101
|
Zhdanov AV, Okkelman IA, Collins FW, Melgar S, Papkovsky DB. A novel effect of DMOG on cell metabolism: direct inhibition of mitochondrial function precedes HIF target gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1254-66. [DOI: 10.1016/j.bbabio.2015.06.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/11/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022]
|
102
|
Garrido-Maraver J, Paz MV, Cordero MD, Bautista-Lorite J, Oropesa-Ávila M, de la Mata M, Pavón AD, de Lavera I, Alcocer-Gómez E, Galán F, Ybot González P, Cotán D, Jackson S, Sánchez-Alcázar JA. Critical role of AMP-activated protein kinase in the balance between mitophagy and mitochondrial biogenesis in MELAS disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2535-53. [PMID: 26341273 DOI: 10.1016/j.bbadis.2015.08.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Juan Garrido-Maraver
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Marina Villanueva Paz
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Mario D Cordero
- Facultad de Odontología, Universidad de Sevilla, Sevilla, Spain
| | | | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Isabel de Lavera
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Elizabet Alcocer-Gómez
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | | | - Patricia Ybot González
- Instituto de Biomedicina de Sevilla (IBIS)-CSIC, Hospital Virgen del Rocío, Sevilla, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain
| | - Sandra Jackson
- Department of Neurology, Uniklinikum C. G. Carus, Dresden, Germany
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla 41013, Spain.
| |
Collapse
|
103
|
Olsen RKJ, Cornelius N, Gregersen N. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism. J Inherit Metab Dis 2015; 38:703-19. [PMID: 26025548 PMCID: PMC4493798 DOI: 10.1007/s10545-015-9861-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism, by production of pathological amounts of ROS, may cause disturbed redox signalling and induce chronic cell stress with non-resolving or compromised cell repair responses and increased susceptibility to cell stress induced cell death. We suggest that this model may have important implications for those inborn errors of metabolism, where mitochondrial dysfunction plays a major role, as it allows the explanation of oxidative stress, metabolic reprogramming and altered signalling growth pathways that have been reported in many of the diseases. It is our hope that the model may facilitate novel ideas and directions that can be tested experimentally and used in the design of future new approaches for pre-symptomatic diagnosis and prognosis and perhaps more effective treatments of inborn errors of metabolism.
Collapse
Affiliation(s)
- Rikke K J Olsen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark,
| | | | | |
Collapse
|
104
|
Liemburg-Apers DC, Willems PHGM, Koopman WJH, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 2015; 89:1209-26. [PMID: 26047665 PMCID: PMC4508370 DOI: 10.1007/s00204-015-1520-y] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans.
Collapse
Affiliation(s)
- Dania C. Liemburg-Apers
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter H. G. M. Willems
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Werner J. H. Koopman
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sander Grefte
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- />Department of Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
105
|
Jiao R, Postnikoff S, Harkness TA, Arnason TG. The SNF1 Kinase Ubiquitin-associated Domain Restrains Its Activation, Activity, and the Yeast Life Span. J Biol Chem 2015; 290:15393-15404. [PMID: 25869125 DOI: 10.1074/jbc.m115.647032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 02/04/2023] Open
Abstract
The enzyme family of heterotrimeric AMP-dependent protein kinases is activated upon low energy states, conferring a switch toward energy-conserving metabolic pathways through immediate kinase actions on enzyme targets and delayed alterations in gene expression through its nuclear relocalization. This family is evolutionarily conserved, including the presence of a ubiquitin-associated (UBA) motif in most catalytic subunits. The potential for the UBA domain to promote protein associations or direct subcellular location, as seen in other UBA-containing proteins, led us to query whether the UBA domain within the yeast AMP-dependent protein kinase ortholog, SNF1 kinase, was important in these aspects of its regulation. Here, we demonstrate that conserved UBA motif mutations significantly alter SNF1 kinase activation and biological activity, including enhanced allosteric subunit associations and increased oxidative stress resistance and life span. Significantly, the enhanced UBA-dependent longevity and oxidative stress response are at least partially dependent on the Fkh1 and Fkh2 stress response transcription factors, which in turn are shown to influence Snf1 gene expression.
Collapse
Affiliation(s)
- Rubin Jiao
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Spike Postnikoff
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Troy A Harkness
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Terra G Arnason
- Departments of Anatomy and Cell Biology and University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
106
|
Tang HY, Ho HY, Wu PR, Chen SH, Kuypers FA, Cheng ML, Chiu DTY. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance. Antioxid Redox Signal 2015; 22:744-59. [PMID: 25556665 PMCID: PMC4361223 DOI: 10.1089/ars.2014.6142] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Glucose 6-phosphate dehydrogenase (G6PD) is essential for maintenance of nicotinamide dinucleotide hydrogen phosphate (NADPH) levels and redox homeostasis. A number of drugs, such as antimalarial drugs, act to induce reactive oxygen species and hemolytic crisis in G6PD-deficient patients. We used diamide (DIA) to mimic drug-induced oxidative stress and studied how these drugs affect cellular metabolism using a metabolomic approach. RESULTS There are a few differences in metabolome between red blood cells (RBCs) from normal and G6PD-deficient individuals. DIA causes modest changes in normal RBC metabolism. In contrast, there are significant changes in various biochemical pathways, namely glutathione (GSH) metabolism, purine metabolism, and glycolysis, in G6PD-deficient cells. GSH depletion is concomitant with a shift in energy metabolism. Adenosine monophosphate (AMP) and adenosine diphosphate (ADP) accumulation activates AMP protein kinase (AMPK) and increases entry of glucose into glycolysis. However, inhibition of pyruvate kinase (PK) reduces the efficacy of energy production. Metabolic changes and protein oxidation occurs to a greater extent in G6PD-deficient RBCs than in normal cells, leading to severe irreversible loss of deformability of the former. INNOVATION AND CONCLUSION Normal and G6PD-deficient RBCs differ in their responses to oxidants. Normal cells have adequate NADPH regeneration for maintenance of GSH pool. In contrast, G6PD-deficient cells are unable to regenerate enough NADPH under a stressful situation, and switch to biosynthetic pathway for GSH supply. Rapid GSH exhaustion causes energy crisis and futile AMPK activation. Our findings suggest that drug-induced oxidative stress differentially affects metabolism and metabolite signaling in normal and G6PD-deficient cells. It also provides an insight into the pathophysiology of acute hemolytic anemia in G6PD-deficient patients.
Collapse
Affiliation(s)
- Hsiang-Yu Tang
- 1 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Tao-yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
107
|
Metformin and caloric restriction induce an AMPK-dependent restoration of mitochondrial dysfunction in fibroblasts from Fibromyalgia patients. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1257-67. [PMID: 25779083 DOI: 10.1016/j.bbadis.2015.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/07/2015] [Indexed: 01/26/2023]
Abstract
Impaired AMPK is associated with a wide spectrum of clinical and pathological conditions, ranging from obesity, altered responses to exercise or metabolic syndrome, to inflammation, disturbed mitochondrial biogenesis and defective response to energy stress. Fibromyalgia (FM) is a world-wide diffused musculoskeletal chronic pain condition that affects up to 5% of the general population and comprises all the above mentioned pathophysiological states. Here, we tested the involvement of AMPK activation in fibroblasts derived from FM patients. AMPK was not phosphorylated in fibroblasts from FM patients and was associated with decreased mitochondrial biogenesis, reduced oxygen consumption, decreased antioxidant enzymes expression levels and mitochondrial dysfunction. However, mtDNA sequencing analysis did not show any important alterations which could justify the mitochondrial defects. AMPK activation in FM fibroblast was impaired in response to moderate oxidative stress. In contrast, AMPK activation by metformin or incubation with serum from caloric restricted mice improved the response to moderate oxidative stress and mitochondrial metabolism in FM fibroblasts. These results suggest that AMPK plays an essential role in FM pathophysiology and could represent the basis for a valuable new therapeutic target/strategy. Furthermore, both metformin and caloric restriction could be an interesting therapeutic approach in FM.
Collapse
|
108
|
Tang H, Smith IJ, Hussain SNA, Goldberg P, Lee M, Sugiarto S, Godinez GL, Singh BK, Payan DG, Rando TA, Kinsella TM, Shrager JB. The JAK-STAT pathway is critical in ventilator-induced diaphragm dysfunction. Mol Med 2015; 20:579-89. [PMID: 25286450 DOI: 10.2119/molmed.2014.00049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Mechanical ventilation (MV) is one of the lynchpins of modern intensive-care medicine and is life saving in many critically ill patients. Continuous ventilator support, however, results in ventilation-induced diaphragm dysfunction (VIDD) that likely prolongs patients' need for MV and thereby leads to major associated complications and avoidable intensive care unit (ICU) deaths. Oxidative stress is a key pathogenic event in the development of VIDD, but its regulation remains largely undefined. We report here that the JAK-STAT pathway is activated in MV in the human diaphragm, as evidenced by significantly increased phosphorylation of JAK and STAT. Blockage of the JAK-STAT pathway by a JAK inhibitor in a rat MV model prevents diaphragm muscle contractile dysfunction (by ~85%, p < 0.01). We further demonstrate that activated STAT3 compromises mitochondrial function and induces oxidative stress in vivo, and, interestingly, that oxidative stress also activates JAK-STAT. Inhibition of JAK-STAT prevents oxidative stress-induced protein oxidation and polyubiquitination and recovers mitochondrial function in cultured muscle cells. Therefore, in ventilated diaphragm muscle, activation of JAK-STAT is critical in regulating oxidative stress and is thereby central to the downstream pathogenesis of clinical VIDD. These findings establish the molecular basis for the therapeutic promise of JAK-STAT inhibitors in ventilated ICU patients.
Collapse
Affiliation(s)
- Huibin Tang
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, United States of America.,Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| | - Ira J Smith
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Sabah N A Hussain
- Critical Care Division, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Peter Goldberg
- Critical Care Division, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Myung Lee
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, United States of America.,Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| | - Sista Sugiarto
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, United States of America.,Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| | - Guillermo L Godinez
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Baljit K Singh
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Donald G Payan
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, California, United States of America.,Neurology Service, Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| | - Todd M Kinsella
- Rigel Pharmaceuticals, South San Francisco, California, United States of America
| | - Joseph B Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, United States of America.,Veterans Administration Palo Alto Healthcare System, Palo Alto, California, United States of America
| |
Collapse
|
109
|
Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, Nguyen V, Wheeler ML, Murphy MP, Sanders TA, Jeffrey SS, Yeghiazarians Y, Rinaudo PF, Costello JF, Aghi MK, Maltepe E. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth. Cell Rep 2015; 10:891-899. [PMID: 25683712 DOI: 10.1016/j.celrep.2015.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/27/2014] [Accepted: 01/09/2015] [Indexed: 02/07/2023] Open
Abstract
Hypoxia-inducible gene domain family member 1A (HIGD1A) is a survival factor induced by hypoxia-inducible factor 1 (HIF-1). HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity, and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells are confronted with glucose deprivation, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology.
Collapse
Affiliation(s)
- Kurosh Ameri
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Arman Jahangiri
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anthony M Rajah
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kathryn V Tormos
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ravi Nagarajan
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Melike Pekmezci
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vien Nguyen
- Department of Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew L Wheeler
- Department of Microbiology/Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Timothy A Sanders
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yerem Yeghiazarians
- Department of Medicine/CVRI/Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Paolo F Rinaudo
- Department of Obstetrics, Gynecology/Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Emin Maltepe
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
110
|
Gramicidin A: A New Mission for an Old Antibiotic. J Kidney Cancer VHL 2015; 2:15-24. [PMID: 28326255 PMCID: PMC5345515 DOI: 10.15586/jkcvhl.2015.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Gramicidin A (GA) is a channel-forming ionophore that renders biological membranes permeable to specific cations which disrupts cellular ionic homeostasis. It is a well-known antibiotic, however it’s potential as a therapeutic agent for cancer has not been widely evaluated. In two recently published studies, we showed that GA treatment is toxic to cell lines and tumor xenografts derived from renal cell carcinoma (RCC), a devastating disease that is highly resistant to conventional therapy. GA was found to possess the qualities of both a cytotoxic drug and a targeted angiogenesis inhibitor, and this combination significantly compromised RCC growth in vitro and in vivo. In this review, we summarize our recent research on GA, discuss the possible mechanisms whereby it exerts its anti-tumor effects, and share our perspectives on the future opportunities and challenges to the use of GA as a new anticancer agent.
Collapse
|
111
|
Hsiao YP, Lai WW, Wu SB, Tsai CH, Tang SC, Chung JG, Yang JH. Triggering apoptotic death of human epidermal keratinocytes by malic Acid: involvement of endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Toxins (Basel) 2015; 7:81-96. [PMID: 25584429 PMCID: PMC4303815 DOI: 10.3390/toxins7010081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/26/2014] [Indexed: 12/21/2022] Open
Abstract
Malic acid (MA) has been commonly used in cosmetic products, but the safety reports in skin are sparse. To investigate the biological effects of MA in human skin keratinocytes, we investigated the potential cytotoxicity and apoptotic effects of MA in human keratinocyte cell lines (HaCaT). The data showed that MA induced apoptosis based on the observations of DAPI staining, DNA fragmentation, and sub-G1 phase in HaCaT cells and normal human epidermal keratinocytes (NHEKs). Flow cytometric assays also showed that MA increased the production of mitochondrial superoxide (mito-SOX) but decreased the mitochondrial membrane potential. Analysis of bioenergetics function with the XF 24 analyzer Seahorse extracellular flux analyzer demonstrated that oxygen consumption rate (OCR) was significantly decreased whereas extracellular acidification rate (ECAR) was increased in MA-treated keratinocytes. The occurrence of apoptosis was proved by the increased expressions of FasL, Fas, Bax, Bid, caspases-3, -8, -9, cytochrome c, and the declined expressions of Bcl-2, PARP. MA also induced endoplasmic reticulum stress associated protein expression such as GRP78, GADD153, and ATF6α. We demonstrated that MA had anti-proliferative effect in HaCaT cell through the inhibition of cell cycle progression at G0/G1, and the induction of programmed cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Yu-Ping Hsiao
- Institute of Medicine, Chung Shan Medical University, 402 Taichung, Taiwan.
| | - Wan-Wen Lai
- Institute of Medicine, Chung Shan Medical University, 402 Taichung, Taiwan.
| | - Shi-Bei Wu
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, 112 Taipei, Taiwan.
| | - Chung-Hung Tsai
- Institute of Medicine, Chung Shan Medical University, 402 Taichung, Taiwan.
| | - Sheau-Chung Tang
- Department of Dermatology, Buddhist Tzu Chi General Hospital, 907 Hualien, Taiwan.
| | - Jing-Gung Chung
- School of Biological Science and Biotechnology, China Medical University, 404 Taichung, Taiwan.
| | - Jen-Hung Yang
- Department of Dermatology, Buddhist Tzu Chi General Hospital, 907 Hualien, Taiwan.
| |
Collapse
|
112
|
Heiss EH, Kramer MP, Atanasov AG, Beres H, Schachner D, Dirsch VM. Glycolytic switch in response to betulinic acid in non-cancer cells. PLoS One 2014; 9:e115683. [PMID: 25531780 PMCID: PMC4274109 DOI: 10.1371/journal.pone.0115683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
The naturally occurring triterpenoid betulinic acid (BA) shows pronounced polypharmacology ranging from anti-inflammatory to anti-lipogenic activities. Recent evidence suggests that rather diverse cellular signaling events may be attributed to the same common upstream switch in cellular metabolism. In this study we therefore examined the metabolic changes induced by BA (10 µM) administration, with focus on cellular glucose metabolism. We demonstrate that BA elevates the rates of cellular glucose uptake and aerobic glycolysis in mouse embryonic fibroblasts with concomitant reduction of glucose oxidation. Without eliciting signs of obvious cell death BA leads to compromised mitochondrial function, increased expression of mitochondrial uncoupling proteins (UCP) 1 and 2, and liver kinase B1 (LKB1)-dependent activation AMP-activated protein kinase. AMPK activation accounts for the increased glucose uptake and glycolysis which in turn are indispensable for cell viability upon BA treatment. Overall, we show for the first time a significant impact of BA on cellular bioenergetics which may be a central mediator of the pleiotropic actions of BA.
Collapse
Affiliation(s)
- Elke H. Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Matthias P. Kramer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Atanas G. Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Hortenzia Beres
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Daniel Schachner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
113
|
Abstract
Patients with diabetes mellitus are at increased risk of cancer development. Metformin is a well-established, effective agent for the management of type 2 diabetes mellitus. Epidemiological studies have identified an association between metformin use and a beneficial effect on cancer prevention and treatment, which has led to increasing interest in the potential use of metformin as an anticancer agent. Basic science has provided a better understanding of the mechanism of action of metformin and the potential for metformin to modulate molecular pathways involved in cancer cell signaling and metabolism. This article outlines the link between metformin and cancer, the potential for metformin in oncology, and limitations of currently available evidence.
Collapse
Affiliation(s)
- Daniel R Morales
- Population Health Sciences Division, Medical Research Institute, and
| | | |
Collapse
|
114
|
Zhuang Y, Chan DK, Haugrud AB, Miskimins WK. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS One 2014; 9:e108444. [PMID: 25254953 PMCID: PMC4177919 DOI: 10.1371/journal.pone.0108444] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 08/29/2014] [Indexed: 11/28/2022] Open
Abstract
Different cancer cells exhibit altered sensitivity to metformin treatment. Recent studies suggest these findings may be due in part to the common cell culture practice of utilizing high glucose, and when glucose is lowered, metformin becomes increasingly cytotoxic to cancer cells. In low glucose conditions ranging from 0 to 5 mM, metformin was cytotoxic to breast cancer cell lines MCF7, MDAMB231 and SKBR3, and ovarian cancer cell lines OVCAR3, and PA-1. MDAMB231 and SKBR3 were previously shown to be resistant to metformin in normal high glucose medium. When glucose was increased to 10 mM or above, all of these cell lines become less responsive to metformin treatment. Metformin treatment significantly reduced ATP levels in cells incubated in media with low glucose (2.5 mM), high fructose (25 mM) or galactose (25 mM). Reductions in ATP levels were not observed with high glucose (25 mM). This was compensated by enhanced glycolysis through activation of AMPK when oxidative phosphorylation was inhibited by metformin. However, enhanced glycolysis was either diminished or abolished by replacing 25 mM glucose with 2.5 mM glucose, 25 mM fructose or 25 mM galactose. These findings suggest that lowering glucose potentiates metformin induced cell death by reducing metformin stimulated glycolysis. Additionally, under low glucose conditions metformin significantly decreased phosphorylation of AKT and various targets of mTOR, while phospho-AMPK was not significantly altered. Thus inhibition of mTOR signaling appears to be independent of AMPK activation. Further in vivo studies using the 4T1 breast cancer mouse model confirmed that metformin inhibition of tumor growth was enhanced when serum glucose levels were reduced via low carbohydrate ketogenic diets. The data support a model in which metformin treatment of cancer cells in low glucose medium leads to cell death by decreasing ATP production and inhibition of survival signaling pathways. The enhanced cytotoxicity of metformin against cancer cells was observed both in vitro and in vivo.
Collapse
Affiliation(s)
- Yongxian Zhuang
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
- * E-mail:
| | - Daniel K. Chan
- Sanford School of Medicine, The University of South Dakota, Vermillion, South Dakota, United States of America
| | - Allison B. Haugrud
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - W. Keith Miskimins
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| |
Collapse
|
115
|
Wu YT, Wu SB, Wei YH. Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress. Free Radic Res 2014; 48:1070-84. [DOI: 10.3109/10715762.2014.920956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
116
|
Hao Y, Feng Y, Yang P, Feng J, Lin H, Gu X. Nutritional and physiological responses of finishing pigs exposed to a permanent heat exposure during three weeks. Arch Anim Nutr 2014; 68:296-308. [PMID: 24979614 DOI: 10.1080/1745039x.2014.931522] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of the current study was to investigate the effect of a permanent heat exposure during 21 days on pig performance, nutrient digestibility, physiological response and key enzyme of skeletal muscle energy metabolism. Twenty-four male finishing pigs (crossbreed castrates, 79.0 ± 1.50 kg body weight) were allocated to three groups (n = 8): (1) Control (ambient temperature (AT) 22°C, ad libitum feeding), (2) Group HE (AT 30°C, ad libitum feeding) and (3) Group PF (AT 22°C, pair-fed to Group HE). The permanent heat exposure decreased feed intake (p < 0.01), daily body weight gain (p < 0.05) and the digestibility of gross energy, dry matter, crude protein and ash (p < 0.05); rectal temperature and respiration rate were significantly increased (p < 0.01). The levels of plasma cortisol, creatine kinase and lactate dehydrogenase were also significantly increased in Group HE (p < 0.05). Furthermore, the heat exposure changed intracellular energy metabolism, where the AMP-activated protein kinase was activated (p = 0.02). This was combined with changes in parameters of glycolysis such as an accumulation of lactic acid (p = 0.02) and a drop of pH24 h (p = 0.02), an increase of hexokinase and pyruvate kinase activity (p < 0.01) and, finally, the maturation process of post mortem muscle was influenced. Due to pair-feeding it was possible to evaluate the effects of heat exposure, which were not dependent on reduced feed intake. Such effects were, e.g., reduced nutrient digestibility and changed activities of several enzymes in muscle and blood serum.
Collapse
Affiliation(s)
- Yue Hao
- a State Key Laboratory of Animal Nutrition, Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing , P. R. China
| | | | | | | | | | | |
Collapse
|
117
|
Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL. H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging 2014; 35:1511.e1-12. [DOI: 10.1016/j.neurobiolaging.2013.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
|
118
|
Washington TA, Healey JM, Thompson RW, Lowe LL, Carson JA. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload. Exp Gerontol 2014; 57:66-74. [PMID: 24835193 DOI: 10.1016/j.exger.2014.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022]
Abstract
Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (p<0.05). Aging also reduced LDH-A mRNA abundance, however there was no age effect on LDH-B mRNA abundance. In 5-month muscle, both ND and OV decreased LDH-A and LDH-B activity. However, there was no synergistic or additive effect. In 5-month muscle, ND and OV decreased LDH-A mRNA expression with no change in LDH-B expression. In 25-month muscle, ND and OV increased LDH-A and LDH-B activity. LDH-A mRNA expression was not altered by ND or OV in aged muscle. However, there was a main effect of OV to decrease LDH-B mRNA expression. There was also an age-induced LDH isoform shift. ND and OV treatment increased the "fast" LDH isoforms in aged muscle, whereas ND and OV increased the "slow" isoforms in young muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration.
Collapse
Affiliation(s)
- Tyrone A Washington
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR 72701, United States; Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States.
| | - Julie M Healey
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Raymond W Thompson
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Larry L Lowe
- Department of Biological and Physical Sciences, Benedict College, Columbia, SC 29208, United States
| | - James A Carson
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
119
|
Wang CH, Chen YF, Wu CY, Wu PC, Huang YL, Kao CH, Lin CH, Kao LS, Tsai TF, Wei YH. Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis. Hum Mol Genet 2014; 23:4770-85. [PMID: 24833725 DOI: 10.1093/hmg/ddu193] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CISD2 is a causative gene associated with Wolfram syndrome (WFS). However, it remains a mystery as to how the loss of CISD2 causes metabolic defects in patients with WFS. Investigation on the role played by Cisd2 in specific cell types may help us to resolve these underlying mechanisms. White adipose tissue (WAT) is central to the maintenance of energy metabolism and glucose homeostasis in humans. In this study, adipocyte-specific Cisd2 knockout (KO) mice showed impairment in the development of epididymal WAT (eWAT) in the cell autonomous manner. A lack of Cisd2 caused defects in the biogenesis and function of mitochondria during differentiation of adipocytes in vitro. Insulin-stimulated glucose uptake and secretion of adiponectin by the Cisd2 KO adipocytes were decreased. Moreover, Cisd2 deficiency increased the cytosolic level of Ca(2+) and induced Ca(2+)-calcineurin-dependent signaling that inhibited adipogenesis. Importantly, Cisd2 was found to interact with Gimap5 on the mitochondrial and ER membranes and thereby modulate mitochondrial Ca(2+) uptake associated with the maintenance of intracellular Ca(2+) homeostasis in adipocytes. Thus, it would seem that Cisd2 plays an important role in intracellular Ca(2+) homeostasis, which is required for the differentiation and functioning of adipocytes as well as the regulation of glucose homeostasis in mice.
Collapse
Affiliation(s)
| | - Yi-Fan Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Yu Wu
- Department of Life Sciences and Institute of Genome Sciences
| | - Pei-Chun Wu
- Department of Life Sciences and Institute of Genome Sciences Brain Research Center
| | - Yi-Long Huang
- Department of Life Sciences and Institute of Genome Sciences
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan 333, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences
| | - Lung-Sen Kao
- Department of Life Sciences and Institute of Genome Sciences Brain Research Center
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences Brain Research Center Aging and Health Research Center, National Yang-Ming University, Taipei 112, Taiwan Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yau-Huei Wei
- Institute of Biochemistry and Molecular Biology Department of Medicine, Mackay Medical College, Sanzhi, New Taipei City 252, Taiwan
| |
Collapse
|
120
|
Bonora M, De Marchi E, Patergnani S, Suski JM, Celsi F, Bononi A, Giorgi C, Marchi S, Rimessi A, Duszyński J, Pozzan T, Wieckowski MR, Pinton P. Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ 2014; 21:1198-208. [PMID: 24658399 DOI: 10.1038/cdd.2014.35] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial defects, affecting parameters such as mitochondrial number and shape, levels of respiratory chain complex components and markers of oxidative stress, have been associated with the appearance and progression of multiple sclerosis. Nevertheless, mitochondrial physiology has never been monitored during oligodendrocyte progenitor cell (OPC) differentiation, especially in OPCs challenged with proinflammatory cytokines. Here, we show that tumor necrosis factor alpha (TNF-α) inhibits OPC differentiation, accompanied by altered mitochondrial calcium uptake, mitochondrial membrane potential, and respiratory complex I activity as well as increased reactive oxygen species production. Treatment with a mitochondrial uncoupler (FCCP) to mimic mitochondrial impairment also causes cells to accumulate at the progenitor stage. Interestingly, AMP-activated protein kinase (AMPK) levels increase during TNF-α exposure and inhibit OPC differentiation. Overall, our data indicate that TNF-α induces metabolic changes, driven by mitochondrial impairment and AMPK activation, leading to the inhibition of OPC differentiation.
Collapse
Affiliation(s)
- M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - E De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - J M Suski
- 1] Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy [2] Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - F Celsi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - A Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - A Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - J Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - T Pozzan
- 1] Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, Padua, Italy [2] Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy [3] Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Sezione di Padova, Padua, Italy
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
121
|
Seyfried TN, Flores RE, Poff AM, D'Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 2013; 35:515-27. [PMID: 24343361 PMCID: PMC3941741 DOI: 10.1093/carcin/bgt480] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence indicates that cancer is primarily a metabolic disease involving disturbances in energy production through respiration and fermentation. The genomic instability observed in tumor cells and all other recognized hallmarks of cancer are considered downstream epiphenomena of the initial disturbance of cellular energy metabolism. The disturbances in tumor cell energy metabolism can be linked to abnormalities in the structure and function of the mitochondria. When viewed as a mitochondrial metabolic disease, the evolutionary theory of Lamarck can better explain cancer progression than can the evolutionary theory of Darwin. Cancer growth and progression can be managed following a whole body transition from fermentable metabolites, primarily glucose and glutamine, to respiratory metabolites, primarily ketone bodies. As each individual is a unique metabolic entity, personalization of metabolic therapy as a broad-based cancer treatment strategy will require fine-tuning to match the therapy to an individual’s unique physiology.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA and
| | | | | | | |
Collapse
|
122
|
Wu SB, Wu YT, Wu TP, Wei YH. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1840:1331-44. [PMID: 24513455 DOI: 10.1016/j.bbagen.2013.10.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/06/2013] [Accepted: 10/22/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) mutations are an important cause of mitochondrial diseases, for which there is no effective treatment due to complex pathophysiology. It has been suggested that mitochondrial dysfunction-elicited reactive oxygen species (ROS) plays a vital role in the pathogenesis of mitochondrial diseases, and the expression levels of several clusters of genes are altered in response to the elevated oxidative stress. Recently, we reported that glycolysis in affected cells with mitochondrial dysfunction is upregulated by AMP-activated protein kinase (AMPK), and such an adaptive response of metabolic reprogramming plays an important role in the pathophysiology of mitochondrial diseases. SCOPE OF REVIEW We summarize recent findings regarding the role of AMPK-mediated signaling pathways that are involved in: (1) metabolic reprogramming, (2) alteration of cellular redox status and antioxidant enzyme expression, (3) mitochondrial biogenesis, and (4) autophagy, a master regulator of mitochondrial quality control in skin fibroblasts from patients with mitochondrial diseases. MAJOR CONCLUSION Induction of adaptive responses via AMPK-PFK2, AMPK-FOXO3a, AMPK-PGC-1α, and AMPK-mTOR signaling pathways, respectively is modulated for the survival of human cells under oxidative stress induced by mitochondrial dysfunction. We suggest that AMPK may be a potential target for the development of therapeutic agents for the treatment of mitochondrial diseases. GENERAL SIGNIFICANCE Elucidation of the adaptive mechanism involved in AMPK activation cascades would lead us to gain a deeper insight into the crosstalk between mitochondria and the nucleus in affected tissue cells from patients with mitochondrial diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Shi-Bei Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Ting Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Tsung-Pu Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yau-Huei Wei
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
123
|
Wang CH, Wu SB, Wu YT, Wei YH. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood) 2013; 238:450-60. [PMID: 23856898 DOI: 10.1177/1535370213493069] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess ROS may induce irreversible damage to cellular components and lead to cell death by promoting the intrinsic apoptotic pathway through mitochondria. In the aging process, accumulation of mitochondria DNA mutations, impairment of oxidative phosphorylation as well as an imbalance in the expression of antioxidant enzymes result in further overproduction of ROS. This mitochondrial dysfunction-elicited ROS production axis forms a vicious cycle, which is the basis of mitochondrial free radical theory of aging. In addition, several lines of evidence have emerged recently to demonstrate that ROS play crucial roles in the regulation of cellular metabolism, antioxidant defence and posttranslational modification of proteins. We first discuss the oxidative stress responses, including metabolites redistribution and alteration of the acetylation status of proteins, in human cells with mitochondrial dysfunction and in aging. On the other hand, autophagy and mitophagy eliminate defective mitochondria and serve as a scavenger and apoptosis defender of cells in response to oxidative stress during aging. These scenarios mediate the restoration or adaptation of cells to respond to aging and age-related disorders for survival. In the natural course of aging, the homeostasis in the network of oxidative stress responses is disturbed by a progressive increase in the intracellular level of the ROS generated by defective mitochondria. Caloric restriction, which is generally thought to promote longevity, has been reported to enhance the efficiency of this network and provide multiple benefits to tissue cells. In this review, we emphasize the positive and integrative roles of mild oxidative stress elicited by mitochondria in the regulation of adaptation, anti-aging and scavenging pathway beyond their roles in the vicious cycle of mitochondrial dysfunction in the aging process.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
124
|
Fumarola C, Caffarra C, La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Galvani E, Generali D, Petronini PG, Bonelli MA. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Breast Cancer Res Treat 2013; 141:67-78. [PMID: 23963659 DOI: 10.1007/s10549-013-2668-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the effects and the underlying molecular mechanisms of the multi-kinase inhibitor sorafenib in a panel of breast cancer cell lines. Sorafenib inhibited cell proliferation and induced apoptosis through the mitochondrial pathway. These effects were neither correlated with modulation of MAPK and AKT pathways nor dependent on the ERα status. Sorafenib promoted an early perturbation of mitochondrial function, inducing a deep depolarization of mitochondrial membrane, associated with drop of intracellular ATP levels and increase of ROS generation. As a response to this stress condition, the energy sensor AMPK was rapidly activated in all the cell lines analyzed. In MCF-7 and SKBR3 cells, AMPK enhanced glucose uptake by up-regulating the expression of GLUT-1 glucose transporter, as also demonstrated by AMPKα1 RNA interference, and stimulated aerobic glycolysis thus increasing lactate production. Moreover, the GLUT-1 inhibitor fasentin blocked sorafenib-induced glucose uptake and potentiated its cytotoxic activity in SKBR3 cells. Persistent activation of AMPK by sorafenib finally led to the impairment of glucose metabolism both in MCF-7 and SKBR3 cells as well as in the highly glycolytic MDA-MB-231 cells, resulting in cell death. This previously unrecognized long-term effect of sorafenib was mediated by AMPK-dependent inhibition of the mTORC1 pathway. Suppression of mTORC1 activity was sufficient for sorafenib to hinder glucose utilization in breast cancer cells, as demonstrated by the observation that the mTORC1 inhibitor rapamycin induced a comparable down-regulation of GLUT-1 expression and glucose uptake. The key role of AMPK-dependent inhibition of mTORC1 in sorafenib mechanisms of action was confirmed by AMPKα1 silencing, which restored mTORC1 activity conferring a significant protection from cell death. This study provides insights into the molecular mechanisms driving sorafenib anti-tumoral activity in breast cancer, and supports the need for going on with clinical trials aimed at proving the efficacy of sorafenib for breast cancer treatment.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Clinical and Experimental Medicine, University of Parma, Via Volturno, 39, Parma 43125, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Zhang Z, Tsukikawa M, Peng M, Polyak E, Nakamaru-Ogiso E, Ostrovsky J, McCormack S, Place E, Clarke C, Reiner G, McCormick E, Rappaport E, Haas R, Baur JA, Falk MJ. Primary respiratory chain disease causes tissue-specific dysregulation of the global transcriptome and nutrient-sensing signaling network. PLoS One 2013; 8:e69282. [PMID: 23894440 PMCID: PMC3722174 DOI: 10.1371/journal.pone.0069282] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease.
Collapse
Affiliation(s)
- Zhe Zhang
- Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mai Tsukikawa
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Min Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julian Ostrovsky
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shana McCormack
- Division of Endocrinology, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Place
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Colleen Clarke
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Child Development and Metabolic Disease, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gail Reiner
- Department of Pediatrics, University of California San Diego, San Diego, California, United States of America
| | - Elizabeth McCormick
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Child Development and Metabolic Disease, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric Rappaport
- Nucleic Acid and Protein Core Facility, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Richard Haas
- Department of Pediatrics, University of California San Diego, San Diego, California, United States of America
| | - Joseph A. Baur
- Department of Physiology, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marni J. Falk
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Child Development and Metabolic Disease, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
126
|
Hsu CC, Wang CH, Wu LC, Hsia CY, Chi CW, Yin PH, Chang CJ, Sung MT, Wei YH, Lu SH, Lee HC. Mitochondrial dysfunction represses HIF-1α protein synthesis through AMPK activation in human hepatoma HepG2 cells. Biochim Biophys Acta Gen Subj 2013; 1830:4743-51. [PMID: 23791554 DOI: 10.1016/j.bbagen.2013.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/09/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Hypoxia-inducible factor-1α (HIF-1α) is an important transcription factor that modulates cellular responses to hypoxia and also plays critical roles in cancer progression. Recently, somatic mutations and decreased copy number of mitochondrial DNA (mtDNA) were detected in hepatocellular carcinoma (HCC). These mutations were shown to have the potential to cause mitochondrial dysfunction. However, the effects and mechanisms of mitochondrial dysfunction on HIF-1α function are not fully understood. This study aims to explore the underlying mechanism by which mitochondrial dysfunction regulates HIF-1α expression. METHODS Human hepatoma HepG2 cells were treated with various mitochondrial respiration inhibitors and an uncoupler, respectively, and the mRNA and protein expressions as well as transactivation activity of HIF-1α were determined. The role of AMP-activated protein kinase (AMPK) was further analyzed by compound C and AMPK knock-down. RESULTS Treatments of mitochondrial inhibitors and an uncoupler respectively reduced both the protein level and transactivation activity of HIF-1α in HepG2 cells under normoxia or hypoxia. The mitochondrial dysfunction-repressed HIF-1α protein synthesis was associated with decreased phosphorylations of p70(S6K) and 4E-BP-1. Moreover, mitochondrial dysfunction decreased intracellular ATP content and elevated the phosphorylation of AMPK. Treatments with compound C, an AMPK inhibitor, and knock-down of AMPK partially rescued the mitochondrial dysfunction-repressed HIF-1α expression. CONCLUSIONS Mitochondrial dysfunctions resulted in reduced HIF-1α protein synthesis through AMPK-dependent manner in HepG2 cells. GENERAL SIGNIFICANCE Our results provided a mechanism for communication from mitochondria to the nucleus through AMPK-HIF-1α. Mitochondrial function is important for HIF-1α expression in cancer progression.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department and Institute of Pharmacology, National Yang-Ming University, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF-2 signaling in PC12 cells. Biochim Biophys Acta Gen Subj 2013; 1830:3553-69. [DOI: 10.1016/j.bbagen.2013.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 01/22/2013] [Accepted: 02/15/2013] [Indexed: 12/12/2022]
|
128
|
Garnett JP, Baker EH, Naik S, Lindsay JA, Knight GM, Gill S, Tregoning JS, Baines DL. Metformin reduces airway glucose permeability and hyperglycaemia-induced Staphylococcus aureus load independently of effects on blood glucose. Thorax 2013; 68:835-45. [PMID: 23709760 PMCID: PMC3756442 DOI: 10.1136/thoraxjnl-2012-203178] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Diabetes is a risk factor for respiratory infection, and hyperglycaemia is associated with increased glucose in airway surface liquid and risk of Staphylococcus aureus infection. OBJECTIVES To investigate whether elevation of basolateral/blood glucose concentration promotes airway Staphylococcus aureus growth and whether pretreatment with the antidiabetic drug metformin affects this relationship. METHODS Human airway epithelial cells grown at air-liquid interface (±18 h pre-treatment, 30 μM-1 mM metformin) were inoculated with 5×10(5) colony-forming units (CFU)/cm(2) S aureus 8325-4 or JE2 or Pseudomonas aeruginosa PA01 on the apical surface and incubated for 7 h. Wild-type C57BL/6 or db/db (leptin receptor-deficient) mice, 6-10 weeks old, were treated with intraperitoneal phosphate-buffered saline or 40 mg/kg metformin for 2 days before intranasal inoculation with 1×10(7) CFU S aureus. Mice were culled 24 h after infection and bronchoalveolar lavage fluid collected. RESULTS Apical S aureus growth increased with basolateral glucose concentration in an in vitro airway epithelia-bacteria co-culture model. S aureus reduced transepithelial electrical resistance (RT) and increased paracellular glucose flux. Metformin inhibited the glucose-induced growth of S aureus, increased RT and decreased glucose flux. Diabetic (db/db) mice infected with S aureus exhibited a higher bacterial load in their airways than control mice after 2 days and metformin treatment reversed this effect. Metformin did not decrease blood glucose but reduced paracellular flux across ex vivo murine tracheas. CONCLUSIONS Hyperglycaemia promotes respiratory S aureus infection, and metformin modifies glucose flux across the airway epithelium to limit hyperglycaemia-induced bacterial growth. Metformin might, therefore, be of additional benefit in the prevention and treatment of respiratory infection.
Collapse
Affiliation(s)
- James P Garnett
- Division of Biomedical Sciences, Centre for Cell Physiology and Pharmacology, St George's, University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Sid B, Verrax J, Calderon PB. Role of AMPK activation in oxidative cell damage: Implications for alcohol-induced liver disease. Biochem Pharmacol 2013; 86:200-9. [PMID: 23688501 DOI: 10.1016/j.bcp.2013.05.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 02/08/2023]
Abstract
Chronic alcohol consumption is a well-known risk factor for liver disease. Progression of alcohol-induced liver disease (ALD) is a multifactorial process that involves a number of genetic, nutritional and environmental factors. Experimental and clinical studies increasingly show that oxidative damage induced by ethanol contributes in many ways to the pathogenesis of alcohol hepatoxicity. Oxidative stress appears to activate AMP-activated protein kinase (AMPK) signaling system, which has emerged in recent years as a kinase that controls the redox-state and mitochondrial function. This review focuses on the most recent insights concerning the activation of AMPK by reactive oxygen species (ROS), and describes recent evidences supporting the hypothesis that AMPK signaling pathways play an important role in promoting cell viability under conditions of oxidative stress, such as during alcohol exposure. We suggest that AMPK activation by ROS can promote cell survival by inducing autophagy, mitochondrial biogenesis and expression of genes involved in antioxidant defense. Hence, increased intracellular concentrations of ROS may represent a general mechanism for enhancement of AMPK-mediated cellular adaptation, including maintenance of redox homeostasis. On the other hand, AMPK inhibition in the liver by ethanol appears to play a key role in the development of steatosis induced by chronic alcohol consumption. Although more studies are needed to assess the functions of AMPK during oxidative stress, AMPK may be a possible therapeutic target in the particular case of alcohol-induced liver disease.
Collapse
Affiliation(s)
- Brice Sid
- Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group GTOX, Brussels, Belgium
| | | | | |
Collapse
|
130
|
Biasutto L, Chiechi A, Couch R, Liotta LA, Espina V. Retinal pigment epithelium (RPE) exosomes contain signaling phosphoproteins affected by oxidative stress. Exp Cell Res 2013; 319:2113-2123. [PMID: 23669273 DOI: 10.1016/j.yexcr.2013.05.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 12/23/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss and blindness among the elderly population in the industrialized world. One of the typical features of this pathology is the gradual death of retinal pigment epithelial (RPE) cells, which are essential for maintaining photoreceptor functions and survival. The etiology is multifactorial, and oxidative stress is clearly one of the key factors involved in disease pathogenesis (Plafker, Adv. Exp. Med. Biol. 664 (2010) 447-56; Qin, Drug Dev. Res. 68 (2007) 213-225). Recent work has revealed the presence of phosphorylated signaling proteins in the vitreous humour of patients affected by AMD or other retinal diseases. While the location of these signaling proteins is typically the cell membrane or intracellular compartments, vitreous samples were proven to be cell-free (Davuluri et al., Arch. Ophthalmol. 127 (2009) 613-21). To gain a better understanding of how these proteins can be shed into the vitreous, we used reverse phase protein arrays (RPMA) to analyze the protein and phosphoprotein content of exosomes shed by cultured ARPE-19 cells under oxidative stress conditions. Seventy two proteins were shown to be released by ARPE-19 cells and compartmentalized within exosomes. Forty one of them were selectively detected in their post-translationally modified form (i.e., phosphorylated or cleaved) for the first time in exosomes. Sets of these proteins were linked together reflecting activation of pathway units within exosomes. A subset of (phospho)proteins were altered in exosomes secreted by ARPE-19 cells subjected to oxidative stress, compared to that secreted by control/non stressed cells. Stress-altered exosome proteins were found to be involved in pathways regulating apoptosis/survival (i.e, Bak, Smac/Diablo, PDK1 (S241), Akt (T308), Src (Y416), Elk1 (S383), ERK 1/2 (T202/Y204)) and cell metabolism (i.e., AMPKα1 (S485), acetyl-CoA carboxylase (S79), LDHA). Exosomes may thus represent the conduit through which membrane and intracellular signaling proteins are released into the vitreous. Changes in their (phospho)protein content upon stress conditions suggest their possible role in mediating cell-cell signaling during physio-pathological events; furthermore, exosomes may represent a potential source of biomarkers.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience, Viale G. Colombo 3, 35121 Padova, Italy; Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | - Antonella Chiechi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Robin Couch
- Department of Chemistry and Biochemistry, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| |
Collapse
|
131
|
Vagner M, de Montgolfier B, Sévigny JM, Tremblay R, Audet C. Expression of genes involved in key metabolic processes during winter flounder ( Pseudopleuronectes americanus) metamorphosis. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to better understand the molecular events governing ontogeny in winter flounder (Pseudopleuronectes americanus (Walbaum, 1792)). The expression of seven genes involved in key metabolic processes during metamorphosis were measured at settlement (S0), at 15 (S15), and 30 (S30) days after settlement and compared with those in pelagic larvae prior to settlement (PL). Two critical stages were identified: (1) larval transit from the pelagic to the benthic habitat (from PL to S0) and (2) metamorphosis maturation, when the larvae stay settled without growth (from S0 to S30). Growth hormone (gh) gene expression significantly increased at S0. At S30, an increase in cytochrome oxidase (cox) gene expression occurred with a second surge of gh gene expression, suggesting that enhanced aerobic capacity was supporting growth before the temperature decrease in the fall. Expression patterns of pyruvate kinase (pk), glucose-6-phosphate dehydrogenase (g6pd), and bile salt activated lipase (bal) genes indicated that energy synthesis may be mainly supplied through glycolysis in PL, through the pentose–phosphate pathway at settlement, and through lipid metabolism at S30. The expression of the heat-shock protein 70 (hsp70), superoxide dismutase (sod), cox, and peroxiredoxin-6 (prx6) genes revealed that oxidative stress and the consequent development of antioxidative protection were limited during the PL stage, reinforced at settlement, and very high at S30, certainly owing to the higher growth rate observed at this period.
Collapse
Affiliation(s)
- Marie Vagner
- Institut des Sciences de la Mer (ISMER), Université du Québec à Rimouski (UQAR), 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Benjamin de Montgolfier
- Institut des Sciences de la Mer (ISMER), Université du Québec à Rimouski (UQAR), 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Jean-Marie Sévigny
- Institut Maurice-Lamontagne, Pêches et Océans Canada, 850 route de la mer, Mont-Joli, QC G5H 3Z4, Canada
| | - Réjean Tremblay
- Institut des Sciences de la Mer (ISMER), Université du Québec à Rimouski (UQAR), 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Céline Audet
- Institut des Sciences de la Mer (ISMER), Université du Québec à Rimouski (UQAR), 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
132
|
Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1147-56. [PMID: 23376776 DOI: 10.1016/j.bbamcr.2013.01.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 01/24/2023]
Abstract
The Warburg effect is known to be crucial for cancer cells to acquire energy. Nutrient deficiencies are an important phenomenon in solid tumors, but the effect on cancer cell metabolism is not yet clear. In this study, we demonstrate that starvation of HeLa cells by incubation with Hank's buffered salt solution (HBSS) induced cell apoptosis, which was accompanied by the induction of reactive oxygen species (ROS) production and AMP-activated protein kinase (AMPK) phosphorylation. Notably, HBSS starvation increased lactate production, cytoplasmic pyruvate content and decreased oxygen consumption, but failed to change the lactate dehydrogenase (LDH) activity or the glucose uptake. We found that HBSS starvation rapidly induced pyruvate dehydrogenase kinase (PDK) activation and pyruvate dehydrogenase (PDH) phosphorylation, both of which were inhibited by compound C (an AMPK inhibitor), NAC (a ROS scavenger), and the dominant negative mutant of AMPK. Our data further revealed the involvement of ROS production in AMPK activation. Moreover, DCA (a PDK inhibitor), NAC, and compound C all significantly decreased HBSS starvation-induced lactate production accompanied by enhancement of HBSS starvation-induced cell apoptosis. Not only in HeLa cells, HBSS-induced lactate production and PDH phosphorylation were also observed in CL1.5, A431 and human umbilical vein endothelial cells. Taken together, we for the first time demonstrated that a low-nutrient condition drives cancer cells to utilize glycolysis to produce ATP, and this increases the Warburg effect through a novel mechanism involving ROS/AMPK-dependent activation of PDK. Such an event contributes to protecting cells from apoptosis upon nutrient deprivation.
Collapse
|
133
|
Wang CH, Wang CC, Huang HC, Wei YH. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J 2013; 280:1039-50. [PMID: 23253816 DOI: 10.1111/febs.12096] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/12/2012] [Accepted: 12/12/2012] [Indexed: 11/28/2022]
Abstract
Adipocytes play an integrative role in the regulation of energy metabolism and glucose homeostasis in the human body. Functional defects in adipocytes may cause systemic disturbance of glucose homeostasis. Recent studies revealed mitochondrial abnormalities in the adipose tissue of patients with type 2 diabetes. In addition, patients with mitochondrial diseases usually manifest systemic metabolic disorder. However, it is unclear how mitochondrial dysfunction in adipocytes affects the regulation of glucose homeostasis. In this study, we induced mitochondrial dysfunction and overproduction of reactive oxygen species (ROS) by addition of respiratory inhibitors oligomycin A and antimycin A and by knockdown of mitochondrial transcription factor A (mtTFA), respectively. We found an attenuation of the insulin response as indicated by lower glucose uptake and decreased phosphorylation of Akt upon insulin stimulation of adipocytes with mitochondrial dysfunction. Furthermore, the expression of glucose transporter 4 (Glut4) and secretion of adiponectin were decreased in adipocytes with increased ROS generated by defective mitochondria. Moreover, the severity of insulin insensitivity was correlated with the extent of mitochondrial dysfunction. These results suggest that higher intracellular ROS levels elicited by mitochondrial dysfunction resulted in impairment of the function of adipocytes in the maintenance of glucose homeostasis through attenuation of insulin signaling, downregulation of Glut4 expression, and decrease in adiponectin secretion. Our findings substantiate the important role of mitochondria in the regulation of glucose homeostasis in adipocytes and also provide a molecular basis for the explanation of the manifestation of diabetes mellitus or insulin insensitivity in a portion of patients with mitochondrial diseases such as MELAS or MERRF syndrome.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
134
|
Ho HY, Cheng ML, Shiao MS, Chiu DTY. Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress. Free Radic Biol Med 2013; 54:71-84. [PMID: 23142419 DOI: 10.1016/j.freeradbiomed.2012.10.557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 10/06/2012] [Accepted: 10/29/2012] [Indexed: 12/30/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is crucial to NADPH generation and redox homeostasis. We have recently shown that G6PD deficiency predisposes cells to oxidant-induced cell death, and it is associated with the impairment of glutathione regeneration. It remains unclear what other metabolic pathways are affected by G6PD deficiency and whether the altered metabolism disturbs cellular redox homeostasis and underlies increased susceptibility to oxidants. In this study, we examined the effects of diamide on global metabolite profiles of SK-Hep1-derived SK-i-Gi and SK-i-Sc cells, which could inducibly express short hairpin RNA (shRNA) against G6PD (Gi) and control shRNA (Sc), respectively. There was no significant difference in their metabolite profiles under uninduced conditions. Doxycycline (Dox) addition resulted in over 70% decrease in G6PD activity in SK-i-Gi cells. This was accompanied by relatively minor changes in the metabolome of SK-i-Gi cells. Upon further diamide treatment, the metabolite profiles of both SK-i-Gi and SK-i-Sc cells changed in a time-dependent manner. A number of metabolic pathways, including those involved in energy metabolism and metabolism of amino acids and glutathione, were affected. However, the changes in the metabolite profile of Dox-treated SK-i-Gi cells were distinct from those of control cells (i.e., Dox-treated SK-i-Sc, SK-i-Gi, and SK-i-Sc cells). Cellular glutathione was depleted, whereas its disulfide form increased significantly in diamide, Dox-treated SK-i-Gi cells. Metabolites related to energy metabolism, such as AMP, ADP, and acetylcarnitine, increased to a greater extent in these cells than in diamide-treated control cells. In contrast, NAD and glutathione dropped to lower levels in SK-i-Gi cells than in control cells. The NAD(+) depletion in SK-i-Gi cells was accompanied by a significant increase in NAD kinase activity. Targeted analyses revealed that NADP(+) and NADPH increased significantly in diamide, Dox-treated SK-i-Gi cells compared with similarly treated control cells. Our results suggest that diamide induces oxidation and depletion of glutathione in SK-i-Gi cells under conditions of G6PD shRNA induction and subsequently induces conversion of NAD(+) to NADP(+) through enhanced NAD kinase activity. This may represent a compensatory mechanism to restore cellular NADPH reserve in G6PD-deficient cells. It is accompanied by alteration in pathways of cellular energy metabolism, such as glycolysis and β-oxidation.
Collapse
Affiliation(s)
- Hung-Yao Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | | | | | | |
Collapse
|
135
|
Perron NR, Beeson C, Rohrer B. Early alterations in mitochondrial reserve capacity; a means to predict subsequent photoreceptor cell death. J Bioenerg Biomembr 2012; 45:101-9. [PMID: 23090843 DOI: 10.1007/s10863-012-9477-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/20/2012] [Indexed: 02/03/2023]
Abstract
Although genetic and environmental factors contribute to neurodegenerative disease, the underlying etiology common to many diseases might be based on metabolic demand. Mitochondria are the main producer of ATP, but are also the major source of reactive oxygen species. Under normal conditions, these oxidants are neutralized; however, under environmental insult or genetic susceptibility conditions, oxidative stress may exceed cellular antioxidant capacities, leading to degeneration. We tested the hypothesis that loss in mitochondrial reserve capacity plays a causative role in neuronal degeneration and chose a cone photoreceptor cell line as our model. 661W cells were exposed to agents that mimic oxidant stress or calcium overload. Real-time changes in cellular metabolism were assessed using the multi-well Seahorse Biosciences XF24 analyzer that measures oxygen consumption (OCR) and extracellular acidification rates (ECAR). Cellular stress resulted in an early loss of mitochondrial reserve capacity, without affecting basal respiration; and ECAR was increased, representing a compensatory shift of ATP productions toward glycolysis. The degree of change in energy metabolism was correlated with the amount of subsequent cell death 24-hours post-treatment, the concentration-dependent loss in mitochondrial reserve capacity correlated with the number of live cells. Our data suggested first, that loss in mitochondrial reserve capacity is a major contributor in disease pathogenesis; and second, that the XF24 assay might represent a useful surrogate assay amenable to the screening of agents that protect against loss of mitochondrial reserve capacity. In future experiments, we will explore these concepts for the development of neuroprotective agents.
Collapse
Affiliation(s)
- Nathan R Perron
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
136
|
O'Mahony F, Razandi M, Pedram A, Harvey BJ, Levin ER. Estrogen modulates metabolic pathway adaptation to available glucose in breast cancer cells. Mol Endocrinol 2012; 26:2058-70. [PMID: 23028062 DOI: 10.1210/me.2012-1191] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Most cancers use glucose as substrate for aerobic glycolysis in preference to oxidative phosphorylation. However, variable glucose concentrations within the in-vivo tumor microenvironment may necessitate metabolic plasticity. Furthermore, little information exists on a role for estrogen receptors in modulating possible metabolic adaptations in breast cancer cells. Here we find that MCF-7 cells switch between metabolic pathways depending on glucose availability and 17β-estradiol (E(2)) potentiates adaptation. In high glucose conditions E(2) up-regulates glycolysis via enhanced AKT kinase activity and suppresses tricarboxylic acid cycle activity. After a decrease in extracellular glucose, mitochondrial pathways are activated in preference to glycolysis. In this setting, E(2) suppresses glycolysis and rescues cell viability by stimulating the tricarboxylic acid cycle via the up-regulation of pyruvate dehydrogenase (PDH) activity. E(2) also increases ATP in low glucose-cultured cells, and the novel phosphorylation of PDH by AMP kinase is required for these metabolic compensations. Capitalizing on metabolic vulnerability, knockdown of PDH in the low-glucose state strongly potentiates ionizing radiation-induced apoptosis and reverses the cell survival effects of E(2). We propose that lowering glucose substrate and inhibiting PDH may augment adjuvant therapies for estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Fiona O'Mahony
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, California 90822, USA
| | | | | | | | | |
Collapse
|
137
|
Tang H, Lee M, Sharpe O, Salamone L, Noonan EJ, Hoang CD, Levine S, Robinson WH, Shrager JB. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems. FASEB J 2012; 26:4710-21. [PMID: 22767230 DOI: 10.1096/fj.11-197467] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycolysis is the initial step of glucose catabolism and is up-regulated in cancer cells (the Warburg Effect). Such shifts toward a glycolytic phenotype have not been explored widely in other biological systems, and the molecular mechanisms underlying the shifts remain unknown. With proteomics, we observed increased glycolysis in disused human diaphragm muscle. In disused muscle, lung cancer, and H(2)O(2)-treated myotubes, we show up-regulation of the rate-limiting glycolytic enzyme muscle-type phosphofructokinase (PFKm, >2 fold, P<0.05) and accumulation of lactate (>150%, P<0.05). Using microRNA profiling, we identify miR-320a as a regulator of PFKm expression. Reduced miR-320a levels (to ∼50% of control, P<0.05) are associated with the increased PFKm in each of these diverse systems. Manipulation of miR-320a levels both in vitro and in vivo alters PFKm and lactate levels in the expected directions. Further, miR-320a appears to regulate oxidative stress-induced PFKm expression, and reduced miR-320a allows greater induction of glycolysis in response to H(2)O(2) treatment. We show that this microRNA-mediated regulation occurs through PFKm's 3' untranslated region and that Ets proteins are involved in the regulation of PFKm via miR-320a. These findings suggest that oxidative stress-responsive microRNA-320a may regulate glycolysis broadly within nature.
Collapse
Affiliation(s)
- Huibin Tang
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California 94305-5407, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Da Silva D, Ausina P, Alencar EM, Coelho WS, Zancan P, Sola-Penna M. Metformin reverses hexokinase and phosphofructokinase downregulation and intracellular distribution in the heart of diabetic mice. IUBMB Life 2012; 64:766-74. [DOI: 10.1002/iub.1063] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/25/2012] [Indexed: 01/19/2023]
|