101
|
Mitochondrial Redox Signaling and Tumor Progression. Cancers (Basel) 2016; 8:cancers8040040. [PMID: 27023612 PMCID: PMC4846849 DOI: 10.3390/cancers8040040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as “tumor suppressors” or prevent excessive ROS to act as “tumor promoter”. Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.
Collapse
|
102
|
Rahbari M, Diederich K, Becker K, Krauth-Siegel RL, Jortzik E. Detection of thiol-based redox switch processes in parasites - facts and future. Biol Chem 2016; 396:445-63. [PMID: 25741735 DOI: 10.1515/hsz-2014-0279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/23/2015] [Indexed: 12/28/2022]
Abstract
Malaria and African trypanosomiasis are tropical diseases caused by the protozoa Plasmodium and Trypanosoma, respectively. The parasites undergo complex life cycles in the mammalian host and insect vector, during which they are exposed to oxidative and nitrosative challenges induced by the host immune system and endogenous processes. Attacking the parasite's redox metabolism is a target mechanism of several known antiparasitic drugs and a promising approach to novel drug development. Apart from this aspect, oxidation of cysteine residues plays a key role in protein-protein interaction, metabolic responses to redox events, and signaling. Understanding the role and dynamics of reactive oxygen species and thiol switches in regulating cellular redox homeostasis is crucial for both basic and applied biomedical approaches. Numerous techniques have therefore been established to detect redox changes in parasites including biochemical methods, fluorescent dyes, and genetically encoded probes. In this review, we aim to give an insight into the characteristics of redox networks in the pathogens Plasmodium and Trypanosoma, including a comprehensive overview of the consequences of specific deletions of redox-associated genes. Furthermore, we summarize mechanisms and detection methods of thiol switches in both parasites and discuss their specificity and sensitivity.
Collapse
|
103
|
Mendenhall A, Driscoll M, Brent R. Using measures of single-cell physiology and physiological state to understand organismic aging. Aging Cell 2016; 15:4-13. [PMID: 26616110 PMCID: PMC4717262 DOI: 10.1111/acel.12424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and 'epimutations', changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has revealed differences in lifespan- and health-related phenotypes that are not caused by lasting changes in DNA or identified by modifications to DNA or chromatin. This work has demonstrated persistent differences in single-cell and whole-organism physiological states operationally defined by values of reporter gene signals in living cells. While some single-cell states, for example, responses to oxygen deprivation, were defined previously, others, such as a generally heightened ability to make proteins, were, revealed by direct experiment only recently, and are not well understood. Here, we review technical progress that promises to greatly increase the number of these measurable single-cell physiological variables and measureable states. We discuss concepts that facilitate use of single-cell measurements to provide insight into physiological states and state transitions. We assert that researchers will use this information to relate cell level physiological readouts to whole-organism outcomes, to stratify aging populations into groups based on different physiologies, to define biomarkers predictive of outcomes, and to shed light on the molecular processes that bring about different individual physiologies. For these reasons, quantitative study of single-cell physiological variables and state transitions should provide a valuable complement to genetic and molecular explanations of how organisms age.
Collapse
Affiliation(s)
| | - Monica Driscoll
- Department of Molecular Biology and BiochemistryRutgersThe State University of New JerseyPiscatawayNJUSA
| | - Roger Brent
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleWAUSA
| |
Collapse
|
104
|
Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8327410. [PMID: 26788252 PMCID: PMC4691634 DOI: 10.1155/2016/8327410] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
Accurate control of the cell redox state is mandatory for maintaining the structural integrity and physiological functions. This control is achieved both by a fine-tuned balance between prooxidant and anti-oxidant molecules and by spatial and temporal confinement of the oxidative species. The diverse cellular compartments each, although structurally and functionally related, actively maintain their own redox balance, which is necessary to fulfill specialized tasks. Many fundamental cellular processes such as insulin signaling, cell proliferation and differentiation and cell migration and adhesion, rely on localized changes in the redox state of signal transducers, which is mainly mediated by hydrogen peroxide (H2O2). Therefore, oxidative stress can also occur long before direct structural damage to cellular components, by disruption of the redox circuits that regulate the cellular organelles homeostasis. The hepatocyte is a systemic hub integrating the whole body metabolic demand, iron homeostasis and detoxification processes, all of which are redox-regulated processes. Imbalance of the hepatocyte's organelles redox homeostasis underlies virtually any liver disease and is a field of intense research activity. This review recapitulates the evolving concept of oxidative stress in the diverse cellular compartments, highlighting the principle mechanisms of oxidative stress occurring in the healthy and wounded hepatocyte.
Collapse
|
105
|
Kaur A, Kolanowski JL, New EJ. Reversible Fluorescent Probes for Biological Redox States. Angew Chem Int Ed Engl 2015; 55:1602-13. [DOI: 10.1002/anie.201506353] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Amandeep Kaur
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| | | | - Elizabeth J. New
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| |
Collapse
|
106
|
Kaur A, Kolanowski JL, New EJ. Reversible Fluoreszenzsonden für biologische Redoxzustände. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amandeep Kaur
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| | | | - Elizabeth J. New
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| |
Collapse
|
107
|
Staudinger C, Borisov SM. Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors. Methods Appl Fluoresc 2015; 3:042005. [PMID: 27134748 PMCID: PMC4849553 DOI: 10.1088/2050-6120/3/4/042005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long-wavelength luminescent probes and sensors become increasingly popular. They offer the advantage of lower levels of autofluorescence in most biological probes. Due to high penetration depth and low scattering of red and NIR light such probes potentially enable in vivo measurements in tissues and some of them have already reached a high level of reliability required for such applications. This review focuses on the recent progress in development and application of long-wavelength analyte-sensitive probes which can operate both reversibly and irreversibly. Photophysical properties, sensing mechanisms, advantages and limitations of individual probes are discussed.
Collapse
Affiliation(s)
- Christoph Staudinger
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| |
Collapse
|
108
|
Mohring F, Jortzik E, Becker K. Comparison of methods probing the intracellular redox milieu in Plasmodium falciparum. Mol Biochem Parasitol 2015; 206:75-83. [PMID: 26593282 DOI: 10.1016/j.molbiopara.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/28/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
Glutathione plays a crucial role in the redox regulation of the malaria parasite Plasmodium falciparum and is linked to drug resistance mechanisms, especially in resistance against the antimalarial drug chloroquine (CQ). The determination of the glutathione-dependent redox potential was recently established in living parasites using a cytosolically expressed biosensor comprising redox-sensitive green fluorescent protein coupled to human glutaredoxin 1 (hGrx1-roGFP2). In order to further elucidate redox changes induced by antimalarial drugs and to consolidate the application spectrum of the ratiometric biosensor we systematically compared it to other methods probing thiol and redox metabolism. Among these methods were cell disruptive and non-disruptive approaches including spectrophotometric assays with Ellman's reagent and naphthalene dicarboxyaldehyde as well as molecular probes such as ThiolTracker™ Violet and the dichlorofluorescein-based probe CM-H2DCFDA. To directly compare the methods, blood stages of the CQ-sensitive P. falciparum 3D7 strain were challenged with the oxidative agent diamide and the antimalarial drugs artemisinin and CQ for 1h, 4h, and 24h. For all conditions, dose-dependent changes in the different redox parameters could be monitored which are compared and discussed. We furthermore detected slight differences in thiol status of parasites transiently transfected with hGrx1-roGFP2 in comparison with control 3D7 cells. In conclusion, ThiolTracker™ Violet and, even more so, the hGrx1-roGFP2 probe reacted reliably and sensitively to drug induced changes in intracellular redox metabolism. These results were substantiated by classical cell disruptive methods.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
109
|
Yin B, Barrionuevo G, Weber SG. Optimized real-time monitoring of glutathione redox status in single pyramidal neurons in organotypic hippocampal slices during oxygen-glucose deprivation and reperfusion. ACS Chem Neurosci 2015; 6:1838-48. [PMID: 26291433 DOI: 10.1021/acschemneuro.5b00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A redox-sensitive Grx1-roGFP2 fusion protein was introduced by transfection into single pyramidal neurons in the CA1 subfield of organotypic hippocampal slice cultures (OHSCs). We assessed changes in the GSH system in neuronal cytoplasm and mitochondria during oxygen-glucose deprivation and reperfusion (OGD/RP), an in vitro model of stroke. Pyramidal cells in a narrow range of depths below the surface of the OHSC were transfected by gene gun or single-cell electroporation with cyto- or mito-Grx1-roGFP2. To mimic the conditions of acute stroke, we developed an optimized superfusion system with the capability of rapid and reproducible exchange of the solution bathing the OHSCs. Measurements of pO2 as a function of tissue depth show that in the region containing the transfected cells, the pO2 is well-controlled. We also found that the pO2 changes on the same time scale as changes in intracranial pressure, cerebral blood flow, and pO2 during acute stroke. Determining the reduction potential, EGSH, from the ratiometric fluorescence signal requires an absolute intensity measurement during calibration of the Grx1-roGFP2. Using the signal from cotransfected tdTomato as an internal standard during calibration improves quantitative measurements of Grx1-roGFP2 redox status and allows EGSH to be determined. EGSH becomes more reducing during OGD and more oxidizing during RP in mitochondria while changes in cytoplasm are not significant compared with controls.
Collapse
Affiliation(s)
- Bocheng Yin
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Germán Barrionuevo
- Department
of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
110
|
Vlaski-Lafarge M, Ivanovic Z. Reliability of ROS and RNS detection in hematopoietic stem cells − potential issues with probes and target cell population. J Cell Sci 2015; 128:3849-60. [DOI: 10.1242/jcs.171496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Many studies have provided evidence for the crucial role of the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the regulation of differentiation and/or self-renewal, and the balance between quiescence and proliferation of hematopoietic stem cells (HSCs). Several metabolic regulators have been implicated in the maintenance of HSC redox homeostasis; however, the mechanisms that are regulated by ROS and RNS, as well as their downstream signaling are still elusive. This is partially owing to a lack of suitable methods that allow unequivocal and specific detection of ROS and RNS. In this Opinion, we first discuss the limitations of the commonly used techniques for detection of ROS and RNS, and the problem of heterogeneity of the cell population used in redox studies, which, together, can result in inaccurate conclusions regarding the redox biology of HSCs. We then propose approaches that are based on single-cell analysis followed by a functional test to examine ROS and RNS levels specifically in HSCs, as well as methods that might be used in vivo to overcome these drawbacks, and provide a better understanding of ROS and RNS function in stem cells.
Collapse
Affiliation(s)
- Marija Vlaski-Lafarge
- Etablissement Français du Sang Aquitaine-Limousin, 33075 Bordeaux, France
- UMR 5164 CNRS/Université Bordeaux Segalen, 33000 Bordeaux, France
| | - Zoran Ivanovic
- Etablissement Français du Sang Aquitaine-Limousin, 33075 Bordeaux, France
- UMR 5164 CNRS/Université Bordeaux Segalen, 33000 Bordeaux, France
| |
Collapse
|
111
|
Mentges M, Bormann J. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum. Sci Rep 2015; 5:14980. [PMID: 26446493 PMCID: PMC4597226 DOI: 10.1038/srep14980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
Balanced dynamics of reactive oxygen species in the phytopathogenic fungus Fusarium graminearum play key roles for development and infection. To monitor those dynamics, ratiometric analysis using the novel hydrogen peroxide (H2O2) sensitive fluorescent indicator protein HyPer-2 was established for the first time in phytopathogenic fungi. H2O2 changes the excitation spectrum of HyPer-2 with an excitation maximum at 405 nm for the reduced and 488 nm for the oxidized state, facilitating ratiometric readouts with maximum emission at 516 nm. HyPer-2 analyses were performed using a microtiter fluorometer and confocal laser scanning microscopy (CLSM). Addition of external H2O2 to mycelia caused a steep and transient increase in fluorescence excited at 488 nm. This can be reversed by the addition of the reducing agent dithiothreitol. HyPer-2 in F. graminearum is highly sensitive and specific to H2O2 even in tiny amounts. Hyperosmotic treatment elicited a transient internal H2O2 burst. Hence, HyPer-2 is suitable to monitor the intracellular redox balance. Using CLSM, developmental processes like nuclear division, tip growth, septation, and infection structure development were analyzed. The latter two processes imply marked accumulations of intracellular H2O2. Taken together, HyPer-2 is a valuable and reliable tool for the analysis of environmental conditions, cellular development, and pathogenicity.
Collapse
Affiliation(s)
- Michael Mentges
- University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Jörg Bormann
- University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Ohnhorststr. 18, D-22609 Hamburg, Germany
| |
Collapse
|
112
|
Jajic I, Sarna T, Strzalka K. Senescence, Stress, and Reactive Oxygen Species. PLANTS (BASEL, SWITZERLAND) 2015; 4:393-411. [PMID: 27135335 PMCID: PMC4844410 DOI: 10.3390/plants4030393] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/08/2023]
Abstract
Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H₂O₂ causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H₂O₂ such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (¹O₂) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment.
Collapse
Affiliation(s)
- Ivan Jajic
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| |
Collapse
|
113
|
Zhang X, Gao F. Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges. Free Radic Res 2015; 49:374-82. [PMID: 25789762 DOI: 10.3109/10715762.2015.1014813] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) is a key element in the regulation of several physiological functions and in the development or progression of multiple pathological events. A key task in the study of mitochondrial ROS is to establish reliable methods for measuring the ROS level in mitochondria with high selectivity, sensitivity, and spatiotemporal resolution. Over the last decade, imaging tools with fluorescent indicators from either small-molecule dyes or genetically encoded probes that can be targeted to mitochondria have been developed, which provide a powerful method to visualize and even quantify mitochondrial ROS level not only in live cells, but also in live animals. These innovative tools that have bestowed exciting new insights in mitochondrial ROS biology have been further promoted with the invention of new techniques in indicator design and fluorescent detection. However, these probes present some limitations in terms of specificity, sensitivity, and kinetics; failure to recognize these limitations often results in inappropriate interpretations of data. This review evaluates the recent advances in mitochondrial ROS imaging approaches with emphasis on their proper application and limitations, and highlights the future perspectives in the development of novel fluorescent probes for visualizing all species of ROS.
Collapse
Affiliation(s)
- X Zhang
- Department of Aerospace Medicine, Fourth Military Medical University , Xi'an , P. R. China
| | | |
Collapse
|
114
|
Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22:537-52. [PMID: 25545236 PMCID: PMC4322788 DOI: 10.1089/ars.2014.6234] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. RECENT ADVANCES Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. CRITICAL ISSUES AND FUTURE DIRECTIONS In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellence Cluster Cardiopulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) , Giessen, Germany
| | | | | | | |
Collapse
|
115
|
Wilson C, Núñez MT, González-Billault C. Contribution of NADPH-oxidase to the establishment of hippocampal neuronal polarity in culture. J Cell Sci 2015; 128:2989-95. [DOI: 10.1242/jcs.168567] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/05/2015] [Indexed: 01/09/2023] Open
Abstract
Reactive oxygen species (ROS) produced by the NADPH oxidase (NOX) complex play important physiological and pathological roles in neurotransmission and neurodegeneration, respectively. However, the contribution of ROS to molecular mechanisms involved in neuronal polarity and axon elongation is not well understood. In this work, we found that loss of function of the NOX complex altered neuronal polarization and decreased axonal length by a mechanism that involves actin cytoskeleton dynamics. Together, these results indicate that physiological levels of ROS produced by the NOX complex modulate hippocampal neuronal polarity and axonal growth in vitro.
Collapse
Affiliation(s)
- Carlos Wilson
- Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| | - M. Tulio Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| |
Collapse
|
116
|
Pimenta FM, Jensen JK, Etzerodt M, Ogilby PR. Protein-encapsulated bilirubin: paving the way to a useful probe for singlet oxygen. Photochem Photobiol Sci 2015; 14:665-77. [DOI: 10.1039/c4pp00408f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxygen- and singlet-oxygen-dependent parameters that characterize the behavior of bilirubin encapsulated in a protein have been quantified.
Collapse
Affiliation(s)
- Frederico M. Pimenta
- Center for Oxygen Microscopy and Imaging
- Chemistry Department
- Aarhus University
- Aarhus
- Denmark
| | - Jan K. Jensen
- Department of Molecular Biology and Genetics
- Aarhus University
- Aarhus
- Denmark
| | - Michael Etzerodt
- Department of Molecular Biology and Genetics
- Aarhus University
- Aarhus
- Denmark
| | - Peter R. Ogilby
- Center for Oxygen Microscopy and Imaging
- Chemistry Department
- Aarhus University
- Aarhus
- Denmark
| |
Collapse
|
117
|
Bazalii АV. Recombinant fluorescent sensor of hydrogen peroxide HyPer fused with adaptor protein Ruk/CIN85: designing of expression vector and its functional characterization. BIOTECHNOLOGIA ACTA 2015. [DOI: 10.15407/biotech8.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
118
|
Ribeiro CW, Alloing G, Mandon K, Frendo P. Redox regulation of differentiation in symbiotic nitrogen fixation. Biochim Biophys Acta Gen Subj 2014; 1850:1469-78. [PMID: 25433163 DOI: 10.1016/j.bbagen.2014.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/30/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nitrogen-fixing symbiosis between Rhizobium bacteria and legumes leads to the formation of a new organ, the root nodule. The development of the nodule requires the differentiation of plant root cells to welcome the endosymbiotic bacterial partner. This development includes the formation of an efficient vascular tissue which allows metabolic exchanges between the root and the nodule, the formation of a barrier to oxygen diffusion necessary for the bacterial nitrogenase activity and the enlargement of cells in the infection zone to support the large bacterial population. Inside the plant cell, the bacteria differentiate into bacteroids which are able to reduce atmospheric nitrogen to ammonia needed for plant growth in exchange for carbon sources. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. SCOPE OF THE REVIEW Nodule functioning requires a tight regulation of the development of plant cells and bacteria. The importance of redox control in nodule development and N-fixation is discussed in this review. The involvement of reactive oxygen and nitrogen species and the importance of the antioxidant defense are analyzed. MAJOR CONCLUSIONS Plant differentiation and bacterial differentiation are controlled by reactive oxygen and nitrogen species, enzymes involved in the antioxidant defense and antioxidant compounds. GENERAL SIGNIFICANCE The establishment and functioning of nitrogen-fixing symbiosis involve a redox control important for both the plant-bacteria crosstalk and the consideration of environmental parameters. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Carolina Werner Ribeiro
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Geneviève Alloing
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Karine Mandon
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Pierre Frendo
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
119
|
Guo H, Aleyasin H, Dickinson BC, Haskew-Layton RE, Ratan RR. Recent advances in hydrogen peroxide imaging for biological applications. Cell Biosci 2014; 4:64. [PMID: 25400906 PMCID: PMC4232666 DOI: 10.1186/2045-3701-4-64] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/06/2014] [Indexed: 11/10/2022] Open
Abstract
Mounting evidence supports the role of hydrogen peroxide (H2O2) in physiological signaling as well as pathological conditions. However, the subtleties of peroxide-mediated signaling are not well understood, in part because the generation, degradation, and diffusion of H2O2 are highly volatile within different cellular compartments. Therefore, the direct measurement of H2O2 in living specimens is critically important. Fluorescent probes that can detect small changes in H2O2 levels within relevant cellular compartments are important tools to study the spatial dynamics of H2O2. To achieve temporal resolution, the probes must also be photostable enough to allow multiple readings over time without loss of signal. Traditional fluorescent redox sensitive probes that have been commonly used for the detection of H2O2 tend to react with a wide variety of reactive oxygen species (ROS) and often suffer from photostablilty issues. Recently, new classes of H2O2 probes have been designed to detect H2O2 with high selectivity. Advances in H2O2 measurement have enabled biomedical scientists to study H2O2 biology at a level of precision previously unachievable. In addition, new imaging techniques such as two-photon microscopy (TPM) have been employed for H2O2 detection, which permit real-time measurements of H2O2 in vivo. This review focuses on recent advances in H2O2 probe development and optical imaging technologies that have been developed for biomedical applications.
Collapse
Affiliation(s)
- Hengchang Guo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA ; Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605 USA
| | - Hossein Aleyasin
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605 USA ; Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 USA
| | - Renée E Haskew-Layton
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605 USA ; School of Health and Natural Sciences, Mercy College, Dobbs Ferry, NY 10522 USA
| | - Rajiv R Ratan
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605 USA
| |
Collapse
|
120
|
Ermakova YG, Bilan DS, Matlashov ME, Mishina NM, Markvicheva KN, Subach OM, Subach FV, Bogeski I, Hoth M, Enikolopov G, Belousov VV. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat Commun 2014; 5:5222. [PMID: 25330925 PMCID: PMC4553041 DOI: 10.1038/ncomms6222] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/09/2014] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) are conserved regulators of numerous cellular functions, and overproduction of ROS is a hallmark of various pathological processes. Genetically encoded fluorescent probes are unique tools to study ROS production in living systems of different scale and complexity. However, the currently available recombinant redox sensors have green emission, which overlaps with the spectra of many other probes. Expanding the spectral range of recombinant in vivo ROS probes would enable multiparametric in vivo ROS detection. Here we present the first genetically encoded red fluorescent sensor for hydrogen peroxide detection, HyPerRed. The performance of this sensor is similar to its green analogues. We demonstrate the utility of the sensor by tracing low concentrations of H2O2 produced in the cytoplasm of cultured cells upon growth factor stimulation. Moreover, using HyPerRed we detect local and transient H2O2 production in the mitochondrial matrix upon inhibition of the endoplasmic reticulum Ca(2+) uptake.
Collapse
Affiliation(s)
- Yulia G Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Dmitry S Bilan
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia [2] NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Mikhail E Matlashov
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia [2] NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Natalia M Mishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | - Oksana M Subach
- NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Fedor V Subach
- NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Ivan Bogeski
- Department of Biophysics, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Markus Hoth
- Department of Biophysics, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Grigori Enikolopov
- 1] NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Vsevolod V Belousov
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia [2] NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| |
Collapse
|
121
|
Zhao Y, Yang Y. Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Curr Opin Biotechnol 2014; 31:86-92. [PMID: 25269782 DOI: 10.1016/j.copbio.2014.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/21/2014] [Indexed: 12/29/2022]
Abstract
NADH and its oxidized form, NAD(+), play central roles in energy metabolism and are ideal indicators of cellular metabolic states. In this review, we will introduce recent progress made in the developing of a series of genetically encoded NADH sensors, which offer the potential to fill the gap in currently used techniques of endogenous NAD(P)H fluorescence imaging. These sensors are bright, specific and organelles targetable, allowing real-time tracking and quantification of intracellular NADH levels in different subcellular compartments. The individual strengths and weaknesses of these sensors when applied to the study of metabolic states profiling will be also discussed.
Collapse
Affiliation(s)
- Yuzheng Zhao
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
122
|
Ramiro-Diaz JM, Giermakowska W, Weaver JM, Jernigan NL, Gonzalez Bosc LV. Mechanisms of NFATc3 activation by increased superoxide and reduced hydrogen peroxide in pulmonary arterial smooth muscle. Am J Physiol Cell Physiol 2014; 307:C928-38. [PMID: 25163518 DOI: 10.1152/ajpcell.00244.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We recently demonstrated increased superoxide (O2(·-)) and decreased H2O2 levels in pulmonary arteries of chronic hypoxia-exposed wild-type and normoxic superoxide dismutase 1 (SOD1) knockout mice. We also showed that this reciprocal change in O2(·-) and H2O2 is associated with elevated activity of nuclear factor of activated T cells isoform c3 (NFATc3) in pulmonary arterial smooth muscle cells (PASMC). This suggests that an imbalance in reactive oxygen species levels is required for NFATc3 activation. However, how such imbalance activates NFATc3 is unknown. This study evaluated the importance of O2(·-) and H2O2 in the regulation of NFATc3 activity. We tested the hypothesis that an increase in O2(·-) enhances actin cytoskeleton dynamics and a decrease in H2O2 enhances intracellular Ca(2+) concentration, contributing to NFATc3 nuclear import and activation in PASMC. We demonstrate that, in PASMC, endothelin-1 increases O2(·-) while decreasing H2O2 production through the decrease in SOD1 activity without affecting SOD protein levels. We further demonstrate that O2(·-) promotes, while H2O2 inhibits, NFATc3 activation in PASMC. Additionally, increased O2(·-)-to-H2O2 ratio activates NFATc3, even in the absence of a Gq protein-coupled receptor agonist. Furthermore, O2(·-)-dependent actin polymerization and low intracellular H2O2 concentration-dependent increases in intracellular Ca(2+) concentration contribute to NFATc3 activation. Together, these studies define important and novel regulatory mechanisms of NFATc3 activation in PASMC by reactive oxygen species.
Collapse
Affiliation(s)
- Juan Manuel Ramiro-Diaz
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Wieslawa Giermakowska
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - John M Weaver
- Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico;
| |
Collapse
|
123
|
Kaludercic N, Deshwal S, Di Lisa F. Reactive oxygen species and redox compartmentalization. Front Physiol 2014; 5:285. [PMID: 25161621 PMCID: PMC4130307 DOI: 10.3389/fphys.2014.00285] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy ; Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
124
|
Quantifying intracellular hydrogen peroxide perturbations in terms of concentration. Redox Biol 2014; 2:955-62. [PMID: 25460730 PMCID: PMC4215397 DOI: 10.1016/j.redox.2014.08.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022] Open
Abstract
Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies. 2-cys peroxiredoxin is the dominant scavenger of H2O2 in mammalian cells. H2O2 gradient across the plasma membrane is ~650-fold, 100 times higher than cited in literature. We developed an approach that converts fold-change in H2O2 sensor HyPer into change in actual concentration. The range of intracellular perturbations associated with the onset of apoptosis is less than 10 nM.
Collapse
|
125
|
Ezeriņa D, Morgan B, Dick TP. Imaging dynamic redox processes with genetically encoded probes. J Mol Cell Cardiol 2014; 73:43-9. [DOI: 10.1016/j.yjmcc.2013.12.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022]
|
126
|
Carroll P, Muwanguzi-Karugaba J, Melief E, Files M, Parish T. Identification of the translational start site of codon-optimized mCherry in Mycobacterium tuberculosis. BMC Res Notes 2014; 7:366. [PMID: 24934902 PMCID: PMC4091752 DOI: 10.1186/1756-0500-7-366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/06/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fluorescent proteins are used widely as reporter genes in many organisms. We previously codon-optimized mCherry for Mycobacterium tuberculosis and generated expression constructs with high level expression in mycobacteria with multiple uses in vitro and in vivo. However, little is known about the expression of fluorescent proteins in mycobacteria and the translational start codon for mCherry has not been experimentally determined. RESULTS We determined the translational start site for functional (fluorescent) mCherry in mycobacteria. Several potential translational start codons were identified; introduction of downstream stop codons by mutagenesis was used to determine which start codon was utilized in the bacterial cells. Fluorescent protein was expressed from a construct which would allow translation of a protein of 226 amino acids or a protein of 235 amino acids. No fluorescence was seen when a construct which could give rise to a protein of 219 amino acids was used. Similar results were obtained in mycobacteria and in Escherichia coli. Western blotting confirmed that mCherry was expressed from the constructs encoding 235 or 226 amino acids, but not from the plasmid encoding 219 amino acids. N-terminal sequencing and mass determination confirmed that the mature protein was 226 amino acids and commenced with the amino acid sequence AIIKE. CONCLUSION We conclude that mCherry is expressed in M. tuberculosis as a smaller protein than expected lacking the GFP-derived N-terminal sequence designed to allow efficient fusions.
Collapse
Affiliation(s)
- Paul Carroll
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Immunology and Infectious Disease, London, UK
| | - Julian Muwanguzi-Karugaba
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Immunology and Infectious Disease, London, UK
| | - Eduard Melief
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Megan Files
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Tanya Parish
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Centre for Immunology and Infectious Disease, London, UK
- Infectious Disease Research Institute, Seattle, Washington, USA
| |
Collapse
|
127
|
Rudyk O, Eaton P. Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2014; 2:803-13. [PMID: 25009782 PMCID: PMC4085346 DOI: 10.1016/j.redox.2014.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/11/2023] Open
Abstract
Oxidative post-translational modifications of proteins resulting from events that increase cellular oxidant levels play important roles in physiological and pathophysiological processes. Evaluation of alterations to protein redox states is increasingly common place because of methodological advances that have enabled detection, quantification and identification of such changes in cells and tissues. This mini-review provides a synopsis of biochemical methods that can be utilized to monitor the array of different oxidative and electrophilic modifications that can occur to protein thiols and can be important in the regulatory or maladaptive impact oxidants can have on biological systems. Several of the methods discussed are valuable for monitoring the redox state of established redox sensing proteins such as Keap1.
Collapse
Affiliation(s)
- Olena Rudyk
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK
| | - Philip Eaton
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK
| |
Collapse
|
128
|
Abstract
From the initial discovery in 1999 that NADPH oxidases comprise a family of enzymes to our current focus on drug development to treat multiple pathologies related to this enzyme family, progress has been swift and impressive. We have expanded our understanding of the extent of the family, the basic enzymatic biochemistry, the multiple cellular functions controlled by NADPH oxidases, and their varied roles in physiology and diseases. We have developed numerous cell culture tools, animal models, and human databases that have allowed us to delve deeply into the various roles of these enzymes. However, it is clear that much remains to be learned and that there are many opportunities for new tools and new research directions to more fully understand these critical enzymes. With this Antioxidants and Redox Signaling Forum, we explore in detail the progress, challenges, and opportunities in Nox biology. Progress so far has clearly shown that NADPH oxidases are integral to fully functioning organisms and that the dysregulation of Nox enzymes contributes to a wide variety of pathologies. We have the opportunity to develop new tools and small molecules that will not only help us to better understand the molecular underpinnings of NADPH oxidases but also to develop treatments for diverse human diseases.
Collapse
Affiliation(s)
- Alejandra San Martin
- Division of Cardiology, Department of Medicine, Emory University , Atlanta, Georgia
| | | |
Collapse
|
129
|
Vegh R, Bravaya KB, Bloch DA, Bommarius A, Tolbert L, Verkhovsky M, Krylov AI, Solntsev KM. Chromophore photoreduction in red fluorescent proteins is responsible for bleaching and phototoxicity. J Phys Chem B 2014; 118:4527-34. [PMID: 24712386 PMCID: PMC4010289 DOI: 10.1021/jp500919a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/05/2014] [Indexed: 12/11/2022]
Abstract
Red fluorescent proteins (RFPs) are indispensable tools for deep-tissue imaging, fluorescence resonance energy transfer applications, and super-resolution microscopy. Using time-resolved optical spectroscopy this study investigated photoinduced dynamics of three RFPs, KillerRed, mRFP, and DsRed. In all three RFPs, a new transient absorption intermediate was observed, which decays on a microsecond-millisecond time scale. This intermediate is characterized by red-shifted absorption at 1.68-1.72 eV (λmax = 720-740 nm). On the basis of electronic structure calculations, experimental evidence, and published literature, the chemical nature of the intermediate is assigned to an unusual open-shell dianionic chromophore (dianion-radical) formed via photoreduction. A doubly charged state that is not stable in the isolated (gas phase) chromophore is stabilized by the electrostatic field of the protein. Mechanistic implications for photobleaching, blinking, and phototoxicity are discussed.
Collapse
Affiliation(s)
- Russell
B. Vegh
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Parker
H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, United States
| | - Ksenia B. Bravaya
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Dmitry A. Bloch
- Institute
of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Andreas
S. Bommarius
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Parker
H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Laren
M. Tolbert
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | | | - Anna I. Krylov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Kyril M. Solntsev
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
130
|
García-Santamarina S, Boronat S, Hidalgo E. Reversible Cysteine Oxidation in Hydrogen Peroxide Sensing and Signal Transduction. Biochemistry 2014; 53:2560-80. [DOI: 10.1021/bi401700f] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sarela García-Santamarina
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Susanna Boronat
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
131
|
Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 2014; 289:8735-41. [PMID: 24515117 DOI: 10.1074/jbc.r113.544635] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hydrogen peroxide, the nonradical 2-electron reduction product of oxygen, is a normal aerobic metabolite occurring at about 10 nm intracellular concentration. In liver, it is produced at 50 nmol/min/g of tissue, which is about 2% of total oxygen uptake at steady state. Metabolically generated H2O2 emerged from recent research as a central hub in redox signaling and oxidative stress. Upon generation by major sources, the NADPH oxidases or Complex III of the mitochondrial respiratory chain, H2O2 is under sophisticated fine control of peroxiredoxins and glutathione peroxidases with their backup systems as well as by catalase. Of note, H2O2 is a second messenger in insulin signaling and in several growth factor-induced signaling cascades. H2O2 transport across membranes is facilitated by aquaporins, denoted as peroxiporins. Specialized protein cysteines operate as redox switches using H2O2 as thiol oxidant, making this reactive oxygen species essential for poising the set point of the redox proteome. Major processes including proliferation, differentiation, tissue repair, inflammation, circadian rhythm, and aging use this low molecular weight oxygen metabolite as signaling compound.
Collapse
Affiliation(s)
- Helmut Sies
- From the From the Institute of Biochemistry and Molecular Biology I, and
| |
Collapse
|
132
|
Molin M, Demir AB. Linking Peroxiredoxin and Vacuolar-ATPase Functions in Calorie Restriction-Mediated Life Span Extension. Int J Cell Biol 2014; 2014:913071. [PMID: 24639875 PMCID: PMC3930189 DOI: 10.1155/2014/913071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/11/2013] [Accepted: 12/15/2013] [Indexed: 01/09/2023] Open
Abstract
Calorie restriction (CR) is an intervention extending the life spans of many organisms. The mechanisms underlying CR-dependent retardation of aging are still poorly understood. Despite mechanisms involving conserved nutrient signaling pathways proposed, few target processes that can account for CR-mediated longevity have so far been identified. Recently, both peroxiredoxins and vacuolar-ATPases were reported to control CR-mediated retardation of aging downstream of conserved nutrient signaling pathways. In this review, we focus on peroxiredoxin-mediated stress-defence and vacuolar-ATPase regulated acidification and pinpoint common denominators between the two mechanisms proposed for how CR extends life span. Both the activities of peroxiredoxins and vacuolar-ATPases are stimulated upon CR through reduced activities in conserved nutrient signaling pathways and both seem to stimulate cellular resistance to peroxide-stress. However, whereas vacuolar-ATPases have recently been suggested to control both Ras-cAMP-PKA- and TORC1-mediated nutrient signaling, neither the physiological benefits of a proposed role for peroxiredoxins in H2O2-signaling nor downstream targets regulated are known. Both peroxiredoxins and vacuolar-ATPases do, however, impinge on mitochondrial iron-metabolism and further characterization of their impact on iron homeostasis and peroxide-resistance might therefore increase our understanding of the beneficial effects of CR on aging and age-related diseases.
Collapse
Affiliation(s)
- Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Gothenburg, Sweden
| | - Ayse Banu Demir
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Gothenburg, Sweden
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Urla, Izmir, Turkey
- Department of Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Inciralti, Izmir, Turkey
| |
Collapse
|
133
|
The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta Gen Subj 2014; 1840:730-8. [DOI: 10.1016/j.bbagen.2013.05.004] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 02/06/2023]
|
134
|
Casellato A, Rossi Paccani S, Barrile R, Bossi F, Ciucchi L, Codolo G, Pizza M, Aricò B, de Bernard M. The C2 fragment from Neisseria meningitidis antigen NHBA increases endothelial permeability by destabilizing adherens junctions. Cell Microbiol 2014; 16:925-37. [PMID: 24397470 DOI: 10.1111/cmi.12250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022]
Abstract
Neisseria meningitidis is a human pathogen that can cause fatal sepsis and meningitis once it reaches the blood stream and the nervous system. Here we demonstrate that a fragment, released upon proteolysis of the surface-exposed protein Neisserial Heparin Binding Antigen (NHBA), by the bacterial protease NalP, alters the endothelial permeability by inducing the internalization of the adherens junction protein VE-cadherin. We found that C2 rapidly accumulates in mitochondria where it induces the production of reactive oxygen species: the latter are required for the phosphorylation of the junctional protein and for its internalization that, in turn, is responsible for the endothelial leakage. Our data support the notion that the NHBA-derived fragment C2 might contribute to the extensive vascular leakage typically associated with meningococcal sepsis.
Collapse
|
135
|
|
136
|
Tandon N, Cimetta E, Villasante A, Kupferstein N, Southall MD, Fassih A, Xie J, Sun Y, Vunjak-Novakovic G. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway. Exp Cell Res 2013; 320:79-91. [PMID: 24113575 DOI: 10.1016/j.yexcr.2013.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/03/2013] [Accepted: 09/21/2013] [Indexed: 12/13/2022]
Abstract
Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing.
Collapse
Affiliation(s)
- Nina Tandon
- Columbia University, Department of Biomedical Engineering, 622 West 168th Street, MC 104B, New York 10027, NY, USA; The Cooper Union for the Advancement of Science and Art, Department of Electrical Engineering, 41 Cooper Square, New York 10003, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|