101
|
Gladding JM, Abbott KN, Antoniadis CP, Stuart A, Begg DP. The Effect of Intrahippocampal Insulin Infusion on Spatial Cognitive Function and Markers of Neuroinflammation in Diet-induced Obesity. Front Endocrinol (Lausanne) 2018; 9:752. [PMID: 30619085 PMCID: PMC6297211 DOI: 10.3389/fendo.2018.00752] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Obesity and high fat diet consumption contribute to the development of metabolic disorders, insulin resistance, neuroinflammation, and cognitive impairments. CNS administration of insulin into the brain can attenuate these cognitive impairments. The present study investigated whether hippocampal-dependent spatial memory impairments in a dietary induced mouse model of obesity could be improved by the direct administration of insulin into the hippocampus and whether this was associated with markers of hippocampal inflammation. C57Bl/6J mice consumed a low fat or high fat diet for 16 weeks and continuous intrahippocampal saline or insulin infusion for the final 4 weeks, during a period of behavioral testing, before gene expression analysis was performed. The high fat diet group demonstrated poorer spatial memory performance in the Morris water maze and Y-maze, supporting the hypothesis that high fat diet leads to hippocampal dependent cognitive impairment. Insulin infusion into the hippocampus reversed the deficit of high fat diet consumption on both of the tasks. Increased expression of inflammatory markers was detected in the hippocampus in the high fat diet group and expression of these markers was ameliorated in insulin infused mice. This demonstrates that CNS insulin can improve hippocampal-dependent memory and that hippocampal inflammation may be a factor in the development of cognitive deficits associated with diet-induced obesity. Furthermore, these data suggest that insulin may act to attenuate high fat diet induced cognitive deficits by reducing neuroinflammation.
Collapse
Affiliation(s)
- Joanne M. Gladding
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | - Kirsten N. Abbott
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | - Christopher P. Antoniadis
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
- Department of Medicine, School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Angela Stuart
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
- Department of Pharmacology, School of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Denovan P. Begg
- Department of Behavioural Neuroscience, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
102
|
Ferreira A, Castro JP, Andrade JP, Dulce Madeira M, Cardoso A. Cafeteria-diet effects on cognitive functions, anxiety, fear response and neurogenesis in the juvenile rat. Neurobiol Learn Mem 2018; 155:197-207. [DOI: 10.1016/j.nlm.2018.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/29/2018] [Accepted: 07/30/2018] [Indexed: 01/28/2023]
|
103
|
Chacón-Cuberos R, Zurita-Ortega F, Martínez-Martínez A, Olmedo-Moreno EM, Castro-Sánchez M. Adherence to the Mediterranean Diet Is Related to Healthy Habits, Learning Processes, and Academic Achievement in Adolescents: A Cross-Sectional Study. Nutrients 2018; 10:nu10111566. [PMID: 30360502 PMCID: PMC6267280 DOI: 10.3390/nu10111566] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 01/26/2023] Open
Abstract
Background: Several studies have shown that following a healthy diet and practicing regular physical activity (PA) are related with multiple health benefits. However, the cognitive and academic implications of these behaviors within adolescents requires further study. Material and Methods: A cross-sectional study was conducted with a simple of 1059 adolescents from Spain. The main instruments employed were the Adherence to Mediterranean Diet Test (KIDMED), the Physical Activity Questionnaire for Adolescents (PAQ-A) and the Motivation and Learning Strategies Short Form (MSLQ-SF). Results: Practicing PA for more than three hours per week was related to better dietary habits (p < 0.001) such as increased consumption of vegetables (0.75 ± 0.43 vs. 0.62 ± 0.48), fish (0.67 ± 0.47 vs. 0.58 ± 0.49), cereals (0.85 ± 0.35 vs. 0.77 ± 0.41) and nuts (0.44 ± 0.49 vs. 0.35 ± 0.47). High adherence to a Mediterranean diet (MD) was positively related to elaboration strategies (r = 0.116), organizational strategies (r = 0.109), critical thinking (r = 0.116), self-regulation (r = 0.159), time and study habits (r = 0.160), self-regulation of effort (r = 0.118), and intrinsically orientated goals (r = 0.090) (p < 0.01 for all variables). Practicing PA every week was also related to improvements in several of the measured variables and in addition was related to lower levels of anxiety within the academic environment (r = −0.070; p < 0.05). Conclusions: Given the benefits of eating habits and the practice of PA in the cognitive processes involved in adolescent learning, intervention programs within the educational context are recommended to improve healthy habits.
Collapse
Affiliation(s)
- Ramón Chacón-Cuberos
- Department of Didactics of Musical, Plastic and Corporal Expression, University of Granada, 18071 Granada, Spain.
| | - Félix Zurita-Ortega
- Department of Didactics of Musical, Plastic and Corporal Expression, University of Granada, 18071 Granada, Spain.
| | | | - Eva María Olmedo-Moreno
- Department of Research Methods and Educational Diagnosis, University of Granada, 18071 Granada, Spain.
| | - Manuel Castro-Sánchez
- Department of Didactics of Musical, Plastic and Corporal Expression, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
104
|
Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metab 2018; 28:33-44.e3. [PMID: 29909968 DOI: 10.1016/j.cmet.2018.05.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/29/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023]
Abstract
Post-ingestive signals conveying information about the nutritive properties of food are critical for regulating ingestive behavior. Here, using an auction task concomitant to fMRI scanning, we demonstrate that participants are willing to pay more for fat + carbohydrate compared with equally familiar, liked, and caloric fat or carbohydrate foods and that this potentiated reward is associated with response in areas critical for reward valuation, including the dorsal striatum and mediodorsal thalamus. We also show that individuals are better able to estimate the energy density of fat compared with carbohydrate and fat + carbohydrate foods, an effect associated with functional connectivity between visual (fusiform gyrus) and valuation (ventromedial prefrontal cortex) areas. These results provide the first demonstration that foods high in fat and carbohydrate are, calorie for calorie, valued more than foods containing only fat or carbohydrate and that this effect is associated with greater recruitment of central reward circuits.
Collapse
|
105
|
Tengeler AC, Kozicz T, Kiliaan AJ. Relationship between diet, the gut microbiota, and brain function. Nutr Rev 2018; 76:603-617. [DOI: 10.1093/nutrit/nuy016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anouk C Tengeler
- Department of Anatomy, Radboud university medical center, Center for Medical Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Radboud university medical center, Center for Medical Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands
- Department of Pedriatrics, Hayward Genetics Center, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud university medical center, Center for Medical Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands
| |
Collapse
|
106
|
Xu TJ, Reichelt AC. Sucrose or sucrose and caffeine differentially impact memory and anxiety-like behaviours, and alter hippocampal parvalbumin and doublecortin. Neuropharmacology 2018; 137:24-32. [PMID: 29729502 DOI: 10.1016/j.neuropharm.2018.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022]
Abstract
Caffeinated sugar-sweetened "energy" drinks are a subset of soft drinks that are popular among young people worldwide. High sucrose diets impair cognition and alter aspects of emotional behaviour in rats, however, little is known about sucrose combined with caffeine. Rats were allocated to 2 h/day 10% sucrose (Suc), 10% sucrose plus 0.04% caffeine (CafSuc) or control (water) conditions. The addition of caffeine to sucrose appeared to increase the rewarding aspect of sucrose, as the CafSuc group consumed more solution than the Suc group. After 14 days of intermittent Suc or CafSuc access, anxiety was assessed in the elevated plus maze (EPM) prior to their daily solution access, whereby CafSuc and Suc rats spent more time in the closed arms, indicative of increased anxiety. Following daily solution access, CafSuc, but not Suc, rats showed reduced anxiety-like behaviour in the open-field. Control and CafSuc rats displayed intact place and long-term object memory, while Suc showed impaired memory performance. Sucrose reduced parvalbumin immunoreactivity in the hippocampus, but no differences were observed between Control and CafSuc conditions. Parvalbumin reactivity in the basolateral amygdala did not differ between conditions. Reduced doublecortin immunoreactivity in the dentate gyrus relative to controls was seen in the CafSuc, but not Suc, treatment conditions. These findings indicate that the addition of caffeine to sucrose attenuated cognitive deficits. However, the addition of caffeine to sucrose evoked anxiety-like responses under certain testing conditions, suggesting that frequent consumption of caffeinated energy drinks may promote emotional alterations and brain changes compared to standard soft drinks.
Collapse
Affiliation(s)
- Tanya J Xu
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic 3083, Australia
| | - Amy C Reichelt
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic 3083, Australia.
| |
Collapse
|
107
|
Jones S, Sample CH, Hargrave SL, Davidson TL. Associative mechanisms underlying the function of satiety cues in the control of energy intake and appetitive behavior. Physiol Behav 2018; 192:37-49. [PMID: 29555194 DOI: 10.1016/j.physbeh.2018.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
While previous research has identified a number of metabolic, neural, and hormonal events that could serve as potential satiety signals, the mechanisms that enable satiety signals to suppress food-seeking and eating behavior remain poorly specified. Here we investigate the idea that the inhibitory power of satiety signals is derived, at least in part, from their ability to signal that foods and food-related stimuli will not be followed by reinforcing postingestive consequences. Viewed in this way, the signaling relationship in which satiety cues are embedded defines what is known in Pavlovian conditioning as a "serial feature negative" (sFN) discrimination problem. In this problem a "negative feature" cue precedes the presentation of a "target" cue on trials without reinforcement. In contrast, the target is reinforced on trials when the negative feature cue is not presented. Satiety cues can be seen as paralleling the function of negative feature cues in that they signal when food-related target cues will be nonreinforced. We conducted two experiments with rats that assessed if satiety signals functioned like negative feature stimuli. Experiment 1 explicitly pretrained satiety cues as negative feature stimuli, irrelevant stimuli, or under conditions where their ability to serve as negative feature stimuli would be attenuated. Control by satiety cues was highly sensitive to these experimental contingencies, with the best performance exhibited by rats given sFN pretraining. This sFN pretraining also transferred to enhance performance during subsequent training on another sFN problem with both external and internal negative feature cues. We also found that discriminative control by satiety cues blocked the development of that control by external cues. Experiment 2 evaluated whether a manipulation known to impair sFN performance with external negative feature cues (i.e., maintenance on a western diet) would also impair sFN performance when satiety cues were trained as negative feature stimuli. The results showed that compared to standard chow, WD intake impaired sFN performance similarly with both types of stimuli. These experiments provide evidence that an associative mechanism, like that underlying sFN performance, is involved with the control of appetitive behavior by satiety cues.
Collapse
Affiliation(s)
- Sabrina Jones
- Center for Behavioral Neuroscience and Department of Psychology, American University, Washington, DC, United States
| | - Camille H Sample
- Center for Behavioral Neuroscience and Department of Psychology, American University, Washington, DC, United States
| | - Sara L Hargrave
- Center for Behavioral Neuroscience and Department of Psychology, American University, Washington, DC, United States
| | - Terry L Davidson
- Center for Behavioral Neuroscience and Department of Psychology, American University, Washington, DC, United States.
| |
Collapse
|
108
|
Dietary influences on cognition. Physiol Behav 2018; 192:118-126. [PMID: 29501837 DOI: 10.1016/j.physbeh.2018.02.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
Abstract
Obesity is a world-wide crisis with profound healthcare and socio-economic implications and it is now clear that the central nervous system (CNS) is a target for the complications of metabolic disorders like obesity. In addition to decreases in physical activity and sedentary lifestyles, diet is proposed to be an important contributor to the etiology and progression of obesity. Unfortunately, there are gaps in our knowledge base related to how dietary choices impact the structural and functional integrity of the CNS. For example, while chronic consumption of hypercaloric diets (increased sugars and fat) contribute to increases in body weight and adiposity characteristic of metabolic disorders, the mechanistic basis for neurocognitive deficits in obesity remains to be determined. In addition, studies indicate that acute consumption of hypercaloric diets impairs performance in a wide variety of cognitive domains, even in normal non-obese control subjects. These results from the clinical and basic science literature indicate that diet can have rapid, as well as long lasting effects on cognitive function. This review summarizes our symposium at the 2017 Society for the Study of Ingestive Behavior (SSIB) meeting that discussed these effects of diet on cognition. Collectively, this review highlights the need for integrated and comprehensive approaches to more fully determine how diet impacts behavior and cognition under physiological conditions and in metabolic disorders like type 2 diabetes mellitus (T2DM) and obesity.
Collapse
|
109
|
Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Mol Psychiatry 2018; 23:351-361. [PMID: 28289278 DOI: 10.1038/mp.2017.38] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
The western diet is known to have detrimental effects on cognition and the gut microbiota, but few studies have investigated how these may be related. Here, we examined whether a probiotic could prevent diet-induced memory deficits. Rats were pre-exposed to vehicle, low or high doses of VSL#3 for 2 weeks before half were switched from chow to a cafeteria diet (Caf) for 25 days; VSL#3 treatment continued until death. High-dose VSL#3 prevented the diet-induced memory deficits on the hippocampal-dependent place task, but the probiotic caused deficits on the perirhinal-dependent object task, irrespective of diet or dose. No differences were observed in anxiety-like behaviour on the elevated plus maze. Gut microbial diversity was dramatically decreased by Caf diet and here, VSL#3 was able to increase the abundance of some taxa contained in the probiotic such as Streptococcus and Lactobacillus and also other taxa including Butyrivibrio, which were decreased by the Caf diet. This affected the predicted profile of microbial metabolic pathways related to antioxidant and bile biosynthesis, and fat and carbohydrate metabolism. In the hippocampus, the Caf diet increased the expression of many genes related to neuroplasticity and serotonin receptor (5HT) 1A, which was normalised in Caf-High rats. Distance-based linear modelling showed that these genes were the best predictors of place memory, and related to microbiota principal component (PC) 1. Neuroplasticity genes in the perirhinal cortex were also affected and related to PC1 but object memory performance was correlated with perirhinal 5HT2C expression and microbiota PC3. These results show that probiotics can be beneficial in situations of gut dysbiosis where memory deficits are evident but may be detrimental in healthy subjects.
Collapse
|
110
|
Spencer SJ, Korosi A, Layé S, Shukitt-Hale B, Barrientos RM. Food for thought: how nutrition impacts cognition and emotion. NPJ Sci Food 2017; 1:7. [PMID: 31304249 PMCID: PMC6550267 DOI: 10.1038/s41538-017-0008-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/24/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023] Open
Abstract
More than one-third of American adults are obese and statistics are similar worldwide. Caloric intake and diet composition have large and lasting effects on cognition and emotion, especially during critical periods in development, but the neural mechanisms for these effects are not well understood. A clear understanding of the cognitive-emotional processes underpinning desires to over-consume foods can assist more effective prevention and treatments of obesity. This review addresses recent work linking dietary fat intake and omega-3 polyunsaturated fatty acid dietary imbalance with inflammation in developing, adult, and aged brains. Thus, early-life diet and exposure to stress can lead to cognitive dysfunction throughout life and there is potential for early nutritional interventions (e.g., with essential micronutrients) for preventing these deficits. Likewise, acute consumption of a high-fat diet primes the hippocampus to produce a potentiated neuroinflammatory response to a mild immune challenge, causing memory deficits. Low dietary intake of omega-3 polyunsaturated fatty acids can also contribute to depression through its effects on endocannabinoid and inflammatory pathways in specific brain regions leading to synaptic phagocytosis by microglia in the hippocampus, contributing to memory loss. However, encouragingly, consumption of fruits and vegetables high in polyphenolics can prevent and even reverse age-related cognitive deficits by lowering oxidative stress and inflammation. Understanding relationships between diet, cognition, and emotion is necessary to uncover mechanisms involved in and strategies to prevent or attenuate comorbid neurological conditions in obese individuals.
Collapse
Affiliation(s)
- Sarah J. Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3788 Australia
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH Netherlands
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA, Bordeaux University, Bordeaux, UMR1286 France
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center On Aging at Tufts University, Boston, MA 02111-1524 USA
| | - Ruth M. Barrientos
- Department of Psychology & Neuroscience, and Center for Neuroscience, University of Colorado, Campus Box 345, Boulder, CO 80309-0345 USA
| |
Collapse
|
111
|
Miceli M, Molina SJ, Forcada A, Acosta GB, Guelman LR. Voluntary alcohol intake after noise exposure in adolescent rats: Hippocampal-related behavioral alterations. Brain Res 2017; 1679:10-18. [PMID: 29113737 DOI: 10.1016/j.brainres.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022]
Abstract
Different physical or chemical agents, such as noise or alcohol, can induce diverse behavioral and biochemical alterations. Considering the high probability of young people to undergo consecutive or simultaneous exposures, the aim of the present work was to investigate in an animal model if noise exposure at early adolescence could induce hippocampal-related behavioral changes that might be modified after alcohol intake. Male Wistar rats (28-days-old) were exposed to noise (95-97 dB, 2 h). Afterwards, animals were allowed to voluntarily drink alcohol (10% ethanol in tap water) for three consecutive days, using the two-bottle free choice paradigm. After that, hippocampal-related memory and anxiety-like behavior tests were performed. Results show that whereas noise-exposed rats presented deficits in habituation memory, those who drank alcohol exhibited impairments in associative memory and anxiety-like behaviors. In contrast, exposure to noise followed by alcohol intake showed increases in exploratory and locomotor activities as well as in anxiety-like behaviors, unlike what was observed using each agent separately. Finally, lower levels of alcohol intake were measured in these animals when compared with those that drank alcohol and were not exposed to noise. Present findings demonstrate that exposure to physical and chemical challenges during early adolescence might induce behavioral alterations that could differ depending on the schedule used, suggesting a high vulnerability of rat developing brain to these socially relevant agents.
Collapse
Affiliation(s)
- M Miceli
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - S J Molina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Buenos Aires, Argentina
| | - A Forcada
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - G B Acosta
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Investigaciones Farmacológicas (ININFA, UBA-CONICET), Buenos Aires, Argentina
| | - L R Guelman
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
112
|
Noble EE, Hsu TM, Liang J, Kanoski SE. Early-life sugar consumption has long-term negative effects on memory function in male rats. Nutr Neurosci 2017; 22:273-283. [PMID: 28944721 DOI: 10.1080/1028415x.2017.1378851] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Added dietary sugars contribute substantially to the diet of children and adolescents in the USA, and recent evidence suggests that consuming sugar-sweetened beverages (SSBs) during early life has deleterious effects on hippocampal-dependent memory function. Here, we test whether the effects of early-life sugar consumption on hippocampal function persist into adulthood when access to sugar is restricted to the juvenile/adolescent phase of development. METHODS Male rats were given ad libitum access to an 11% weight-by-volume sugar solution (made with high fructose corn syrup-55) throughout the adolescent phase of development (post-natal day (PN) 26-56). The control group received a second bottle of water instead, and both groups received ad libitum standard laboratory chow and water access throughout the study. At PN 56 sugar solutions were removed and at PN 175 rats were subjected to behavioral testing for hippocampal-dependent episodic contextual memory in the novel object in context (NOIC) task, for anxiety-like behavior in the Zero maze, and were given an intraperitoneal glucose tolerance test. RESULTS Early-life exposure to SSBs conferred long-lasting impairments in hippocampal-dependent memory function later in life- yet had no effect on body weight, anxiety-like behavior, or glucose tolerance. A second experiment demonstrated that NOIC performance was impaired at PN 175 even when SSB access was limited to 2 hours daily from PN 26-56. DISCUSSION Our data suggest that even modest SSB consumption throughout early life may have long-term negative consequences on memory function during adulthood.
Collapse
Affiliation(s)
- Emily E Noble
- a Department of Biological Sciences, Human and Evolutionary Biology Section , University of Southern California , Los Angeles , USA
| | - Ted M Hsu
- a Department of Biological Sciences, Human and Evolutionary Biology Section , University of Southern California , Los Angeles , USA.,b Neuroscience Graduate Program , University of Southern California , Los Angeles , USA
| | - Joanna Liang
- a Department of Biological Sciences, Human and Evolutionary Biology Section , University of Southern California , Los Angeles , USA
| | - Scott E Kanoski
- a Department of Biological Sciences, Human and Evolutionary Biology Section , University of Southern California , Los Angeles , USA.,b Neuroscience Graduate Program , University of Southern California , Los Angeles , USA
| |
Collapse
|
113
|
Alzoubi KH, Mayyas FA, Mahafzah R, Khabour OF. Melatonin prevents memory impairment induced by high-fat diet: Role of oxidative stress. Behav Brain Res 2017; 336:93-98. [PMID: 28866128 DOI: 10.1016/j.bbr.2017.08.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/12/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
Consumption of high-fat diet (HFD) induces oxidative stress in the hippocampus that leads to memory impairment. Melatonin has antioxidant and neuroprotective effects. In this study, we hypothesized that chronic administration of melatonin can prevent memory impairment induced by consumption of HFD. Melatonin was administered to rats via oral gavage (100mg/kg/day) for 4 weeks. HFD was also instituted for the same duration. Behavioral studies were conducted to test spatial memory using the radial arm water maze. Additionally, oxidative stress biomarkers were assessed in the hippocampus. Results showed that HFD impaired both short- and long- term memory (P<0.05), while melatonin treatment prevented such effects. Furthermore, melatonin prevented HFD-induced reduction in levels of GSH, and ratio of GSH/GSSG, and increase in GSSG in the hippocampus. Melatonin also prevented reduction in the catalase activity in hippocampus of animals on HFD. In conclusion, HFD induced memory impairment and melatonin prevented this impairment probably by preventing alteration of oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Fadia A Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Rania Mahafzah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
114
|
Wong A, Dogra VR, Reichelt AC. High-sucrose diets in male rats disrupt aspects of decision making tasks, motivation and spatial memory, but not impulsivity measured by operant delay-discounting. Behav Brain Res 2017; 327:144-154. [DOI: 10.1016/j.bbr.2017.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
|
115
|
Zeng L, Hu S, Chen P, Wei W, Tan Y. Macronutrient Intake and Risk of Crohn's Disease: Systematic Review and Dose-Response Meta-Analysis of Epidemiological Studies. Nutrients 2017; 9:nu9050500. [PMID: 28505133 PMCID: PMC5452230 DOI: 10.3390/nu9050500] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
Dietary intake is potentially associated with the onset of Crohn’s disease (CD), but evidence from epidemiological studies has remained unclear. This study aimed to evaluate the role of macronutrient intake in the development of CD. A systematic search was conducted in PubMed and Web of Science to identify all relevant studies, and the role of macronutrients in the development of CD was quantitatively assessed by dose–response meta-analysis. Four case-control studies (a total of 311 CD cases and 660 controls) and five prospective cohort studies (238,887 participants and 482 cases) were identified. The pooled relative risks (RR) for per 10 g increment/day were 0.991 (95% confidence interval (CI): 0.978–1.004) for total carbohydrate intake, 1.018 (95% CI: 0.969–1.069) for total fat intake, and 1.029 (95% CI: 0.955–1.109) for total protein intake. Fiber intake was inversely associated with CD risk (RR for per 10 g increment/day: 0.853, 95% CI: 0.762–0.955), but the association was influenced by study design and smoking adjustment. In subtypes, sucrose intake was positively related with CD risk (RR for per 10 g increment/day: 1.088, 95% CI: 1.020–1.160). Non-linear dose–response association was also found between fiber and sucrose intake and CD risk. In conclusion, this meta-analysis suggested a lack of association between total carbohydrate, fat or protein intake and the risk of CD, while high fiber intake might decrease the risk. In subtypes, high sucrose intake might increase the risk of CD.
Collapse
Affiliation(s)
- Lirong Zeng
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China.
| | - Sheng Hu
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China.
| | - Pengfei Chen
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China.
| | - Wenbin Wei
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China.
| | - Yuanzhong Tan
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China.
| |
Collapse
|
116
|
Guillemot-Legris O, Muccioli GG. Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci 2017; 40:237-253. [DOI: 10.1016/j.tins.2017.02.005] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
|
117
|
Attuquayefio T, Stevenson RJ, Oaten MJ, Francis HM. A four-day Western-style dietary intervention causes reductions in hippocampal-dependent learning and memory and interoceptive sensitivity. PLoS One 2017; 12:e0172645. [PMID: 28231304 PMCID: PMC5322971 DOI: 10.1371/journal.pone.0172645] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
In animals, a Western style diet-high in saturated fat and added sugar-causes impairments in hippocampal-dependent learning and memory (HDLM) and perception of internal bodily state (interoception). In humans, while there is correlational support for a link between Western-style diet, HDLM, and interoception, there is as yet no causal data. Here, healthy individuals were randomly assigned to consume either a breakfast high in saturated fat and added sugar (Experimental condition) or a healthier breakfast (Control condition), over four consecutive days. Tests of HDLM, interoception and biological measures were administered before and after breakfast on the days one and four, and participants completed food diaries before and during the study. At the end of the study, the Experimental condition showed significant reductions in HDLM and reduced interoceptive sensitivity to hunger and fullness, relative to the Control condition. The Experimental condition also showed a markedly different blood glucose and triglyceride responses to their breakfast, relative to Controls, with larger changes in blood glucose across breakfast being associated with greater reductions in HDLM. The Experimental condition compensated for their energy-dense breakfast by reducing carbohydrate intake, while saturated fat intake remained consistently higher than Controls. This is the first experimental study in humans to demonstrate that a Western-style diet impacts HDLM following a relatively short exposure-just as in animals. The link between diet-induced HDLM changes and blood glucose suggests one pathway by which diet impacts HDLM in humans.
Collapse
Affiliation(s)
- Tuki Attuquayefio
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Richard J. Stevenson
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| | - Megan J. Oaten
- School of Applied Psychology, Gold Coast, Griffiths University, Queensland, Australia
| | - Heather M. Francis
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
118
|
Noble EE, Hsu TM, Kanoski SE. Gut to Brain Dysbiosis: Mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment. Front Behav Neurosci 2017; 11:9. [PMID: 28194099 PMCID: PMC5277010 DOI: 10.3389/fnbeh.2017.00009] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
Consumption of a Western Diet (WD) that is high in saturated fat and added sugars negatively impacts cognitive function, particularly mnemonic processes that rely on the integrity of the hippocampus. Emerging evidence suggests that the gut microbiome influences cognitive function via the gut-brain axis, and that WD factors significantly alter the proportions of commensal bacteria in the gastrointestinal tract. Here we review mechanisms through which consuming a WD negatively impacts neurocognitive function, with a particular focus on recent evidence linking the gut microbiome with dietary- and metabolic-associated hippocampal impairment. We highlight evidence linking gut bacteria to altered intestinal permeability and blood brain barrier integrity, thus making the brain more vulnerable to the influx of deleterious substances from the circulation. WD consumption also increases production of endotoxin by commensal bacteria, which may promote neuroinflammation and cognitive dysfunction. Recent findings also show that diet-induced alterations in gut microbiota impair peripheral insulin sensitivity, which is associated with hippocampal neuronal derrangements and associated mnemonic deficits. In some cases treatment with specific probiotics or prebiotics can prevent or reverse some of the deleterious impact of WD consumption on neuropsychological outcomes, indicating that targeting the microbiome may be a successful strategy for combating dietary- and metabolic-associated cognitive impairment.
Collapse
Affiliation(s)
- Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Ted M Hsu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA; Neuroscience Program, University of Southern CaliforniaLos Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA; Neuroscience Program, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
119
|
Parent MB. Dorsal Hippocampal–Dependent Episodic Memory Inhibits Eating. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1177/0963721416665103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research regarding how the brain regulates eating behavior has focused largely on homeostatic (i.e., need-based) and hedonic (i.e., pleasure-based) controls. By contrast, there is a large gap in our understanding of how brain areas involved in cognitive processes, such as memory, impact energy intake. Moreover, compared to meal size and satiety, little is known about how the brain controls meal timing and frequency. My research team and I hypothesize that dorsal hippocampal neurons, which are critical for episodic memory of personal experiences, form a memory of a meal, inhibit meal initiation during the period following that meal, and limit the amount ingested at the next meal. I review evidence supporting this hypothesis and raise the possibility that impaired dorsal hippocampal function contributes to diet-induced obesity.
Collapse
Affiliation(s)
- Marise B. Parent
- Neuroscience Institute and Department of Psychology, Georgia State University
| |
Collapse
|
120
|
Carlin JL, Grissom N, Ying Z, Gomez-Pinilla F, Reyes TM. Voluntary exercise blocks Western diet-induced gene expression of the chemokines CXCL10 and CCL2 in the prefrontal cortex. Brain Behav Immun 2016; 58:82-90. [PMID: 27492632 PMCID: PMC5352157 DOI: 10.1016/j.bbi.2016.07.161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 12/12/2022] Open
Abstract
Obesity increases inflammation, both peripherally and centrally, and exercise can ameliorate some of the negative health outcomes associated with obesity. Within the brain, the effect of obesity on inflammation has been well characterized in the hypothalamus and hippocampus, but has been relatively understudied in other brain regions. The current study was designed to address two primary questions; (1) whether western diet (high fat/high sucrose) consumption would increase markers of inflammation in the prefrontal cortex and (2) whether concurrent voluntary wheel running would ameliorate any inflammation. Adult male mice were exposed to a western diet or a control diet for 8weeks. Concurrently, half the animals were given running wheels in their home cages, while half did not have access to wheels. At the conclusion of the study, prefrontal cortex was removed and expression of 18 proinflammatory genes was assayed. Expression of a number of proinflammatory molecules was upregulated by consumption of the western diet. For two chemokines, chemokine (C-C motif) ligand 2 (CCL2) and C-X-C motif chemokine 10 (CXCL10), voluntary exercise blocked the increase in the expression of these genes. Cluster analysis confirmed that the majority of the tested genes were upregulated by western diet, and identified another small cluster of genes that were downregulated by either diet or exercise. These data identify a proinflammatory phenotype within the prefrontal cortex of mice fed a western diet, and indicate that chemokine induction can be blocked by voluntary exercise.
Collapse
Affiliation(s)
- Jesse L. Carlin
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Nicola Grissom
- Department of Psychiatry and Behavioral Neurosciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Zhe Ying
- Departments of Neurosurgery, and Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery, and Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Teresa M. Reyes
- Department of Psychiatry and Behavioral Neurosciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, United States,Corresponding author at: University of Cincinnati, College of Medicine, Dept of Psychiatry and Behavioral Neuroscience, 2120 East Galbraith Road, A-129 Cincinnati, OH 45237-1625, United States. (T.M. Reyes)
| |
Collapse
|
121
|
Carbohydrate and protein intake and risk of ulcerative colitis: Systematic review and dose-response meta-analysis of epidemiological studies. Clin Nutr 2016; 36:1259-1265. [PMID: 27776925 DOI: 10.1016/j.clnu.2016.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIM Dietary carbohydrate and protein intake is generally thought as risk factors for onset of ulcerative colitis (UC), while epidemiological data had been controversial. This study aimed to evaluate the role of carbohydrate and protein intake in the development of UC. METHODS Comprehensive search in PubMed and Embase was conducted to identify all relevant studies, and the role of carbohydrate and protein intake in the development of UC was quantitatively assessed by dose-response meta-analysis. RESULTS Nine studies (5 case-control and 4 prospective cohort) were identified with a total of 975 UC cases and 239352 controls. The summary relative risks (RR) for per 10 g increment/day were 1.005 (95%CI: 0.991-1.019, I2 = 31.5%, n = 5) for total carbohydrate intake, 1.001 (95%CI: 0.971-1.032, I2 = 0.0%, n = 7) for the subtype of fiber intake, 1.029 (95%CI: 0.962-1.101, I2 = 68.9%, n = 2) for the subtype of sugar intake, and 1.010 (95%CI: 0.975-1.047, I2 = 12.4%, n = 7) for total protein intake. Among sugar subtypes, only sucrose intake was found positively related with UC risk (RR for per 10 g increment/day: 1.098, 95%CI: 1.024-1.177, I2 = 0.0%, n = 3). No evidence of a non-linear dose-response association was found between the nutrient intake and UC risk, except for the subtype of sucrose (P for non-linear trend = 0.032). Subgroup analyses showed consistent results. CONCLUSIONS This meta-analysis suggested a lack of association between dietary carbohydrate or protein intake and the risk of UC, except for the subtype of sucrose which played a significant role in the development of UC. Large-scale prospective designed studies are needed to confirm our findings.
Collapse
|
122
|
Beilharz JE, Kaakoush NO, Maniam J, Morris MJ. The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behav Immun 2016; 57:304-313. [PMID: 27448745 DOI: 10.1016/j.bbi.2016.07.151] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/30/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023] Open
Abstract
Short-term exposure to high-energy diets impairs memory but there is little data on the relative contributions of fat and sugar to these deficits or the mechanisms responsible. Here, we investigated how these different macronutrients affect memory, neuroinflammation and neuroplasticity markers and the gut microbiota. Rats were fed matched purified diets for 2weeks; Control, Sugar, Saturated Fatty Acid (SFA) or Polyunsaturated Fatty Acid (PUFA), which varied only in the percentage of energy available from sugar and the amount and type of fat. Rats consuming SFA and Sugar were impaired on hippocampal-dependent place recognition memory compared to Controls and PUFA rats, despite all rats consuming similar amounts of energy. All rats performed comparably on the object recognition task. Hippocampal and hypothalamic inflammatory markers were not substantially affected by the diets and there was no change in the neuroplasticity marker, brain-derived neurotrophic factor. Each of the diets significantly altered the microbial composition in distinct ways. Specifically, the relative abundance of 89 taxa differed significantly between groups with the majority of these changes accounted for by the Clostridiales order and within that, Lachnospiraceae and Ruminococcaceae. These taxa showed a range of macronutrient specific correlations with place memory. In addition, Distance based Linear Models found relationships between memory, inflammation-related hippocampal genes and the gut microbiota. In conclusion, our study shows that the macronutrient profile of the diet is crucial for diet-induced memory deficits and suggests a possible link between diet, the gut microbiota and hippocampal inflammatory genes.
Collapse
Affiliation(s)
- Jessica E Beilharz
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, NSW 2052, Australia
| | | | - Jayanthi Maniam
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, NSW 2052, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, NSW 2052, Australia.
| |
Collapse
|
123
|
Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1. eNeuro 2016; 3:eN-NWR-0113-16. [PMID: 27595136 PMCID: PMC5004086 DOI: 10.1523/eneuro.0113-16.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 02/04/2023] Open
Abstract
The impact of the foods we eat on metabolism and cardiac physiology has been studied for decades, yet less is known about the effects of foods on the CNS, or the behavioral manifestations that may result from these effects. Previous studies have shown that long-term consumption of high-fat foods leading to diet-induced obesity sensitizes the inflammatory response of the brain to subsequent challenging stimuli, causing deficits in the formation of long-term memories. The new findings reported here demonstrate that short-term consumption of a high-fat diet (HFD) produces the same outcomes, thus allowing the examination of mechanisms involved in this process long before obesity and associated comorbidities occur. Rats fed an HFD for 3 d exhibited increases in corticosterone, the inflammasome-associated protein NLRP3 (nod-like receptor protein 3), and the endogenous danger signal HMGB1 (high-mobility group box 1) in the hippocampus. A low-dose (10 μg/kg) lipopolysaccharide (LPS) immune challenge potentiated the neuroinflammatory response in the hippocampus of rats fed the HFD, and caused a deficit in the formation of long-term memory, effects not observed in rats fed regular chow. The blockade of corticosterone action with the glucocorticoid receptor antagonist mifepristone prevented the NLRP3 and HMGB1 increases in unchallenged animals, normalized the proinflammatory response to LPS, and prevented the memory impairment. These data suggest that short-term HFD consumption increases vulnerability to memory disruptions caused by an immune challenge by upregulating important neuroinflammatory priming and danger signals in the hippocampus, and that these effects are mediated by increases in hippocampal corticosterone.
Collapse
|