101
|
Hatami-Marbini H, Rohanifar M. Nonlinear Mechanical Properties of Prestressed Branched Fibrous Networks. Biophys J 2021; 120:527-538. [PMID: 33412143 DOI: 10.1016/j.bpj.2020.10.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 10/07/2020] [Indexed: 10/22/2022] Open
Abstract
Random fiber networks constitute the solid skeleton of many biological materials such as the cytoskeleton of cells and extracellular matrix of soft tissues. These random networks show unique mechanical properties such as nonlinear shear strain-stiffening and strain softening when subjected to preextension and precompression, respectively. In this study, we perform numerical simulations to characterize the influence of axial prestress on the nonlinear mechanical response of random network structures as a function of their micromechanical and geometrical properties. We build our numerical network models using the microstructure of disordered hexagonal lattices and quantify their nonlinear shear response as a function of uniaxial prestress strain. We consider three different material models for individual fibers and fully characterize their influence on the mechanical response of prestressed networks. Moreover, we investigate both the influence of geometric disorder keeping the network connectivity constant and the influence of the randomness in the stiffness of individual fibers keeping their mean stiffness constant. The effects of network connectivity and bending rigidity of fibers are also determined. Several important conclusions are made, including that the tensile and compressive prestress strains, respectively, increase and decrease the initial network shear stiffness but have no effect on the maximal shear modulus. We discuss the findings in terms of microstructural properties such as the local strain energy distribution.
Collapse
Affiliation(s)
- Hamed Hatami-Marbini
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois.
| | - Milad Rohanifar
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
102
|
Boot RC, Koenderink GH, Boukany PE. Spheroid mechanics and implications for cell invasion. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1978316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ruben C. Boot
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Pouyan E. Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
103
|
Schönborn K, Willenborg S, Schulz JN, Imhof T, Eming SA, Quondamatteo F, Brinckmann J, Niehoff A, Paulsson M, Koch M, Eckes B, Krieg T. Role of collagen XII in skin homeostasis and repair. Matrix Biol 2020; 94:57-76. [DOI: 10.1016/j.matbio.2020.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/20/2023]
|
104
|
Shiwarski DJ, Tashman JW, Tsamis A, Bliley JM, Blundon MA, Aranda-Michel E, Jallerat Q, Szymanski JM, McCartney BM, Feinberg AW. Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. Nat Commun 2020; 11:5883. [PMID: 33208732 PMCID: PMC7675982 DOI: 10.1038/s41467-020-19659-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrates 2D and 3D surface strain tracking during mechanical deformation of known materials and is validated with finite element modeling. Analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles highlights the NMBS's ability to dynamically track microscopic tensile and compressive strains across diverse biological systems where forces guide structure and function.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alkiviadis Tsamis
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jaci M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Malachi A Blundon
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Edgar Aranda-Michel
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Brooke M McCartney
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
105
|
Xu Q, Ying P, Ren J, Kong N, Wang Y, Li YG, Yao Y, Kaplan DL, Ling S. Biomimetic Design for Bio-Matrix Interfaces and Regenerative Organs. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:411-429. [PMID: 33138695 DOI: 10.1089/ten.teb.2020.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The urgent demand for transplanted organs has motivated the development of regenerative medicine to biomimetically reconstruct the structure and function of natural tissues or organs. The prerequisites for constructing multicellular organs include specific cell sources, suitable scaffolding material, and interconnective biofunctional interfaces. As some of the most complex systems in nature, human organs, tissues, and cellular units have unique "bio-matrix" physicochemical interfaces. Human tissues support a large number of cells with distinct biofunctional interfaces for compartmentalization related to metabolism, material exchange, and physical barriers. These naturally shaped biofunctional interfaces support critical metabolic functions that drive adaptive human behavior. In contrast, mutations and disorders during organogenesis can disrupt these interfaces as a consequence of disease and trauma. To replicate the appropriate structure and physiological function of tissues and organs, the biomaterials used in these approaches should have properties that mimic those of natural biofunctional interfaces. In this review, the focus is on the biomimetic design of functional interfaces and hierarchical structures for four regenerative organs, liver, kidney, lung, heart, and the immune system. Research on these organs provides understanding of cell-matrix interactions for hierarchically bioinspired material engineering, and guidance for the design of bioartificial organs. Finally, we provide perspectives on future challenges in biofunctional interface designs and discuss the obstacles that remain toward the generation of functional bioartificial organs.
Collapse
Affiliation(s)
- Quanfu Xu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Ying
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
106
|
New Approaches in the Study of the Pathogenesis of Urethral Pain Syndrome. Diagnostics (Basel) 2020; 10:diagnostics10110860. [PMID: 33105749 PMCID: PMC7690567 DOI: 10.3390/diagnostics10110860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Urethral pain syndrome (UPS) is still a pathology in which the diagnosis is formulated as a "diagnosis of exclusion". The exact pathogenetic mechanisms are not yet fully understood and clear recommendations for the prevention and treatment of UPS are absent. METHODS AND PARTICIPANTS A clinical and laboratory evaluation of 55 patients with established UPS included history taking, basic laboratory tests (e.g., complete blood count and clinical urine test), physical examination, uroflowmetry, and cystourethroscopy. Additionally, transvaginal ultrasound (TVUS) with compression elastography and cross-polarization optical tomography (CP OCT) were performed in 24 and 33 patients with UPS, respectively. The control group consisted of 14 patients with no complaints from the urinary system. RESULTS TVUS showed an expansion in the diameter of the internal lumen of the urethra, especially in the proximal region compared with the norm. Compression elastography revealed areas with increased stiffness (presence of fibrosis) in urethral and surrounding tissues. The performed CP OCT study showed that in UPS, the structure of the tissues in most cases was changed: trophic alterations in the epithelium (hypertrophy or atrophy) and fibrosis of underlying connective tissue were observed. The proximal fragment of the urethra with UPS underwent changes identical to those of the bladder neck. CONCLUSION This paper showed that the introduction of new technology-CP OCT-in conjunction with TVUS will allow verification of structural changes in tissues of the lower urinary tract at the level of their architectonics and will help doctors understand better the basics of the UPS pathogenesis.
Collapse
|
107
|
Egea G, Jiménez-Altayó F, Campuzano V. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis and Progression of Genetic Diseases of the Connective Tissue. Antioxidants (Basel) 2020; 9:antiox9101013. [PMID: 33086603 PMCID: PMC7603119 DOI: 10.3390/antiox9101013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Connective tissue is known to provide structural and functional “glue” properties to other tissues. It contains cellular and molecular components that are arranged in several dynamic organizations. Connective tissue is the focus of numerous genetic and nongenetic diseases. Genetic diseases of the connective tissue are minority or rare, but no less important than the nongenetic diseases. Here we review the impact of reactive oxygen species (ROS) and oxidative stress on the onset and/or progression of diseases that directly affect connective tissue and have a genetic origin. It is important to consider that ROS and oxidative stress are not synonymous, although they are often closely linked. In a normal range, ROS have a relevant physiological role, whose levels result from a fine balance between ROS producers and ROS scavenge enzymatic systems. However, pathology arises or worsens when such balance is lost, like when ROS production is abnormally and constantly high and/or when ROS scavenge (enzymatic) systems are impaired. These concepts apply to numerous diseases, and connective tissue is no exception. We have organized this review around the two basic structural molecular components of connective tissue: The ground substance and fibers (collagen and elastic fibers).
Collapse
Affiliation(s)
- Gustavo Egea
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Institut de Nanociencies I Nanotecnologia (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-021-909
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology, Therapeutics, and Toxicology, Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| | - Victoria Campuzano
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
| |
Collapse
|
108
|
Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020; 25:molecules25204802. [PMID: 33086674 PMCID: PMC7587995 DOI: 10.3390/molecules25204802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Chan Ho Park
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6890
| |
Collapse
|
109
|
Type II Collagen from Cartilage of Acipenser baerii Promotes Wound Healing in Human Dermal Fibroblasts and in Mouse Skin. Mar Drugs 2020; 18:md18100511. [PMID: 33050593 PMCID: PMC7601416 DOI: 10.3390/md18100511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Type II collagen is an important component of cartilage; however, little is known about its effect on skin wound healing. In this study, type II collagen was extracted from the cartilage of Acipenser baerii and its effect on in vitro and in vivo wound healing was compared to type I collagen derived from tilapia skin. Sturgeon cartilage collagen (SCC) was composed of α1 chains and with a thermal denaturation (Td) at 22.5 and melting temperature (Tm) at 72.5 °C. Coating SCC potentiated proliferation, migration, and invasion of human dermal fibroblast adult (HDFa) cells. Furthermore, SCC upregulated the gene expression of extracellular matrix (ECM) components (col Iα1, col IIIα1, elastin, and Has2) and epithelial-mesenchymal transition (EMT) molecules (N-cadherin, Snail, and MMP-1) in HDFa. Pretreatment with Akt and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated the HDFa invasion caused by SCC. In mice, the application of SCC on dorsal wounds effectively facilitated wound healing as evidenced by 40–59% wound contraction, whereas the untreated wounds were 18%. We observed that SCC reduced inflammation, promoted granulation, tissue formation, and ECM deposition, as well as re-epithelialization in skin wounds. In addition, SCC markedly upregulated the production of growth factors in the dermis, and dermal and subcutaneous white adipose tissue; in contrast, the administration of tilapia skin collagen (TSC) characterized by typical type I collagen was mainly expressed in the epidermis. Collectively, these findings indicate SCC accelerated wound healing by targeting fibroblast in vitro and in vivo.
Collapse
|
110
|
Umar SA, Tasduq SA. Integrating DNA damage response and autophagy signalling axis in ultraviolet-B induced skin photo-damage: a positive association in protecting cells against genotoxic stress. RSC Adv 2020; 10:36317-36336. [PMID: 35517978 PMCID: PMC9057019 DOI: 10.1039/d0ra05819j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/13/2020] [Indexed: 01/27/2023] Open
Abstract
The skin acts as both physical as well as an immunological barrier against hazardous agents from the outside environment and protects the internal organs against damage. Skin ageing is a dynamic process caused by the influence of various external factors, including damage from ultraviolet (UV-B) radiation, which is known as photo-ageing, and due to internal chronological mechanisms. A normal ageing process requires several orchestrated defense mechanisms to diverse types of stress responses, the concomitant renewal of cellular characteristics, and the homeostasis of different cell types that directly or indirectly protect the integrity of skin. Cumulative oxidative and endoplasmic reticulum (ER) stress responses and their adverse impact on biological systems in the skin are a common mechanism of the ageing process, negatively impacting DNA by causing mutations that lead to many physiological, functional, and aesthetic changes in the skin, culminating in the development of many diseases, including photo-damage and photo-carcinogenesis. Exposure of the skin to ultraviolet-(B) elicits the activation of signal transduction pathways, including DNA damage response, autophagy, and checkpoint signal adaptations associated with clearing radiation-induced DNA damage. Recent experimental reports suggest that autophagy is involved in maintaining skin homeostasis upon encountering different stresses, notably genotoxic stress. It has also been revealed that autophagy positively regulates the recognition of DNA damage by nucleotide excision repair and that skin ageing is associated with defects in the autophagy process. Moreover, autophagy is constitutively active in the skin epithelium, imparting protection to skin cells against a diverse range of outside insults, thus increasing resistance to environmental stressors. It has also been found that the stress-induced suppression of the autophagy response in experimental settings leads to enhanced apoptosis during photo-ageing upon UV-B exposure and that the maintenance of homeostasis depends on cellular autophagy levels. More recent reports in this domain claim that relieving the oxidative-stress-mediated induction of the ER stress response upon UV-B irradiation protects skin cells from photo-damage effects. The integration of autophagy and the DNA damage response under genotoxic stress is being considered as a meaningful partnership for finding novel molecular targets and devising suitable therapeutic strategies against photo-ageing disorders. Here, we summarize and review the current understanding of the mechanisms governing the intricate interplay between autophagy and the DNA damage response and its regulation by UV-B, the roles of autophagy in regulating the cellular response to UV-B-induced photodamage, and the implications of the modulation of autophagy as a meaningful partnership in the treatment and prevention of photoaging disorders.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| | - Sheikh Abdullah Tasduq
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| |
Collapse
|
111
|
Ouyang M, Qian Z, Bu B, Jin Y, Wang J, Zhu Y, Liu L, Pan Y, Deng L. Sensing Traction Force on the Matrix Induces Cell-Cell Distant Mechanical Communications for Self-Assembly. ACS Biomater Sci Eng 2020; 6:5833-5848. [PMID: 33320570 DOI: 10.1021/acsbiomaterials.0c01035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The long-range biomechanical force propagating across a large scale may reserve the capability to trigger coordinative responses within cell population such as during angiogenesis, epithelial tubulogenesis, and cancer metastasis. How cells communicate in a distant manner within the group for self-assembly remains largely unknown. Here, we found that airway smooth muscle cells (ASMCs) rapidly self-assembled into a well-constructed network on 3D Matrigel containing type I collagen (COL), which relied on long-range biomechanical force across the matrix to direct cell-cell distant interactions. Similar results happened by HUVEC cells to mimic angiogenesis. Interestingly, single ASMCs initiated multiple extended protrusions precisely pointing to neighboring cells in distance (100-300 μm away or 5-10 folds of the diameter of a round single cell), depending on traction force sensing. Individual ASMCs mechanosensed each other to move directionally on both nonfibrous Matrigel only and Matrigel containing fibrous COL but lost mutual sensing on the cross-linked gel or coated glass due to no long-range force transmission. The bead tracking assay demonstrated distant transmission of traction force (up to 400 μm) during the matrix deformation, and finite element method modeling confirmed the consistency between maximum strain distribution on the matrix and cell directional movements in experiments. Furthermore, ASMCs recruited COL from the hydrogel to build a fibrous network to mechanically stabilize the cell network. Our results revealed principally that cells can sense traction force transmitted through the matrix to initiate cell-cell distant mechanical communications, resulting in cell directional migration and coordinated cell and COL self-assembly with active matrix remodeling. As an interesting phenomenon, cells seem to be able to "make a phone call" via long-range biomechanics, which implicates physiological importance such as for tissue pattern formation.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Zhili Qian
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Yang Jin
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Jiajia Wang
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Yiming Zhu
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| |
Collapse
|
112
|
Vazquez-Portalatin N, Alfonso-Garcia A, Liu JC, Marcu L, Panitch A. Physical, Biomechanical, and Optical Characterization of Collagen and Elastin Blend Hydrogels. Ann Biomed Eng 2020; 48:2924-2935. [PMID: 32929559 DOI: 10.1007/s10439-020-02605-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Collagen and elastin proteins are major components of the extracellular matrix of many organs. The presence of collagen and elastin networks, and their associated properties, in different tissues have led scientists to study collagen and elastin composites for use in tissue engineering. In this study, we characterized physical, biochemical, and optical properties of gels composed of collagen and elastin blends. We demonstrated that the addition of varying amounts of elastin to the constructs alters collagen fibrillogenesis, D-banding pattern length, and storage modulus. However, the addition of elastin does not affect collagen fibril diameter. We also evaluated the autofluorescence properties of the different collagen and elastin blends with fluorescence lifetime imaging (FLIm). Autofluorescence emission showed a red shift with the addition of elastin to the hydrogels. The fluorescence lifetime values of the gels increased with the addition of elastin and were strongly correlated with the storage moduli measurements. These results suggest that FLIm can be used to monitor the gels' mechanical properties nondestructively. These collagen and elastin constructs, along with the FLIm capabilities, can be used to develop and study collagen and elastin composites for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Nelda Vazquez-Portalatin
- Biomedical Engineering Department, University of California, Davis, 451 Health Sciences Dr, Davis, CA, 95616, USA.,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA
| | - Alba Alfonso-Garcia
- Biomedical Engineering Department, University of California, Davis, 451 Health Sciences Dr, Davis, CA, 95616, USA
| | - Julie C Liu
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA.,Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Dr, West Lafayette, IN, 47907, USA
| | - Laura Marcu
- Biomedical Engineering Department, University of California, Davis, 451 Health Sciences Dr, Davis, CA, 95616, USA
| | - Alyssa Panitch
- Biomedical Engineering Department, University of California, Davis, 451 Health Sciences Dr, Davis, CA, 95616, USA. .,Department of Surgery, University of California, Davis, 2335 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
113
|
Le Goas M, Testard F, Taché O, Debou N, Cambien B, Carrot G, Renault JP. How Do Surface Properties of Nanoparticles Influence Their Diffusion in the Extracellular Matrix? A Model Study in Matrigel Using Polymer-Grafted Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10460-10470. [PMID: 32787032 DOI: 10.1021/acs.langmuir.0c01624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diffusion of nanomedicines inside the extracellular matrix (ECM) has been identified as a key factor to achieve homogeneous distribution and therefore therapeutic efficacy. Here, we sought to determine the impact of nanoparticles' (NPs) surface properties on their ability to diffuse in the ECM. As model nano-objects, we used a library of gold nanoparticles grafted with a versatile polymethacrylate corona, which enabled the surface properties to be modified. To accurately recreate the features of the native ECM, diffusion studies were carried out in a tumor-derived gel (Matrigel). We developed two methods to evaluate the diffusion ability of NPs inside this model gel: an easy-to-implement one based on optical monitoring and another one using small-angle X-ray scattering (SAXS) measurements. Both enabled the determination of the diffusion coefficients of NPs and comparison of the influence of their various surface properties, while the SAXS technique also allowed to monitor the NPs' structure as they diffused inside the gel. Positive charges and hydrophobicity were found to particularly hinder diffusion, and the different results suggested on the whole the presence of NPs-matrix interactions, therefore underlying the importance of the ECM model. The accuracy of the tumor-derived gels used in this study was evidenced by in vivo experiments involving intratumoral injections of NPs on mice, which showed that diffusion patterns in the peripheral tumor tissues were quite similar to the ones obtained within the chosen ECM model.
Collapse
Affiliation(s)
- Marine Le Goas
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Fabienne Testard
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Olivier Taché
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Nabila Debou
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Béatrice Cambien
- Laboratoire TIRO, UMRE 4320, Université Côte d'Azur, CEA, 06107 Nice Cedex, France
| | - Geraldine Carrot
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Philippe Renault
- NIMBE, CEA, CNRS UMR 3685, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
114
|
Chen M, Shetye SS, Rooney SI, Soslowsky LJ. Short- and Long-Term Exercise Results in a Differential Achilles Tendon Mechanical Response. J Biomech Eng 2020; 142:081011. [PMID: 32253439 PMCID: PMC7477707 DOI: 10.1115/1.4046864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/22/2020] [Indexed: 12/28/2022]
Abstract
The study was conducted to define the biomechanical response of rat Achilles tendon after a single bout of exercise and a short or long duration of daily exercise. We hypothesized that a single bout or a short duration of exercise would cause a transient decrease in Achilles tendon mechanical properties and a long duration of daily exercise would improve these properties. One hundred and thirty-six Sprague-Dawley rats were divided into cage activity (CA) or exercise (EX) groups for a single bout, short-term, or long-term exercise. Animals in single bout EX groups were euthanized, 3, 12, 24, or 48 h upon completion of a single bout of exercise (10 m/min, 1 h) on a flat treadmill. Animals in short-term EX groups ran on a flat treadmill for 3 days, 1, or 2 weeks while animals in long-term EX groups ran for 8 weeks. Tendon quasi-static and viscoelastic response was evaluated for all Achilles tendons. A single bout of exercise increased tendon stiffness after 48 h of recovery. Short-term exercise up to 1 week decreased cross-sectional area, stiffness, modulus, and dynamic modulus of the Achilles tendon. In contrast, 8 weeks of daily exercise increased stiffness, modulus, and dynamic modulus of the tendon. This study highlights the response of Achilles tendons to single and sustained bouts of exercise. Adequate time intervals are important to allow for tendon adaptations when initiating a new training regimen and overall beneficial effects to the Achilles tendon.
Collapse
Affiliation(s)
- Mengcun Chen
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, G13A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
115
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
116
|
O’Connor BB, Pope BD, Peters MM, Ris-Stalpers C, Parker KK. The role of extracellular matrix in normal and pathological pregnancy: Future applications of microphysiological systems in reproductive medicine. Exp Biol Med (Maywood) 2020; 245:1163-1174. [PMID: 32640894 PMCID: PMC7400725 DOI: 10.1177/1535370220938741] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT Extracellular matrix in the womb regulates the initiation, progression, and completion of a healthy pregnancy. The composition and physical properties of extracellular matrix in the uterus and at the maternal-fetal interface are remodeled at each gestational stage, while maladaptive matrix remodeling results in obstetric disease. As in vitro models of uterine and placental tissues, including micro-and milli-scale versions of these organs on chips, are developed to overcome the inherent limitations of studying human development in vivo, we can isolate the influence of cellular and extracellular components in healthy and pathological pregnancies. By understanding and recreating key aspects of the extracellular microenvironment at the maternal-fetal interface, we can engineer microphysiological systems to improve assisted reproduction, obstetric disease treatment, and prenatal drug safety.
Collapse
Affiliation(s)
- Blakely B O’Connor
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Michael M Peters
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| | - Carrie Ris-Stalpers
- Department of Gynecology and Obstetrics, Academic Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam 1105, The Netherlands
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
117
|
Liguori GR, Liguori TTA, de Moraes SR, Sinkunas V, Terlizzi V, van Dongen JA, Sharma PK, Moreira LFP, Harmsen MC. Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity. Front Bioeng Biotechnol 2020; 8:520. [PMID: 32548106 PMCID: PMC7273975 DOI: 10.3389/fbioe.2020.00520] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
Decellularized-organ-derived extracellular matrix (dECM) has been used for many years in tissue engineering and regenerative medicine. The manufacturing of hydrogels from dECM allows to make use of the pro-regenerative properties of the ECM and, simultaneously, to shape the material in any necessary way. The objective of the present project was to investigate differences between cardiovascular tissues (left ventricle, mitral valve, and aorta) with respect to generating dECM hydrogels and their interaction with cells in 2D and 3D. The left ventricle, mitral valve, and aorta of porcine hearts were decellularized using a series of detergent treatments (SDS, Triton-X 100 and deoxycholate). Mass spectrometry-based proteomics yielded the ECM proteins composition of the dECM. The dECM was digested with pepsin and resuspended in PBS (pH 7.4). Upon warming to 37°C, the suspension turns into a gel. Hydrogel stiffness was determined for samples with a dECM concentration of 20 mg/mL. Adipose tissue-derived stromal cells (ASC) and a combination of ASC with human pulmonary microvascular endothelial cells (HPMVEC) were cultured, respectively, on and in hydrogels to analyze cellular plasticity in 2D and vascular network formation in 3D. Differentiation of ASC was induced with 10 ng/mL of TGF-β1 and SM22α used as differentiation marker. 3D vascular network formation was evaluated with confocal microscopy after immunofluorescent staining of PECAM-1. In dECM, the most abundant protein was collagen VI for the left ventricle and mitral valve and elastin for the aorta. The stiffness of the hydrogel derived from the aorta (6,998 ± 895 Pa) was significantly higher than those derived from the left ventricle (3,384 ± 698 Pa) and the mitral valve (3,233 ± 323 Pa) (One-way ANOVA, p = 0.0008). Aorta-derived dECM hydrogel drove non-induced (without TGF-β1) differentiation, while hydrogels derived from the left ventricle and mitral valve inhibited TGF-β1-induced differentiation. All hydrogels supported vascular network formation within 7 days of culture, but ventricular dECM hydrogel demonstrated more robust vascular networks, with thicker and longer vascular structures. All the three main cardiovascular tissues, myocardium, valves, and large arteries, could be used to fabricate hydrogels from dECM, and these showed an origin-dependent influence on ASC differentiation and vascular network formation.
Collapse
Affiliation(s)
- Gabriel Romero Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Tácia Tavares Aquinas Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sérgio Rodrigues de Moraes
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Viktor Sinkunas
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vincenzo Terlizzi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joris A van Dongen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Prashant K Sharma
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Luiz Felipe Pinho Moreira
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
118
|
A viscoelastic two-dimensional network model of the lung extracellular matrix. Biomech Model Mechanobiol 2020; 19:2241-2253. [PMID: 32410075 DOI: 10.1007/s10237-020-01336-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM) comprises a large proportion of the lung parenchymal tissue and is an important contributor to the mechanical properties of the lung. The lung tissue is a biologically active scaffold with a complex ECM matrix structure and composition that provides physical support to the surrounding cells. Nearly all respiratory pathologies result in changes in the structure and composition of the ECM; however, the impact of these alterations on the mechanical properties of the tissue is not well understood. In this study, a novel network model was developed to incorporate the combinatorial effect of lung tissue ECM constituents such as collagen, elastin and proteoglycans (PGs) and used to mimic the experimentally derived length-tension response of the tissue to uniaxial loading. By modelling the effect of collagen elasticity as an exponential function with strain, and in concert with the linear elastic response of elastin, the network model's mechanical response matched experimental stress-strain curves from the literature. In addition, by incorporating spring-dashpot viscoelastic elements, to represent the PGs, the hysteresis response was also simulated. Finally, by selectively reducing volume fractions of the different ECM constituents, we were able to gain insight into their relative mechanical contribution to the larger scale tissue mechanical response.
Collapse
|
119
|
Sharath SS, Ramu J, Nair SV, Iyer S, Mony U, Rangasamy J. Human Adipose Tissue Derivatives as a Potent Native Biomaterial for Tissue Regenerative Therapies. Tissue Eng Regen Med 2020; 17:123-140. [PMID: 31953618 PMCID: PMC7105544 DOI: 10.1007/s13770-019-00230-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human adipose tissue is a great source of translatable biomaterials owing to its ease of availability and simple processing. Reusing discardable adipose tissue for tissue regeneration helps in mimicking the exact native microenvironment of tissue. Over the past 10 years, extraction, processing, tuning and fabrication of adipose tissue have grabbed the attention owing to their native therapeutic and regenerative potential. The present work gives the overview of next generation biomaterials derived from human adipose tissue and their development with clinical relevance. METHODS Around 300 articles have been reviewed to widen the knowledge on the isolation, characterization techniques and medical applications of human adipose tissue and its derivatives from bench to bedside. The prospective applications of adipose tissue derivatives like autologous fat graft, stromal vascular fraction, stem cells, preadipocyte, adipokines and extracellular matrix, their behavioural mechanism, rational property of providing native bioenvironment, circumventing their translational abilities, recent advances in featuring them clinically have been reviewed extensively to reveal the dormant side of human adipose tissue. RESULTS Basic understanding about the molecular and structural aspect of human adipose tissue is necessary to employ it constructively. This review has nailed the productive usage of human adipose tissue, in a stepwise manner from exploring the methods of extracting derivatives, concerns during processing and its formulations to turning them into functional biomaterials. Their performance as functional biomaterials for skin regeneration, wound healing, soft tissue defects, stem cell and other regenerative therapies under in vitro and in vivo conditions emphasizes the translational efficiency of adipose tissue derivatives. CONCLUSION In the recent years, research interest has inclination towards constructive tissue engineering and regenerative therapies. Unravelling the maximum utilization of human adipose tissue derivatives paves a way for improving existing tissue regeneration and cellular based therapies and other biomedical applications.
Collapse
Affiliation(s)
- Siva Sankari Sharath
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Janarthanan Ramu
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Shantikumar Vasudevan Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Subramaniya Iyer
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
120
|
Deo KA, Singh KA, Peak CW, Alge DL, Gaharwar AK. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Eng Part A 2020; 26:318-338. [PMID: 32079490 PMCID: PMC7480731 DOI: 10.1089/ten.tea.2019.0298] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
3D bioprinting is an additive manufacturing technique that recapitulates the native architecture of tissues. This is accomplished through the precise deposition of cell-containing bioinks. The spatiotemporal control over bioink deposition permits for improved communication between cells and the extracellular matrix, facilitates fabrication of anatomically and physiologically relevant structures. The physiochemical properties of bioinks, before and after crosslinking, are crucial for bioprinting complex tissue structures. Specifically, the rheological properties of bioinks determines printability, structural fidelity, and cell viability during the printing process, whereas postcrosslinking of bioinks are critical for their mechanical integrity, physiological stability, cell survival, and cell functions. In this review, we critically evaluate bioink design criteria, specifically for extrusion-based 3D bioprinting techniques, to fabricate complex constructs. The effects of various processing parameters on the biophysical and biochemical characteristics of bioinks are discussed. Furthermore, emerging trends and future directions in the area of bioinks and bioprinting are also highlighted. Graphical abstract [Figure: see text] Impact statement Extrusion-based 3D bioprinting is an emerging additive manufacturing approach for fabricating cell-laden tissue engineered constructs. This review critically evaluates bioink design criteria to fabricate complex tissue constructs. Specifically, pre- and post-printing evaluation approaches are described, as well as new research directions in the field of bioink development and functional bioprinting are highlighted.
Collapse
Affiliation(s)
- Kaivalya A. Deo
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Kanwar Abhay Singh
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Charles W. Peak
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Daniel L. Alge
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Akhilesh K. Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas
| |
Collapse
|
121
|
Kronemberger GS, Dalmônico GML, Rossi AL, Leite PEC, Saraiva AM, Beatrici A, Silva KR, Granjeiro JM, Baptista LS. Scaffold- and serum-free hypertrophic cartilage tissue engineering as an alternative approach for bone repair. Artif Organs 2020; 44:E288-E299. [PMID: 31950507 DOI: 10.1111/aor.13637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | | | | | - Paulo Emílio Correa Leite
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Antonio M Saraiva
- Laboratory of Macromolecules, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Anderson Beatrici
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Scientific and Technological Metrology Division (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
122
|
Sohutskay DO, Puls TJ, Voytik-Harbin SL. Collagen Self-assembly: Biophysics and Biosignaling for Advanced Tissue Generation. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
123
|
Giverso C, Di Stefano S, Grillo A, Preziosi L. A three dimensional model of multicellular aggregate compression. SOFT MATTER 2019; 15:10005-10019. [PMID: 31761911 DOI: 10.1039/c9sm01628g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multicellular aggregates are an excellent model system to explore the role of tissue biomechanics, which has been demonstrated to play a crucial role in many physiological and pathological processes. In this paper, we propose a three-dimensional mechanical model and apply it to the uniaxial compression of a multicellular aggregate in a realistic biological setting. In particular, we consider an aggregate of initially spherical shape and describe both its elastic deformations and the reorganisation of the cells forming the spheroid. The latter phenomenon, understood as remodelling, is accounted for by assuming that the aggregate undergoes plastic-like distortions. The study of the compression of the spheroid, achieved by means of two parallel, compressive plates, needs the formulation of a contact problem between the living spheroid itself and the plates, and is solved with the aid of the augmented Lagrangian method. The results of the performed numerical simulations are in qualitative agreement with the biological observations reported in the literature and can also be used to estimate quantitatively some fundamental aggregate mechanical parameters.
Collapse
Affiliation(s)
- Chiara Giverso
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi, 24 - 10129 Torino, Italy.
| | | | | | | |
Collapse
|
124
|
|
125
|
Deville SS, Cordes N. The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome-A Review. Front Oncol 2019; 9:1376. [PMID: 31867279 PMCID: PMC6908495 DOI: 10.3389/fonc.2019.01376] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Alterations in mechano-physiological properties of a tissue instigate cancer burdens in parallel to common genetic and epigenetic alterations. The chronological and mechanistic interrelation between the various extra- and intracellular aspects remains largely elusive. Mechano-physiologically, integrins and other cell adhesion molecules present the main mediators for transferring and distributing forces between cells and the extracellular matrix (ECM). These cues are channeled via focal adhesion proteins, termed the focal adhesomes, to cytoskeleton and nucleus and vice versa thereby affecting the pathophysiology of multicellular cancer tissues. In combination with simultaneous activation of diverse downstream signaling pathways, the phenotypes of cancer cells are created and driven characterized by deregulated transcriptional and biochemical cues that elicit the hallmarks of cancer. It, however, remains unclear how elastostatic modifications, i.e., stiffness, in the extracellular, intracellular, and nuclear compartment contribute and control the resistance of cancer cells to therapy. In this review, we discuss how stiffness of unique tumor components dictates therapy response and what is known about the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Germany German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
126
|
León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed Collagen-Sources and Applications. Molecules 2019; 24:E4031. [PMID: 31703345 PMCID: PMC6891674 DOI: 10.3390/molecules24224031] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Hydrolyzed collagen (HC) is a group of peptides with low molecular weight (3-6 KDa) that can be obtained by enzymatic action in acid or alkaline media at a specific incubation temperature. HC can be extracted from different sources such as bovine or porcine. These sources have presented health limitations in the last years. Recently research has shown good properties of the HC found in skin, scale, and bones from marine sources. Type and source of extraction are the main factors that affect HC properties, such as molecular weight of the peptide chain, solubility, and functional activity. HC is widely used in several industries including food, pharmaceutical, cosmetic, biomedical, and leather industries. The present review presents the different types of HC, sources of extraction, and their applications as a biomaterial.
Collapse
Affiliation(s)
- Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Alejandro Morales-Peñaloza
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan s/n, Colonia, Chimalpa Tlalayote, Apan, Hidalgo 43920 Mexico;
| | - Víctor Manuel Martínez-Juárez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Apolonio Vargas-Torres
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland;
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| |
Collapse
|
127
|
Tam E, McGrath M, Sladkova M, AlManaie A, Alostaad A, de Peppo GM. Hypothermic and cryogenic preservation of tissue-engineered human bone. Ann N Y Acad Sci 2019; 1460:77-87. [PMID: 31667884 PMCID: PMC7027566 DOI: 10.1111/nyas.14264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
To foster translation and commercialization of tissue-engineered products, preservation methods that do not significantly compromise tissue properties need to be designed and tested. Robust preservation methods will enable the distribution of tissues to third parties for research or transplantation, as well as banking of off-the-shelf products. We recently engineered bone grafts from induced pluripotent stem cells and devised strategies to facilitate a tissue-engineering approach to segmental bone defect therapy. In this study, we tested the effects of two potential preservation methods on the survival, quality, and function of tissue-engineered human bone. Engineered bone grafts were cultured for 5 weeks in an osteogenic environment and then stored in phosphate-buffered saline (PBS) solution at 4 °C or in Synth-a-Freeze™ at -80 °C. After 48 h, samples were warmed up in a water bath at 37 °C, incubated in osteogenic medium, and analyzed 1 and 24 h after revitalization. The results show that while storage in Synth-a-Freeze at -80 °C results in cell death and structural alteration of the extracellular matrix, hypothermic storage in PBS does not significantly affect tissue viability and integrity. This study supports the use of short-term hypothermic storage for preservation and distribution of high-quality tissue-engineered bone grafts for research and future clinical applications.
Collapse
Affiliation(s)
- Edmund Tam
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Madison McGrath
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Martina Sladkova
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Athbah AlManaie
- The New York Stem Cell Foundation Research Institute, New York, New York
| | - Anaam Alostaad
- The New York Stem Cell Foundation Research Institute, New York, New York
| | | |
Collapse
|
128
|
Jung B, Huh H, Lee EH, Han M, Park J. An advanced focused ultrasound protocol improves the blood-brain barrier permeability and doxorubicin delivery into the rat brain. J Control Release 2019; 315:55-64. [PMID: 31669208 DOI: 10.1016/j.jconrel.2019.10.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
Despite the recent development of a focused ultrasound (FUS) technique for disrupting the blood-brain barrier (BBB) and enabling the delivery of drugs into the targeted brain region, different sonication protocols have not been fully explored. In this study, we suggest a simple and cost-effective protocol that improves the BBB permeability and drug delivery without damaging the tissue. In this protocol, called "FUS+BBBD protocol", an additional FUS stimulation without microbubbles ("FUS protocol"; 0.5, 1.0, or 2.0MPa acoustic pressure, 10ms tone burst, 1Hz pulse repetition frequency, 120s total duration) is applied prior to the conventional BBB disruption with microbubbles ("BBBD protocol"; 0.6∼0.72MPa acoustic pressure, 10ms tone burst, 1Hz pulse repetition frequency, 120s total duration). With the "FUS+BBBD protocol", the magnetic resonance signal intensity and doxorubicin delivery at the targeted brain region were increased by 1.59 and 1.75 times at an FUS intensity of 1.0MPa, respectively, compared to the conventional BBBD. Other conditions also increase the drug delivery, but the increase was smaller than that at 1.0MPa (1.15 times for 0.5MPa and 1.60 times for 2.0MPa). The H&E histopathological analysis of the sonicated brain region using the proposed "FUS+BBBD protocol" showed no significant brain tissue damage at a FUS intensity of 0.5 and 1.0MPa. However, region cavities due to the damage were observed after an FUS intensity of 2.0MPa. These results suggest that the 1.0MPa "FUS+BBBD protocol" increases the BBB permeability and enhances the drug delivery efficiency without noticeable brain tissue damage, compared with the conventional BBBD. Although further studies are needed to determine the underlying mechanism of this effect, drugs that have been reported to be effective in the treatment of brain disease but had limited use due to severe systemic side effects will benefit from the enhanced drug delivery of "FUS+BBBD protocol". Furthermore, the suggested protocol may facilitate the development of new strategies in clinical trials to treat brain disorders with improved drug delivery and safety.
Collapse
Affiliation(s)
- Byeongjin Jung
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Hyungkyu Huh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Mun Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Juyoung Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea.
| |
Collapse
|
129
|
Pérez-Silos V, Moncada-Saucedo NK, Peña-Martínez V, Lara-Arias J, Marino-Martínez IA, Camacho A, Romero-Díaz VJ, Lara Banda M, García-Ruiz A, Soto-Dominguez A, Rodriguez-Rocha H, López-Serna N, Tuan RS, Lin H, Fuentes-Mera L. A Cellularized Biphasic Implant Based on a Bioactive Silk Fibroin Promotes Integration and Tissue Organization during Osteochondral Defect Repair in a Porcine Model. Int J Mol Sci 2019; 20:E5145. [PMID: 31627374 PMCID: PMC6834127 DOI: 10.3390/ijms20205145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/16/2023] Open
Abstract
In cartilage tissue engineering, biphasic scaffolds (BSs) have been designed not only to influence the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone, promoting the implant's integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a BS based on the assembly of a cartilage phase constituted by fibroin biofunctionalyzed with a bovine cartilage matrix, cellularized with differentiated autologous pre-chondrocytes and well attached to a bone phase (decellularized bovine bone) to promote cartilage regeneration in a model of joint damage in pigs. BSs were assembled by fibroin crystallization with methanol, and the mechanical features and histological architectures were evaluated. The scaffolds were cellularized and matured for 12 days, then implanted into an osteochondral defect in a porcine model (n = 4). Three treatments were applied per knee: Group I, monophasic cellular scaffold (single chondral phase); group II (BS), cellularized only in the chondral phase; and in order to study the influence of the cellularization of the bone phase, Group III was cellularized in chondral phases and a bone phase, with autologous osteoblasts being included. After 8 weeks of surgery, the integration and regeneration tissues were analyzed via a histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular BSs reached a Young's modulus of 805.01 kPa, similar to native cartilage. In vitro biological studies revealed the chondroinductive ability of the BSs, evidenced by an increase in sulfated glycosaminoglycans and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, in Group I, the defects were not reconstructed. In Groups II and III, a good integration of the implant with the surrounding tissue was observed. Defects in group II were fulfilled via hyaline cartilage and normal bone. Group III defects showed fibrous repair tissue. In conclusion, our findings demonstrated the efficacy of a biphasic and bioactive scaffold based on silk fibroin and cellularized only in the chondral phase, which entwined chondroinductive features and a biomechanical capability with an appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.
Collapse
Affiliation(s)
- Vanessa Pérez-Silos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
| | - Nidia K Moncada-Saucedo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
| | - Víctor Peña-Martínez
- Universidad Autónoma de Nuevo León (UANL), Servicio de Ortopedia y Traumatología, Hospital Universitario "Dr. José E. González", Monterrey 64460, Mexico.
| | - Jorge Lara-Arias
- Universidad Autónoma de Nuevo León (UANL), Servicio de Ortopedia y Traumatología, Hospital Universitario "Dr. José E. González", Monterrey 64460, Mexico.
| | - Iván A Marino-Martínez
- Universidad Autónoma de Nuevo León (UANL), Unidad de Terapias Experimentales, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey 64460, Mexico.
- Universidad Autónoma de Nuevo León (UANL), Departamento de Patología, Facultad de Medicina, Monterrey 64460, Mexico.
| | - Alberto Camacho
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
- Universidad Autónoma de Nuevo León (UANL), Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey 64460, Mexico.
| | - Víktor J Romero-Díaz
- Universidad Autónoma de Nuevo León (UANL), Departamento de Histología, Facultad de Medicina, UANL, Monterrey 64460, Mexico.
| | - María Lara Banda
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Monterrey 66451, Mexico.
| | - Alejandro García-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
| | - Adolfo Soto-Dominguez
- Universidad Autónoma de Nuevo León (UANL), Departamento de Histología, Facultad de Medicina, UANL, Monterrey 64460, Mexico.
| | - Humberto Rodriguez-Rocha
- Universidad Autónoma de Nuevo León (UANL), Departamento de Histología, Facultad de Medicina, UANL, Monterrey 64460, Mexico.
| | - Norberto López-Serna
- Universidad Autónoma de Nuevo León (UANL), Departamento de Embriología, Facultad de Medicina, Monterrey 64460, Mexico.
| | - Rocky S Tuan
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219-3143, USA.
| | - Hang Lin
- Department of Orthopaedic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15260, USA.
| | - Lizeth Fuentes-Mera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León. Madero y Dr. Aguirre Pequeño S/N, Mitras Centro, Monterrey 64460, Mexico.
| |
Collapse
|
130
|
Im KH, Baek SA, Choi J, Lee TS. Antioxidant, Anti-Melanogenic and Anti-Wrinkle Effects of Phellinus vaninii. MYCOBIOLOGY 2019; 47:494-505. [PMID: 32010471 PMCID: PMC6968557 DOI: 10.1080/12298093.2019.1673595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
In this study, the antioxidant, anti-xanthine oxidase, anti-melanogenic and anti-wrinkle effects of methanol (ME) and hot water (HE) extracts from the fruiting bodies of Phellinus vaninii were investigated. The 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging activity of 2.0 mg/mL HE (95.38%) was comparable to that of butylated hydroxytoluene (96.97%), the reference standard. The hydroxyl radical scavenging activities of ME (98.19%) and HE (97.55%) were higher than that of butylated hydroxytoluene (92.66%) at 2.0 mg/mL. Neither ME nor HE was cytotoxic to murine melanoma B16-F10 cells at 25-750 µg/mL. Although the xanthine oxidase (XO) inhibitory effects of ME and HE were significantly lower than that of allopurinol, the values were higher than 84 percent. The in vitro tyrosinase inhibitory activities of ME and HE were comparable to kojic acid at 2.0 mg/mL. The cellular tyrosinase and melanin synthetic activities of ME and HE on B16-F10 melanoma cells at 500 µg/mL were higher than arbutin, indicating that the inhibitory effects of arbutin on the tyrosinase and melanin synthesis were higher than those of ME and HE. The collagenase inhibitory activity of HE was comparable to EGCG at 2.0 mg/mL, however, the elastase inhibitory activity of ME and HE was lower than EGCG at the concentration tested. The study results demonstrated that the fruiting bodies of Ph. vaninii possessed good antioxidant, anti-xanthine oxidase, cell-free anti-tyrosinase, cellular anti-tyrosinase, anti-collagenase, and moderate anti-elastase activities, which might be used for the development of novel anti-gout, skin-whitening, and skin anti-wrinkle agents.
Collapse
Affiliation(s)
- Kyung Hoan Im
- Division of Life Sciences, Incheon National University, Incheon, Korea
| | - Seung A Baek
- Division of Life Sciences, Incheon National University, Incheon, Korea
| | - Jaehyuk Choi
- Division of Life Sciences, Incheon National University, Incheon, Korea
| | - Tae Soo Lee
- Division of Life Sciences, Incheon National University, Incheon, Korea
| |
Collapse
|
131
|
Matsuzaki Y, Maruta R, Takaki K, Kotani E, Kato Y, Yoshimura R, Endo Y, Whitty C, Pernstich C, Gandhi R, Jones M, Mori H. Sustained Neurotrophin Release from Protein Nanoparticles Mediated by Matrix Metalloproteinases Induces the Alignment and Differentiation of Nerve Cells. Biomolecules 2019; 9:biom9100510. [PMID: 31546991 PMCID: PMC6843502 DOI: 10.3390/biom9100510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023] Open
Abstract
The spatial and temporal availability of cytokines, and the microenvironments this creates, is critical to tissue development and homeostasis. Creating concentration gradients in vitro using soluble proteins is challenging as they do not provide a self-sustainable source. To mimic the sustained cytokine secretion seen in vivo from the extracellular matrix (ECM), we encapsulated a cargo protein into insect virus-derived proteins to form nanoparticle co-crystals and studied the release of this cargo protein mediated by matrix metalloproteinase-2 (MMP-2) and MMP-8. Specifically, when nerve growth factor (NGF), a neurotrophin, was encapsulated into nanoparticles, its release was promoted by MMPs secreted by a PC12 neuronal cell line. When these NGF nanoparticles were spotted onto a cover slip to create a uniform circular field, movement and alignment of PC12 cells via their extended axons along the periphery of the NGF nanoparticle field was observed. Neural cell differentiation was confirmed by the expression of specific markers of tau, neurofilament, and GAP-43. Connections between the extended axons and the growth cones were also observed, and expression of connexin 43 was consistent with the formation of gap junctions. Extensions and connection of very fine filopodia occurred between growth cones. Our studies indicate that crystalline protein nanoparticles can be utilized to generate a highly stable cytokine gradient microenvironment that regulates the alignment and differentiation of nerve cells. This technique greatly simplifies the creation of protein concentration gradients and may lead to therapies for neuronal injuries and disease.
Collapse
Affiliation(s)
- Yuka Matsuzaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Rina Maruta
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Yasuhisa Endo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Ciara Whitty
- Cell Guidance Systems, Maia Building, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Christian Pernstich
- Cell Guidance Systems, Maia Building, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Raj Gandhi
- Cell Guidance Systems, Maia Building, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Michael Jones
- Cell Guidance Systems, Maia Building, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
132
|
Fibronectin precoating wound bed enhances the therapeutic effects of autologous epidermal basal cell suspension for full-thickness wounds by improving epidermal stem cells' utilization. Stem Cell Res Ther 2019; 10:154. [PMID: 31506090 PMCID: PMC6737622 DOI: 10.1186/s13287-019-1236-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background Autologous epidermal basal cell suspension therapy has been proven to be one of the most effective treatments for full-thickness wounds. However, we found there remain obvious defects that significantly confined the utilization and function of the epidermal basal cells (EBCs), especially the epidermal stem cells (ESCs) in it. This study investigated whether precoating fibronectin (FN) on the wound bed before spraying EBCs could overcome these defects and further explored its possible mechanisms. Methods In the in vitro study, EBCs were isolated from the donor skin of patients who needed skin grafting. Different concentrations of FN were used to precoat culture dishes before cell culture; the adherent efficiency, proliferation and migration ability of ESCs were analyzed and compared with traditional collagen IV precoating. In the in vivo study, Sprague–Dawley (SD) rats with full-thickness skin wounds were selected as full-thickness wounds’ model. For the experiment groups, 20 μg/ml FN was precoated on the wound bed 10 min before EBC spray. The quality of wound healing was estimated by the residual wound area rate, wound healing time, and hematoxylin and eosin (H&E) staining. Expression of ESC markers, neovascular markers, inflammation markers, and collagen formation and degradation markers was elucidated by immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and RT-qPCR analysis. Results The in vitro study showed that the dishes precoated with 20 μg/ml FN had a similar adherent efficiency and colony formation rate with collagen IV, but it could improve the proliferation and migration of ESCs significantly. Similarly, in the in vivo study, precoating FN on wound bed before EBC spray also significantly promote wound healing by improving ESCs’ utilization efficiency, promoting angiogenesis, decreasing inflammations, and regulating collagen formation and degradation. Conclusion FN precoating wound bed before EBC spray could significantly promote full-thickness wound healing by improving the utilization and function of the ESCs and further by promoting angiogenesis, decreasing inflammations, and regulating collagen formation and degradation. Graphical abstract ![]()
Collapse
|
133
|
Watcharajittanont N, Putson C, Pripatnanont P, Meesane JI. Electrospun polyurethane fibrous membranes of mimicked extracellular matrix for periodontal ligament: Molecular behavior, mechanical properties, morphology, and osseointegration. J Biomater Appl 2019; 34:753-762. [DOI: 10.1177/0885328219874601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nattawat Watcharajittanont
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Chatchai Putson
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Prisana Pripatnanont
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - JIrut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
134
|
Cerofolini L, Fragai M, Luchinat C. Mechanism and Inhibition of Matrix Metalloproteinases. Curr Med Chem 2019; 26:2609-2633. [PMID: 29589527 DOI: 10.2174/0929867325666180326163523] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinases hydrolyze proteins and glycoproteins forming the extracellular matrix, cytokines and growth factors released in the extracellular space, and membrane-bound receptors on the outer cell membrane. The pathological relevance of MMPs has prompted the structural and functional characterization of these enzymes and the development of synthetic inhibitors as possible drug candidates. Recent studies have provided a better understanding of the substrate preference of the different members of the family, and structural data on the mechanism by which these enzymes hydrolyze the substrates. Here, we report the recent advancements in the understanding of the mechanism of collagenolysis and elastolysis, and we discuss the perspectives of new therapeutic strategies for targeting MMPs.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
135
|
Derrick T, Habtamu E, Tadesse Z, Callahan EK, Worku A, Gashaw B, Macleod D, Mabey DC, Holland MJ, Burton MJ. The conjunctival transcriptome in Ethiopians after trichiasis surgery: associations with the development of eyelid contour abnormalities and the effect of oral doxycycline treatment. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.15419.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Surgery to correct trichiasis is a key component of the World Health Organisation trachoma control strategy, however unfavourable outcomes such as eyelid contour abnormalities (ECA) following surgery are relatively common. This study aimed to understand the transcriptional changes associated with the early development of ECA and the impact of doxycycline, which has anti-inflammatory and anti-fibrotic properties, upon these transcription patterns. Methods: One thousand Ethiopians undergoing trichiasis surgery were enrolled in a randomised controlled trial following informed consent. Equal groups of randomly assigned individuals were orally administered with 100mg/day of doxycycline (n=499) or placebo (n=501) for 28 days. Conjunctival swabs were collected immediately prior to surgery and at one- and six-months post-surgery. 3’ mRNA sequencing was performed on paired baseline and one-month samples from 48 individuals; 12 in each treatment/ECA outcome group. qPCR validation was then performed for 46 genes of interest in 145 individuals who developed ECA at one month and 145 matched controls, using samples from baseline, one and six months. Results: All treatment/outcome groups upregulated genes associated with wound healing pathways at one month relative to baseline, however no individual differences were detected between groups. The summed expression of a highly coexpressed cluster of pro-fibrotic genes was higher in patients that developed ECA in the placebo group relative to controls. qPCR validation revealed that all genes in this cluster and a number of other pro-inflammatory genes were strongly associated with ECA, however these associations were not modulated by trial arm. Conclusions: The development of post-operative ECA is associated with overexpression of pro-inflammatory and pro-fibrotic genes including growth factors, matrix metalloproteinases, collagens and extracellular matrix proteins. There was no evidence that doxycycline modulated the association between gene expression and ECA.
Collapse
|
136
|
Viji Babu PK, Rianna C, Mirastschijski U, Radmacher M. Nano-mechanical mapping of interdependent cell and ECM mechanics by AFM force spectroscopy. Sci Rep 2019; 9:12317. [PMID: 31444369 PMCID: PMC6707266 DOI: 10.1038/s41598-019-48566-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM), as a dynamic component of the tissue, influences cell behavior and plays an important role in cell mechanics and tissue homeostasis. Reciprocally, this three-dimensional scaffold is dynamically, structurally and mechanically modified by cells. In the field of biophysics, the independent role of cell and ECM mechanics has been largely investigated; however, there is a lack of experimental data reporting the interdependent interplay between cell and ECM mechanics, measured simultaneously. Here, using Atomic Force Microscopy (AFM) we have characterized five different decellularized matrices diverse in their topography, ECM composition and stiffness and cultured them with normal and pathological fibroblasts (scar and Dupuytren's). We investigated the change in topography and elasticity of these matrices due to cell seeding, by using AFM peak force imaging and mechanical mapping, respectively. We found normal fibroblasts soften these matrices more than pathological fibroblasts, suggesting that pathological fibroblasts are profoundly influencing tissue stiffening in fibrosis. We detected different ECM composition of decellularized matrices used here influences fibroblast stiffness, thus highlighting that cell mechanics not only depends on ECM stiffness but also on their composition. We used confocal microscopy to assess fibroblasts invasion and found pathological fibroblasts were invading the matrices deeper than normal fibroblasts.
Collapse
Affiliation(s)
| | - Carmela Rianna
- Institute of Biophysics, University of Bremen, Bremen, Germany
| | - Ursula Mirastschijski
- Wound Repair Unit, Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | |
Collapse
|
137
|
Girard E, Chagnon G, Gremen E, Calvez M, Masri C, Boutonnat J, Trilling B, Nottelet B. Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes. J Mech Behav Biomed Mater 2019; 98:291-300. [PMID: 31288211 DOI: 10.1016/j.jmbbm.2019.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022]
Abstract
Biliary diseases are the third most common cause of surgical digestive disease. There is a close relationship between the mechanical performance of the bile duct and its physiological function. Data of biomechanical properties of human main bile duct are scarce in literature. Furthermore, mechanical properties of soft tissues are affected by these preservation procedures. The aim of the present work was, on the one hand, to observe the microstructure of the human bile duct by means of histological analysis, on the other hand, to characterize the mechanical behavior and describe the impact of different preservation processes. A mechanical study in a controlled environment consisting of cyclic tests was made. The results of the mechanical tests are discussed and explained using the micro-structural observations. The results show an influence of the loading direction, which is representative of an anisotropic behavior. A strong hysteresis due to the viscoelastic properties of soft tissues was also observed. Embalming and freezing preservation methods had an impact on the biomechanical properties of human main bile duct, with fiber network deterioration. That may further provide a useful quantitative baseline for anatomical and surgical training using embalming and freezing.
Collapse
Affiliation(s)
- E Girard
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000, Grenoble, France; Département de Chirurgie Digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, 38000, Grenoble, France; Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de Médecine de Grenoble, France.
| | - G Chagnon
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - E Gremen
- Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de Médecine de Grenoble, France
| | - M Calvez
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - C Masri
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - J Boutonnat
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000, Grenoble, France; Département d'anatomopathologie et Cytologie, Centre Hospitalier Grenoble-Alpes, 38000, Grenoble, France
| | - B Trilling
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000, Grenoble, France; Département de Chirurgie Digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, 38000, Grenoble, France; Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de Médecine de Grenoble, France
| | - B Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
138
|
Reid JA, Callanan A. Influence of aorta extracellular matrix in electrospun polycaprolactone scaffolds. J Appl Polym Sci 2019. [DOI: 10.1002/app.48181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- James A. Reid
- Institute for Bioengineering, School of EngineeringThe University of Edinburgh Edinburgh United Kingdom
| | - Anthony Callanan
- Institute for Bioengineering, School of EngineeringThe University of Edinburgh Edinburgh United Kingdom
| |
Collapse
|
139
|
Bennasroune A, Romier-Crouzet B, Blaise S, Laffargue M, Efremov RG, Martiny L, Maurice P, Duca L. Elastic fibers and elastin receptor complex: Neuraminidase-1 takes the center stage. Matrix Biol 2019; 84:57-67. [PMID: 31226402 DOI: 10.1016/j.matbio.2019.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023]
Abstract
Extracellular matrix (ECM) has for a long time being considered as a simple architectural support for cells. It is now clear that ECM presents a fundamental influence on cells driving their phenotype and fate. This complex network is highly specialized and the different classes of macromolecules that comprise the ECM determine its biological functions. For instance, collagens are responsible for the tensile strength of tissues, proteoglycans and glycosaminoglycans are essential for hydration and resistance to compression, and glycoproteins such as laminins facilitate cell attachment. The largest structures of the ECM are the elastic fibers found in abundance in tissues suffering high mechanical constraints such as skin, lungs or arteries. These structures present a very complex composition whose core is composed of elastin surrounded by a microfibrils mantle. Elastogenesis is a tightly regulated process involving the sialidase activity of the Neuraminidase-1 (Neu-1) sub-unit of the Elastin Receptor Complex. Interestingly, Neu-1 subunit also serves as a sensor of elastin degradation via its ability to transmit elastin-derived peptides signaling. Finally, reports showing that neuraminidase activity is able to regulate TGF-β activation raises questions about a possible role for Neu-1 in elastic fibers remodeling. In this mini review, we develop the concept of the regulation of the whole life of elastic fibers through an original scope, the key role of Neu-1 sialidase enzymatic activity.
Collapse
Affiliation(s)
- Amar Bennasroune
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Sébastien Blaise
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Muriel Laffargue
- UMR INSERM 1048 I2MC, Université Paul Sabatier, Toulouse, France
| | - Roman G Efremov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - Laurent Martiny
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France.
| |
Collapse
|
140
|
Ud-Din S, Foden P, Stocking K, Mazhari M, Al-Habba S, Baguneid M, McGeorge D, Bayat A. Objective assessment of dermal fibrosis in cutaneous scarring, using optical coherence tomography, high-frequency ultrasound and immunohistomorphometry of human skin. Br J Dermatol 2019; 181:722-732. [PMID: 30729516 PMCID: PMC6852041 DOI: 10.1111/bjd.17739] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
Background Noninvasive quantitative assessment of dermal fibrosis remains a challenge. Optical coherence tomography (OCT) and high‐frequency ultrasound (HFUS) can accurately measure structural and physiological changes in skin. Objectives To perform quantitative analysis of cutaneous fibrosis. Methods Sixty‐two healthy volunteers underwent multiple sequential skin biopsies (day 0 and 1–8 weekly thereafter), with OCT and HFUS measurements at each time point supported with immunohistomorphometry analysis. Results HFUS and OCT provided quantitative measurements of skin thickness, which increased from uninjured skin (1·18 and 1·2 mm, respectively) to week 1 (1·28 mm, P = 0·01; 1·27 mm, P = 0·02), and compared favourably with haematoxylin and eosin. Spearman correlation showed good agreement between techniques (P < 0·001). HFUS intensity corresponded to dermal density, with reduction from uninjured skin (42%) to week 8 (29%) (P = 0·02). The OCT attenuation coefficient linked with collagen density and was reduced at week 8 (1·43 mm, P < 0·001). Herovici analysis showed that mature collagen levels were highest in uninjured skin (72%) compared with week 8 (42%, P = 0·04). Fibronectin was greatest at week 4 (0·72 AU) and reduced at week 8 (0·56 AU); and α‐smooth muscle actin increased from uninjured skin (11·5%) to week 8 (67%, P = 0·003). Conclusions Time‐matched comparison images between haematoxylin and eosin, OCT and HFUS demonstrated that epidermal and dermal structures were better distinguished by OCT. HFUS enabled deeper visualization of the dermis including the subcutaneous tissue. Choice of device was dependent on the depth of scar type, parameters to be measured and morphological detail required in order to provide better objective quantitative indices of the quality and extent of dermal fibrosis. What's already known about this topic? Objective studies of the progression of scar formation and the properties of mature scars are necessary in order to evaluate clinical treatment, and for research focused on developing novel methods for management of dermal fibrosis. Optical coherence tomography (OCT) and high‐frequency ultrasound (HFUS) are two known noninvasive techniques that are used effectively for measuring structural and physiological changes in cutaneous tissue.
What does this study add? OCT and HFUS are useful tools for noninvasive monitoring of cutaneous fibrosis, enabling quantitative sequential temporal measurements of cutaneous thickness similarly to histology. OCT attenuation coefficient (better in resolution) and HFUS intensity (better in depth) provide an indication of collagen deposition in skin over the course of healing, supported by immunohistochemical analysis. Choice of device is dependent upon wound and scar type, the parameters to be measured and the morphological detail required.
https://doi.org/10.1111/bjd.18394 available online https://www.bjdonline.com/article/Objective-assessment-of-dermal-fibrosis-in-cutaneous-scarring-using-optical-coherence-tomography-high-frequency-ultrasound-and-immunohistomorphometry-of-human-skin/
Collapse
Affiliation(s)
- S Ud-Din
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester, U.K
| | - P Foden
- Medical Statistics, University Hospital of South Manchester, Manchester, U.K
| | - K Stocking
- Medical Statistics, University Hospital of South Manchester, Manchester, U.K
| | - M Mazhari
- Adult Histopathology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - S Al-Habba
- Adult Histopathology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - M Baguneid
- Vascular Surgery, Manchester University NHS Foundation Trust, Manchester, U.K
| | - D McGeorge
- Plastic and Reconstructive Surgery, Grosvenor Nuffield Hospital, Chester, U.K
| | - A Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester, U.K
| |
Collapse
|
141
|
|
142
|
Tissue Level Mechanical Properties and Extracellular Matrix Investigation of the Bovine Jugular Venous Valve Tissue. Bioengineering (Basel) 2019; 6:bioengineering6020045. [PMID: 31091689 PMCID: PMC6630446 DOI: 10.3390/bioengineering6020045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022] Open
Abstract
Jugular venous valve incompetence has no long-term remedy and symptoms of transient global amnesia and/or intracranial hypertension continue to discomfort patients. During this study, we interrogate the synergy of the collagen and elastin microstructure that compose the bi-layer extracellular matrix (ECM) of the jugular venous valve. In this study, we investigate the jugular venous valve and relate it to tissue-level mechanical properties, fibril orientation and fibril composition to improve fundamental knowledge of the jugular venous valves toward the development of bioprosthetic venous valve replacements. Steps include: (1) multi loading biaxial mechanical tests; (2) isolation of the elastin microstructure; (3) imaging of the elastin microstructure; and (4) imaging of the collagen microstructure, including an experimental analysis of crimp. Results from this study show that, during a 3:1 loading ratio (circumferential direction: 900 mN and radial direction: 300 mN), elastin may have the ability to contribute to the circumferential mechanical properties at low strains, for example, shifting the inflection point toward lower strains in comparison to other loading ratios. After isolating the elastin microstructure, light microscopy revealed that the overall elastin orients in the radial direction while forming a crosslinked mesh. Collagen fibers were found undulated, aligning in parallel with neighboring fibers and orienting in the circumferential direction with an interquartile range of -10.38° to 7.58° from the circumferential axis (n = 20). Collagen crimp wavelength and amplitude was found to be 38.46 ± 8.06 µm and 4.51 ± 1.65 µm, respectively (n = 87). Analyzing collagen crimp shows that crimp permits about 12% true strain circumferentially, while straightening of the overall fibers accounts for more. To the best of the authors' knowledge, this is the first study of the jugular venous valve linking the composition and orientation of the ECM to its mechanical properties and this study will aid in forming a structure-based constitutive model.
Collapse
|
143
|
McQuilling JP, Kimmerling KA, Staples MC, Mowry KC. Evaluation of two distinct placental-derived membranes and their effect on tenocyte responses in vitro. J Tissue Eng Regen Med 2019; 13:1316-1330. [PMID: 31062484 PMCID: PMC6771722 DOI: 10.1002/term.2876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/05/2019] [Accepted: 04/29/2019] [Indexed: 11/10/2022]
Abstract
Tendon healing is a complex, multiphase process that results in increased scar tissue formation, leading to weaker tendons. The purpose of this study was to evaluate the response of tenocytes to both hypothermically stored amniotic membrane (HSAM) and dehydrated amnion/chorion membrane (dACM). Composition and growth factor release from HSAM and dACM were evaluated using proteomics microarrays. HSAM and dACM releasate was used to assess tenocyte proliferation, migration, gene expression, extracellular matrix (ECM) protein deposition, and response to inflammation. Additionally, tenocyte-ECM interactions were evaluated. HSAM and dACM contain and release growth factors relevant to tendon healing, including insulin-like growth factor I, platelet-derived growth factor, and basic fibroblast growth factor. Both dACM and HSAM promoted increased tenocyte proliferation and migration; tenocytes treated with dACM proliferated more robustly, whereas treatment with HSAM resulted in higher migration. Both dACM and HSAM resulted in altered ECM gene expression; dACM grafts alone resulted in increases in collagen deposition. Furthermore, both allografts resulted in altered tenocyte responses to inflammation with reduced transforming growth factor beta levels. Additionally, dACM treatment resulted in increased expression and production of matrix metalloprotease-1 (MMP-1), whereas HSAM treatment resulted in decreased production of MMP-1. Tenocytes migrated into and remodeled HSAM only. These results indicate that both grafts have properties that support tendon healing; however, the results presented here suggest that the responses to each type of graft may be different. Due to the complex environment during tendon repair, additional work is needed to evaluate these effects using in vivo models.
Collapse
Affiliation(s)
| | | | | | - Katie C Mowry
- Research and Development, Organogenesis, Birmingham, Alabama
| |
Collapse
|
144
|
Hierarchical self-assembly and emergent function of densely glycosylated peptide nanofibers. Commun Chem 2019. [DOI: 10.1038/s42004-019-0154-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
145
|
McNamara MC, Sharifi F, Okuzono J, Montazami R, Hashemi NN. Microfluidic Manufacturing of Alginate Fibers with Encapsulated Astrocyte Cells. ACS APPLIED BIO MATERIALS 2019; 2:1603-1613. [DOI: 10.1021/acsabm.9b00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
146
|
Ali MS, Wang X, Lacerda CMR. The effect of physiological stretch and the valvular endothelium on mitral valve proteomes. Exp Biol Med (Maywood) 2019; 244:241-251. [PMID: 30722697 PMCID: PMC6425102 DOI: 10.1177/1535370219829006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/09/2019] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT This work is important to the field of heart valve pathophysiology as it provides new insights into molecular markers of mechanically induced valvular degeneration as well as the protective role of the valvular endothelium. These discoveries reported here advance our current knowledge of the valvular endothelium and how its removal essentially takes valve leaflets into an environmental shock. In addition, it shows that static conditions represent a mild pathological state for valve leaflets, while 10% cyclic stretch provides valvular cell quiescence. These findings impact the field by informing disease stages and by providing potential new drug targets to reverse or slow down valvular change before it affects cardiac function.
Collapse
Affiliation(s)
- Mir S Ali
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Carla MR Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| |
Collapse
|
147
|
Das S, Amin AN, Lin YH, Chan HS. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. Phys Chem Chem Phys 2018; 20:28558-28574. [PMID: 30397688 DOI: 10.1039/c8cp05095c] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomolecular condensates undergirded by phase separations of proteins and nucleic acids serve crucial biological functions. To gain physical insights into their genetic basis, we study how liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) depends on their sequence charge patterns using a continuum Langevin chain model wherein each amino acid residue is represented by a single bead. Charge patterns are characterized by the "blockiness" measure κ and the "sequence charge decoration" (SCD) parameter. Consistent with random phase approximation (RPA) theory and lattice simulations, LLPS propensity as characterized by critical temperature Tcr* increases with increasingly negative SCD for a set of sequences showing a positive correlation between κ and -SCD. Relative to RPA, the simulated sequence-dependent variation in Tcr* is often-though not always-smaller, whereas the simulated critical volume fractions are higher. However, for a set of sequences exhibiting an anti-correlation between κ and -SCD, the simulated Tcr*'s are quite insensitive to either parameter. Additionally, we find that blocky sequences that allow for strong electrostatic repulsion can lead to coexistence curves with upward concavity as stipulated by RPA, but the LLPS propensity of a strictly alternating charge sequence was likely overestimated by RPA and lattice models because interchain stabilization of this sequence requires spatial alignments that are difficult to achieve in real space. These results help delineate the utility and limitations of the charge pattern parameters and of RPA, pointing to further efforts necessary for rationalizing the newly observed subtleties.
Collapse
Affiliation(s)
- Suman Das
- Department of Biochemistry, University of Toronto, Medical Sciences Building - 5th Fl., 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | |
Collapse
|
148
|
Roberts EG, Rim NG, Huang W, Tarakanova A, Yeo J, Buehler MJ, Kaplan DL, Wong JY. Fabrication and Characterization of Recombinant Silk-Elastin-Like-Protein (SELP) Fiber. Macromol Biosci 2018; 18:e1800265. [PMID: 30417967 PMCID: PMC6960454 DOI: 10.1002/mabi.201800265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/28/2018] [Indexed: 11/06/2022]
Abstract
Silk-elastin-like-protein polymers (SELPs) are genetically engineered recombinant protein sequences consisting of repeating units of silk-like and elastin-like blocks. By combining these entities, it is shown that both the characteristic strength of silk and the temperature-dependent responsiveness of elastin can be leveraged to create an enhanced stimuli-responsive material. It is hypothesized that SELP behavior can be influenced by varying the silk-to-elastin ratio. If the responsiveness of the material at different ratios is significantly different, this would allow for the design of materials with specific temperature-based swelling and mechanical properties. This study demonstrates that SELP fiber properties can be controlled via a temperature transition dependent on the ratio of silk-to-elastin in the material. SELP fibers are experimentally wet spun from polymers with different ratios of silk-to-elastin and conditioned in either a below or above transition temperature (T t ) water bath prior to characterization. The fibers with higher elastin content showed more stimuli-responsive behavior compared to the fibers with lower elastin content in the hot (57-60 °C) versus cold (4-7 °C) environment, both computationally and experimentally. This work builds a foundation for developing SELP materials with well-characterized mechanical properties and responsive features.
Collapse
Affiliation(s)
- Erin G Roberts
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Nae-Gyune Rim
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Anna Tarakanova
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jingjie Yeo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of High Performance Computing, A∗STAR, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Joyce Y Wong
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
149
|
Walsh DR, Ross AM, Malijauskaite S, Flanagan BD, Newport DT, McGourty KD, Mulvihill JJ. Regional mechanical and biochemical properties of the porcine cortical meninges. Acta Biomater 2018; 80:237-246. [PMID: 30208332 DOI: 10.1016/j.actbio.2018.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/05/2018] [Accepted: 09/05/2018] [Indexed: 01/14/2023]
Abstract
The meninges are pivotal in protecting the brain against traumatic brain injury (TBI), an ongoing issue in most mainstream sports. Improved understanding of TBI biomechanics and pathophysiology is desirable to improve preventative measures, such as protective helmets, and advance our TBI diagnostic/prognostic capabilities. This study mechanically characterised the porcine meninges by performing uniaxial tensile testing on the dura mater (DM) tissue adjacent to the frontal, parietal, temporal, and occipital lobes of the cerebellum and superior sagittal sinus region of the DM. Mechanical characterisation revealed a significantly higher elastic modulus for the superior sagittal sinus region when compared to other regions in the DM. The superior sagittal sinus and parietal regions of the DM also displayed local mechanical anisotropy. Further, fatigue was noted in the DM following ten preconditioning cycles, which could have important implications in the context of repetitive TBI. To further understand differences in regional mechanical properties, regional variations in protein content (collagen I, collagen III, fibronectin and elastin) were examined by immunoblot analysis. The superior sagittal sinus was found to have significantly higher collagen I, elastin, and fibronectin content. The frontal region was also identified to have significantly higher collagen I and fibronectin content while the temporal region had increased elastin and fibronectin content. Regional differences in the mechanical and biochemical properties along with regional tissue thickness differences within the DM reveal that the tissue is a non-homogeneous structure. In particular, the potentially influential role of the superior sagittal sinus in TBI biomechanics warrants further investigation. STATEMENT OF SIGNIFICANCE: This study addresses the lack of regional mechanical analysis of the cortical meninges, particularly the dura mater (DM), with accompanying biochemical analysis. To mechanically characterise the stiffness of the DM by region, uniaxial tensile testing was carried out on the DM tissue adjacent to the frontal, parietal, temporal and occipital lobes along with the DM tissue associated with the superior sagittal sinus. To the best of the authors' knowledge, the work presented here identifies, for the first time, the heterogeneous nature of the DM's mechanical stiffness by region. In particular, this study identifies the significant difference in the stiffness of the DM tissue associated with the superior sagittal sinus when compared to the other DM regions. Constitutive modelling was carried out on the regional mechanical testing data for implementation in Finite Element models with improved biofidelity. This work also presents the first biochemical analysis of the collagen I and III, elastin, and fibronectin content within DM tissue by region, providing useful insights into the accompanying macro-scale biomechanical data.
Collapse
|
150
|
Freeman R, Han M, Álvarez Z, Lewis JA, Wester JR, Stephanopoulos N, McClendon MT, Lynsky C, Godbe JM, Sangji H, Luijten E, Stupp SI. Reversible self-assembly of superstructured networks. Science 2018; 362:808-813. [PMID: 30287619 DOI: 10.1126/science.aat6141] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Soft structures in nature, such as protein assemblies, can organize reversibly into functional and often hierarchical architectures through noncovalent interactions. Molecularly encoding this dynamic capability in synthetic materials has remained an elusive goal. We report on hydrogels of peptide-DNA conjugates and peptides that organize into superstructures of intertwined filaments that disassemble upon the addition of molecules or changes in charge density. Experiments and simulations demonstrate that this response requires large-scale spatial redistribution of molecules directed by strong noncovalent interactions among them. Simulations also suggest that the chemically reversible structures can only occur within a limited range of supramolecular cohesive energies. Storage moduli of the hydrogels change reversibly as superstructures form and disappear, as does the phenotype of neural cells in contact with these materials.
Collapse
Affiliation(s)
- Ronit Freeman
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Ming Han
- Applied Physics Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Zaida Álvarez
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Jacob A Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - James R Wester
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | | | - Mark T McClendon
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Cheyenne Lynsky
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Jacqueline M Godbe
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Hussain Sangji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA. .,Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|