101
|
Endres T, Zheng M, Kılıç A, Turowska A, Beck-Broichsitter M, Renz H, Merkel OM, Kissel T. Amphiphilic biodegradable PEG-PCL-PEI triblock copolymers for FRET-capable in vitro and in vivo delivery of siRNA and quantum dots. Mol Pharm 2014; 11:1273-81. [PMID: 24592902 DOI: 10.1021/mp400744a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Amphiphilic triblock copolymers represent a versatile delivery platform capable of co-delivery of nucleic acids, drugs, and/or dyes. Multifunctional cationic triblock copolymers based on poly(ethylene glycol), poly-ε-caprolactone, and polyethylene imine, designed for the delivery of siRNA, were evaluated in vitro and in vivo. Moreover, a nucleic acid-unpacking-sensitive imaging technique based on quantum dot-mediated fluorescence resonance energy transfer (QD-FRET) was established. Cell uptake in vitro was measured by flow cytometry, whereas transfection efficiencies of nanocarriers with different hydrophilic block lengths were determined in vitro and in vivo by quantitative real-time PCR. Furthermore, after the proof of concept was demonstrated by fluorescence spectroscopy/microscopy, a prototype FRET pair was established by co-loading QDs and fluorescently labeled siRNA. The hydrophobic copolymer mediated a 5-fold higher cellular uptake and good knockdown efficiency (61 ± 5% in vitro, 55 ± 18% in vivo) compared to its hydrophilic counterpart (13 ± 6% in vitro, 30 ± 17% in vivo), which exhibited poor performance. FRET was demonstrated by UV-induced emission of the acceptor dye. Upon complex dissociation, which was simulated by the addition of heparin, a dose-dependent decrease in FRET efficiency was observed. We believe that in vitro/in vivo correlation of the structure and function of polymeric nanocarriers as well as sensitive imaging functionality for mechanistic investigations are prerequisites for a more rational design of amphiphilic gene carriers.
Collapse
Affiliation(s)
- Thomas Endres
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität Marburg , Ketzerbach 63, 35037 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Multi-armed poly(L-glutamic acid)-graft-polypropyleneinime as effective and serum resistant gene delivery vectors. Int J Pharm 2014; 465:444-54. [PMID: 24576809 DOI: 10.1016/j.ijpharm.2014.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/23/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
A new series of multi-armed MP-g-PPI dendrimers were synthesized by polymerization of BLG-NCA using G2.0PPI as macromolecular initiator and subsequent aminolysis with G1.0PPI or G2.0PPI. The chemical structure and composition of the MP-g-PPI dendrimers were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy ((1)H NMR). The MP-g-PPI showed a great ability to combine with pDNA to form complexes, which protect the pDNA from nuclease degradation. Dynamic light scattering (DLS) measurement illustrated that the sizes of complexes were in range of 111-219 nm. The transmission electron microscope (TEM) and atomic force microscope (AFM) observation showed that the morphology of these complexes was spherical. The MTT assay demonstrated that cytotoxicity of the MP-g-PPI was lower than that of PEI 25K. The in vitro transfection test indicated that MP-g-PPI gene vectors displayed relative high transfection efficiency than that of PEI 25K and Lipofectamine 2000 in serum-containing medium. Furthermore, MP-g-PPI at the weight ratio of 7.5 displayed better serum-resistant capability than that of PEI 25K and Lipofectamine 2000. The above facts revealed that multi-armed MP-g-PPI dendrimers may be promising gene vectors with low cytotoxicity, high transfection efficiency and serum-resistant ability.
Collapse
|
103
|
Synthetic lethal therapy for KRAS mutant non-small-cell lung carcinoma with nanoparticle-mediated CDK4 siRNA delivery. Mol Ther 2014; 22:964-73. [PMID: 24496383 DOI: 10.1038/mt.2014.18] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/21/2013] [Indexed: 12/19/2022] Open
Abstract
The KRAS mutation is present in ~20% of lung cancers and has not yet been effectively targeted for therapy. This mutation is associated with a poor prognosis in non-small-cell lung carcinomas (NSCLCs) and confers resistance to standard anticancer treatment drugs, including epidermal growth factor receptor tyrosine kinase inhibitors. In this study, we exploited a new therapeutic strategy based on the synthetic lethal interaction between cyclin-dependent kinase 4 (CDK4) downregulation and the KRAS mutation to deliver micellar nanoparticles (MNPs) containing small interfering RNA targeting CDK4 (MNPsiCDK4) for treatment in NSCLCs harboring the oncogenic KRAS mutation. Following MNPsiCDK4 administration, CDK4 expression was decreased, accompanied by inhibited cell proliferation, specifically in KRAS mutant NSCLCs. However, this intervention was harmless to normal KRAS wild-type cells, confirming the proposed mechanism of synthetic lethality. Moreover, systemic delivery of MNPsiCDK4 significantly inhibited tumor growth in an A549 NSCLC xenograft murine model, with depressed expression of CDK4 and mutational KRAS status, suggesting the therapeutic promise of MNPsiCDK4 delivery in KRAS mutant NSCLCs via a synthetic lethal interaction between KRAS and CDK4.
Collapse
|
104
|
Korzekwa K, Nagar S. Compartmental models for apical efflux by P-glycoprotein: part 2--a theoretical study on transporter kinetic parameters. Pharm Res 2014; 31:335-46. [PMID: 23959852 PMCID: PMC3930629 DOI: 10.1007/s11095-013-1163-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/28/2013] [Indexed: 12/30/2022]
Abstract
PURPOSE The impact of efflux transporters in intracellular concentrations of a drug can be predicted with modeling techniques. In Part 1, several compartmental models were developed and evaluated. The goal of Part 2 was to apply these models to the characterization and interpretation of saturation kinetic data. METHODS The compartmental models from Part 1 were used to evaluate a previously published dataset from cell lines expressing varying levels of P-glycoprotein. Kinetic parameters for the transporter were estimated and compared across models. RESULTS Fits and errors for all compartmental models were identical. All compartmental models predicted more consistent parameters than the Michaelis-Menten model. The 5-compartment model with efflux out of the membrane predicted differential impact of P-gp upon apical versus basolateral drug exposure. Finally, the saturable kinetics of active efflux along with a permeability barrier was modeled to delineate a relationship between intracellular concentration with or without active efflux versus donor concentration. This relationship was not a rectangular hyperbola, but instead was shown to be a quadratic function. CONCLUSIONS One approach to estimate an in vivo transporter effect is to first model an intracellular Km value from in vitro data, and use this value along with the appropriate tissue transporter expression levels and relative surface area to calculate the relevant apparent Km (or Ki) values. Together with the results from Part 1, these studies suggest that compartmental models can provide a path forward to better utilize in vitro transporter data for in vivo predictions such as physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA
| |
Collapse
|
105
|
Li HJ, Wang HX, Sun CY, Du JZ, Wang J. Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. RSC Adv 2014. [DOI: 10.1039/c3ra44866e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
106
|
Wu J, Liu Y, Li W, Wang C, Li Y, Tian Y, Sun J, Wang S, Wang X, Tang Y, Zhu H, Teng Z, Lu G. Magnetically guided survivin-siRNA delivery and simultaneous dual-modal imaging visualization based on Fe3O4@mTiO2nanospheres for breast cancer. J Mater Chem B 2014; 2:7756-7764. [PMID: 32261912 DOI: 10.1039/c4tb01264j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fe3O4@mTiO2/FMN-PEI as a siRNA delivery system can transfect survivin-siRNA to induce apoptosis, along with magnetic targeting, MRI and optical imaging.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Nuclear Medicine
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Ying Liu
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Wei Li
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433, P. R. China
| | - Chunyan Wang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Yanjun Li
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Ying Tian
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Jing Sun
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Shouju Wang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Xin Wang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Yuxia Tang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Hong Zhu
- Department of Nuclear Medicine
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Zhaogang Teng
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Guangming Lu
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| |
Collapse
|
107
|
Xing R, Liu G, Zhu J, Hou Y, Chen X. Functional magnetic nanoparticles for non-viral gene delivery and MR imaging. Pharm Res 2013; 31:1377-89. [PMID: 24065595 DOI: 10.1007/s11095-013-1205-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 09/12/2013] [Indexed: 01/11/2023]
Abstract
Gene therapy is becoming a promising strategy to treat various kinds of genetic and acquired diseases. However, the development of safe, efficient, and targetable gene delivery systems remains a major challenge in gene therapy. The unique material characteristics of magnetic nanoparticles (MNPs), including high surface area, facile surface modification, controllable size, and excellent magnetic properties, make them promising candidates for gene delivery. The engineered MNPs with modifiable functional surfaces and bioactive cores can result in several advantageous diagnostic and therapeutic properties including enhanced magnetic resonance imaging (MRI) signal intensity, long permeation and retention in the circulatory system, specific delivery of therapeutic genes to target sites. In this review, the updated research on the preparation and surface modification of MNPs for gene delivery is summarized.
Collapse
Affiliation(s)
- Ruijun Xing
- Department of Materials Science and Engineering College of Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
108
|
Ma D, Zhang HB, Chen YY, Lin JT, Zhang LM. New cyclodextrin derivative containing poly(L-lysine) dendrons for gene and drug co-delivery. J Colloid Interface Sci 2013; 405:305-11. [DOI: 10.1016/j.jcis.2013.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 01/02/2023]
|
109
|
Chen J, Tian H, Dong X, Guo Z, Jiao Z, Li F, Kano A, Maruyama A, Chen X. Effective Tumor Treatment by VEGF siRNA Complexed with Hydrophobic Poly(Amino Acid)-Modified Polyethylenimine. Macromol Biosci 2013; 13:1438-46. [DOI: 10.1002/mabi.201300211] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/11/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Jie Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xuan Dong
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Feifan Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering; Kyushu University; Hakozaki Fukuoka Japan
| | - Atsushi Maruyama
- Institute for Materials Chemistry and Engineering; Kyushu University; Hakozaki Fukuoka Japan
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
110
|
Stegh AH. Toward personalized cancer nanomedicine - past, present, and future. Integr Biol (Camb) 2013; 5:48-65. [PMID: 22858688 DOI: 10.1039/c2ib20104f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors are composed of highly proliferate, migratory, invasive, and therapy-evading cells. These characteristics are conferred by an enormously complex landscape of genomic, (epi-)genetic, and proteomic aberrations. Recent efforts to comprehensively catalogue these reversible and irreversible modifications have began to identify molecular mechanisms that contribute to cancer pathophysiology, serve as novel therapeutic targets, and may constitute biomarkers for early diagnosis and prediction of therapy responses. With constantly evolving technologies that will ultimately enable a complete survey of cancer genomes, the challenges for discovery cancer science and drug development are daunting. Bioinformatic and functional studies must differentiate cancer-driving and -contributing mutations from mere bystanders or 'noise', and have to delineate their molecular mechanisms of action as a function of collaborating oncogenic and tumor suppressive signatures. In addition, the translation of these genomic discoveries into meaningful clinical endpoints requires the development of co-extinction strategies to therapeutically target multiple cancer genes, to robustly deliver therapeutics to tumor sites, and to enable widespread dissemination of therapies within tumor tissue. In this perspective, I will describe the most current paradigms to study and validate cancer gene function. I will highlight advances in the area of nanotechnology, in particular, the development of RNA interference (RNAi)-based platforms to more effectively deliver therapeutic agents to tumor sites, and to modulate critical cancer genes that are difficult to target using conventional small-molecule- or antibody-based approaches. I will conclude with an outlook on the deluge of challenges that genomic and bioengineering sciences must overcome to make the long-awaited era of personalized nano-medicine a clinical reality for cancer patients.
Collapse
Affiliation(s)
- Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
111
|
Tian H, Chen J, Chen X. Nanoparticles for gene delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2034-2044. [PMID: 23630123 DOI: 10.1002/smll.201202485] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/21/2012] [Indexed: 05/27/2023]
Abstract
Nanocarriers are a new type of nonviral gene carriers, many of which have demonstrated a broad range of pharmacological and biological properties, such as being biodegradable in the body, stimulus-responsive towards the surrounding environment, and an ability to specifically targeting certain disease sites. By summarizing some main types of nanocarriers, this Concept considers the current status and possible future directions of the potential clinical applications of multifunctional nanocarriers, with primary attention on the combination of such properties as biodegradability, targetability, transfection ability, and stimuli sensitivity.
Collapse
Affiliation(s)
- Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | | | | |
Collapse
|
112
|
Zhu W, Du H, Huang Y, Sun S, Xu N, Ni H, Cai X, Li X, Shen Z. Cationic poly(ester-phosphoester)s: Facile synthesis and antibacterial properties. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Hong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Ying Huang
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
| | - Shuai Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Ning Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Huagang Ni
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xia Cai
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
| | - Xiaodong Li
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University; Hangzhou 310006 China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
113
|
Rezvantalab H, Shojaei-Zadeh S. Particle adsorption at polydimethylsiloxane (PDMS)/water interfaces in the presence of a cross-linking reaction. J Colloid Interface Sci 2013; 400:70-7. [DOI: 10.1016/j.jcis.2013.02.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/29/2022]
|
114
|
Dong X, Lin L, Chen J, Tian H, Xiao C, Guo Z, Li Y, Wei Y, Chen X. Multi-armed poly(aspartate-g-OEI) copolymers as versatile carriers of pDNA/siRNA. Acta Biomater 2013; 9:6943-52. [PMID: 23416580 DOI: 10.1016/j.actbio.2013.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 12/22/2022]
Abstract
To search for potential non-viral nucleic acids carriers, a series of novel cationic polymers, multi-armed poly(aspartate-graft-oligoethylenimine) (MP-g-OEI) copolymers were designed and synthesized by grafting different types of oligoethylenimine (OEI) to a multi-armed poly(l-aspartic acid) backbone. The as-synthesized MP-g-OEI copolymers were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance and gel permeation chromatography. These MP-g-OEI copolymers (MP423, MP600 and MP1800) exhibited good capacity in condensing nucleic acids (pDNA or siRNA) into nanosized particles (90-150nm) with positive surface charges. Gene transfection activity of the MP-g-OEI copolymers (especially MP1800) showed improved performance compared with PEI25k in both HeLa and CHO cell lines. The silencing efficiency of MP600/siRNA and MP1800/siRNA complexes showed a superior knockdown effect in CT26 and Huh-7 cell lines. Moreover, the MP-g-OEI copolymers exhibited much lower cytotoxicity than PEI25k. Flow cytometric analysis showed that MP-g-OEI copolymers could efficiently mediate the entry of nucleic acids into cells. These results suggest that MP-g-OEI copolymers may be potential non-viral gene carriers for the delivery of nucleic acids in future gene therapy.
Collapse
|
115
|
Qi RG, Wu SH, Wang Y, Chen J, Xie ZG, Huang YB, Jing XB. Contribution of cholesterol moieties attached on MPEG-b-PCL-b-PLL to the cell uptake, endosomal escape and gene knockdown of the micelleplexes of siRNA. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1288-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
116
|
Wang Y, Su J, Cai W, Lu P, Yuan L, Jin T, Chen S, Sheng J. Hepatocyte-targeting gene transfer mediated by galactosylated poly(ethylene glycol)-graft-polyethylenimine derivative. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:211-21. [PMID: 23576866 PMCID: PMC3617917 DOI: 10.2147/dddt.s42582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 12/27/2022]
Abstract
Biscarbamate cross-linked polyethylenimine derivative (PEI-Et) has been reported as a novel nonviral vector for efficient and safe gene transfer in our previous work. However, it had no cell-specificity. To achieve specific delivery of genes to hepatocytes, galactosylated poly(ethylene glycol)-graft-polyethylenimine derivative (GPE) was prepared through modification of PEI-Et with poly(ethylene glycol) and lactobionic acid, bearing a galactose group as a hepatocyte-targeting moiety. The composition of GPE was characterized by proton nuclear magnetic resonance. The weight-average molecular weight of GPE measured with a gel permeation chromatography instrument was 9489 Da, with a polydispersity of 1.44. GPE could effectively condense plasmid DNA (pDNA) into nanoparticles. Gel retardation assay showed that GPE/pDNA complexes were completely formed at weigh ratios (w/w) over 3. The particle size of GPE/pDNA complexes was 79-100 nm and zeta potential was 6-15 mV, values which were appropriate for cellular uptake. The morphology of GPE/pDNA complexes under atomic force microscopy appeared spherical and uniform in size, with diameters of 53-65 nm. GPE displayed much higher transfection efficiency than commercially available PEI 25 kDa in BRL-3A cell lines. Importantly, GPE showed good hepatocyte specificity. Also, the polymer exhibited significantly lower cytotoxicity compared to PEI 25 kDa at the same concentration or weight ratio in BRL-3A cell lines. To sum up, our results indicated that GPE might carry great potential in safe and efficient hepatocyte-targeting gene delivery.
Collapse
Affiliation(s)
- Yuqiang Wang
- Department of Geriatrics, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 2013; 10:2093-110. [PMID: 23461379 DOI: 10.1021/mp300697h] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticles have received enormous attention as a promising tool to enhance target-specific drug delivery and diagnosis. Various in vitro and in vivo techniques are used to characterize a new system and predict its clinical efficacy. These techniques enable efficient comparison across nanoparticles and facilitate a product optimization process. On the other hand, we recognize their limitations as a prediction tool, due to inadequate applications and overly simplified test conditions. We provide a critical review of in vitro and in vivo techniques currently used for evaluation of nanoparticles and introduce emerging techniques and models that may be used complementarily.
Collapse
Affiliation(s)
- Eun Jung Cho
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
118
|
Ying Hsu, Linninger AA. Quantitative Integration of Biological, Pharmacokinetic, and Medical Imaging Data for Organ-Wide Dose-Response Predictions. IEEE Trans Biomed Eng 2013; 60:625-32. [DOI: 10.1109/tbme.2013.2244893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
119
|
Bian J, Zhang M, He J, Ni P. Preparation and self-assembly of double hydrophilic poly(ethylethylene phosphate)-block-poly[2-(succinyloxy)ethyl methacrylate] diblock copolymers for drug delivery. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2012.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
120
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 854] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Dong X, Lin L, Chen J, Guo Z, Tian H, Li Y, Wei Y, Chen X. A Serum-Tolerant Hydroxyl-Modified Polyethylenimine as Versatile Carriers of p
DNA/siRNA. Macromol Biosci 2013; 13:512-22. [DOI: 10.1002/mabi.201200346] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/29/2012] [Indexed: 01/01/2023]
|
122
|
Pittella F, Kataoka K. Polymeric Micelles for siRNA Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1007/978-1-4614-4744-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
123
|
Liu X, Ma L, Liang J, Zhang B, Teng J, Gao C. RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring. Biomaterials 2012; 34:2038-48. [PMID: 23261213 DOI: 10.1016/j.biomaterials.2012.11.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/29/2012] [Indexed: 12/24/2022]
Abstract
Scar inhibition of dermal equivalent is one of the key issues for treatment of full thickness skin defects. To yield a bioactive RNAi functionalized matrix for skin regeneration with inhibited scarring, collagen-chitosan/silicone membrane bilayer dermal equivalent (BDE) was combined with trimetylchitosan (TMC)/siRNA complexes which could induce suppression of transforming growth factor-β1 (TGF-β1) pathway. The RNAi-BDE functioned as a reservoir for the incorporated TMC/siRNA complexes, enabling a prolonged siRNA release. The seeded fibroblasts in the RNAi-BDE showed good viability, internalized the TMC/siRNA complexes effectively and suppressed TGF-β1 expression constantly until 14 d. Application of the RNAi-BDE on the full-thickness skin defects of pig backs confirmed the in vivo inhibition of TGF-β1 expression by immunohistochemistry, real-time quantitative PCR and western blotting during 30 d post surgery. The levels of other scar-related factors such as collagen type I, collagen type III and α-smooth muscle actin (α-SMA) were also down-regulated. In combination with the ultra-thin skin graft transplantation for 73 d, the regenerated skin by RNAi-BDE had an extremely similar structure to that of the normal one. Our study reflects the latest paradigm of tissue engineering by incorporating the emerging biomolecule siRNA. The 3-D scaffolding materials for siRNA delivery may have general implications in generation of bioactive matrix as well.
Collapse
Affiliation(s)
- Xing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|
124
|
Wang HX, Xiong MH, Wang YC, Zhu J, Wang J. N-acetylgalactosamine functionalized mixed micellar nanoparticles for targeted delivery of siRNA to liver. J Control Release 2012; 166:106-14. [PMID: 23266452 DOI: 10.1016/j.jconrel.2012.12.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 11/23/2012] [Accepted: 12/10/2012] [Indexed: 01/12/2023]
Abstract
Due to its efficient and specific gene silencing ability, RNA interference has shown great potential in the treatment of liver diseases. However, achieving in vivo delivery of siRNA to critical liver cells remains the biggest obstacle for this technique to be a real clinic therapeutic modality. Here, we describe a promising liver targeting siRNA delivery system based on N-acetylgalactosamine functionalized mixed micellar nanoparticles (Gal-MNP), which can efficiently deliver siRNA to hepatocytes and silence the target gene expression after systemic administration. The Gal-MNP were assembled in aqueous solution from mixed N-acetylgalactosamine functionalized poly(ethylene glycol)-b-poly(ε-caprolactone) and cationic poly(ε-caprolactone)-b-poly(2-aminoethyl ethylene phosphate) (PCL-b-PPEEA); the properties of nanoparticles, including particle size, zeta potential and the density of poly(ethylene glycol) could be easily regulated. The hepatocyte-targeting effect of Gal-MNP was demonstrated by significant enriching of fluorescent siRNA in primary hepatocytes in vitro and in vivo. Successful down-regulation of liver-specific apolipoprotein B (apoB) expression was achieved in mouse liver, at both the transcriptional and protein level, following intravenous injection of Gal-MNP/siapoB to BALB/c mice. Systemic delivery of Gal-MNP/siRNA did not induce the innate immune response or positive hepatotoxicity. The results of this study suggested therapeutic potential for the Gal-MNP/siRNA system in liver disease.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | | | | | |
Collapse
|
125
|
Hassanzadeh S, Khoee S. Influence of the polymer structure on the drug-polymer interactions in the micellar nanoparticles: Mixed homopolymer and copolymerized cores. J Appl Polym Sci 2012. [DOI: 10.1002/app.38547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
126
|
Gheybi H, Entezami AA. Nanosized micelles self-assembled from amphiphilic poly(citric acid)–poly(ε-caprolactone)–poly(citric acid) copolymers. Polym Bull (Berl) 2012. [DOI: 10.1007/s00289-012-0885-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
127
|
Zhang S, Zou J, Zhang F, Elsabahy M, Felder S, Zhu J, Pochan DJ, Wooley KL. Rapid and versatile construction of diverse and functional nanostructures derived from a polyphosphoester-based biomimetic block copolymer system. J Am Chem Soc 2012; 134:18467-74. [PMID: 23092249 PMCID: PMC3500909 DOI: 10.1021/ja309037m] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A rapid and efficient approach for the preparation and modification of a versatile class of functional polymer nanoparticles has been developed, for which the entire engineering process from small molecules to polymers to nanoparticles bypasses typical slow and inefficient procedures and rather employs a series of steps that capture fully the "click" chemistry concepts that have greatly facilitated the preparation of complex polymer materials over the past decade. The construction of various nanoparticles with functional complexity from a versatile platform is a challenging aim to provide materials for fundamental studies and also optimization toward a diverse range of applications. In this paper, we demonstrate the rapid and facile preparation of a family of nanoparticles with different surface charges and functionalities based on a biodegradable polyphosphoester block copolymer system. From a retrosynthetic point of view, the nonionic, anionic, cationic, and zwitterionic micelles with hydrodynamic diameters between 13 and 21 nm and great size uniformity were quickly formed by suspending, independently, four amphiphilic diblock polyphosphoesters into water, which were functionalized from the same parental hydrophobic-functional AB diblock polyphosphoester by click-type thiol-yne reactions. The well-defined (PDI < 1.2) hydrophobic-functional AB diblock polyphosphoester was synthesized by an ultrafast (<5 min) organocatalyzed ring-opening polymerization in a two-step, one-pot manner with the quantitative conversions of two kinds of cyclic phospholane monomers. The whole programmable process starting from small molecules to nanoparticles could be completed within 6 h, as the most rapid approach for the anionic and nonionic nanoparticles, although the cationic and zwitterionic nanoparticles required ca. 2 days due to purification by dialysis. The micelles showed high biocompatibility, with even the cationic micelles exhibiting a 6-fold lower cytotoxicity toward RAW 264.7 mouse macrophage cells, as compared to the commercial transfection agent Lipofectamine.
Collapse
Affiliation(s)
- Shiyi Zhang
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Jiong Zou
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Fuwu Zhang
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Mahmoud Elsabahy
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Simcha Felder
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Jiahua Zhu
- Department of Materials Science and Engineering, University of Delaware
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware
| | - Karen L. Wooley
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| |
Collapse
|
128
|
Cao P, Bae Y. Polymer nanoparticulate drug delivery and combination cancer therapy. Future Oncol 2012; 8:1471-80. [DOI: 10.2217/fon.12.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This review describes the scientific background, current achievement and future perspective of combination therapy using polymer nanoparticle drug carriers in cancer treatment. Nanotechnology-based drug delivery is expected to dramatically change combination cancer therapy by controlling accumulation and distribution patterns of multiple drugs selectively in disease sites. Rationally designed polymer materials can produce functional nanoparticulate drug carriers that can be used in various biomedical applications. In comparison with conventional drug combination approaches, using polymer nanoparticle drug carriers appears to suppress tumor growth more efficiently, potentially overcoming multidrug resistance in many cancers. It also provides versatile combination options for a variety of therapeutic agents, molecular targeting agents and nucleotide drugs.
Collapse
Affiliation(s)
- Pengxiao Cao
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Younsoo Bae
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
129
|
Deng J, Gao N, Wang Y, Yi H, Fang S, Ma Y, Cai L. Self-assembled cationic micelles based on PEG-PLL-PLLeu hybrid polypeptides as highly effective gene vectors. Biomacromolecules 2012; 13:3795-804. [PMID: 23013102 DOI: 10.1021/bm3012538] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Developing safe and effective nonviral gene vector is highly crucial for successful gene therapy. In the present study, we designed a series of biodegradable micelles based on hybrid polypeptide copolymers of poly(ethylene glycol)-b-poly(l-lysine)-b-poly(l-leucine) (PEG-PLL-PLLeu) for efficient gene delivery. A group of amphiphilic PEG-PLL-PLLeu hybrid polypeptide copolymers were synthesized by ring-opening polymerization of N-carboxyanhydride, and the chemical structure of each copolymer was characterized by (1)H NMR and FT-IR spectroscopy measurement. The PEG-PLL-PLLeu micelles were positively charged with tunable sizes ranging from 40 to 90 nm depending on the length of PLL and PLLeu segment. Compared with PEG-PLL copolymers, PEG-PLL-PLLeu micelles demonstrated significantly higher transfection efficiency and less cytotoxicity. Furthermore, the transfection efficiency and biocompatibility of the micelles can be simultaneously improved by tuning the length of PLL and PLLeu segments. The transfection efficiency of PEG-PLL-PLLeu micelles in vivo was two to three times higher than that of PEI(25k), which was attributable to their capability of promoting DNA condensation and cell internalization as well as successful lysosome escape. Hence well-defined PEG-PLL-PLLeu micelles would serve as highly effective nonviral vectors for in vivo gene delivery.
Collapse
Affiliation(s)
- Jizhe Deng
- Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, PR China
| | | | | | | | | | | | | |
Collapse
|
130
|
Fabrication of polymeric micelles with core–shell–corona structure for applications in controlled drug release. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2794-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
131
|
Liu XQ, Xiong MH, Shu XT, Tang RZ, Wang J. Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol Pharm 2012; 9:2863-74. [PMID: 22924580 DOI: 10.1021/mp300193f] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The particular characteristics of the tumor microenvironment have the potential to strongly promote tumor growth, metastasis and angiogenesis and induce drug resistance. Therefore, the development of effective, systemic therapeutic approaches specifically based on the tumor microenvironment is highly desirable. Hypoxia-inducible factor-1α (HIF-1α) is an attractive therapeutic target because it is a key transcription factor in tumor development and only accumulates in hypoxic tumors. We report here that a cationic mixed micellar nanoparticle (MNP) consisting of amphiphilic block copolymers poly(ε-caprolactone)-block-poly(2-aminoethylethylene phosphate) (PCL(29)-b-PPEEA(21)) and poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL(40)-b-PEG(45)) was a suitable carrier for HIF-1α siRNA to treat hypoxic tumors, which showed an average diameter of 58.0 ± 3.4 nm. The complex MNP(siRNA), formed by the interaction of MNP and siRNA, was transfected into PC3 prostate cancer cells efficiently, while the inhibition of HIF-1α expression by MNP loaded with HIF-1α siRNA (MNP(siHIF)) blocked PC3 cell proliferation, suppressed cell migration and disturbed angiogenesis under in vitro hypoxic mimicking conditions. It was further demonstrated that systemic delivery of MNP(siHIF) effectively inhibited tumor growth in a PC3 prostate cancer xenograft murine model without activating innate immune responses. Moreover, delivery of MNP(siHIF) sensitized PC3 tumor cells to doxorubicin chemotherapy in vitro and in vivo by downregulating MDR1 gene expression which was induced by hypoxia. The underlying concept of use of MNP(siHIF) to block HIF-1α holds promise as an example of a clinical approach using specific siRNA therapy for cancer treatment aimed at the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Xi-Qiu Liu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | | | | | | | | |
Collapse
|
132
|
Cheng C, Convertine AJ, Stayton PS, Bryers JD. Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials 2012; 33:6868-76. [PMID: 22784603 DOI: 10.1016/j.biomaterials.2012.06.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/15/2012] [Indexed: 11/29/2022]
Abstract
Messenger RNA (mRNA) is a promising alternative to plasmid DNA (pDNA) for gene vaccination applications, but safe and effective delivery systems are rare. Reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to synthesize a series of triblock copolymers designed to enhance the intracellular delivery of mRNA. These materials are composed of a cationic dimethylaminoethyl methacrylate (DMAEMA) segment to mediate mRNA condensation, a hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) segment to enhance stability and biocompatibility, and a pH-responsive endosomolytic copolymer of diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) designed to facilitate cytosolic entry. The blocking order and PEGMA segment length were systematically varied to investigate the effect of different polymer architectures on mRNA delivery efficacy. These polymers were monodisperse, exhibited pH-dependent hemolytic activity, and condensed mRNA into 86-216 nm particles. mRNA polyplexes formed from polymers with the PEGMA segment in the center of the polymer chain displayed the greatest stability to heparin displacement and were associated with the highest transfection efficiencies in two immune cell lines, RAW 264.7 macrophages (77%) and DC2.4 dendritic cells (50%). Transfected DC2.4 cells were shown to be capable of subsequently activating antigen-specific T cells, demonstrating the potential of these multifunctional triblock copolymers for mRNA-based vaccination strategies.
Collapse
Affiliation(s)
- Connie Cheng
- Department of Bioengineering, University of Washington, Box 355061, 3720 15th Ave NE, Seattle, WA 98195, United States
| | | | | | | |
Collapse
|
133
|
Wu ZW, Chien CT, Liu CY, Yan JY, Lin SY. Recent progress in copolymer-mediated siRNA delivery. J Drug Target 2012; 20:551-60. [DOI: 10.3109/1061186x.2012.699057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
134
|
Zhao ZX, Gao SY, Wang JC, Chen CJ, Zhao EY, Hou WJ, Feng Q, Gao LY, Liu XY, Zhang LR, Zhang Q. Self-assembly nanomicelles based on cationic mPEG-PLA-b-Polyarginine(R15) triblock copolymer for siRNA delivery. Biomaterials 2012; 33:6793-807. [PMID: 22721724 DOI: 10.1016/j.biomaterials.2012.05.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/29/2012] [Indexed: 12/25/2022]
Abstract
Due to the absence of safe and effective carriers for in vivo delivery, the applications of small interference RNA (siRNA) in clinic for therapeutic purposes have been limited. In this study, a biodegradable amphiphilic tri-block copolymer (mPEG(2000)-PLA(3000)-b-R(15)) composed of monomethoxy poly(ethylene glycol), poly(d,l-lactide) and polyarginine was synthesized and further self-assembled to cationic polymeric nanomicelles for in vivo siRNA delivery, with an average diameter of 54.30 ± 3.48 nm and a zeta potential of approximately 34.8 ± 1.77 mV. The chemical structures of the copolymers were well characterized by (1)H NMR spectroscopy and FT-IR spectra. In vitro cytotoxicity and hemolysis assays demonstrated that the polymeric nanomicelles showed greater cell viability and haemocompatibility than those of polyethyleneimine (PEI) or R(15) peptide. In vitro experiments demonstrated that EGFR targeted siRNA formulated in micelleplexes exhibited approximately 65% inhibition of EGFR expression on MCF-7 cells in a sequence-specific manner, which was comparable to Lipofectamine™ 2000. The results of intravenous administration showed Micelleplex/EGFR-siRNA significantly inhibited tumor growth in nude mice xenografted MCF-7 tumors, with a remarkable inhibition of EGFR expression. Furthermore, no positive activation of the innate immune responses and no significant body weight loss was observed during treatment suggested that this polymeric micelle delivery system is non-toxic. In conclusion, the present nanomicelles based on cationic mPEG(2000)-PLA(3000)-b-R(15) copolymer would be a safe and efficient nanocarrier for in vivo delivery of therapeutic siRNA.
Collapse
Affiliation(s)
- Zhi-Xia Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Optimising the self-assembly of siRNA loaded PEG-PCL-lPEI nano-carriers employing different preparation techniques. J Control Release 2012; 160:583-91. [DOI: 10.1016/j.jconrel.2012.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/17/2022]
|
136
|
Liu P, Yu H, Sun Y, Zhu M, Duan Y. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery. Biomaterials 2012; 33:4403-12. [DOI: 10.1016/j.biomaterials.2012.02.041] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
137
|
Clément B, Grignard B, Koole L, Jérôme C, Lecomte P. Metal-Free Strategies for the Synthesis of Functional and Well-Defined Polyphosphoesters. Macromolecules 2012. [DOI: 10.1021/ma3004339] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Benoît Clément
- Center for Education and Research
on Macromolecules, Chemistry Department, University of Liège, B6a Sart-Tilman, B-4000 Liège,
Belgium
| | - Bruno Grignard
- Center for Education and Research
on Macromolecules, Chemistry Department, University of Liège, B6a Sart-Tilman, B-4000 Liège,
Belgium
| | - Leo Koole
- BioMiMedics, Interreg EMR IV-A
consortium: Lead Partner Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Christine Jérôme
- Center for Education and Research
on Macromolecules, Chemistry Department, University of Liège, B6a Sart-Tilman, B-4000 Liège,
Belgium
| | - Philippe Lecomte
- Center for Education and Research
on Macromolecules, Chemistry Department, University of Liège, B6a Sart-Tilman, B-4000 Liège,
Belgium
| |
Collapse
|
138
|
Anti-Her2 single-chain antibody mediated DNMTs-siRNA delivery for targeted breast cancer therapy. J Control Release 2012; 161:875-83. [PMID: 22762887 DOI: 10.1016/j.jconrel.2012.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/13/2012] [Accepted: 05/07/2012] [Indexed: 12/24/2022]
Abstract
The targeted delivery of small interfering RNA (siRNA) to specific tumor tissues and tumor cells remains as one of the key challenges in the development of RNA interference as a therapeutic application. To target breast cancer, we developed a therapeutic delivery system using a fusion protein of an anti-Her2 single-chain antibody fragment with a positively charged protamine, namely F5-P, as the carrier to specifically deliver siRNA-targeting DNA methyltransferases 1 and/or 3b genes (siDNMTs) into Her2-expressing breast tumor cells. The carrier F5-P, expressed by the Escherichia coli system, was able to bind siRNA molecules and specifically deliver the siRNA to Her2-expressing BT474 breast cancer cells but not Her2-nonexpressing MDA-MB-231 breast cancer cells, while delivery of siDNMTs to BT474 cells successfully silenced the expression of targeted DNA methyltransferases (DNMTs) and facilitated the de-methylation of the RASSF1A tumor suppressor gene promoter, leading to the suppression of tumor cell proliferation. Moreover, as demonstrated in the BT474 xenograft murine model, F5-P successfully delivered siRNA into a Her2-expressing breast tumor, and tumor growth inhibition was mediated by an intravenous injection of F5-P/siDNMTs complex by down-regulating the expression of DNMTs and restoring tumor suppressor gene expression. These data suggest that the delivery of siDNMTs by F5-P could be used to treat Her2-expressing breast cancer.
Collapse
|
139
|
Li W, Zhao H, Qian W, Li H, Zhang L, Ye Z, Zhang G, Xia M, Li J, Gao J, Li B, Kou G, Dai J, Wang H, Guo Y. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials 2012; 33:5349-62. [PMID: 22542611 DOI: 10.1016/j.biomaterials.2012.04.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/03/2012] [Indexed: 12/14/2022]
Abstract
Micelles with high in vivo serum stability and intratumor accumulation post intravenous (i.v.) injection are highly desired for promoting chemotherapy. Herein, we finely synthesized and tailored well-defined anti-Her2 antibody Fab fragment conjugated immunomicelles (FCIMs), which showed interesting dual targeting function. The thermosensitive poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)(118) (PID(118)) shell with volume phase transition temperature (VPTT: 39 °C) and the anchored anti-Her2 Fab moiety contributed to the passive and active targeting, respectively. The doxorubicin (DOX) loading capacity of such FCIMs was successfully increased about 2 times by physically enhanced hydrophobicity of inner reservoir without structural deformation. The cellular uptake and intracellular accumulation of DOX by temperature regulated passive and antibody navigated active targeting was 4 times of Doxil. The cytotoxicity assay against Her2 overexpression gastric cancer cells (N87s) showed that the IC50 of the FCIMs was ≈ 9 times lower than that of Doxil under cooperatively targeting by Fab at T > VPTT. FCIMs showed high serum stability by increasing the corona PID(118) chain density (S(corona)/N(agg)). In vivo tissue distribution was evaluated in Balb/c nude mice bearing gastric cancer. As observed by the IVIS(®) imaging system, the intratumor accumulation of such finely tailored FCIMs system was obviously promoted 24 h post i.v. administration. Due to the high stability and super-targeting, the in vivo xenografted gastric tumor growth was significantly inhibited with relative tumor volume <2 which was much smaller than ≈ 5 of the control. Consequently, such finely tailored FCIMs with anti-Her2 active and temperature regulated passive dual tumor-targeting function show high potent in chemotherapy.
Collapse
Affiliation(s)
- Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Huang Y, Lin D, Jiang Q, Zhang W, Guo S, Xiao P, Zheng S, Wang X, Chen H, Zhang HY, Deng L, Xing J, Du Q, Dong A, Liang Z. Binary and ternary complexes based on polycaprolactone-graft-poly (N, N-dimethylaminoethyl methacrylate) for targeted siRNA delivery. Biomaterials 2012; 33:4653-64. [PMID: 22480869 DOI: 10.1016/j.biomaterials.2012.02.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/27/2012] [Indexed: 01/13/2023]
Abstract
Small interfering RNA (siRNA) is a powerful gene silencing tool and has promising prospects in basic research and the development of therapeutic reagents. However, the lack of an effective and safe tool for siRNA delivery hampers its application. Here, we introduced binary and ternary complexes that effectively mediated siRNA-targeted gene silencing. Both complexes showed excellent siRNA loading even at the low N/P/C ratio of 3:1:0. FACS and confocal microscopy demonstrated that nearly all cells robustly internalized siRNAs into the cytoplasm, where RNA interference (RNAi) occurred. Luciferase assay and Western blot verified that silencing efficacy reached >80%, and introducing folate onto the ternary complexes further enhanced silencing efficacy by about 10% over those without folate at the same N/P/C ratio. In addition, the coating of PGA-g-mPEG decreased the zeta potential almost to electroneutrality, and the MTT assay showed decreased cytotoxicity. In vivo distribution measurement and histochemical analysis executed in C57BL/6 and Hela tumor-bearing BALB/c nude mice showed that complexes accumulated in the liver, lungs, pancreas and tumors and were released slowly for a long time after intravenous injection. Furthermore, ternary complexes showed higher siRNA fluorescence intensity than binary complexes at the same N/P ratio in tumor tissues, those with folate delivered more siRNAs to tumors than those without folate, and more folate induced more siRNA transport to tumors. In addition, in vivo functional study showed that both binary and ternary complexes mediated down-regulation of ApoB in liver efficiently and consequently blocked the secretion of fatty acids into the blood, resulted in lipid accumulation in liver, liver steatosis and hepatic dysfunction. In conclusion, these complexes provided a powerful means of administration for siRNA-mediated treatment of liver-related diseases and various cancers, especial for pancreatic and cervical cancer.
Collapse
Affiliation(s)
- Yuanyu Huang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Qi R, Liu S, Chen J, Xiao H, Yan L, Huang Y, Jing X. Biodegradable copolymers with identical cationic segments and their performance in siRNA delivery. J Control Release 2012; 159:251-60. [DOI: 10.1016/j.jconrel.2012.01.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/21/2011] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
|
142
|
Shi S, Zhu X, Guo Q, Wang Y, Zuo T, Luo F, Qian Z. Self-assembled mPEG-PCL-g-PEI micelles for simultaneous codelivery of chemotherapeutic drugs and DNA: synthesis and characterization in vitro. Int J Nanomedicine 2012; 7:1749-59. [PMID: 22619525 PMCID: PMC3356179 DOI: 10.2147/ijn.s28932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In this paper, a series of amphiphilic triblock copolymers based on polyethylene glycol-poly ɛ-caprolactone-polyethylenimine (mPEG-PCL-g-PEI) were successfully synthesized, and their application for codelivery of chemotherapeutic drugs and DNA simultaneously was investigated. METHODS AND RESULTS These copolymers could self-assemble into micelles with positive charges. The size and zeta potential of the micelles was measured, and the results indicate that temperature had a large effect on the micelles obtained. In vitro gene transfection evaluation in cancer cells indicated that the self-assembled micelles could serve as potential gene delivery vectors. In addition, hydrophobic drug entrapment efficiency and codelivery with the gene was also studied in vitro. The self-assembled micelles could load doxorubicin efficiently and increase cellular uptake in vitro, while maintaining high gene transfection efficiency. CONCLUSION The triblock copolymer mPEG-PCL-g-PEI could be a novel vector for codelivery of drug and gene therapy.
Collapse
Affiliation(s)
- Shuai Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
143
|
Khan M, Ang CY, Wiradharma N, Yong LK, Liu S, Liu L, Gao S, Yang YY. Diaminododecane-based cationic bolaamphiphile as a non-viral gene delivery carrier. Biomaterials 2012; 33:4673-80. [PMID: 22440050 DOI: 10.1016/j.biomaterials.2012.02.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/29/2012] [Indexed: 12/11/2022]
Abstract
The advancement in gene therapy relies upon the discovery of safe and efficient delivery agents and methods. In this study, we report the design and synthesis of a cationic bolaamphiphile as a non-viral gene delivery agent. The bolaamphiphile is composed of 1,12-diaminododecane as the central hydrophobic unit linked to the hydrophilic pentaethylenehexamine via thioether-based glycidyl units. This bolaamphiphile condensed DNA efficiently into nanoparticles of sizes around 150-200 nm with positive zeta potential of 30-35 mV. In vitro luciferase expression levels and percentage of GFP expressing cells induced by the bolaamphiphile/DNA complexes were higher than those mediated by the often used "golden" standard of non-viral systems, polyethyleneimine (PEI, branched, 25 kDa) at its optimal N/P ratio in HEK293, HepG2, NIH3T3, HeLa and 4T1 cells. In vitro cytotoxicity testing revealed that the DNA complexes fabricated from this cationic bolaamphiphile displayed marginal toxicity towards all the cell lines tested. In addition, in vivo transfection studies carried out in a 4T1 mouse breast cancer model showed that the cationic bolaamphiphile delivered DNA more efficiently than PEI. This cationic bolaamphiphile may make a promising gene delivery vector for future gene therapy.
Collapse
Affiliation(s)
- Majad Khan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Zhang S, Li A, Zou J, Lin LY, Wooley KL. Facile Synthesis of Clickable, Water-soluble and Degradable Polyphosphoesters. ACS Macro Lett 2012; 1:328-333. [PMID: 22866244 PMCID: PMC3410554 DOI: 10.1021/mz200226m] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
"Click" chemistry is a library of efficient and reliable reactions, which have been used to functionalize various classes of bio- and synthetic macromolecular systems for the incorporation of designed properties and functions. In this report, azide-alkyne Huisgen cycloaddition and thiol-yne reactions, two classical "click" chemistries, were employed to functionalize biodegradable, clickable polyphosphoester homopolymers and their water-soluble copolymers. A stable alkyne-functionalized phospholane monomer was synthesized, its organocatalyzed polymerization kinetics were evaluated, and the resulting (co)polymers were utilized to develop this facile method that provides the synthesis of clickable, water-soluble and degradable polyphosphoesters, which can be adapted for various applications.
Collapse
Affiliation(s)
- Shiyi Zhang
- Departments of Chemistry and Chemical Engineering, Texas A&M University, College Station, TX 77842
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130. Supporting Information Placeholder
| | - Ang Li
- Departments of Chemistry and Chemical Engineering, Texas A&M University, College Station, TX 77842
| | - Jiong Zou
- Departments of Chemistry and Chemical Engineering, Texas A&M University, College Station, TX 77842
| | - Lily Yun Lin
- Departments of Chemistry and Chemical Engineering, Texas A&M University, College Station, TX 77842
| | - Karen L. Wooley
- Departments of Chemistry and Chemical Engineering, Texas A&M University, College Station, TX 77842
| |
Collapse
|
145
|
|
146
|
Hamidi M, Shahbazi M, Rostamizadeh K. Copolymers: Efficient Carriers for Intelligent Nanoparticulate Drug Targeting and Gene Therapy. Macromol Biosci 2012; 12:144-164. [DOI: 10.1002/mabi.201100193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
AbstractCopolymers are among the most promising substances used in the preparation of drug/gene delivery systems. Different categories of copolymers, including block copolymers, graft copolymers, star copolymers and crosslinked copolymers, are of interest in drug delivery. A variety of nanostructures, including polymeric micelles, polymersomes and hydrogels, have been prepared from copolymers and tested successfully for their drug delivery potential. The most recent area of interest in this field is smart nanostructures, which benefit from the stimuli‐responsive properties of copolymeric moieties to achieve novel targeted drug delivery systems. Different copolymer applications in drug/gene delivery using nanotechnology‐based approaches with particular emphasis on smart nanoparticles are reviewed.magnified image
Collapse
|
147
|
Zhang X, Xiao Y, Lang M. Synthesis and Self-Assembly Behaviors of Four-Arm Star Block Copolymers Poly(ϵ-caprolactone)-b-poly(2- (diethylamino) ethyl methacrylate)) in Aqueous Solution. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2012. [DOI: 10.1080/10601325.2012.641907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
148
|
Tao Y, Han J, Dou H. Brain-targeting gene delivery using a rabies virus glycoprotein peptide modulated hollow liposome: bio-behavioral study. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31675g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
149
|
Qi R, Wu S, Xiao H, Yan L, Li W, Hu X, Huang Y, Jing X. Guanidinated amphiphilic cationic copolymer with enhanced gene delivery efficiency. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33141a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
150
|
|