101
|
Fukuzumi S, Lee Y, Nam W. Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Graduate School of Science and Engineering Meijo University, Nagoya Aichi 468-8502 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
102
|
Huang X, Shi H, Hu Z, Liu A, Amombo E, Chen L, Fu J. ABA Is Involved in Regulation of Cold Stress Response in Bermudagrass. FRONTIERS IN PLANT SCIENCE 2017; 8:1613. [PMID: 29081782 PMCID: PMC5645512 DOI: 10.3389/fpls.2017.01613] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/04/2017] [Indexed: 05/04/2023]
Abstract
As a representative warm-season grass, Bermudagrass [Cynodon dactylon (L). Pers.] is widely used in turf systems. However, low temperature remarkably limits its growth and distribution. ABA is a crucial phytohormone that has been reported to regulate much important physiological and biochemical processes in plants under abiotic stress. Therefore, the objective of this study was to figure out the effects of ABA on the cold-sensitive (S) and cold-resistant (R) Bermudagrass genotypes response to cold stress. In this study, the plants were treated with 100 μM ABA solution and exposed to 4°C temperature. After 7 days of cold treatment, the electrolyte leakage (EL), malonaldehyde (MDA) and H2O2 content were significantly increased in both genotypes compared with control condition, and these values were higher in R genotype than those of S genotype, respectively. By contrast, exogenous ABA application decreased the electrolyte leakage (EL), MDA and H2O2 content in both genotypes compared with those plants without ABA treatment under cold treatment condition. In addition, exogenous ABA application increased the levels of chlorophyll a fluorescence transient curve for both genotypes, and it was higher in R genotype than that of S genotype. Analysis of photosynthetic fluorescence parameters revealed that ABA treatment improved the performance of photosystem II under cold condition, particularly for the R genotype. Moreover, cold stress significantly increased δ13C values for both genotypes, while it was alleviated by exogenous ABA. Additionally, exogenous ABA application altered the expression of ABA- or cold related genes, including ABF1, CBF1, and LEA. In summary, exogenous ABA application enhanced cold resistance of both genotypes by maintaining cell membrane stability, improving the process of photosystem II, increasing carbon isotopic fractionation under cold stress, and more prominently in R genotype compared with S genotype.
Collapse
Affiliation(s)
- Xuebing Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Shi
- College of Horticulture, Agricultural University of Hebei, Baoding, China
| | - Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ao Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
103
|
Zhang L, Hu T, Amombo E, Wang G, Xie Y, Fu J. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:1747. [PMID: 29075277 PMCID: PMC5644155 DOI: 10.3389/fpls.2017.01747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/25/2017] [Indexed: 05/23/2023]
Abstract
Tall fescue (Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H2O2 and O2⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII) as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PIABS and PItotal) and the quantum yields and efficiencies (φP0, δR0, φR0, and γRC). Exogenous Spd could also reduce the specific energy fluxes per QA- reducing PSII reaction center (RC) (TP0/RC and ET0/RC). Additionally, exogenous Spd improved the expression level of psbA and psbB, which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
104
|
Yanykin DV, Khorobrykh AA, Terentyev VV, Klimov VV. Two pathways of photoproduction of organic hydroperoxides on the donor side of photosystem 2 in subchloroplast membrane fragments. PHOTOSYNTHESIS RESEARCH 2017; 133:129-138. [PMID: 28349346 DOI: 10.1007/s11120-017-0373-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Earlier the catalase-insensitive formation of organic hydroperoxides (via the interaction of organic radicals produced due to redox activity of P680+· (or TyrZ·) with molecular oxygen) has been found in Mn-depleted PS2 preparations (apo-WOC-PS2) by Khorobrykh et al. (Biochemistry 50:10658-10665, 2011). The present work describes a second pathway of the photoproduction of organic peroxides on the donor side of PS2. It was shown that illumination of CaCl2-treated PS2 membranes (deprived of the PS2 extrinsic proteins without removal of the Mn-containing water-oxidizing complex) (CaCl2-PS2) led to the photoproduction of highly lipophilic organic hydroperoxides (LP-OOH) (in amount corresponding to 1.5 LP-OOH per one reaction center of PS2) which significantly increased upon the addition of exogenous electron acceptor potassium ferricyanide (to 4.2 LP-OOH per one reaction center). Addition of catalase (200 U/ml) before illumination inhibited ferricyanide-induced photoproduction of hydroperoxides while no effect was obtained by adding catalase after illumination or by adding inactivated catalase before illumination. The hydroperoxide photoproduction was inhibited by the addition of exogenous electron donor for PS2, diphenylcarbazide or diuron (inhibitor of the electron transfer in PS2). The addition of exogenous hydrogen peroxide to the CaCl2-PS2 led to the production of highly lipophilic organic hydroperoxides in the dark (3.2 LP-OOH per one reaction center). We suggest that the photoproduction of highly lipophilic organic hydroperoxides in CaCl2-PS2 preparations occurs via redox activity of H2O2 produced on the donor side of PS2.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| | - A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - V V Terentyev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
105
|
Chen K, Zhang M, Zhu H, Huang M, Zhu Q, Tang D, Han X, Li J, Sun J, Fu J. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases. FRONTIERS IN PLANT SCIENCE 2017; 8:1373. [PMID: 28848577 PMCID: PMC5550716 DOI: 10.3389/fpls.2017.01373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/24/2017] [Indexed: 05/09/2023]
Abstract
L-Ascorbate (Asc) plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo), which reflects the inhibited activity of the photochemical phase of photosystem II (PSII). Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0), which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study.
Collapse
Affiliation(s)
- Ke Chen
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of SciencesWuhan, China
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Minna Zhang
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Huihui Zhu
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Meiyu Huang
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Qing Zhu
- Wuhan Kaidi Electric Power Environmental Co., Ltd.Wuhan, China
| | - Diyong Tang
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Xiaole Han
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Jie Sun
- College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for NationalitiesWuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of SciencesWuhan, China
| |
Collapse
|
106
|
Pathak V, Prasad A, Pospíšil P. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II. PLoS One 2017; 12:e0181732. [PMID: 28732060 PMCID: PMC5521840 DOI: 10.1371/journal.pone.0181732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022] Open
Abstract
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.
Collapse
Affiliation(s)
- Vinay Pathak
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
107
|
Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc Natl Acad Sci U S A 2017; 114:2988-2993. [PMID: 28265052 DOI: 10.1073/pnas.1618922114] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we have determined that both O2•- and HO• are involved in the photoinhibitory process. Using tandem mass spectroscopy, we have identified a number of oxidatively modified D1 and D2 residues. Our analysis indicates that these oxidative modifications are associated with formation of HO• at both the Mn4O5Ca cluster and the nonheme iron. Additionally, O2•- appears to be formed by the reduction of O2 at either PheoD1 or QA Early oxidation of D1:332H, which is coordinated with the Mn1 of the Mn4O5Ca cluster, appears to initiate a cascade of oxidative events that lead to the oxidative modification of numerous residues in the C termini of the D1 and D2 proteins on the donor side of the photosystem. Oxidation of D2:244Y, which is a bicarbonate ligand for the nonheme iron, induces the propagation of oxidative reactions in residues of the D-de loop of the D2 protein on the electron acceptor side of the photosystem. Finally, D1:130E and D2:246M are oxidatively modified by O2•- formed by the reduction of O2 either by PheoD1•- or QA•- The identification of specific amino acid residues oxidized by reactive oxygen species provides insights into the mechanism of damage to the D1 and D2 proteins under light stress.
Collapse
|
108
|
Qi X, Xu W, Zhang J, Guo R, Zhao M, Hu L, Wang H, Dong H, Li Y. Physiological characteristics and metabolomics of transgenic wheat containing the maize C 4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. PROTOPLASMA 2017; 254:1017-1030. [PMID: 27491550 DOI: 10.1007/s00709-016-1010-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/25/2016] [Indexed: 05/27/2023]
Abstract
In this paper, two transgenic wheat lines, PC27 and PC51, containing the maize PEPC gene and its wild-type (WT) were used as experimental material to study the effects of high temperature on their photosynthetic physiological characteristics and metabolome. The results showed that transgenic wheat lines had higher photosynthetic rate (P n) than WT under non-stress treatment (NT) and high temperature stress treatment (HT), and more significantly under HT. The change trends of F v/F m, Ф PSII, and q P were similar to P n, whereas that of non-photochemical quenching (NPQ) was the opposite. Compared with WT, no differences in chlorophyll content between the transgenic wheat and WT were observed under NT, but two transgenic lines had relatively higher contents than WT under HT. The change trends of Chlorophyll a/b radio, the decreased values of F m, Wk, and Vj, and the activity of the antioxidant enzyme were consistent with the chlorophyll content. Compared with WT, transgenic wheat lines exhibited lower rate of superoxide anion production, H2O2 and malondialdehyde content under HT, and no significant differences were observed under NT. The expression pattern of the ZmPEPC gene and wheat endogenous photosynthesis-related genes were in agreement with that of P n. Compared with WT, about 13 different metabolites including one organic acid, six amino acids, four sugars, and two polyols were identified under NT; 25 different metabolites including six organic acids, 12 amino acids, four sugars, and three polyols were identified under HT. Collectively, our results indicate that ZmPEPC gene can enhance photochemical and antioxidant enzyme activity, upregulate the expression of photosynthesis-related genes, delay degradation of chlorophyll, change contents of proline and other metabolites in wheat, and ultimately improves its heat tolerance.
Collapse
Affiliation(s)
- Xueli Qi
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450002, China
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Weigang Xu
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Jianzhou Zhang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Rui Guo
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Mingzhong Zhao
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Lin Hu
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Huiwei Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Haibin Dong
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yan Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| |
Collapse
|
109
|
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels. G3-GENES GENOMES GENETICS 2017; 7:517-532. [PMID: 27974439 PMCID: PMC5295598 DOI: 10.1534/g3.116.036855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels.
Collapse
|
110
|
Pospíšil P, Yamamoto Y. Damage to photosystem II by lipid peroxidation products. Biochim Biophys Acta Gen Subj 2017; 1861:457-466. [DOI: 10.1016/j.bbagen.2016.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
|
111
|
Beck J, Lohscheider JN, Albert S, Andersson U, Mendgen KW, Rojas-Stütz MC, Adamska I, Funck D. Small One-Helix Proteins Are Essential for Photosynthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:7. [PMID: 28167950 PMCID: PMC5253381 DOI: 10.3389/fpls.2017.00007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/03/2017] [Indexed: 05/07/2023]
Abstract
The extended superfamily of chlorophyll a/b binding proteins comprises the Light-Harvesting Complex Proteins (LHCs), the Early Light-Induced Proteins (ELIPs) and the Photosystem II Subunit S (PSBS). The proteins of the ELIP family were proposed to function in photoprotection or assembly of thylakoid pigment-protein complexes and are further divided into subgroups with one to three transmembrane helices. Two small One-Helix Proteins (OHPs) are expressed constitutively in green plant tissues and their levels increase in response to light stress. In this study, we show that OHP1 and OHP2 are highly conserved in photosynthetic eukaryotes, but have probably evolved independently and have distinct functions in Arabidopsis. Mutations in OHP1 or OHP2 caused severe growth deficits, reduced pigmentation and disturbed thylakoid architecture. Surprisingly, the expression of OHP2 was severely reduced in ohp1 T-DNA insertion mutants and vice versa. In both ohp1 and ohp2 mutants, the levels of numerous photosystem components were strongly reduced and photosynthetic electron transport was almost undetectable. Accordingly, ohp1 and ohp2 mutants were dependent on external organic carbon sources for growth and did not produce seeds. Interestingly, the induction of ELIP1 expression and Cu/Zn superoxide dismutase activity in low light conditions indicated that ohp1 mutants constantly suffer from photo-oxidative stress. Based on these data, we propose that OHP1 and OHP2 play an essential role in the assembly or stabilization of photosynthetic pigment-protein complexes, especially photosystem reaction centers, in the thylakoid membrane.
Collapse
|
112
|
Wang X, Wang X, Zhao J, Song J, Zhou L, Ma R, Wang J, Tong X, Chen Y. Efficient visible light-driven in situ photocatalytic destruction of harmful alga by worm-like N,P co-doped TiO2/expanded graphite carbon layer (NPT-EGC) floating composites. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00133a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of N,P co-doped TiO2/expanded graphite carbon layer (NPT-EGC) composites for floating algaecides.
Collapse
Affiliation(s)
- Xin Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
- School of Civil and Environmental Engineering
| | - Xuejiang Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Jianfu Zhao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Jingke Song
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Lijie Zhou
- Shenzhen Academy of Environmental Sciences
- Shenzhen 518001
- China
| | - Rongrong Ma
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Jiayi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Xin Tong
- School of Civil and Environmental Engineering
- Georgia Institute of Technology
- Atlanta 30332
- USA
| | - Yongsheng Chen
- School of Civil and Environmental Engineering
- Georgia Institute of Technology
- Atlanta 30332
- USA
| |
Collapse
|
113
|
Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M. Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2016; 130:83-91. [PMID: 26846772 DOI: 10.1007/s11120-016-0226-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
The rapid turnover of photosystem II (PSII) in diatoms is thought to be at an exceptionally high rate compared with other oxyphototrophs; however, its molecular mechanisms are largely unknown. In this study, we examined the photodamage and repair processes of PSII in the marine centric diatom Chaetoceros gracilis incubated at 30 or 300 μmol photons m-2 s-1 in the presence of a de novo protein-synthesis inhibitor. When de novo protein synthesis was blocked by chloramphenicol (Cm), oxygen-evolving activity gradually decreased even at 30 μmol photons m-2 s-1 and could not be detected at 12 h. PSII inactivation was enhanced by higher illumination. Using Cm-treated cells, the conversion of PSII dimer to monomers was observed by blue native PAGE. The rate of PSII monomerization was very similar to that of the decrease in oxygen-evolving activity under both light conditions. Immunological detection of D1 protein in the Cm-treated cells showed that the rate of D1 degradation was slower than that of the former two events, although it was more rapid than that observed in other oxyphototrophs. Thus, the three accelerated events, especially PSII monomerization, appear to cause the unusually high rate of PSII turnover in diatoms.
Collapse
Affiliation(s)
- Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University, Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Isao Enami
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
114
|
Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142. Appl Environ Microbiol 2016; 82:7227-7235. [PMID: 27742679 DOI: 10.1128/aem.02098-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/30/2016] [Indexed: 01/21/2023] Open
Abstract
Photobiologically synthesized hydrogen (H2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel. Cyanothece sp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H2 production, a highly perplexing phenomenon because H2 evolving enzymes are O2 sensitive. We employed a system-level in vivo chemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCE Here, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex in Cyanothece sp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture the in situ dynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis.
Collapse
|
115
|
Yanykin DV, Khorobrykh AA, Mamedov MD, Klimov VV. Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:236-243. [PMID: 27693844 DOI: 10.1016/j.jphotobiol.2016.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Abstract
Recently, it has been shown that the addition of 1M trehalose leads to the increase of the rate of oxygen photoconsumption associated with activation of electron transport in the reaction center of photosystem 2 (PS2) in Mn-depleted PS2 membranes (apo-WOC-PS2) [37]. In the present work the effect of trehalose on photoinhibition of apo-WOC-PS2 preparations (which are characterized by a high sensitivity to the donor side photoinhibition of PS2) was investigated. The degree of photoinhibition was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to reactivate the electron transport (measured by light-induced changes of chlorophyll fluorescence yield (∆F)) in apo-WOC-PS2. It was found that 1M trehalose enhanced the Mn2+-dependent suppression of photoinhibition of apo-WOC-PS2: in the presence of trehalose the addition of 0.2μM Mn2+ (corresponding to 2 Mn2+ per one reaction center) was sufficient for an almost complete suppression of the donor side photoinhibition of the complex. In the absence of trehalose it was necessary to add 100μM Mn2+ to achieve a similar result. The effect of trehalose was observed during photoinhibition of apo-WOC-PS2 at low (15μmolphotons-1m-2) and high (200μmolphotons-1m-2) light intensity. When Mn2+ was replaced by other PS2 electron donors (ferrocyanide, DPC) as well as by Ca2+ the protective effect of trehalose was not observed. It was also found that 1M trehalose decreased photoinhibition of apo-WOC-PS2 if the samples contained endogenous manganese (1-2 Mn ions per one RC was enough for the maximum protection effect). It is concluded that structural changes in PS2 caused by the addition of trehalose enhance the capability of photochemical reaction centers of apo-WOC-PS2 to accept electrons from manganese (both exogenous and endogenous), which in turn leads to a considerable suppression of the donor side photoinhibition of PS2.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia.
| | - A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - M D Mamedov
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Moscow 119991, Russia
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
116
|
Zhang JZ, Sokol KP, Paul N, Romero E, van Grondelle R, Reisner E. Competing charge transfer pathways at the photosystem II-electrode interface. Nat Chem Biol 2016; 12:1046-1052. [PMID: 27723748 PMCID: PMC5113757 DOI: 10.1038/nchembio.2192] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022]
Abstract
The integration of the water-oxidation enzyme, photosystem II (PSII), into electrodes allows the electrons extracted from water-oxidation to be harnessed for enzyme characterization and driving novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here, we performed protein-film photoelectrochemistry on spinach and Thermosynechococcus elongatus PSII, and identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway: photo-induced O2 reduction occurring at the chlorophyll pigments. This undesirable pathway is promoted by the embedment of PSII in an electron-conducting matrix, a common strategy of enzyme immobilization. Anaerobicity helps to recover the PSII photoresponses, and unmasked the onset potentials relating to the QA/QB charge transfer process. These findings have imparted a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general.
Collapse
Affiliation(s)
- Jenny Z Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Nicholas Paul
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Elisabet Romero
- Department of Physics and Astronomy, VU Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, VU Amsterdam, Amsterdam, The Netherlands
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
117
|
Rehman AU, Szabó M, Deák Z, Sass L, Larkum A, Ralph P, Vass I. Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. THE NEW PHYTOLOGIST 2016; 212:472-484. [PMID: 27321415 DOI: 10.1111/nph.14056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/08/2016] [Indexed: 06/06/2023]
Abstract
Coral bleaching is an important environmental phenomenon, whose mechanism has not yet been clarified. The involvement of reactive oxygen species (ROS) has been implicated, but direct evidence of what species are involved, their location and their mechanisms of production remains unknown. Histidine-mediated chemical trapping and singlet oxygen sensor green (SOSG) were used to detect intra- and extracellular singlet oxygen ((1) O2 ) in Symbiodinium cultures. Inhibition of the Calvin-Benson cycle by thermal stress or high light promotes intracellular (1) O2 formation. Histidine addition, which decreases the amount of intracellular (1) O2 , provides partial protection against photosystem II photoinactivation and chlorophyll (Chl) bleaching. (1) O2 production also occurs in cell-free medium of Symbiodinium cultures, an effect that is enhanced under heat and light stress and can be attributed to the excretion of (1) O2 -sensitizing metabolites from the cells. Confocal microscopy imaging using SOSG showed most extracellular (1) O2 around the cell surface, but it is also produced across the medium distant from the cells. We demonstrate, for the first time, both intra- and extracellular (1) O2 production in Symbiodinium cultures. Intracellular (1) O2 is associated with photosystem II photodamage and pigment bleaching, whereas extracellular (1) O2 has the potential to mediate the breakdown of symbiotic interaction between zooxanthellae and their animal host during coral bleaching.
Collapse
Affiliation(s)
- Ateeq Ur Rehman
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary
| | - Milán Szabó
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Zsuzsanna Deák
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary
| | - László Sass
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary
| | - Anthony Larkum
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Peter Ralph
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, PO Box 521, H-6701, Szeged, Hungary.
| |
Collapse
|
118
|
Thomas G, Andresen E, Mattusch J, Hubáček T, Küpper H. Deficiency and toxicity of nanomolar copper in low irradiance-A physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:226-236. [PMID: 27309311 DOI: 10.1016/j.aquatox.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Essential trace elements (Cu(2+), Zn(2+), etc) lead to toxic effects above a certain threshold, which is a major environmental problem in many areas of the world. Here, environmentally relevant sub-micromolar concentrations of Cu(2+) and simulations of natural light and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum a s a model for plant shoots. In this low irradiance study resembling non-summer conditions, growth was optimal in the range 7.5-35nM Cu, while PSII activity (Fv/Fm) was maximal around 7.5nM Cu. Damage to the light harvesting complex of photosystem II (LHCII) was the first target of Cu toxicity (>50nM Cu) where Cu replaced Mg in the LHCII-trimers. This was associated with a subsequent decrease of Chl a as well as heat dissipation (NPQ). The growth rate was decreased from the first week of Cu deficiency. Plastocyanin malfunction due to the lack of Cu that is needed for its active centre was the likely cause of diminished electron flow through PSII (ΦPSII). The pigment decrease added to the damage in the photosynthetic light reactions. These mechanisms ultimately resulted in decrease of starch and oxygen production.
Collapse
Affiliation(s)
- George Thomas
- University of Konstanz, Department of Biology, D-78457 Konstanz, Germany
| | - Elisa Andresen
- University of Konstanz, Department of Biology, D-78457 Konstanz, Germany; Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Biology Centre of the ASCR, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic
| | - Jürgen Mattusch
- UFZ - Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Tomáš Hubáček
- Institute of Hydrobiology, Department of Hydrochemistry and Ecosystem Modelling, Biology Centre of the ASCR, Na Sádkách 7, 37005 České Budějovice, Czech Republic; SoWa National Research Infrastructure, Biology Centre of the ASCR, Na Sádkách 7, 37005 České Budějovice, Czech Republic
| | - Hendrik Küpper
- University of Konstanz, Department of Biology, D-78457 Konstanz, Germany; Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Biology Centre of the ASCR, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Biological Science, Branišovská 31/1160, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
119
|
Kozuleva MA, Ivanov BN. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain. PLANT & CELL PHYSIOLOGY 2016; 57:1397-1404. [PMID: 27016099 DOI: 10.1093/pcp/pcw035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/10/2016] [Indexed: 05/25/2023]
Abstract
The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP+ under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed.
Collapse
Affiliation(s)
- Marina A Kozuleva
- Photosynthetic Electron Transport lab., Institute of Basic Biological Problems, Pushchino, 142290, Russia
| | - Boris N Ivanov
- Photosynthetic Electron Transport lab., Institute of Basic Biological Problems, Pushchino, 142290, Russia
| |
Collapse
|
120
|
Arenas-Lago D, Carvalho LC, Santos ES, Abreu MM. The physiological mechanisms underlying the ability of Cistus monspeliensis L. from São Domingos mine to withstand high Zn concentrations in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:219-227. [PMID: 27054705 DOI: 10.1016/j.ecoenv.2016.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas from the Iberian Pyrite Belt. This species can have high concentrations of Zn in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown at several concentrations of Zn(2+) (0, 500, 1000, 1500, 2000µM) and the effects of this metal on plant development and on the defence mechanisms against oxidative stress were evaluated. Independently of the treatment, Zn was mainly retained in the roots. The plants with the highest concentrations of Zn showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production. At 2000µM of Zn, the dry biomass of the shoots decreased significantly. High concentrations of Zn in shoots did not induce deficiencies of other nutrients, except Cu. Plants with high concentrations of Zn had low amounts of chlorophyll, anthocyanins and glutathione and high contents of H2O2. The highest concentrations of Zn in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by triggering antioxidative enzyme activity and by direct reactive oxygen species (ROS) scavenging through carotenoids, that are unaffected by stress due to stabilisation by ascorbic acid.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Universidad de Vigo, Department of Plant Biology and Soil Science, Vigo, Spain.
| | - Luísa C Carvalho
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Erika S Santos
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação em Ciências do Ambiente e Empresariais, Instituto Superior Dom Afonso III, Loulé, Portugal
| | - M Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
121
|
Production of superoxide from photosystem II-light harvesting complex II supercomplex in STN8 kinase knock-out rice mutants under photoinhibitory illumination. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:240-247. [PMID: 27390892 DOI: 10.1016/j.jphotobiol.2016.06.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/28/2016] [Indexed: 01/19/2023]
Abstract
When phosphorylation of Photosystem (PS) II core proteins is blocked in STN8 knock-out mutants of rice (Oryza sativa) under photoinhibitory illumination, the mobilization of PSII supercomplex is prevented. We have previously proposed that more superoxide (O2(-)) is produced from PSII in the mutant (Nath et al., 2013, Plant J. 76, 675-686). Here, we clarify the type and site for the generation of reactive oxygen species (ROS). Using both histochemical and fluorescence probes, we observed that, compared with wild-type (WT) leaves, levels of ROS, including O2(-) and hydrogen peroxide (H2O2), were increased when leaves from mutant plants were illuminated with excess light. However, singlet oxygen production was not enhanced under such conditions. When superoxide dismutase was inhibited, O2(-) production was increased, indicating that it is the initial event prior to H2O2 production. In thylakoids isolated from WT leaves, kinase was active in the presence of ATP, and spectrophotometric analysis of nitrobluetetrazolium absorbance for O2(-) confirmed that PSII-driven superoxide production was greater in the mutant thylakoids than in the WT. This contrast in levels of PSII-driven superoxide production between the mutants and the WT plants was confirmed by conducting protein oxidation assays of PSII particles from osstn8 leaves under strong illumination. Those assays also demonstrated that PSII-LHCII supercomplex proteins were oxidized more in the mutant, thereby implying that PSII particles incur greater damage even though D1 degradation during PSII-supercomplex mobilization is partially blocked in the mutant. These results suggest that O2(-) is the major form of ROS produced in the mutant, and that the damaged PSII in the supercomplex is the primary source of O2(-).
Collapse
|
122
|
Chen B, Wang Y. Proteomic and Physiological Studies Provide Insight into Photosynthetic Response of Rice (Oryza sativa L.) Seedlings to Microgravity. Photochem Photobiol 2016; 92:561-70. [PMID: 27096703 DOI: 10.1111/php.12593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/30/2016] [Indexed: 11/27/2022]
Abstract
The mechanisms whereby how photosynthesis is regulated and maintained under conditions of microgravity remain incompletely understood. Herein, we took a combination of proteomic and physiological approaches to examine the response of rice (Oryza sativa L.) seedlings to spaceflight conditions. Our results show that both PSI fluorescence emission peak and P700 absorbance amplitude are severely decreased in spaceflight seedlings under microgravity. This is consistent with an observed significant reduction in PSI efficiency (ϕI ). To further analyze global changes of protein profiles under microgravity, isobaric tags for relative and absolute quantization (iTRAQ) labeling technology were deployed. Four hundred fifty-four differentially expressed proteins were identified by comparison of spaceflight and ground control. Of proteins relevant to photosynthesis, 34 were downregulated and 4 were upregulated. The significantly downregulated ones are essential components of PSI, NDH and the Cytb6 f complex. This downregulation of PSI proteins and/or protein structure changes may cause the overall reduction in PSI activity. Intriguingly, although abundance of some PSII proteins was altered under microgravity, no significant changes in PSII activity were detected. Taken together, our results suggest that PSI, rather than PSII being usually much more sensitive to environmental stresses, is more susceptible to spaceflight conditions in rice seedlings.
Collapse
Affiliation(s)
- Boya Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural of Sciences, Changchun, China.,Changchun Normal University, Changchun, China
| | - Yingping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural of Sciences, Changchun, China
| |
Collapse
|
123
|
Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B, Küpper H. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. THE NEW PHYTOLOGIST 2016; 210:1244-1258. [PMID: 26840406 DOI: 10.1111/nph.13840] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv /Fm , light-acclimated PSII activity ΦPSII , and total Chl). Trimers of the PSII light-harvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.
Collapse
Affiliation(s)
- Elisa Andresen
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre of the CAS, Branišovská 31/1160, České Budějovice, CZ-37005, Czech Republic
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Sophie Kappel
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Hans-Joachim Stärk
- Department of Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, D-04318, Germany
| | - Ulrike Riegger
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Jakub Borovec
- Department of Hydrochemistry and Ecosystem Modelling, Institute of Hydrobiology, Biology Centre of the CAS, Na Sádkách 7, České Budějovice, CZ-37005, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Jürgen Mattusch
- Department of Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, D-04318, Germany
| | - Andrea Heinz
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), D-06120, Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), D-06120, Germany
| | - Šárka Matoušková
- Institute of Geology of the CAS, Rozvojová 269, Praha 6 - Lysolaje, CZ-16500, Czech Republic
| | - Bryan Dickinson
- Department of Chemistry, The University of Chicago, GCIS E 319A, 929 E. 57th St., Chicago, IL, 60637, USA
| | - Hendrik Küpper
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre of the CAS, Branišovská 31/1160, České Budějovice, CZ-37005, Czech Republic
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
- Faculty of Biological Science, University of South Bohemia, Branišovská 31/1160, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
124
|
Begović L, Mlinarić S, Antunović Dunić J, Katanić Z, Lončarić Z, Lepeduš H, Cesar V. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:117-26. [PMID: 27015565 DOI: 10.1016/j.aquatox.2016.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 05/06/2023]
Abstract
The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.
Collapse
Affiliation(s)
- Lidija Begović
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia.
| | - Selma Mlinarić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia.
| | - Jasenka Antunović Dunić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia.
| | - Zorana Katanić
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia.
| | - Zdenko Lončarić
- Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Ulica kralja Petra Svačića 1d, HR-31000 Osijek, Croatia.
| | - Hrvoje Lepeduš
- Faculty of Humanities and Social Sciences, Josip Juraj Strossmayer University of Osijek, Lorenza Jägera 9, HR-31000 Osijek, Croatia.
| | - Vera Cesar
- Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, HR-31000 Osijek, Croatia.
| |
Collapse
|
125
|
Serrano I, Audran C, Rivas S. Chloroplasts at work during plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3845-54. [PMID: 26994477 DOI: 10.1093/jxb/erw088] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The major role played by chloroplasts during light harvesting, energy production, redox homeostasis, and retrograde signalling processes has been extensively characterized. Beyond the obvious link between chloroplast functions in primary metabolism and as providers of photosynthesis-derived carbon sources and energy, a growing body of evidence supports a central role for chloroplasts as integrators of environmental signals and, more particularly, as key defence organelles. Here, we review the importance of these organelles as primary sites for the biosynthesis and transmission of pro-defence signals during plant immune responses. In addition, we highlight interorganellar communication as a crucial process for amplification of the immune response. Finally, molecular strategies used by microbes to manipulate, directly or indirectly, the production/function of defence-related signalling molecules and subvert chloroplast-based defences are also discussed.
Collapse
Affiliation(s)
- Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Corinne Audran
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
126
|
Yoshioka-Nishimura M. Close Relationships Between the PSII Repair Cycle and Thylakoid Membrane Dynamics. PLANT & CELL PHYSIOLOGY 2016; 57:1115-22. [PMID: 27017619 DOI: 10.1093/pcp/pcw050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/26/2016] [Indexed: 05/10/2023]
Abstract
In chloroplasts, a three-dimensional network of thylakoid membranes is formed by stacked grana and interconnecting stroma thylakoids. The grana are crowded with photosynthetic proteins, where PSII-light harvesting complex II (LHCII) supercomplexes often show semi-crystalline arrays for efficient energy trapping, transfer and use. Although light is essential for photosynthesis, PSII is damaged by reactive oxygen species that are generated from primary photochemical reactions when plants are exposed to excess light. Because PSII complexes are embedded in the lipid bilayers of thylakoid membranes, their functions are affected by the conditions of the lipids. Electron paramagnetic resonance (EPR) spin trapping measurements showed that singlet oxygen was formed through peroxidation of thylakoid lipids, suggesting that lipid peroxidation can damage proteins, including the D1 protein. After photodamage, PSII is restored by a specific repair system in thylakoid membranes. In the PSII repair cycle, phosphorylation and dephosphorylation of the PSII proteins control the timing of PSII disassembly and subsequent degradation of the D1 protein. Under light stress, stacked grana turn into unstacked thylakoids with bent grana margins. These structural changes may be closely linked to the mechanisms of the PSII repair cycle because PSII can move more easily from the grana core to the stroma thylakoids through an expanded stromal gap between each thylakoid. Thus, plants modulate the structure of thylakoid membranes under high light to carry out efficient PSII repair. This review focuses on the behavior of the PSII complex and the active role of structural changes to thylakoid membranes under light stress.
Collapse
Affiliation(s)
- Miho Yoshioka-Nishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
127
|
von Sydow L, Schwenkert S, Meurer J, Funk C, Mamedov F, Schröder WP. The PsbY protein of Arabidopsis Photosystem II is important for the redox control of cytochrome b559. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1524-1533. [PMID: 27220875 DOI: 10.1016/j.bbabio.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022]
Abstract
Photosystem II is a protein complex embedded in the thylakoid membrane of photosynthetic organisms and performs the light driven water oxidation into electrons and molecular oxygen that initiate the photosynthetic process. This important complex is composed of more than two dozen of intrinsic and peripheral subunits, of those half are low molecular mass proteins. PsbY is one of those low molecular mass proteins; this 4.7-4.9kDa intrinsic protein seems not to bind any cofactors. Based on structural data from cyanobacterial and red algal Photosystem II PsbY is located closely or in direct contact with cytochrome b559. Cytb559 consists of two protein subunits (PsbE and PsbF) ligating a heme-group in-between them. While the exact function of this component in Photosystem II has not yet been clarified, a crucial role for assembly and photo-protection in prokaryotic complexes has been suggested. One unique feature of Cytb559 is its redox-heterogeneity, forming high, medium and low potential, however, neither origin nor mechanism are known. To reveal the function of PsbY within Photosystem II of Arabidopsis we have analysed PsbY knock-out plants and compared them to wild type and to complemented mutant lines. We show that in the absence of PsbY protein Cytb559 is only present in its oxidized, low potential form and plants depleted of PsbY were found to be more susceptible to photoinhibition.
Collapse
Affiliation(s)
- Lotta von Sydow
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Serena Schwenkert
- Department Biologie I, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Jörg Meurer
- Department Biologie I, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Christiane Funk
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | | |
Collapse
|
128
|
Bi A, Fan J, Hu Z, Wang G, Amombo E, Fu J, Hu T. Differential Acclimation of Enzymatic Antioxidant Metabolism and Photosystem II Photochemistry in Tall Fescue under Drought and Heat and the Combined Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:453. [PMID: 27148288 PMCID: PMC4830848 DOI: 10.3389/fpls.2016.00453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/22/2016] [Indexed: 05/19/2023]
Abstract
Quality inferiority in cool-season turfgrass due to drought, heat, and a combination of both stresses is predicted to be more prevalent in the future. Understanding the various response to heat and drought stress will assist in the selection and breeding of tolerant grass varieties. The objective of this study was to investigate the behavior of antioxidant metabolism and photosystem II (PSII) photochemistry in two tall fescue genotypes (PI 234881 and PI 578718) with various thermotolerance capacities. Wide variations were found between heat-tolerant PI 578718 and heat-sensitive PI 234881 for leaf relative water content, malondialdehyde and electrolyte leakage under drought, high-temperature or a combination of both stresses. The sensitivity of PI 234881 exposed to combined stresses was associated with lower superoxide dismutase activity and higher H2O2 accumulation than that in PI 578718. Various antioxidant enzymes displayed positive correlation with chlorophyll content, but negative with membrane injury index at most of the stages in both tall fescue genotypes. The JIP-test analysis in PI 578718 indicated a significant improvement in ABS/RC, TR0/RC, RE0/RC, RE0/ABS values as compared to the control regime, which indicated that PI 578718 had a high potential to protect the PSII system under drought and high temperature stress. And the PS II photochemistry in PI 234881 was damaged significantly compared with PI578718. Moreover, quantitative RT-PCR revealed that heat and drought stresses deduced the gene expression of psbB and psbC, but induced the expression of psbA. These findings to some extent confirmed that the various adaptations of physiological traits may contribute to breeding in cold-season turfgrass in response to drought, high-temperature, and a combination of both stresses.
Collapse
Affiliation(s)
- Aoyue Bi
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jibiao Fan
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhengrong Hu
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Guangyang Wang
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Erick Amombo
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jinmin Fu
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- China-Africa Center, Chinese Academy of SciencesBeijing, China
| | - Tao Hu
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- China-Africa Center, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
129
|
Rehman AU, Kodru S, Vass I. Chloramphenicol Mediates Superoxide Production in Photosystem II and Enhances Its Photodamage in Isolated Membrane Particles. FRONTIERS IN PLANT SCIENCE 2016; 7:479. [PMID: 27092170 PMCID: PMC4824793 DOI: 10.3389/fpls.2016.00479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Chloramphenicol (CAP) is an inhibitor of protein synthesis, which is frequently used to decouple photodamage and protein synthesis dependent repair of Photosystem II during the process of photoinhibition. It has been reported earlier that CAP is able to mediate superoxide production by transferring electrons from the acceptor side of Photosystem I to oxygen. Here we investigated the interaction of CAP with Photosystem II electron transport processes by oxygen uptake and variable chlorophyll fluorescence measurements. Our data show that CAP can accept electrons at the acceptor side of Photosystem II, most likely from Pheophytin, and deliver them to molecular oxygen leading to superoxide production. In addition, the presence of CAP enhances photodamage of Photosystem II electron transport in isolated membrane particles, which effect is reversible by superoxide dismutase. It is concluded that CAP acts as electron acceptor in Photosystem II and mediates its superoxide dependent photodamage. This effect has potential implications for the application of CAP in photoinhibitory studies in intact systems.
Collapse
Affiliation(s)
| | | | - Imre Vass
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of SciencesSzeged, Hungary
| |
Collapse
|
130
|
Hu Z, Fan J, Chen K, Amombo E, Chen L, Fu J. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature. PHOTOSYNTHESIS RESEARCH 2016; 128:59-72. [PMID: 26497139 DOI: 10.1007/s11120-015-0199-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/17/2015] [Indexed: 05/19/2023]
Abstract
The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system, photosystem II, as well as the CBF transcriptional regulatory cascade.
Collapse
Affiliation(s)
- Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jibiao Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Ke Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
131
|
Lira BS, Rosado D, Almeida J, de Souza AP, Buckeridge MS, Purgatto E, Guyer L, Hörtensteiner S, Freschi L, Rossi M. Pheophytinase Knockdown Impacts Carbon Metabolism and Nutraceutical Content Under Normal Growth Conditions in Tomato. PLANT & CELL PHYSIOLOGY 2016; 57:642-653. [PMID: 26880818 DOI: 10.1093/pcp/pcw021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Although chlorophyll (Chl) degradation is an essential biochemical pathway for plant physiology, our knowledge regarding this process still has unfilled gaps. Pheophytinase (PPH) was shown to be essential for Chl breakdown in dark-induced senescent leaves. However, the catalyzing enzymes involved in pigment turnover and fruit ripening-associated degreening are still controversial. Chl metabolism is closely linked to the biosynthesis of other isoprenoid-derived compounds, such as carotenoids and tocopherols, which are also components of the photosynthetic machinery. Chls, carotenoids and tocopherols share a common precursor, geranylgeranyl diphosphate, produced by the plastidial methylerythritol 4-phosphate (MEP) pathway. Additionally, the Chl degradation-derived phytol can be incorporated into tocopherol biosynthesis. In this context, tomato turns out to be an interesting model to address isoprenoid-metabolic cross-talk since fruit ripening combines degreening and an intensely active MEP leading to carotenoid accumulation. Here, we investigate the impact of PPH deficiency beyond senescence by the comprehensive phenotyping of SlPPH-knockdown tomato plants. In leaves, photosynthetic parameters indicate altered energy usage of excited Chl. As a mitigatory effect, photosynthesis-associated carotenoids increased while tocopherol content remained constant. Additionally, starch and soluble sugar profiles revealed a distinct pattern of carbon allocation in leaves that suggests enhanced sucrose exportation. The higher levels of carbohydrates in sink organs down-regulated carotenoid biosynthesis. Additionally, the reduction in Chl-derived phytol recycling resulted in decreased tocopherol content in transgenic ripe fruits. Summing up, tocopherol and carotenoid metabolism, together with the antioxidant capacity of the hydrophilic and hydrophobic fractions, were differentially affected in leaves and fruits of the transgenic plants. Thus, in tomato, PPH plays a role beyond senescence-associated Chl degradation that, when compromised, affects isoprenoid and carbon metabolism which ultimately alters the fruit's nutraceutical content.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliana Almeida
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Amanda Pereira de Souza
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luzia Guyer
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
132
|
Chen HC, Williams RM, Reek JNH, Brouwer AM. Robust Benzo[g, h, i ]perylenetriimide Dye-Sensitized Electrodes in Air-Saturated Aqueous Buffer Solution. Chemistry 2016; 22:5489-93. [DOI: 10.1002/chem.201505146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Hung-Cheng Chen
- University of Amsterdam; Van‘t Hoff Institute for Molecular Sciences; P.O. Box 94157 1090 GD Amsterdam The Netherlands
| | - René M. Williams
- University of Amsterdam; Van‘t Hoff Institute for Molecular Sciences; P.O. Box 94157 1090 GD Amsterdam The Netherlands
| | - Joost N. H. Reek
- University of Amsterdam; Van‘t Hoff Institute for Molecular Sciences; P.O. Box 94157 1090 GD Amsterdam The Netherlands
| | - Albert M. Brouwer
- University of Amsterdam; Van‘t Hoff Institute for Molecular Sciences; P.O. Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|
133
|
Dobrev K, Stanoeva D, Velitchkova M, Popova AV. The Lack of Lutein Accelerates the Extent of Light-induced Bleaching of Photosynthetic Pigments in Thylakoid Membranes of Arabidopsis thaliana. Photochem Photobiol 2016; 92:436-45. [PMID: 26888623 DOI: 10.1111/php.12576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 11/30/2022]
Abstract
The high light-induced bleaching of photosynthetic pigments and the degradation of proteins of light-harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein-deficient mutant lut2, with the aim of unraveling the role of lutein for the degree of bleaching and degradation. By the means of absorption spectroscopy and western blot analysis, we show that the lack of lutein leads to a higher extent of pigment photobleaching and protein degradation in mutant thylakoid membranes in comparison with wt. The highest extent of bleaching is suffered by chlorophyll a and carotenoids, while chlorophyll b is bleached in lut2 thylakoids during long periods at high illumination. The high light-induced degradation of Lhca1, Lhcb2 proteins and PsbS was followed and it is shown that Lhca1 is more damaged than Lhcb2. The degradation of analyzed proteins is more pronounced in lut2 mutant thylakoid membranes. The lack of lutein influences the high light-induced alterations in organization of pigment-protein complexes as revealed by 77 K fluorescence.
Collapse
Affiliation(s)
- Konstantin Dobrev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Bl. 21, Sofia, 1113, Bulgaria
| | - Daniela Stanoeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Bl. 21, Sofia, 1113, Bulgaria
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Bl. 21, Sofia, 1113, Bulgaria
| | - Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Bl. 21, Sofia, 1113, Bulgaria
| |
Collapse
|
134
|
Pospíšil P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1950. [PMID: 28082998 PMCID: PMC5183610 DOI: 10.3389/fpls.2016.01950] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/07/2016] [Indexed: 05/19/2023]
Abstract
The effect of various abiotic stresses on photosynthetic apparatus is inevitably associated with formation of harmful reactive oxygen species (ROS). In this review, recent progress on ROS production by photosystem II (PSII) as a response to high light and high temperature is overviewed. Under high light, ROS production is unavoidably associated with energy transfer and electron transport in PSII. Singlet oxygen is produced by the energy transfer form triplet chlorophyll to molecular oxygen formed by the intersystem crossing from singlet chlorophyll in the PSII antennae complex or the recombination of the charge separated radical pair in the PSII reaction center. Apart to triplet chlorophyll, triplet carbonyl formed by lipid peroxidation transfers energy to molecular oxygen forming singlet oxygen. On the PSII electron acceptor side, electron leakage to molecular oxygen forms superoxide anion radical which dismutes to hydrogen peroxide which is reduced by the non-heme iron to hydroxyl radical. On the PSII electron donor side, incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. Under high temperature, dark production of singlet oxygen results from lipid peroxidation initiated by lipoxygenase, whereas incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. The understanding of molecular basis for ROS production by PSII provides new insight into how plants survive under adverse environmental conditions.
Collapse
|
135
|
Plöchinger M, Schwenkert S, von Sydow L, Schröder WP, Meurer J. Functional Update of the Auxiliary Proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in Maintenance and Assembly of PSII. FRONTIERS IN PLANT SCIENCE 2016; 7:423. [PMID: 27092151 PMCID: PMC4823308 DOI: 10.3389/fpls.2016.00423] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/18/2016] [Indexed: 05/17/2023]
Abstract
Assembly of Photosystem (PS) II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centers, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.
Collapse
Affiliation(s)
- Magdalena Plöchinger
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Biochemie und Physiologie der Pflanzen, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Lotta von Sydow
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
| | - Wolfgang P. Schröder
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
- *Correspondence: Wolfgang P. Schröder,
| | - Jörg Meurer
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| |
Collapse
|
136
|
Pospíšil P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1950. [PMID: 28082998 DOI: 10.3389/fpls.2016.01950/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/07/2016] [Indexed: 05/20/2023]
Abstract
The effect of various abiotic stresses on photosynthetic apparatus is inevitably associated with formation of harmful reactive oxygen species (ROS). In this review, recent progress on ROS production by photosystem II (PSII) as a response to high light and high temperature is overviewed. Under high light, ROS production is unavoidably associated with energy transfer and electron transport in PSII. Singlet oxygen is produced by the energy transfer form triplet chlorophyll to molecular oxygen formed by the intersystem crossing from singlet chlorophyll in the PSII antennae complex or the recombination of the charge separated radical pair in the PSII reaction center. Apart to triplet chlorophyll, triplet carbonyl formed by lipid peroxidation transfers energy to molecular oxygen forming singlet oxygen. On the PSII electron acceptor side, electron leakage to molecular oxygen forms superoxide anion radical which dismutes to hydrogen peroxide which is reduced by the non-heme iron to hydroxyl radical. On the PSII electron donor side, incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. Under high temperature, dark production of singlet oxygen results from lipid peroxidation initiated by lipoxygenase, whereas incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. The understanding of molecular basis for ROS production by PSII provides new insight into how plants survive under adverse environmental conditions.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Czechia
| |
Collapse
|
137
|
Sinha RK, Pospíšil P, Maheshwari P, Eudes F. Bcl-2△21 and Ac-DEVD-CHO Inhibit Death of Wheat Microspores. FRONTIERS IN PLANT SCIENCE 2016; 7:1931. [PMID: 28082995 PMCID: PMC5184288 DOI: 10.3389/fpls.2016.01931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/05/2016] [Indexed: 05/06/2023]
Abstract
Microspore cell death and low green plant production efficiency are an integral obstacle in the development of doubled haploid production in wheat. The aim of the current study was to determine the effect of anti-apoptotic recombinant human B-cell lymphoma-2 (Bcl-2△21) and caspase-3-inhibitor (Ac-DEVD-CHO) in microspore cell death in bread wheat cultivars AC Fielder and AC Andrew. Induction medium containing Bcl-2△21 and Ac-DEVD-CHO yielded a significantly higher number of viable microspores, embryo-like structures and total green plants in wheat cultivars AC Fielder and AC Andrew. Total peroxidase activity was lower in Bcl-2△21 treated microspore cultures at 96 h of treatment compared to control and Ac-DEVD-CHO. Electron paramagnetic resonance study of total microspore protein showed a different scavenging activity for Bcl-2△21 and Ac-DEVD-CHO. Bcl-2△21 scavenged approximately 50% hydroxyl radical (HO•) formed, whereas Ac-DEVD-CHO scavenged approximately 20% of HO•. Conversely, reduced caspase-3-like activities were detected in the presence of Bcl-2△21 and Ac-DEVD-CHO, supporting the involvement of Bcl-2△21 and Ac-DEVD-CHO in increasing microspore viability by reducing oxidative stress and caspase-3-like activity. Our results indicate that Bcl-2△21 and Ac-DEVD-CHO protects cells from cell death following different pathways. Bcl-2△21 prevents cell damage by detoxifying HO• and suppressing caspase-3-like activity, while Ac-DEVD-CHO inhibits the cell death pathways by modulating caspase-like activity.
Collapse
Affiliation(s)
- Rakesh K. Sinha
- Cereal Biotechnology, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
- *Correspondence: Rakesh K. Sinha,
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký UniversityOlomouc, Czechia
| | - Priti Maheshwari
- Cereal Biotechnology, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
| | - François Eudes
- Cereal Biotechnology, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
| |
Collapse
|
138
|
Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan DK, Prasad SM. Reactive Oxygen Species (ROS): Beneficial Companions of Plants' Developmental Processes. FRONTIERS IN PLANT SCIENCE 2016; 7:1299. [PMID: 27729914 PMCID: PMC5037240 DOI: 10.3389/fpls.2016.01299] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species (ROS) are generated inevitably in the redox reactions of plants, including respiration and photosynthesis. In earlier studies, ROS were considered as toxic by-products of aerobic pathways of the metabolism. But in recent years, concept about ROS has changed because they also participate in developmental processes of plants by acting as signaling molecules. In plants, ROS regulate many developmental processes such as cell proliferation and differentiation, programmed cell death, seed germination, gravitropism, root hair growth and pollen tube development, senescence, etc. Despite much progress, a comprehensive update of advances in the understanding of the mechanisms evoked by ROS that mediate in cell proliferation and development are fragmentry and the matter of ROS perception and the signaling cascade remains open. Therefore, keeping in view the above facts, an attempt has been made in this article to summarize the recent findings regarding updates made in the regulatory action of ROS at various plant developmental stages, which are still not well-known.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Rohit K. Mishra
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Durgesh K. Tripathi
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Government Ramanuj Pratap Singhdev Post Graduate CollegeBaikunthpur, India
- *Correspondence: Vijay P. Singh, Sheo M. Prasad,
| | - Devendra K. Chauhan
- DD Pant Interdisciplinary Research Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
- *Correspondence: Vijay P. Singh, Sheo M. Prasad,
| |
Collapse
|
139
|
Abstract
Metal toxicity in plants is still a global problem for the environment, agriculture and ultimately human health.
Collapse
Affiliation(s)
- Hendrik Küpper
- Biology Center of the Czech Academy of Sciences
- Institute of Plant Molecular Biology
- Department of Plant Biophysics & Biochemistry
- 370 05 České Budějovice, Czech Republic
- University of South Bohemia
| | - Elisa Andresen
- Biology Center of the Czech Academy of Sciences
- Institute of Plant Molecular Biology
- Department of Plant Biophysics & Biochemistry
- 370 05 České Budějovice, Czech Republic
| |
Collapse
|
140
|
Kozuleva M, Klenina I, Mysin I, Kirilyuk I, Opanasenko V, Proskuryakov I, Ivanov B. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines. Free Radic Biol Med 2015; 89:1014-23. [PMID: 26453925 DOI: 10.1016/j.freeradbiomed.2015.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Abstract
Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes.
Collapse
Affiliation(s)
- Marina Kozuleva
- Institute of Basic Biological Problems Russian Academy of Sciences, 142290, Pushchino, Russia.
| | - Irina Klenina
- Institute of Basic Biological Problems Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ivan Mysin
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, 142290, Pushchino, Russia; Institute of Basic Biological Problems Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Igor Kirilyuk
- Novosibirsk Institute of Organic Chemistry Russian Academy of Sciences, Siberian Branch, 630090, Novosibirsk, Russia; Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Vera Opanasenko
- Institute of Basic Biological Problems Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ivan Proskuryakov
- Institute of Basic Biological Problems Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Boris Ivanov
- Institute of Basic Biological Problems Russian Academy of Sciences, 142290, Pushchino, Russia
| |
Collapse
|
141
|
Sigg L, Lindauer U. Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:582-587. [PMID: 26310977 DOI: 10.1016/j.envpol.2015.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Dissolution of silver nanoparticles (AgNP with carbonate or citrate coating, total Ag 1-5 μM) was examined in the presence of the ligands cysteine, chloride and fulvic acids and of the oxidant hydrogen peroxide (H2O2) at low concentrations at pH 7.5. Dissolved Ag was separated from AgNP by ultrafiltration. Cysteine in the concentration range 0.2-5 μM resulted in an initial increase of dissolved Ag within few hours. Chloride (up to 0.1 mM) and fulvic acids (up to 15 mg L(-1)) had little effect on the dissolution of AgNP within hours to days. In contrast, very rapid dissolution within 1-2 h of both carbonate and citrate coated AgNP was observed in the presence of H2O2 in the concentration range 0.1-10 μM, under dark or light conditions. The high efficiency of H2O2 in dissolving AgNP is likely to be of importance in toxic effects of AgNP to algae, as H2O2 is produced and released into solution by algae.
Collapse
Affiliation(s)
- Laura Sigg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Duebendorf, Switzerland.
| | - Ursula Lindauer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Duebendorf, Switzerland
| |
Collapse
|
142
|
Prasad A, Kumar A, Suzuki M, Kikuchi H, Sugai T, Kobayashi M, Pospíšil P, Tada M, Kasai S. Detection of hydrogen peroxide in Photosystem II (PSII) using catalytic amperometric biosensor. FRONTIERS IN PLANT SCIENCE 2015; 6:862. [PMID: 26528319 PMCID: PMC4606053 DOI: 10.3389/fpls.2015.00862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/29/2015] [Indexed: 05/29/2023]
Abstract
Hydrogen peroxide (H2O2) is known to be generated in Photosystem II (PSII) via enzymatic and non-enzymatic pathways. Detection of H2O2 by different spectroscopic techniques has been explored, however its sensitive detection has always been a challenge in photosynthetic research. During the recent past, fluorescence probes such as Amplex Red (AR) has been used but is known to either lack specificity or limitation with respect to the minimum detection limit of H2O2. We have employed an electrochemical biosensor for real time monitoring of H2O2 generation at the level of sub-cellular organelles. The electrochemical biosensor comprises of counter electrode and working electrodes. The counter electrode is a platinum plate, while the working electrode is a mediator based catalytic amperometric biosensor device developed by the coating of a carbon electrode with osmium-horseradish peroxidase which acts as H2O2 detection sensor. In the current study, generation and kinetic behavior of H2O2 in PSII membranes have been studied under light illumination. Electrochemical detection of H2O2 using the catalytic amperometric biosensor device is claimed to serve as a promising technique for detection of H2O2 in photosynthetic cells and subcellular structures including PSII or thylakoid membranes. It can also provide a precise information on qualitative determination of H2O2 and thus can be widely used in photosynthetic research.
Collapse
Affiliation(s)
- Ankush Prasad
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
| | - Aditya Kumar
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Makoto Suzuki
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Tomoya Sugai
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Masaki Kobayashi
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Graduate Department of Electronics, Tohoku Institute of TechnologySendai, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Mika Tada
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Center for General Education, Tohoku Institute of TechnologySendai, Japan
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| |
Collapse
|
143
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
144
|
Kozuleva MA, Vetoshkina DV, Petrova AA, Borisova-Mubarakshina MM, Ivanov BN. The study of oxygen reduction in photosystem I of higher plants using electron donors for this photosystem in intact thylakoids. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747814060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
145
|
Trehalose stimulation of photoinduced electron transfer and oxygen photoconsumption in Mn-depleted photosystem 2 membrane fragments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:279-85. [PMID: 26386978 DOI: 10.1016/j.jphotobiol.2015.08.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/21/2022]
Abstract
It is known that the removal of manganese from the water-oxidizing complex (WOC) of photosystem 2 (PS2) leads to activation of oxygen photoconsumption (OPC) [Khorobrykh et al., 2002; Yanykin et al., 2010] that is accompanied by the formation of organic hydroperoxides on the electron-donor side of PS2 [Khorobrykh et al., 2011]. In the present work the effect of trehalose on the OPC in Mn-depleted PS2 preparations (apo-WOC-PS2) was investigated. A more than two-fold increase of the OPC is revealed upon the addition of 1M trehalose. Drastic (30%-70%) inhibition of the OPC upon the addition of either electron acceptor or electron donor indicates that the trehalose-induced activation of the OPC occurs on both donor and acceptor sides of PS2. A two-fold increase in the rate of superoxide-anion radical photoproduction on the electron-acceptor side of PS2 was also shown. Applying the "variable" chlorophyll fluorescence (ΔF) it was shown that the addition of trehalose induces: (i) a significant increase in the ability of exogenous Mn(2+) to donate electrons to the reaction center of PS2, (ii) slowing down the photoaccumulation of the primary quinone electron acceptor of PS2 (QA(-)) under aerobic conditions, (iii) acceleration of the reoxidation of QA(-) by QB (and by QB(-)) as well as the replacement of QB(2-) by a fully oxidized plastoquinone, and (iv) restoration of the electron transfer between the quinone electron carriers in the so-called "closed reaction centers of PS2" (their content in the apo-WOC-PS2 is 41%). It is suggested that the trehalose-induced increase in efficiency of the O2 interaction with the electron-donor and electron-acceptor sides of apo-WOC-PS2 is due to structural changes leading to both a decrease in the proportion of the "closed PS2 reaction centers" and an increase in the electron transfer rate in PS2.
Collapse
|
146
|
de Bang TC, Petersen J, Pedas PR, Rogowska-Wrzesinska A, Jensen ON, Schjoerring JK, Jensen PE, Thelen JJ, Husted S. A laser ablation ICP-MS based method for multiplexed immunoblot analysis: applications to manganese-dependent protein dynamics of photosystem II in barley (Hordeum vulgare L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:555-565. [PMID: 26095749 DOI: 10.1111/tpj.12906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Manganese (Mn) constitutes an essential co-factor in the oxygen-evolving complex of photosystem II (PSII). Consequently, Mn deficiency reduces photosynthetic efficiency and leads to changes in PSII composition. In order to study these changes, multiplexed protein assays are advantageous. Here, we developed a multiplexed antibody-based assay and analysed selected PSII subunits in barley (Hordeum vulgare L.). A selection of antibodies were labelled with specific lanthanides and immunoreacted with thylakoids exposed to Mn deficiency after western blotting. Subsequently, western blot membranes were analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), which allowed selective and relative quantitative analysis via the different lanthanides. The method was evaluated against established liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods, based on data-dependent acquisition (DDA) and selected reaction monitoring (SRM). Manganese deficiency resulted in a general decrease in PSII protein abundances, an effect that was shown to be reversible upon Mn re-supplementation. Specifically, the extrinsic proteins PsbP and PsbQ showed Mn-dependent changes in abundances. Similar trends in the response to Mn deficiency at the protein level were observed when comparing DDA, SRM and LA-ICP-MS results. A biologically important exception to this trend was the loss of PsbO in the SRM analysis, which highlights the necessity of validating protein changes by more than one technique. The developed method enables a higher number of proteins to be multiplexed in comparison to existing immunoassays. Furthermore, multiplexed protein analysis by LA-ICP-MS provides an analytical platform with high throughput appropriate for screening large collections of plants.
Collapse
Affiliation(s)
- Thomas Christian de Bang
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Jørgen Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark, Denmark
| | - Pai Rosager Pedas
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark, Denmark
| | - Ole Noerregaard Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark, Denmark
| | - Jan Kofod Schjoerring
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Jay J Thelen
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| | - Søren Husted
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
147
|
Grabsztunowicz M, Górski Z, Luciński R, Jackowski G. A reversible decrease in ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation activity caused by the aggregation of the enzyme's large subunit is triggered in response to the exposure of moderate irradiance-grown plants to low irradiance. PHYSIOLOGIA PLANTARUM 2015; 154:591-608. [PMID: 25594504 DOI: 10.1111/ppl.12322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/11/2014] [Accepted: 12/20/2014] [Indexed: 06/04/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is highly regulated in response to fluctuations in the environment, including changes in irradiance. However, no complex data are available on Rubisco regulatory mechanisms triggered in plants which are submitted to moderate-low irradiance shift. Therefore, we investigated in a comprehensive way the changes at the level of amount of Rubisco protein, its structural organization and carboxylase activity of the holoenzyme as triggered by exposure of moderate irradiance-grown Arabidopsis thaliana plants to low irradiance conditions. An exposure of moderate irradiance-grown plants to low irradiance for a single photoperiod caused the exclusion of a certain pool of Rubisco under altered conditions owing to oxidative modifications resulting in the formation of protein aggregates involving Rubisco large subunit (LS). As a result, both initial and total Rubisco carboxylase activities were reduced, whereas Rubisco activation state remained largely unchanged. The results of the determination of reactive oxygen species indicated that a moderate/low irradiance transition had stimulated (1) O2 accumulation and we strongly suggest that Rubisco oxidative modifications leading to formation of aggregates encompassing Rubisco-LS were triggered by (1) O2 . When moderate irradiance regime was resumed, the majority of Rubisco-LS containing aggregates tended to be resolubilized, and this allowed Rubisco carboxylation activities to be largely recovered, without changes in the activation state of the enzyme. In the longer term, these results allow us to better understand a complexity of Rubisco regulatory mechanisms activated in response to abiotic stresses and during recovery from the stresses.
Collapse
Affiliation(s)
- Magda Grabsztunowicz
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, 61 614, Poland
| | - Zbigniew Górski
- Department of Physical Chemistry, Institute of Chemistry & Technical Electrochemistry, University of Technology, Poznań, 60 965, Poland
| | - Robert Luciński
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, 61 614, Poland
| | - Grzegorz Jackowski
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, 61 614, Poland
| |
Collapse
|
148
|
Raghavan PS, Rajaram H, Apte SK. Membrane targeting of MnSOD is essential for oxidative stress tolerance of nitrogen-fixing cultures of Anabaena sp. strain PCC7120. PLANT MOLECULAR BIOLOGY 2015; 88:503-514. [PMID: 26105828 DOI: 10.1007/s11103-015-0339-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
The nitrogen-fixing cyanobacterium, Anabaena PCC7120 encodes for a membrane-targeted 30 kDa Mn-superoxide dismutase (MnSOD) and a cytosolic FeSOD. The MnSOD is post-translationally processed to 27 and 24 kDa forms in the cytosol and periplasm/thylakoid lumen. The extent of cleavage of signal and linker peptides at the N-terminus is dependent on the availability of combined nitrogen during growth. While the 24 and 27 kDa forms are present in near equal proportions under nitrogen-fixing conditions, the 24 kDa form is predominant under nitrogen-supplemented conditions. Individual contribution of these forms of MnSOD to total oxidative stress tolerance was analysed using recombinant Anabaena strains overexpressing either different molecular forms of MnSOD or MnSOD defective in the cleavage of signal/linker peptide. Targeting of MnSOD to the membrane and subsequent cleavage to release both the 24 and 27 kDa forms was essential for oxidative stress tolerance under nitrogen-fixing conditions. On the other hand, the cleavage of linker peptide was absolutely essential and the release of cytosolic 24 kDa form of MnSOD was obligatory for developing oxidative stress tolerance under nitrogen-supplemented conditions. Thus, a single MnSOD caters to the reduction of superoxide radical in both cytosol and thylakoid lumen/periplasm irrespective of the N-status of growth by regulating its cleavage. This is the first report on the physiological advantage of membrane-targeting and processing of MnSOD in either bacteria or plants. The higher oxidative stress tolerance offered by the cytosolic form of MnSOD has possibly resulted in retention of only the cytosolic form in bacterial non-nitrogen-fixers during evolution.
Collapse
Affiliation(s)
- Prashanth S Raghavan
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | | | | |
Collapse
|
149
|
Krieger-Liszkay A, Trösch M, Krupinska K. Generation of reactive oxygen species in thylakoids from senescing flag leaves of the barley varieties Lomerit and Carina. PLANTA 2015; 241:1497-508. [PMID: 25788024 DOI: 10.1007/s00425-015-2274-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/05/2015] [Indexed: 05/11/2023]
Abstract
During senescence, production of reactive oxygen species increased in thylakoids. In two barley varieties, no difference in superoxide production was observed while singlet oxygen production increased only in one variety. During senescence, chlorophyll content decreased and photosynthetic electron transport was inhibited as shown for flag leaves collected from barley varieties Lomerit and Carina grown in the field. Spin trapping electron paramagnetic resonance (EPR) was used to investigate the production of reactive oxygen species in thylakoid membranes during senescence. EPR measurements were performed with specific spin traps to discriminate between singlet oxygen on one hand and reactive oxygen intermediates on the other hand. The results show that the generation of reactive oxygen intermediates increases in both varieties during senescence. Singlet oxygen increased only in the variety cv. Lomerit while it remained constant at a low level in the variety cv. Carina. Measurements in the presence of inhibitors of photosystem II and of the cytochrome b6f complex revealed that in senescing leaves reduction of oxygen at the acceptor side of photosystem I was the major, but not the only source of superoxide anions. This study shows that during senescence the production of individual reactive oxygen species varies in different barley varieties.
Collapse
Affiliation(s)
- Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Institut de Biologie et de Technologie de Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, 91191, Gif-sur-Yvette cedex, France,
| | | | | |
Collapse
|
150
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|