensitive polymer carrier based on PBA has the advantages of better stability, long-term storage, and reversible glucose response, and the loading of insulin in it can achieve the controlled release of drugs in the human environment. Therefore, it has become a research hotspot in recent years and has been developed very rapidly. In order to further carry out a follow-up study, we focused on the development process, performance, and application of PBA and its derivatives-based glucose-sensitive polymer drug carriers, and the prospects for the development of this field.
Collapse
Affiliation(s)
- Qiong Ma
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Xi Zhao
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
- Department of Medical Biology, College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| |
Collapse
|
102
|
Mehra S, Nisar S, Chauhan S, Singh G, Singh V, Rattan S. A dual stimuli responsive natural polymer based superabsorbent hydrogel engineered through a novel cross-linker. Polym Chem 2021. [DOI: 10.1039/d0py01729a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An intelligent dual stimuli (pH and thermo) responsive, highly porous grafted SPI hydrogel.
Collapse
Affiliation(s)
- Saloni Mehra
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
- Jubilant Biosys Limited
| | - Safiya Nisar
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
| | - Sonal Chauhan
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
| | - Gurmeet Singh
- Light Stock Processing Division
- CSIR-Indian Institute of Petroleum
- Dehradun
- India
| | - Virender Singh
- Department of Chemistry
- Central University of Punjab
- Bathinda
- India
| | - Sunita Rattan
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
| |
Collapse
|
103
|
Abbasi A, Hajipour N, Hasannezhad P, Baghbanzadeh A, Aghebati-Maleki L. Potential in vivo delivery routes of postbiotics. Crit Rev Food Sci Nutr 2020; 62:3345-3369. [PMID: 33356449 DOI: 10.1080/10408398.2020.1865260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive micro- and macro-molecules (postbiotics) derived from gut beneficial microbes are among natural chemical compounds with medical significance. Currently, a unique therapeutic strategy has been developed with an emphasis on the small molecular weight biomolecules that are made by the microbiome, which endow the host with several physiological health benefits. A large number of postbiotics have been characterized, which due to their unique pharmacokinetic properties in terms of controllable aspects of the dosage and various delivery routes, could be employed as promising medical tools since they exert both prevention and treatment strategies in the host. Nevertheless, there are still main challenges for the in vivo delivery of postbiotics. Currently, scientific literature confirms that targeted delivery systems based on nanoparticles, due to their appealing properties in terms of high biocompatibility, biodegradability, low toxicity, and significant capability to carry both hydrophobic and hydrophilic postbiotics, can be used as a novel and safe strategy for targeted delivery or/and release of postbiotics in various (oral, intradermal, and intravenous) in vivo models. The in vivo delivery of postbiotics are in their emerging phase and require massive investigation and randomized double-blind clinical trials if they are to be applied extensively as treatment strategies. This manuscript provides an overview of the various postbiotic metabolites derived from the gut beneficial microbes, their potential therapeutic activities, and recent progressions in the drug delivery field, as well as concisely giving an insight on the main in vivo delivery routes of postbiotics.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Hajipour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
104
|
Rahić O, Tucak A, Omerović N, Sirbubalo M, Hindija L, Hadžiabdić J, Vranić E. Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions. Pharmaceutics 2020; 13:E28. [PMID: 33375224 PMCID: PMC7824381 DOI: 10.3390/pharmaceutics13010028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is considered to be one of the biggest health problems in the world. It is the main cause of preventable blindness due to its asymptomatic nature in the early stages on the one hand and patients' non-adherence on the other. There are several approaches in glaucoma treatment, whereby this has to be individually designed for each patient. The first-line treatment is medication therapy. However, taking into account numerous disadvantages of conventional ophthalmic dosage forms, intensive work has been carried out on the development of novel drug delivery systems for glaucoma. This review aims to provide an overview of formulation solutions and strategies in the development of in situ gel systems, nanosystems, ocular inserts, contact lenses, collagen corneal shields, ocular implants, microneedles, and iontophoretic devices. The results of studies confirming the effectiveness of the aforementioned drug delivery systems were also briefly presented.
Collapse
Affiliation(s)
- Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Naida Omerović
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| |
Collapse
|
105
|
Kim SG. Immunomodulation for maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 2020; 42:5. [PMID: 32206664 PMCID: PMC7058765 DOI: 10.1186/s40902-020-00249-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Immunomodulation is a technique for the modulation of immune responses against graft material to improve surgical success rates. The main target cell for the immunomodulation is a macrophage because it is the reaction site of the graft and controls the healing process. Macrophages can be classified into M1 and M2 types. Most immunomodulation techniques focus on the rapid differentiation of M2-type macrophage. An M2 inducer, 4-hexylresorcinol, has been recently identified and is used for bone grafts and dental implant coatings.
Collapse
Affiliation(s)
- Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Jukhyun-gil 25457 South Korea
| |
Collapse
|
106
|
Badwaik HR, Hoque AA, Kumari L, Sakure K, Baghel M, Giri TK. Moringa gum and its modified form as a potential green polymer used in biomedical field. Carbohydr Polym 2020; 249:116893. [PMID: 32933701 DOI: 10.1016/j.carbpol.2020.116893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
Over the past few decades, natural gums are extensively investigated by the researchers due to their beneficial physicochemical properties. Among them, the polysaccharide exudates obtained from the stem of the plant Moringa oleifera, known as moringa gum, is investigated widely in the food, pharmaceutical, and other areas. The moringa gum is used in the form of dried powder as a pharmaceutical excipient in various formulations. It is also derivatized either by grafting or by other chemical modifications for enhancing its properties. The research on moringa gum and modified moringa gum has diversified in numerous biomedical fields. However, summarization of these progress are not available in the literature. This article gives an overview of the collection, purification, structural elucidation, and modification of moringa gum. Moreover, the present review furnishes complete information on the various aspects of moringa gum and its applications in various industrial and biomedical fields.
Collapse
Affiliation(s)
- Hemant Ramachandra Badwaik
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai, 490023, Chhattisgarh, India.
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Kalyani Sakure
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai, 490023, Chhattisgarh, India
| | - Madhuri Baghel
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai, 490023, Chhattisgarh, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| |
Collapse
|
107
|
Mokhtarinia K, Masaeli E. Transiently thermally responsive surfaces: Concepts for cell sheet engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
108
|
Augusto MG, da Silva LFO, Scaramucci T, Aoki IV, Torres CRG, Borges AB. Protective effect of anti-erosive solutions enhanced by an aminomethacrylate copolymer. J Dent 2020; 105:103540. [PMID: 33249109 DOI: 10.1016/j.jdent.2020.103540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To investigate if an aminomethacrylate copolymer (AMC) could potentiate the anti-erosive effect of solutions containing sodium fluoride -F (225 ppm F-) and sodium fluoride associated to stannous chloride -FS (800 ppm Sn2+). METHODS The experimental solutions (F, FS, AMC, AMC + F, AMC + FS, and deionized water-DW as negative control) were tested in the presence of acquired pellicle. Polished bovine enamel specimens (n = 13/group) were submitted to an erosion-rehardening cycle (2 h immersion in human saliva, 5 min in 0.3 % citric acid, 1 h in human saliva, 4×/day, 5 days). Treatment with the solutions was performed for 2 min, 2×/day. The rehardening (%Re) and protective (%Prot) potential of the solutions were assessed in the beginning of the experiment, and the surface loss (SL) by contact profilometry after 5 days. Additional bovine specimens (n = 5/group) were prepared to evaluate the contact angle on the treated enamel surface. The zeta potential of the dispersed hydroxyapatite (HA) crystals after the treatment with the solutions was also measured (n = 3/group). Data were statistically analyzed (α = 0.05). RESULTS The association with AMC improved the %Re and the %Prot for W and F, but not for FS. The results of SL were: AMC + F = AMC + FS < AMC < FS < F < DW. The presence of AMC significantly reduced the contact angle on enamel surfaces. The HA presented a strong negative surface charge after the treatment with DW, F and FS, whereas after the treatment with the solutions containing AMC it became positive. CONCLUSION AMC has potential to enhance the anti-erosive effect of fluoride solutions. CLINICAL SIGNIFICANCE The aminomethacrylate copolymer (AMC) may be a promising agent to be added to oral care products for the prevention of erosive tooth wear.
Collapse
Affiliation(s)
- Marina Gullo Augusto
- Institute of Science and Technology, Department of Restorative Dentistry, São Paulo State University - UNESP, São José dos Campos, SP, Brazil
| | - Luis Felipe Oliveira da Silva
- Institute of Science and Technology, Department of Restorative Dentistry, São Paulo State University - UNESP, São José dos Campos, SP, Brazil
| | - Tais Scaramucci
- School of Dentistry, Department of Restorative Dentistry, São Paulo University - USP, São Paulo, SP, Brazil
| | - Idalina Vieira Aoki
- Polytechnic School, Department of Chemical Engineering, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Carlos Rocha Gomes Torres
- Institute of Science and Technology, Department of Restorative Dentistry, São Paulo State University - UNESP, São José dos Campos, SP, Brazil
| | - Alessandra Bühler Borges
- Institute of Science and Technology, Department of Restorative Dentistry, São Paulo State University - UNESP, São José dos Campos, SP, Brazil.
| |
Collapse
|
109
|
Kailash S, Meenarathi B, Parthasarathy V, Anbarasan R. Conjugated hydrophobic and hydrophilic blocks through a drug moiety as a leading macromolecular system for sustainable drug delivery. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02302-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
110
|
De Castro F, Vergaro V, Benedetti M, Baldassarre F, Del Coco L, Dell'Anna MM, Mastrorilli P, Fanizzi FP, Ciccarella G. Visible Light-Activated Water-Soluble Platicur Nanocolloids: Photocytotoxicity and Metabolomics Studies in Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:6836-6851. [PMID: 35019346 DOI: 10.1021/acsabm.0c00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle-based drug delivery systems for cancer therapy offer a great promising opportunity as they specifically target cancer cells, also increasing the bioavailability of anticancer drugs characterized by low water solubility. Platicur, [Pt(cur) (NH3)2](NO3), is a cis-diamine-platinum(II) complex linked to curcumin. In this work, an ultrasonication method, coupled with layer by layer technology, allows us to obtain highly aqueous stable Platicur nanocolloids of about 100 nm. The visible light-activated Platicur nanocolloids showed an increased drug release and antitumor activity on HeLa cells, with respect to Platicur nanocolloids in darkness. This occurrence could give very interesting insight into selective activation of the nanodelivered Pt(II) complex and possible side-effect lowering. For the first time, the metabolic effects of Platicur nanocolloid photoactivation, in the HeLa cell line, have been investigated using an NMR-based metabolomics approach coupled with statistical multivariate data analysis. The reported results highlight specific metabolic differences between photoactivated and non-photoactivated Platicur NC-treated HeLa cancer cells.
Collapse
Affiliation(s)
- Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | | | | | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
111
|
Caldas M, Santos AC, Rebelo R, Pereira I, Veiga F, Reis RL, Correlo VM. Electro-responsive controlled drug delivery from melanin nanoparticles. Int J Pharm 2020; 588:119773. [PMID: 32805382 DOI: 10.1016/j.ijpharm.2020.119773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 01/18/2023]
Abstract
Electro-responsive controlled drug delivery has been receiving an increasing interest as one of the on-demand drug delivery systems, aiming the improvement of the therapeutics efficacy by controlling the amount of drug release at a specific time and target site. Herein, we report a simple method to develop an electro-responsive controlled drug delivery system using functionalized melanin nanoparticles (FMNPs) with polydopamine and polypyrrole to precisely control the release of dexamethasone (Dex). Optimized FMNPs showed 376.77 ± 62.05 nm of particle size, a polydispersity index of 0.26 ± 0.09 and a zeta-potential (ZP) of -32.59 ± 3.61 mV. FMNPs evidenced a spherical shape, which was confirmed by scanning electron microscopy. Fourier-transform infrared spectrometry analysis confirmed the deposition of the polymers on the FMNPs' surface. The incorporation efficiency of the optimized Dex-loaded FMNPs was 94.45 ± 0.63% and the increase of ZP to -40.34 ± 4.65 mV was attributed to the anionic nature of Dex. In vitro Dex release studies without stimuli revealed a maximum Dex release below 10%. Applying electrical stimulation, Dex release was augmented, with a maximum of ca. 32% after 24 h. The designed FMNPs provide a powerful biomaterial-based technological tool for electro-responsive controlled drug delivery, capable of surpassing the associated lack of efficiency and stability of current carriers.
Collapse
Affiliation(s)
- Mariana Caldas
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Rita Rebelo
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rui L Reis
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Vitor M Correlo
- I3B's Research Institute on Biomaterials Biodegradables and Biomimetics, Universidade do Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
112
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
113
|
Talaat W, Aryal Ac S, Al Kawas S, Samsudin ABR, Kandile NG, Harding DRK, Ghoneim MM, Zeiada W, Jagal J, Aboelnaga A, Haider M. Nanoscale Thermosensitive Hydrogel Scaffolds Promote the Chondrogenic Differentiation of Dental Pulp Stem and Progenitor Cells: A Minimally Invasive Approach for Cartilage Regeneration. Int J Nanomedicine 2020; 15:7775-7789. [PMID: 33116500 PMCID: PMC7567564 DOI: 10.2147/ijn.s274418] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Several scaffolds and cell sources are being investigated for cartilage regeneration. The aim of the study was to prepare nanocellulose-based thermosensitive injectable hydrogel scaffolds and assess their potential as 3D scaffolds allowing the chondrogenic differentiation of embedded human dental pulp stem and progenitor cells (hDPSCs). Materials and Methods The hydrogel-forming solutions were prepared by adding β-glycerophosphate (GP) to chitosan (CS) at different ratios. Nanocellulose (NC) suspension was produced from hemp hurd then added dropwise to the CS/GP mixture. In vitro characterization of the prepared hydrogels involved optimizing gelation and degradation time, mass-swelling ratio, and rheological properties. The hydrogel with optimal characteristics, NC-CS/GP-21, was selected for further investigation including assessment of biocompatibility. The chondrogenesis ability of hDPSCs embedded in NC-CS/GP-21 hydrogel was investigated in vitro and compared to that of bone marrow-derived mesenchymal stem cells (BMSCs), then was confirmed in vivo in 12 adult Sprague Dawley rats. Results The selected hydrogel showed stability in culture media, had a gelation time of 2.8 minutes, showed a highly porous microstructure by scanning electron microscope, and was morphologically intact in vivo for 14 days after injection. Histological and immunohistochemical analyses and real-time PCR confirmed the chondrogenesis ability of hDPSCs embedded in NC-CS/GP-21 hydrogel. Conclusion Our results suggest that nanocellulose–chitosan thermosensitive hydrogel is a biocompatible, injectable, mechanically stable and slowly degradable scaffold. hDPSCs embedded in NC-CS/GP-21 hydrogel is a promising, minimally invasive, stem cell-based strategy for cartilage regeneration.
Collapse
Affiliation(s)
- Wael Talaat
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.,Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Suez Canal University, Ismaillia 41522, Egypt
| | - Smriti Aryal Ac
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.,Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.,Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - A B Rani Samsudin
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.,Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nadia G Kandile
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo 11757, Egypt
| | - David R K Harding
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Mohamed M Ghoneim
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Sinai University, Arish 45511, Egypt
| | - Waleed Zeiada
- Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.,Public Works Engineering Department, College of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Jayalakshmi Jagal
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed Aboelnaga
- Department of Surgery, Faculty of Medicine, Suez Canal University, Ismaillia 41522, Egypt
| | - Mohamed Haider
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 71526, Egypt
| |
Collapse
|
114
|
Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Abstract
Rheumatoid arthritis (RA) is a long-term inflammatory disease derived from an autoimmune disorder of the synovial membrane. Current therapeutic strategies for RA mainly aim to hamper the macrophages' proliferation and reduce the production of pro-inflammatory cytokines. Therefore, the accumulation of therapeutic agents targeted at the inflammatory site should be a crucial therapeutic strategy. Nowadays, the nanocarrier system incorporated with stimuli-responsive property is being intensively studied, showing the potentially tremendous value of specific therapy. Stimuli-responsive (i.e., pH, temperature, light, redox, and enzyme) polymeric nanomaterials, as an important component of nanoparticulate carriers, have been intensively developed for various diseases treatment. A survey of the literature suggests that the use of targeted nanocarriers to deliver therapeutic agents (nanotherapeutics) in the treatment of inflammatory arthritis remains largely unexplored. The lack of suitable stimuli-sensitive polymeric nanomaterials is one of the limitations. Herein, we provide an overview of drug delivery systems prepared from commonly used stimuli-sensitive polymeric nanomaterials and some inorganic agents that have potential in the treatment of RA. The current situation and challenges are also discussed to stimulate a novel thinking about the development of nanomedicine.
Collapse
|
115
|
Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122901] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
116
|
Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discov Today 2020; 25:2182-2200. [PMID: 33010479 DOI: 10.1016/j.drudis.2020.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022]
Abstract
The high prescribed dose of anticancer drugs and their resulting adverse effects on healthy tissue are significant drawbacks to conventional chemotherapy (CTP). Ideally, drugs should have the lowest possible degree of interaction with healthy cells, which would diminish any adverse effects. Therefore, an ideal scenario to bring about improvements in CTP is the use of technological strategies to ensure the efficient, specific, and selective transport and/or release of drugs to the target site. One practical and feasible solution to promote the efficiency of conventional CTP is the use of ultrasound (US). In this review, we highlight the potential role of US in combination with lipid-based carriers to achieve a targeted CTP strategy in engineered smart drug delivery systems.
Collapse
|
117
|
Jamaledin R, Makvandi P, Yiu CKY, Agarwal T, Vecchione R, Sun W, Maiti TK, Tay FR, Netti PA. Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in Release Profile Tuning. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000171] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering University of Naples Federico II Naples 80125 Italy
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Pooyan Makvandi
- Center for Micro‐BioRobotics Istituto Italiano di Tecnologia (IIT) Viale R. Piaggio 34, 56025 Pontedera Pisa Italy
| | - Cynthia K. Y. Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Prince Philip Dental Hospital The University of Hong Kong Hong Kong SAR China
| | - Tarun Agarwal
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| | - Wujin Sun
- Department of Bioengineering Center for Minimally Invasive Therapeutics University of California, Los Angeles Los Angeles CA 90095 USA
| | - Tapas Kumar Maiti
- Department of Biotechnology Indian Institute of Technology Kharagpur 721302 India
| | | | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB) Italian Institute of Technology Naples 80125 Italy
| |
Collapse
|
118
|
Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle-hydrogel superstructures for biomedical applications. J Control Release 2020; 324:505-521. [PMID: 32464152 PMCID: PMC7429280 DOI: 10.1016/j.jconrel.2020.05.041] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
The incorporation of nanoparticles into hydrogels yields novel superstructures that have become increasingly popular in biomedical research. Each component of these nanoparticle-hydrogel superstructures can be easily modified, resulting in platforms that are highly tunable and inherently multifunctional. The advantages of the nanoparticle and hydrogel constituents can be synergistically combined, enabling these superstructures to excel in scenarios where employing each component separately may have suboptimal outcomes. In this review, the synthesis and fabrication of different nanoparticle-hydrogel superstructures are discussed, followed by an overview of their use in a range of applications, including drug delivery, detoxification, immune modulation, and tissue engineering. Overall, these platforms hold significant clinical potential, and it is envisioned that future development along these lines will lead to unique solutions for addressing areas of pressing medical need.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
119
|
Hariyadi DM, Islam N. Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci 2020; 2020:8886095. [PMID: 32832902 PMCID: PMC7428837 DOI: 10.1155/2020/8886095] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Alginate is one of the natural polymers that are often used in drug- and protein-delivery systems. The use of alginate can provide several advantages including ease of preparation, biocompatibility, biodegradability, and nontoxicity. It can be applied to various routes of drug administration including targeted or localized drug-delivery systems. The development of alginates as a selected polymer in various delivery systems can be adjusted depending on the challenges that must be overcome by drug or proteins or the system itself. The increased effectiveness and safety of sodium alginate in the drug- or protein-delivery system are evidenced by changing the physicochemical characteristics of the drug or proteins. In this review, various routes of alginate-based drug or protein delivery, the effectivity of alginate in the stem cells, and cell encapsulation have been discussed. The recent advances in the in vivo alginate-based drug-delivery systems as well as their toxicities have also been reviewed.
Collapse
Affiliation(s)
- Dewi Melani Hariyadi
- Pharmaceutics Department, Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Jl. Mulyorejo Campus C, Surabaya 60115, Indonesia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
120
|
Kolouchova K, Jirak D, Groborz O, Sedlacek O, Ziolkowska N, Vit M, Sticova E, Galisova A, Svec P, Trousil J, Hajek M, Hruby M. Implant-forming polymeric 19F MRI-tracer with tunable dissolution. J Control Release 2020; 327:50-60. [PMID: 32730953 DOI: 10.1016/j.jconrel.2020.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022]
Abstract
Magnetic resonance imaging (MRI) using 19F-based tracers has emerged as a promising multi-purpose noninvasive diagnostic tool and its application requires the use of various 19F-based tracers for the intended diagnostic purpose. In this study, we report a series of double-stimuli-responsive polymers for use as injectable implants, which were designed to form implants under physiological conditions, and to subsequently dissolve with different dissolution rates (t1/2 ranges from 30 to more than 250 days). Our polymers contain a high concentration of fluorine atoms, providing remarkable signal detectability, and both a hydrophilic monomer and a pH-responsive monomer that alter the biodistribution properties of the implant. The implant location and dissolution were observed using 19F MRI, which allows the anatomic extent of the implant to be monitored. The dissolution kinetics and biocompatibility of these materials were thoroughly analyzed. No sign of toxicity in vitro or in vivo or pathology in vivo was observed, even in chronic administration. The clinical applicability of our polymers was further confirmed via imaging of a rat model by employing an instrument currently used in human medicine.
Collapse
Affiliation(s)
- Kristyna Kolouchova
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic; Department of Science and Research, Faculty of Health Studies, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic.
| | - Ondrej Groborz
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic; Department of Organic Chemistry, Charles University, Faculty of Science, Hlavova 8, 128 43 Prague 2, Czech Republic; Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo square 542/2, 162 06 Prague 6, Czech Republic
| | - Ondrej Sedlacek
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Natalia Ziolkowska
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic; Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Martin Vit
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic; Technical University of Liberec, Faculty of Mechatronics Informatics and Interdisciplinary Studies, Studentska 1402/2, 461 17 Liberec, Czech Republic
| | - Eva Sticova
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Andrea Galisova
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Pavel Svec
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
| | - Jiri Trousil
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Milan Hajek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
121
|
Saleem MU, Nasiri MI, Zaman SU, Khan N, Azeem M. Formulation development and characterization of cellulose/ polyacrylic acid – based polymers on the release of celecoxib from extended release tablets. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02201-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
122
|
Zhang H, Fan T, Chen W, Li Y, Wang B. Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact Mater 2020; 5:1071-1086. [PMID: 32695937 PMCID: PMC7363990 DOI: 10.1016/j.bioactmat.2020.06.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 01/08/2023] Open
Abstract
Smart drug delivery nano-systems show significant changes in their physical or chemical properties in response to slight change in environmental physical and/or chemical signals, and further releasing drugs adjusted to the progression of the disease at the right target and rate intelligently. Two-dimensional materials possess dramatic status extend all over various scientific and technological disciplines by reason of their exceptional unique properties in application of smart drug delivery nano-systems. In this review, we summarized current progress to highlight various kinds of two-dimensional materials drug carriers which are widely explored in smart drug delivery systems as well as classification of stimuli responsive two-dimensional materials and the advantages and disadvantages of their applications. Consequently, we anticipate that this review might inspire the development of new two-dimensional materials with smart drug delivery systems, and deepen researchers' understanding of smart nano-carries based on two-dimensional materials.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science &Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen, 518060, China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Yingchun Li
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Bing Wang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science &Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
123
|
Rambaran TF. Nanopolyphenols: a review of their encapsulation and anti-diabetic effects. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3110-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractPolyphenols are believed to possess numerous health benefits and can be grouped as phenolic acids, flavonoids or non-flavonoids. Research involving the synthesis of nanopolyphenols has attracted interest in the areas of functional food, nutraceutical and pharmaceutical development. This is in an effort to overcome current challenges which limit the application of polyphenols such as their rapid elimination, low water-solubility, instability at low pH, and their particle size. In the synthesis of nanopolyphenols, the type of nanocarrier used, the nanoencapsulation technique employed and the type of polymers that constitute the drug delivery system are crucial. For this review, all mentioned factors which can influence the therapeutic efficacy of nanopolyphenols were assessed. Their efficacy as anti-diabetic agents was also evaluated in 33 publications. Among these were phenolic acid (1), flavonoids (13), non-flavonoids (17) and polyphenol-rich extracts (2). The most researched polyphenols were quercetin and curcumin. Nanoparticles were the main nanocarrier and the size of the nanopolyphenols ranged from 15 to 333 nm with encapsulation efficiency and drug loading capacities of 56–97.7% and 4.2–53.2%, respectively. The quantity of nanomaterial administered orally ranged from 1 to 300 mg/kg/day with study durations of 1–70 days. Most studies compared the effect of the nanopolyphenol to its free-form and, in all but three cases, significantly greater effects of the former were reported. Assessment of the polyphenol to understand its properties and the subsequent synthesis of its nanoencapsulated form using suitable nanocarriers, polymers and encapsulation techniques can result in effective therapeutic agents for the treatment of diabetes.
Collapse
|
124
|
El-Fatyany A, Wang H, Abd El-atty SM. On mixing reservoir targeted drug delivery Modeling-based Internet of Bio-NanoThings. WIRELESS NETWORKS 2020; 26:3701-3713. [DOI: 10.1007/s11276-020-02294-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
125
|
Pharmacokinetic evaluation of microgels for targeted and sustained delivery of acid labile active pharmaceutical agent in animal model. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
126
|
Quang Tran H, Bhave M, Yu A. Current Advances of Hollow Capsules as Controlled Drug Delivery Systems. ChemistrySelect 2020. [DOI: 10.1002/slct.201904598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huy Quang Tran
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| |
Collapse
|
127
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
128
|
Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Rahman NA, Liou NS. Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int J Biol Macromol 2020; 158:670-688. [PMID: 32389655 DOI: 10.1016/j.ijbiomac.2020.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
The limitations of existing drug delivery systems (DDS) such as non-specific bio-distribution and poor selectivity have led to the exploration of a variety of carrier platforms to facilitate highly desirable and efficient drug delivery. Stimuli-responsive DDS are one of the most versatile and innovative approach to steer the compounds to the intended sites by exploiting their responsiveness to a range of various triggers. Preparation of stimuli-responsive DDS using celluloses and their derivatives offer a remarkable advantage over conventional polymer materials. In this review, we highlight on state-of-art progress in developing cellulose/cellulose hybrid stimuli-responsive DDS, which covers the preparation techniques, physicochemical properties, basic principles and, mechanisms of stimuli effect on drug release from various types of cellulose based carriers, through recent innovative investigations. Attention has been paid to endogenous stimuli (pH, temperature, redox gradient and ionic-strength) responsive DDS and exogenous stimuli (light, magnetic field and electric field) responsive DDS, where the cellulose-based materials have been extensively employed. Furthermore, the current challenges and future prospects of these DDS are also discussed at the end.
Collapse
Affiliation(s)
- Thennakoon M Sampath Udeni Gunathilake
- Advanced Materials Center, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Advanced Materials Center, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Biochemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nai-Shang Liou
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 710 Tainan City, Taiwan, ROC
| |
Collapse
|
129
|
Recent advances in the implant-based drug delivery in otorhinolaryngology. Acta Biomater 2020; 108:46-55. [PMID: 32289495 DOI: 10.1016/j.actbio.2020.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
The surgical implant is an interdisciplinary therapeutic modality that offers unique advantages in the daily practice of otorhinolaryngology. Some well-known examples include cochlear implants, bone-anchored hearing aids, sinus stents, and tracheostomy tubes. Neuroprotective, osteogenic, anti-inflammatory, and antimicrobial effects are among their established or pursued functions. Implant-based drug delivery affords an efficient and potent approach to enhancing these therapeutic functions. Recent innovations have infiltrated all four elements of a drug-eluting implant. The purpose of this pre-clinical, biotechnology-oriented review is to discuss these developments in terms of the implant biomaterial, loaded medication, delivery pattern, and system fabrication. Cell-mediated neurotrophin release, fabrication of a hydroxyapatite-supported system, biodegradable polymer-based implants, and multiclass and multidrug delivery are some representative advancements. The ultimate goal here is to bridge the gap between biotechnology advances and clinical needs. The review is concluded with a perspective regarding the future opportunities and challenges in this popular and rapidly developing subject of research. STATEMENT OF SIGNIFICANCE: Surgical implants and local drug delivery are representative modern modalities of surgical treatment and medical treatment, respectively. Their synergy offers unique therapeutic advantages, such as minimal systemic side effects, proximity-related high efficiency, and potential absorbability. The applications of implant-based drug delivery have infiltrated otorhinolaryngology and head & neck surgery, which is well known for its related tissue diversity and surgical complexity. Examples discussed here include cochlear implants, bone-anchored hearing aids, sinus stents, and airway tubes. This timely review focuses primarily on the four fundamental components of an implant-based drug delivery system, namely implant biomaterial, loaded medication, delivery pattern, and system fabrication. A particular emphasis is placed upon the in vitro cellular and in vivo animal studies that demonstrate pre-clinical potentials.
Collapse
|
130
|
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. An overview of microencapsulation in the food industry: opportunities, challenges, and innovations. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03496-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
131
|
Synthesis, Characterization and Photodynamic Activity against Bladder Cancer Cells of Novel Triazole-Porphyrin Derivatives. Molecules 2020; 25:molecules25071607. [PMID: 32244514 PMCID: PMC7180931 DOI: 10.3390/molecules25071607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022] Open
Abstract
Novel triazole-porphyrin derivatives (TZ-PORs) were synthesized through the Heck reaction and then incorporated into polyvinylpyrrolidone (PVP) micelles. After verifying that this incorporation did not compromise the photophysical and chemical features of TZ-PORs as photosensitizers, the phototoxicity of the formulations towards cancer cells was screened. Biological studies show high photodynamic activity of all PVP-TZ-POR formulations against a bladder cancer cell line with a particular highlight to PVP-TZ-POR 7e and 7f that are able to significantly reduce HT-1376 cell viability, while they had no effect on control ARPE-19 cells.
Collapse
|
132
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
133
|
Lee H, Kim S, Ryu C, Lee JY. Photothermal Polymerization Using Graphene Oxide for Robust Hydrogelation with Various Light Sources. ACS Biomater Sci Eng 2020; 6:1931-1939. [DOI: 10.1021/acsbiomaterials.0c00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hwangjae Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Semin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chiseon Ryu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
134
|
Sester C, Ofridam F, Lebaz N, Gagnière E, Mangin D, Elaissari A. pH‐Sensitive methacrylic acid–methyl methacrylate copolymer Eudragit L100 and dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate tri‐copolymer Eudragit E100. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Coraline Sester
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Fabrice Ofridam
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Noureddine Lebaz
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Emilie Gagnière
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Denis Mangin
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| |
Collapse
|
135
|
Waghmare MN, Qureshi TS, Shaikh AN, Khade BS, Murali Krishna C, Dongre PM. Functionalized Alpha‐lactalbumin Conjugated with Gold Nanoparticle for Targeted Drug Delivery. ChemistrySelect 2020. [DOI: 10.1002/slct.201904190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Manik N. Waghmare
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - Tazeen S. Qureshi
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - Afrin N. Shaikh
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - Bipin S. Khade
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - C. Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC) Navi Mumbai, Maharashtra India
| | | |
Collapse
|
136
|
LaFreniere JMJ, Roberge EJ, Halpern JM. Reorientation of Polymers in an Applied Electric Field for Electrochemical Sensors. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:037556. [PMID: 32265575 PMCID: PMC7138228 DOI: 10.1149/1945-7111/ab6cfe] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This mini review investigates the relationship and interactions of polymers under an applied electric field (AEF) for sensor applications. Understanding how and why polymers are reoriented and manipulated by under an AEF is essential for future growth in polymer-based electrochemical sensors. Examples of polymers that can be manipulated in an AEF for sensor applications are provided. Current methods of monitoring polymer reorientation will be described, but new techniques are needed characterize polymer response to various AEF stimuli. The unique and reproducible stimuli response of polymers elicited by an AEF has significant potential for growth in the sensing community.
Collapse
Affiliation(s)
| | - Emma J. Roberge
- Department of Chemical Engineering, University of New Hampshire, Durham, USA
| | - Jeffrey M. Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, USA
| |
Collapse
|
137
|
Porfiri MC, Melnichuk N, Braia MJ, Brinatti C, Loh W, Romanini D. Analysis of the structure-function relationship of alpha amylase complexed with polyacrylic acid. Colloids Surf B Biointerfaces 2020; 188:110787. [PMID: 31954269 DOI: 10.1016/j.colsurfb.2020.110787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 11/16/2022]
Abstract
Alpha-amylase is frequently used in technologies that require its immobilization, stabilization or encapsulation. Polyacrylic acid is a very suitable polymer for these purposes because it can bind to enzymes and then be released under certain conditions without altering the functional capacity of enzymes. The consequences produced by polyacrylic acid on alpha-amylase structure and function have been investigated through various techniques. Calorimetric measurements allowed examining the nature of the binding reaction, stoichiometry and affinity, while spectroscopic techniques provided additional information about functional and structural perturbations of the enzyme. Isothermal titration calorimetry (ITC) revealed a mixed interaction and a binding model with a large number of molecules of protein per molecule of polyacrylic acid. One the one hand circular dichroism (CD) spectroscopy showed that alpha-amylase loses its secondary structure in the presence of increasing concentrations of polyacrylic acid, while it is stabilized by the polyelectrolyte at low pH. On the other hand, fluorescence spectra revealed that the three-dimensional enzyme structure was not affected in the microenvironment of tryptophan residues. Differential scanning calorimetry (DSC) thermograms showed that only one domain of alpha-amylase is affected in its conformational stability by the polymer. The unfolding process proved to be partially reversible. Finally, the enzyme retained more than 90 % of its catalytic activity even in excess of the polymer.
Collapse
Affiliation(s)
- María C Porfiri
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
| | - Natasha Melnichuk
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ- CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
| | - Mauricio J Braia
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ- CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
| | - César Brinatti
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP) Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, Brazil
| | - Watson Loh
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP) Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, Brazil
| | - Diana Romanini
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ- CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina.
| |
Collapse
|
138
|
Ferreira M, Sousa J, Pais A, Vitorino C. The Role of Magnetic Nanoparticles in Cancer Nanotheranostics. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E266. [PMID: 31936128 PMCID: PMC7014348 DOI: 10.3390/ma13020266] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Technological development is in constant progress in the oncological field. The search for new concepts and strategies for improving cancer diagnosis, treatment and outcomes constitutes a necessary and continuous process, aiming at more specificity, efficiency, safety and better quality of life of the patients throughout the treatment. Nanotechnology embraces these purposes, offering a wide armamentarium of nanosized systems with the potential to incorporate both diagnosis and therapeutic features, towards real-time monitoring of cancer treatment. Within the nanotechnology field, magnetic nanosystems stand out as complex and promising nanoparticles with magnetic properties, that enable the use of these constructs for magnetic resonance imaging and thermal therapy purposes. Additionally, magnetic nanoparticles can be tailored for increased specificity and reduced toxicity, and functionalized with contrast, targeting and therapeutic agents, revealing great potential as multifunctional nanoplatforms for application in cancer theranostics. This review aims at providing a comprehensive description of the current designs, characterization techniques, synthesis methods, and the role of magnetic nanoparticles as promising nanotheranostic agents. A critical appraisal of the impact, potentialities and challenges associated with each technology is also presented.
Collapse
Affiliation(s)
- Maria Ferreira
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.); (J.S.)
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.); (J.S.)
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Alberto Pais
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.); (J.S.)
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Centre for Neurosciences and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
139
|
Jeong JO, Park JS, Kim YA, Yang SJ, Jeong SI, Lee JY, Lim YM. Gamma Ray-Induced Polymerization and Cross-Linking for Optimization of PPy/PVP Hydrogel as Biomaterial. Polymers (Basel) 2020; 12:E111. [PMID: 31948023 PMCID: PMC7023038 DOI: 10.3390/polym12010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Conducting polymer (CP)-based hydrogels exhibit the behaviors of bending or contraction/relaxation due to electrical stimulation. They are similar in some ways to biological organs and have advantages regarding manipulation and miniaturization. Thus, these hydrogels have attracted considerable interest for biomedical applications. In this study, we prepared PPy/PVP hydrogel with different concentrations and content through polymerization and cross-linking induced by gamma-ray irradiation at 25 kGy to optimize the mechanical properties of the resulting PPy/PVP hydrogel. Optimization of the PPy/PVP hydrogel was confirmed by characterization using scanning electron microscopy, gel fraction, swelling ratio, and Fourier transform infrared spectroscopy. In addition, we assessed live-cell viability using live/dead assay and CCK-8 assay, and found good cell viability regardless of the concentration and content of Py/pTS. The conductivity of PPy/PVP hydrogel was at least 13 mS/cm. The mechanical properties of PPy/PVP hydrogel are important factors in their application for biomaterials. It was found that 0.15PPy/PVP20 (51.96 ± 6.12 kPa) exhibited better compressive strength than the other samples for use in CP-based hydrogels. Therefore, it was concluded that gamma rays can be used to optimize PPy/PVP hydrogel and that biomedical applications of CP-based hydrogels will be possible.
Collapse
Affiliation(s)
- Jin-Oh Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Jong-Seok Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
| | - Young-Ah Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
- Department of Polymer Science and Engineering, Chungnam National University, Deajeon 34134, Korea
| | - Su-Jin Yang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Sung-In Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
| | - Jae-Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do 56212, Korea; (J.-O.J.); (Y.-A.K.); (S.-J.Y.); (S.-I.J.)
| |
Collapse
|
140
|
Parisi OI, Ruffo M, Malivindi R, Vattimo AF, Pezzi V, Puoci F. Molecularly Imprinted Polymers (MIPs) as Theranostic Systems for Sunitinib Controlled Release and Self-Monitoring in Cancer Therapy. Pharmaceutics 2020; 12:E41. [PMID: 31947815 PMCID: PMC7022407 DOI: 10.3390/pharmaceutics12010041] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/23/2022] Open
Abstract
Cytotoxic agents that are used conventionally in cancer therapy present limitations that affect their efficacy and safety profile, leading to serious adverse effects. In the aim to overcome these drawbacks, different approaches have been investigated and, among them, theranostics is attracting interest. This new field of medicine combines diagnosis with targeted therapy; therefore, the aim of this study was the preparation and characterization of Molecularly Imprinted Polymers (MIPs) selective for the anticancer drug Sunitinib (SUT) for the development of a novel theranostic system that is able to integrate the drug controlled release ability of MIPs with Rhodamine 6G as a fluorescent marker. MIPs were synthesized by precipitation polymerization and then functionalized with Rhodamine 6G by radical grafting. The obtained polymeric particles were characterized in terms of particles size and distribution, ξ-potential and fluorescent, and hydrophilic properties. Moreover, adsorption isotherms and kinetics and in vitro release properties were also investigated. The obtained binding data confirmed the selective recognition properties of MIP, revealing that SUT adsorption better fitted the Langmuir model, while the adsorption process followed the pseudo-first order kinetic model. Finally, the in vitro release studies highlighted the SUT controlled release behavior of MIP, which was well fitted with the Ritger-Peppas kinetic model. Therefore, the synthesized fluorescent MIP represents a promising material for the development of a theranostic platform for Sunitinib controlled release and self-monitoring in cancer therapy.
Collapse
Affiliation(s)
- Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.R.); (R.M.); (V.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy;
| | - Mariarosa Ruffo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.R.); (R.M.); (V.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy;
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.R.); (R.M.); (V.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy;
| | - Anna Francesca Vattimo
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy;
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.R.); (R.M.); (V.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy;
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.R.); (R.M.); (V.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy;
| |
Collapse
|
141
|
Preparation of a recyclable novel thermoresponsive affinity copolymer and its application towards ε-polylysine purification. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
142
|
Pacheco C, Sousa F, Sarmento B. Chitosan-based nanomedicine for brain delivery: Where are we heading? REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
143
|
Lin SY. Thermoresponsive gating membranes embedded with liquid crystal(s) for pulsatile transdermal drug delivery: An overview and perspectives. J Control Release 2019; 319:450-474. [PMID: 31901369 DOI: 10.1016/j.jconrel.2019.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
Abstract
Due to the circadian rhythm regulation of almost every biological process in the human body, physiological and biochemical conditions vary considerably over the course of a 24-h period. Thus, optimal drug delivery and therapy should be effectively controlled to achieve the desired therapeutic plasma concentrations and therapeutic drug responses at the required time according to chronopharmacological concepts, rather than continuous maintenance of constant drug concentrations for an extended time period. For many drugs, it is not always necessary to constantly deliver a drug into the human body under disease conditions due to rhythmic variations. Pulsatile drug delivery systems (PDDSs) have been receiving more attention in pharmaceutical development by providing a predetermined lag period, followed by a fast or rate-controlled drug release after application. PDDSs are characterized by a programmed drug release, which may release a drug at repeatable pulses to match the biological and clinical needs of a given disease therapy. This review article focuses on thermoresponsive gating membranes embedded with liquid crystals (LCs) for transdermal drug delivery using PDDS technology. In addition, the principal rationale and the advanced approaches for the use of PDDSs, the marketed products of chronotherapeutic DDSs with pulsatile function designed by various PDDS technologies, pulsatile drug delivery designed with thermoresponsive polymers, challenges and opportunities of transdermal drug delivery, and novel approaches of LC systems for drug delivery are reviewed and discussed. A brief overview of all academic research articles concerning single LC- or binary LC-embedded thermoresponsive membranes with a switchable on-off permeation function through topical application by an external temperature control, which may modulate the dosing interval and administration time according to the therapeutic needs of the human body, is also compiled and presented. In the near future, since thermal-based approaches have become a well-accepted method to enhance transdermal delivery of different water-soluble drugs and macromolecules, a combination of the thermal-assisted approach with thermoresponsive LCs membranes will have the potential to improve PDDS applications but still poses a great challenge.
Collapse
Affiliation(s)
- Shan-Yang Lin
- Laboratory of Pharmaceutics and Biopharmaceutics, Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, No.306, Yuanpei Street, Hsin Chu 30015, Taiwan.
| |
Collapse
|
144
|
Dathathri E, Thakur G, Koteshwara KB, Anil Kumar NV, Rodrigues FC. Investigating the effect of freezing temperature and cross-linking on modulating drug release from chitosan scaffolds. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01024-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
145
|
Ailincai D, Gavril G, Marin L. Polyvinyl alcohol boric acid - A promising tool for the development of sustained release drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110316. [PMID: 31761179 DOI: 10.1016/j.msec.2019.110316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 01/04/2023]
Abstract
The paper deals with the design and investigation of the morphology, in vitro drug release and biocompatibility of some new formulations based on polyvinyl alcohol boric acid (PVAB) and diclofenac sodium salt (DCF), with the aim to explore the ability of PVAB to act as a matrix for controlled drug delivery systems. A series of three formulations was obtained by mixing the drug and the polymeric matrix in different mass ratios, with high drug content from 10% w/w to 30% w/w. Their structural and supramolecular characterization, performed by FTIR spectroscopy and X-ray diffraction, revealed important physical interactions between the drug and the polymeric matrix. The morphological data, obtained by X-ray diffraction, polarized optical microscopy and scanning electron microscopy revealed the presence of the drug into the PVAB polymeric matrix, as micrometric polycrystals with a mean diameter in the range 10-15 μm, depending on the drug/polymer ratio. The investigation of their surface peculiarities indicated highly hydrophilic surfaces with a water to air contact angle between 29.9 and 41.4 deg and a surface free energy of 45.6-54.2 N/m2. The in vitro release kinetics was monitored by UV-VIS spectroscopy and the cytotoxic effect was investigated in vitro on fibroblasts and HeLa cells. The PVAB proved excellent cytocompatibility, a relative cell viability of the fibroblasts higher than 90% being recorded for concentrations of PVAB up to 7.5% w/v. The drug has been strongly anchored into the electron deficient PVAB matrix, fact which led to its prolonged release up to 5 days. These findings recommend PVAB as a versatile tool for the development of sustained release drug delivery systems with real chances to cross the gap from theory to applications.
Collapse
Affiliation(s)
- Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Gabriela Gavril
- "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
146
|
The Influence of Initiator Concentration on Selected Properties on Poly- N-Vinylcaprolactam Nanoparticles. NANOMATERIALS 2019; 9:nano9111577. [PMID: 31703338 PMCID: PMC6915650 DOI: 10.3390/nano9111577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023]
Abstract
The thermosensitive polymers of N-vinylcaprolactam P1, P2, P3, P4, and P5 were synthesized via the surfactant free precipitation polymerization (SFPP) at 70 °C in the presence of cationic initiator 2,2’-azobis[2-methylpropionamidine] dihydrochloride (AMPA). The influence of various concentrations of initiator AMPA on particle size, aggregation and lower critical temperature solution (LCST) was investigated by dynamic light scattering (DLS) measurement. The conductivity was measured in the course of the synthesis and during temperature decrease of the reaction mixtures. The polymers were characterized by Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), 1H NMR, and thermogravimetric analysis. Thermal parameters of the degradations process were investigated using thermogravimetric analysis (TGA/DTA) under non-isothermal conditions in N2 atmosphere. The samples were characterized by powder X-ray diffraction analysis (PXRD).The hydrodynamic diameter (HD), polydispersity index (PDI) and zeta potential (ZP) were measured in aqueous dispersions of the synthesized polymers in temperature 18–45 °C. HD and PDI values at 18 °C were 137.23 ± 67.65 nm (PDI = 0.53 ± 0.18), 83.40 ± 74.46 nm (PDI = 0.35 ± 0.08), 22.11 ± 0.29 nm (PDI = 0.45 ± 0.05), 29.27 ± 0.50 nm (PDI = 0.41 ± 0.04), 39.18 ± 0.57 nm (PDI = 0.38 ± 0.01) for P1, P2, P3, P4, and P5, respectively. The aqueous solutions of the obtained polymers at 18–45 °C had a positive charge. ZP’s for P1, P2, P3, P4, and P5 polymers at 18 °C were 11.64 ± 4.27 mV, 12.71 ± 3.56 mV, 3.24 ± 0.10 mV, 0.77 ± 0.28 mV, 1.78 ± 0.56 mV respectively. The LCST range was between 32 and 38 °C. We conclude that the concentration of initiator affects the size of obtained polymeric spheres and theirs LCST.
Collapse
|
147
|
Paiva TF, Alves JB, Melo PA, Pinto JC. Development of Smart Polymer Microparticles through Suspension Polymerization for Treatment of Schistosomiasis. MACROMOL REACT ENG 2019. [DOI: 10.1002/mren.201900028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thamiris Franckini Paiva
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de Janeiro Cidade Universitária, CP 68502 Rio de Janeiro RJ 21941‐972 Brazil
| | - Jéssica Bentes Alves
- Programa de Engenharia da Nanotecnologia/COPPEUniversidade Federal do Rio de Janeiro Cidade Universitária, CP 68501 Rio de Janeiro RJ 21941‐972 Brazil
| | - Príamo Albuquerque Melo
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de Janeiro Cidade Universitária, CP 68502 Rio de Janeiro RJ 21941‐972 Brazil
| | - José Carlos Pinto
- Programa de Engenharia Química/COPPEUniversidade Federal do Rio de Janeiro Cidade Universitária, CP 68502 Rio de Janeiro RJ 21941‐972 Brazil
| |
Collapse
|
148
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
149
|
Doostmohammadi M, Ameri A, Mohammadinejad R, Dehghannoudeh N, Banat IM, Ohadi M, Dehghannoudeh G. Hydrogels For Peptide Hormones Delivery: Therapeutic And Tissue Engineering Applications. Drug Des Devel Ther 2019; 13:3405-3418. [PMID: 31579238 PMCID: PMC6770672 DOI: 10.2147/dddt.s217211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Peptides are the most abundant biological compounds in the cells that act as enzymes, hormones, structural element, and antibodies. Mostly, peptides have problems to move across the cells because of their size and poor cellular penetration. Therefore, a carrier that could transfer peptides into cells is ideal and would be effective for disease treatment. Until now, plenty of polymers, e.g., polysaccharides, polypeptides, and lipids were used in drug delivery. Hydrogels made from polysaccharides showed significant development in targeted delivery of peptide hormones because of their natural characteristics such as networks, pore sizes, sustainability, and response to external stimuli. The main aim of the present review was therefore, to gather the important usages of the hydrogels as a carrier in peptide hormone delivery and their application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Ameri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Negar Dehghannoudeh
- Faculty of Arts and Science, University of Toronto, TorontoM5S3G3, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, University of Ulster, ColeraineBT52 1SA, Northern Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
150
|
Lin Z, Wang C, Li Y, Li R, Gong L, Su Y, Zhai Z, Bai X, Di S, Li Z, Dong A, Zhang Q, Yin Y. Glutathione-Priming Nanoreactors Enable Fluorophore Core/Shell Transition for Precision Cancer Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33667-33675. [PMID: 31414601 DOI: 10.1021/acsami.9b11063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In an attempt to develop an imaging probe with ultra-high sensitivity for a broad range of tumors in vivo and inspired by the concept of chemical synthetic nanoreactors, we designed a type of glutathione-priming fluorescent nanoreactor (GPN) with an albumin-coating shell and hydrophobic polymer core containing disulfide bonds, protonatable blocks, and indocyanine green (ICG), a near-infrared fluorophore. The albumin played multiple roles including biocompatible carriers, hydrophilic stabilizer, "receptor" of the fluorophores, and even targeting molecules. The protonation of the hydrophobic core triggered the outside-to-core transport of acidic glutathione (GSH), as well as the core-to-shell transference of ICGs after the disulfide bond cleavage by GSH, which induced strong binding of fluorophores with albumins on the GPN shell, initiating intensive fluorescence signals. As a result, the GPNs demonstrated extremely high response sensitivity and imaging contrast, proper time window, and broad cancer specificity. In fact, an orthogonal activation pattern was found in vitro with an ON/OFF ratio up to 24.7-fold. Furthermore, the nanoprobes specifically amplified the tumor signals in five cancer-bearing mouse models and actualized tumor margin delineation with a contrast up to 20-fold, demonstrating much better imaging efficacy than the other four commercially available probes. Therefore, the GPNs provide a new paradigm in developing high-performance bioresponsive nanoprobes.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Changrong Wang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Yang Li
- Boston Children's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Ridong Li
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Yue Su
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Zheng Zhai
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Xinyu Bai
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Shiming Di
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Zhao Li
- Department of Hepatobiliary Surgery , Peking University People's Hospital , Beijing 100044 , China
| | - Anjie Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| |
Collapse
|