101
|
Shiuan D, Tai DF, Huang KJ, Yu Z, Ni F, Li J. Target-based discovery of therapeutic agents from food ingredients. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
102
|
Wang H, Sun Y, Zhou X, Chen C, Jiao L, Li W, Gou S, Li Y, Du J, Chen G, Zhai W, Wu Y, Qi Y, Gao Y. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000905. [PMID: 33020240 PMCID: PMC7537338 DOI: 10.1136/jitc-2020-000905] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 01/04/2023] Open
Abstract
Background Immunotherapy has achieved remarkable advances via a variety of strategies against tumor cells that evade immune surveillance. As important innate immune cells, macrophages play important roles in maintaining homeostasis, preventing pathogen invasion, resisting tumor cells and promoting adaptive immune response. CD47 is found to be overexpressed on tumor cells and act as a don’t eat me’ signal, which contributes to immune evasion. Macrophages mediated phagocytosis via blockade CD47/SIRPα (signal regulatory protein alpha) interaction was proved to induce effective antitumor immune response. Methods A novel peptide pep-20, specifically targeting CD47 and blocking CD47/SIRPα interaction, was identified via high-throughput phage display library bio-panning. The capability to enhance the macrophage-mediated phagocytosis activities and antitumor effects of pep-20 were investigated. The mechanism of pep-20 to induce T-cell response was explored by ex vivo analysis and confirmed via macrophage depleting strategy. The structure-activity relationship and D-amino acid substitution of pep-20 were also studied. The antitumor effects and mechanism of a proteolysis resistant D-amino acid derivate pep-20-D12 combined with irradiation (IR) were also investigated. Results Pep-20 showed remarkable enhancement of macrophage-mediated phagocytosis to both solid and hematologic tumor cells in vitro, and inhibited tumor growth in immune-competent tumor-bearing mice. Furthermore, pep-20 promoted macrophages to mobilize the antitumor T-cell response with minimal toxicity. Furthermore, systemic administration of the derivate pep-20-D12 showed robust synergistic antitumor efficacy in combination with IR. Conclusion In summary, these results demonstrated that CD47/SIRPα blocking peptides, pep-20 and its derivate, could serve as promising candidates to promote macrophages-mediated phagocytosis and immune response in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongfei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yixuan Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Jiao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shanshan Gou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanying Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
103
|
González-Mora A, Hernández-Pérez J, Iqbal HMN, Rito-Palomares M, Benavides J. Bacteriophage-Based Vaccines: A Potent Approach for Antigen Delivery. Vaccines (Basel) 2020; 8:vaccines8030504. [PMID: 32899720 PMCID: PMC7565293 DOI: 10.3390/vaccines8030504] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023] Open
Abstract
Vaccines are considered one of the most important bioproducts in medicine. Since the development of the smallpox vaccine in 1796, several types of vaccines for many diseases have been created. However, some vaccines have shown limitations as high cost and low immune responses. In that regard, bacteriophages have been proposed as an attractive alternative for the development of more cost-effective vaccines. Phage-displayed vaccines consists in the expression of antigens on the phage surface. This approach takes advantage of inherent properties of these particles such as their adjuvant capacity, economic production and high stability, among others. To date, three types of phage-based vaccines have been developed: phage-displayed, phage DNA and hybrid phage-DNA vaccines. Typically, phage display technology has been used for the identification of new and protective epitopes, mimotopes and antigens. In this context, phage particles represent a versatile, effective and promising alternative for the development of more effective vaccine delivery systems which should be highly exploited in the future. This review describes current advances in the development of bacteriophage-based vaccines, with special attention to vaccine delivery strategies. Moreover, the immunological aspects of phage-based vaccines, as well as the applications of phage display for vaccine development, are explored. Finally, important challenges and the future of phage-bases vaccines are discussed.
Collapse
Affiliation(s)
- Alejandro González-Mora
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| | - Jesús Hernández-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Ave. Morones Prieto 3000 Pte, Monterrey, N.L. 64710, Mexico;
| | - Jorge Benavides
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
- Correspondence: ; Tel.: +52-(81)-8358-2000 (ext. 4821)
| |
Collapse
|
104
|
Selection and Characterization of YKL-40-Targeting Monoclonal Antibodies from Human Synthetic Fab Phage Display Libraries. Int J Mol Sci 2020; 21:ijms21176354. [PMID: 32883029 PMCID: PMC7504393 DOI: 10.3390/ijms21176354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
YKL-40, also known as chitinase-3-like 1 (CHI3L1), is a glycoprotein that is expressed and secreted by various cell types, including cancers and macrophages. Due to its implications for and upregulation in a variety of diseases, including inflammatory conditions, fibrotic disorders, and tumor growth, YKL-40 has been considered as a significant therapeutic biomarker. Here, we used a phage display to develop novel monoclonal antibodies (mAbs) targeting human YKL-40 (hYKL-40). Human synthetic antibody phage display libraries were panned against a recombinant hYKL-40 protein, yielding seven unique Fabs (Antigen-binding fragment), of which two Fabs (H1 and H2) were non-aggregating and thermally stable (75.5 °C and 76.5 °C, respectively) and had high apparent affinities (KD = 2.3 nM and 4.0 nM, respectively). Reformatting the Fabs into IgGs (Immunoglobulin Gs) increased their apparent affinities (notably, for H1 and H2, KD = 0.5 nM and 0.3 nM, respectively), presumably due to the effects of avidity, with little change to their non-aggregation property. The six anti-hYKL-40 IgGs were analyzed using a trans-well migration assay in vitro, revealing that three clones (H1, H2, and H4) were notably effective in reducing cell migration from both A549 and H460 lung cancer cell lines. The three clones were further analyzed in an in vivo animal test that assessed their anti-cancer activities, demonstrating that the tumor area and the number of tumor nodules were significantly reduced in the lung tissues treated with H1 (IgG). Given its high affinity and desirable properties, we expect that the H1 anti-hYKL-40 mAb will be a suitable candidate for developing anti-cancer therapeutics.
Collapse
|
105
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
106
|
Perret G, Boschetti E. Aptamer-Based Affinity Chromatography for Protein Extraction and Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:93-139. [PMID: 31485702 DOI: 10.1007/10_2019_106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aptamers are oligonucleotide molecules able to recognize very specifically proteins. Among the possible applications, aptamers have been used for affinity chromatography with effective results and advantages over most advanced protein separation technologies. This chapter first discusses the context of the affinity chromatography with aptamer ligands. With the adaptation of SELEX, the chemical modifications of aptamers to comply with the covalent coupling and the separation process are then extensively presented. A focus is then made about the most important applications for protein separation with real-life examples and the comparison with immunoaffinity chromatography. In spite of well-advanced demonstrations and the extraordinary potential developments, a significant optimization work is still due to deserve large-scale applications with all necessary validations. Graphical Abstract Aptamer-protein complexes by X-ray crystallography.
Collapse
|
107
|
Kesidis A, Depping P, Lodé A, Vaitsopoulou A, Bill RM, Goddard AD, Rothnie AJ. Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods 2020; 180:3-18. [DOI: 10.1016/j.ymeth.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
|
108
|
A novel peptide binding to the C-terminal domain of connective tissue growth factor for the treatment of bleomycin-induced pulmonary fibrosis. Int J Biol Macromol 2020; 156:1464-1473. [DOI: 10.1016/j.ijbiomac.2019.11.192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/31/2019] [Accepted: 11/23/2019] [Indexed: 11/20/2022]
|
109
|
Leal J, Peng X, Liu X, Arasappan D, Wylie DC, Schwartz SH, Fullmer JJ, McWilliams BC, Smyth HDC, Ghosh D. Peptides as surface coatings of nanoparticles that penetrate human cystic fibrosis sputum and uniformly distribute in vivo following pulmonary delivery. J Control Release 2020; 322:457-469. [PMID: 32243979 DOI: 10.1101/659540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 05/21/2023]
Abstract
Therapeutic delivery of drug and gene delivery systems have to traverse multiple biological barriers to achieve efficacy. Mucosal administration, such as pulmonary delivery in cystic fibrosis (CF) disease, remains a significant challenge due to concentrated viscoelastic mucus, which prevents drugs and particles from penetrating the mucus barrier. To address this problem, we used combinatorial peptide-presenting phage libraries and next-generation sequencing (NGS) to identify hydrophilic, net-neutral charged peptide coatings that enable penetration through human CF mucus ex vivo with ~600-fold better penetration than control, improve uptake into lung epithelial cells compared to uncoated or PEGylated-nanoparticles, and exhibit enhanced uniform distribution and retention in the mouse lung airways. These peptide coatings address multiple delivery barriers and effectively serve as excellent alternatives to standard PEG surface chemistries to achieve mucus penetration and address some of the challenges encountered using these chemistries. This biomolecule-based strategy can address multiple delivery barriers and hold promise to advance efficacy of therapeutics for diseases like CF.
Collapse
Affiliation(s)
- Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xiujuan Peng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xinquan Liu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, 102 E. 24th Street, Austin, TX 78712, USA
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, 102 E. 24th Street, Austin, TX 78712, USA
| | - Sarah H Schwartz
- Seton Healthcare Family, 11111 Research Blvd Suite 300, Austin, TX 78759, USA
| | - Jason J Fullmer
- Seton Healthcare Family, 11111 Research Blvd Suite 300, Austin, TX 78759, USA
| | - Bennie C McWilliams
- Seton Healthcare Family, 11111 Research Blvd Suite 300, Austin, TX 78759, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA.
| |
Collapse
|
110
|
Juds C, Schmidt J, Weller MG, Lange T, Beck U, Conrad T, Börner HG. Combining Phage Display and Next-Generation Sequencing for Materials Sciences: A Case Study on Probing Polypropylene Surfaces. J Am Chem Soc 2020; 142:10624-10628. [DOI: 10.1021/jacs.0c03482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Carmen Juds
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Germany
| | - Johannes Schmidt
- Functional Materials, Department of Chemistry, Technische Universität Berlin, D-10623 Berlin Germany
| | - Michael G. Weller
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Germany
| | - Thorid Lange
- Surface Modification and Measurement Technology Division, Federal Institute for Materials Research and Testing (BAM), D-12205 Berlin, Germany
| | - Uwe Beck
- Surface Modification and Measurement Technology Division, Federal Institute for Materials Research and Testing (BAM), D-12205 Berlin, Germany
| | - Tim Conrad
- Medical Bioinformatics Division, Department of Mathematics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| |
Collapse
|
111
|
Zhou J, Chen F, Li J, Li C, Qi Y, Liu H, Zhang G, Wang A. Biopanning the mimotopes of aflatoxin B1 and their immunogenicity. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- J. Zhou
- Academy of Life Sciences of Zhengzhou University, China
| | - F. Chen
- Wowen&infants Hospital of Zhengzhou, China
| | - J. Li
- Academy of Life Sciences of Zhengzhou University, China
| | - C. Li
- Academy of Life Sciences of Zhengzhou University, China
| | - Y. Qi
- Academy of Life Sciences of Zhengzhou University, China
| | - H. Liu
- Academy of Life Sciences of Zhengzhou University, China
| | - G. Zhang
- Academy of Life Sciences of Zhengzhou University, China
| | | |
Collapse
|
112
|
Sandomenico A, Caporale A, Doti N, Cross S, Cruciani G, Chambery A, De Falco S, Ruvo M. Synthetic Peptide Libraries: From Random Mixtures to In Vivo Testing. Curr Med Chem 2020; 27:997-1016. [PMID: 30009695 DOI: 10.2174/0929867325666180716110833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 01/13/2023]
Abstract
Combinatorially generated molecular repertoires have been largely used to identify novel bioactive compounds. Ever more sophisticated technological solutions have been proposed to simplify and speed up such process, expanding the chemical diversity space and increasing the prospect to select new molecular entities with specific and potent activities against targets of therapeutic relevance. In this context, random mixtures of oligomeric peptides were originally used and since 25 years they represent a continuous source of bioactive molecules with potencies ranging from the sub-nM to microM concentration. Synthetic peptide libraries are still employed as starting "synthetic broths" of structurally and chemically diversified molecular fragments from which lead compounds can be extracted and further modified. Thousands of studies have been reported describing the application of combinatorial mixtures of synthetic peptides with different complexity and engrafted on diverse structural scaffolds for the identification of new compounds which have been further developed and also tested in in vivo models of relevant diseases. We briefly review some of the most used methodologies for library preparation and screening and the most recent case studies appeared in the literature where compounds have reached at least in vivo testing in animal or similar models. Recent technological advancements in biotechnology, engineering and computer science have suggested new options to facilitate the discovery of new bioactive peptides. In this instance, we anticipate here a new approach for the design of simple but focused tripeptide libraries against druggable cavities of therapeutic targets and its complementation with existing approaches.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Universita Federico II di Napoli, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Andrea Caporale
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Universita Federico II di Napoli, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Universita Federico II di Napoli, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Simon Cross
- Molecular Discovery Ltd, Unit 501 Centennial Park, Centennial Avenue Elstree, Borehamwood, Hertfordshire WD6 3FG, United Kingdom
| | - Gabriele Cruciani
- Molecular Discovery Ltd, Unit 501 Centennial Park, Centennial Avenue Elstree, Borehamwood, Hertfordshire WD6 3FG, United Kingdom.,Dipartimento di Chimica, Biologia e Biotecnologia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Angela Chambery
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Sandro De Falco
- Istituto di Genetica e Biofisica del CNR, via Pietro Castellino, 111, 80131, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Universita Federico II di Napoli, via Mezzocannone, 16, 80134 Napoli, Italy
| |
Collapse
|
113
|
Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 2020; 17:451-461. [PMID: 32313210 DOI: 10.1038/s41423-020-0417-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bispecific antibodies (bsAbs) refer to a large family of molecules that recognize two different epitopes or antigens. Although a series of challenges, especially immunogenicity and chain mispairing issues, once hindered the development of bsAbs, they have been gradually overcome with the help of rapidly developing technologies in the past 5 decades. In the meantime, an increasing number of bsAb platforms have been designed to satisfy different clinical demands. Currently, numerous preclinical and clinical trials are underway, portraying a promising future for bsAb-based cancer treatment. Nevertheless, bsAb drugs still face enormous challenges in their application as cancer therapeutics, including tumor heterogeneity and mutational burden, intractable tumor microenvironment (TME), insufficient costimulatory signals to activate T cells, the necessity for continuous injection, fatal systemic side effects, and off-target toxicities to adjacent normal cells. Therefore, we provide several strategies as solutions to these issues, which comprise generating multispecific bsAbs, discovering neoantigens, combining bsAbs with other anticancer therapies, exploiting natural killer (NK)-cell-based bsAbs and producing bsAbs in situ. In this review, we mainly discuss previous and current challenges in bsAb development and underscore corresponding strategies, with a brief introduction of several typical bsAb formats.
Collapse
|
114
|
Targeting Trypanosoma evansi with disulphide-rich peptides derived from a phage display library. Exp Parasitol 2020; 212:107885. [PMID: 32234306 DOI: 10.1016/j.exppara.2020.107885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
Abstract
A phage-display library was generated using a Bus thalamus scorpion toxin (BTK-2) as a peptide scaffold. BTK-2 belongs to the disulfide-rich family of proteins with pronounced structural stability due to the presence of three disulfide bridges that connects antiparallel beta-sheets and one alpha helix. Using BTK-2 as a phage display scaffold, we introduced mutations in five residues located in the alpha-helix and two residues located in the smaller loop, keeping intact the disulfide bridges to create a peptide phage-displayed library with disulfide-rich family properties. The library was subjected to in vivo and in vitro phage display selections against Trypanosoma evansi, the etiological agent of "Surra", a disease that affects a wide range of mammals. The development of T. evansi specific biomarkers is essential to improve diagnostic methods and epidemiological studies leading to a more accurate clinical decision for the treatment of this disease of economic impact for commercial livestock production. In this study, we identified two disulfide-rich peptides targeting T. evansi parasites. Further specificity studies are necessary to investigate the potential of selected peptides as new biomarkers to aid diagnostic and treatment procedures of T. evansi infections.
Collapse
|
115
|
Blanco C, Verbanic S, Seelig B, Chen IA. High throughput sequencing of in vitro selections of mRNA-displayed peptides: data analysis and applications. Phys Chem Chem Phys 2020; 22:6492-6506. [PMID: 31967131 PMCID: PMC8219182 DOI: 10.1039/c9cp05912a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro selection using mRNA display is currently a widely used method to isolate functional peptides with desired properties. The analysis of high throughput sequencing (HTS) data from in vitro evolution experiments has proven to be a powerful technique but only recently has it been applied to mRNA display selections. In this Perspective, we introduce aspects of mRNA display and HTS that may be of interest to physical chemists. We highlight the potential of HTS to analyze in vitro selections of peptides and review recent advances in the application of HTS analysis to mRNA display experiments. We discuss some possible issues involved with HTS analysis and summarize some strategies to alleviate them. Finally, the potential for future impact of advancing HTS analysis on mRNA display experiments is discussed.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
116
|
Evaluation of bacteriophage products against burn wound Methicillin-resistant Staphylococcus aureus (MRSA) infections. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.wndm.2020.100182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
117
|
Sakaguchi-Mikami A, Fujimoto K, Taguchi T, Isao K, Yamazaki T. A novel biofunctionalizing peptide for metallic alloy. Biotechnol Lett 2020; 42:747-756. [PMID: 32040673 DOI: 10.1007/s10529-020-02832-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Improving biocompatibility of metallic alloy biomaterials has been of great interest to prevent implant associated-diseases, such as stent thrombosis. Herein a simple and efficient procedure was designed to biofunctionalize a biomaterial surface by isolating a SUS316L stainless steel binding peptide. RESULTS After three rounds of phage panning procedure, 12 mer peptide (SBP-A; VQHNTKYSVVIR) was identified as SUS316L-binding peptide. The SBP-A peptide formed a stable bond to a SUS316L modified surface and was not toxic to HUVECs. The SBP-A was then used for anti-ICAM antibody modification on SUS316L to construct a vascular endothelial cell-selective surface. The constructed surface dominantly immobilized vascular endothelial cells to smooth muscle cells, demonstrating that the SBP-A enabled simple immobilization of biomolecules without disturbing their active biological function. CONCLUSIONS The SUS316L surface was successfully biofunctionalized using the novel isolated peptide SBP-A, showing its potential as an ideal interface molecule for stent modification. This is the first report of material binding peptide-based optimal surface functionalization to promote endothelialisation. This simple and efficient biofunctionalization procedure is expected to contribute to the development of biocompatible materials.
Collapse
Affiliation(s)
- Akane Sakaguchi-Mikami
- Department of Medical technology, School of Health sciences, Tokyo University of Technology, 5-23-22 Nishi-Kamata, Ohta, Tokyo, 144-8535, Japan. .,Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo, 192-0982, Japan.
| | - Kazuhiro Fujimoto
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo, 192-0982, Japan
| | - Tetsushi Taguchi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Karube Isao
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo, 192-0982, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
| |
Collapse
|
118
|
He B, Dzisoo AM, Derda R, Huang J. Development and Application of Computational Methods in Phage Display Technology. Curr Med Chem 2020; 26:7672-7693. [PMID: 29956612 DOI: 10.2174/0929867325666180629123117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phage display is a powerful and versatile technology for the identification of peptide ligands binding to multiple targets, which has been successfully employed in various fields, such as diagnostics and therapeutics, drug-delivery and material science. The integration of next generation sequencing technology with phage display makes this methodology more productive. With the widespread use of this technique and the fast accumulation of phage display data, databases for these data and computational methods have become an indispensable part in this community. This review aims to summarize and discuss recent progress in the development and application of computational methods in the field of phage display. METHODS We undertook a comprehensive search of bioinformatics resources and computational methods for phage display data via Google Scholar and PubMed. The methods and tools were further divided into different categories according to their uses. RESULTS We described seven special or relevant databases for phage display data, which provided an evidence-based source for phage display researchers to clean their biopanning results. These databases can identify and report possible target-unrelated peptides (TUPs), thereby excluding false-positive data from peptides obtained from phage display screening experiments. More than 20 computational methods for analyzing biopanning data were also reviewed. These methods were classified into computational methods for reporting TUPs, for predicting epitopes and for analyzing next generation phage display data. CONCLUSION The current bioinformatics archives, methods and tools reviewed here have benefitted the biopanning community. To develop better or new computational tools, some promising directions are also discussed.
Collapse
Affiliation(s)
- Bifang He
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Medicine, Guizhou University, Guiyang 550025, China
| | - Anthony Mackitz Dzisoo
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
119
|
Kalim M, Wang S, Liang K, Khan MSI, Zhan J. Engineered scPDL1-DM1 drug conjugate with improved in vitro analysis to target PD-L1 positive cancer cells and intracellular trafficking studies in cancer therapy. Genet Mol Biol 2020; 42:e20180391. [PMID: 31967634 PMCID: PMC7198028 DOI: 10.1590/1678-4685-gmb-2018-0391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
Antibody-drug conjugates (ADC), precisely deliver a cytotoxic agent to
antigen-expressing tumor cells by using specific binding strategies of
antibodies. The ADC has shown the ability of potent bio-therapeutics development
but indefinite stoichiometric linkage and full-length antibody penetration
compromised the field of its advancement. Single chain variable fragments
convention instead of the full-length antibody may overcome the challenge of
rapid penetration and internalization. Programmed cell death ligand-1
interaction with PD-1 has recently revolutionized the field of immunotherapy. We
systematically designed scPDL1-DM1 drug conjugate by linking scFv-PD-L1 proteins
(scFv) with maytansinoids (DM1) cytotoxic agent through succinimidyl
trans-4-maleimidylmethyl cyclohexane-1- carboxylate (SMCC) linker. Binding
affinity was confirmed by immunocytochemistry, spectrophotometry and gel
electrophoresis analysis. The scPDL1-DM1 showed specific binding with PD-L1
positive tumor cells and retained in vitro anti-cell
proliferation activity. The intracellular trafficking of the drug was evaluated
in A549 cancer cell lines, and maximum trafficking was observed after two hours
of incubation. The generated drug can be utilized as a potent tool for
site-specific conjugation, predicting specificity in vitro
activities with extended range against PD-L1 positive cancer cells and can be
utilized for further in vivo testing and clinical therapeutics
development.
Collapse
Affiliation(s)
- Muhammad Kalim
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Shenghao Wang
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Keying Liang
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Muhammad Saleem Iqbal Khan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Jinbiao Zhan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
120
|
Dong S, Gao M, Bo Z, Guan L, Hu X, Zhang H, Liu B, Li P, He K, Liu X, Zhang C. Production and characterization of a single-chain variable fragment antibody from a site-saturation mutagenesis library derived from the anti-Cry1A monoclonal antibody. Int J Biol Macromol 2020; 149:60-69. [PMID: 31954781 DOI: 10.1016/j.ijbiomac.2020.01.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
There are plenty of applications of Cry1A toxins (Cry1Aa, Cry1Ab, Cry1Ac) in genetically modified crops, and it is necessary to establish corresponding detection methods. In this study, a single-chain variable fragment (scFv) with high affinities to Cry1A toxins was produced. First, the variable regions of heavy (VH) and light chain (VL) were amplified from hybridoma cell 5B5 which secrete anti-Cry1A monoclonal antibody (mAb) and then spliced into scFv-5B5 by overlap extension polymerase chain reaction (SOE-PCR). Subsequently, site-saturation mutagenesis was performed after homology modeling and molecular docking, which showed that asparagine35, phenylalanine36, isoleucine104, tyrosine105, and serine196, respectively, located in VH complementarity-determining region (CDR1 and CDR3) and VL framework region (FR3) were key amino acid sites. Then, the mutagenesis scFv library (1.35 × 105 CFU/mL) was constructed and a mutant scFv-2G12 with equilibrium dissociation constant (KD) value of 9.819 × 10-9 M against Cry1Ab toxin, which was lower than scFv-5B5 (2.025 × 10-8 M) was obtained by biopanning. Then, enzyme-linked immunosorbent assay (ELISA) was established with limit of detection (LOD) and limit of quantitation (LOQ) of 4.6-9.2 and 11.1-17.1 ng mL-1 respectively for scFv-2G12, which were lower than scFv-5B5 (12.4-22.0 and 23.6-39.7 ng mL-1). Results indicated the promising prospect of scFv-2G12 used for the detection of Cry1A toxins.
Collapse
Affiliation(s)
- Sa Dong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China; College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Meijing Gao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Zongyi Bo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lingjun Guan
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Xiaodan Hu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Hanxiaoya Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Beibei Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Pan Li
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Kangli He
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China.
| |
Collapse
|
121
|
Sanchez-Lockhart M, Reyes DS, Gonzalez JC, Garcia KY, Villa EC, Pfeffer BP, Trefry JC, Kugelman JR, Pitt ML, Palacios GF. Qualitative Profiling of the Humoral Immune Response Elicited by rVSV-ΔG-EBOV-GP Using a Systems Serology Assay, Domain Programmable Arrays. Cell Rep 2020; 24:1050-1059.e5. [PMID: 30044972 DOI: 10.1016/j.celrep.2018.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 06/18/2018] [Indexed: 01/02/2023] Open
Abstract
Development of an effective vaccine became a worldwide priority after the devastating 2013-2016 Ebola disease outbreak. To qualitatively profile the humoral response against advanced filovirus vaccine candidates, we developed Domain Programmable Arrays (DPA), a systems serology platform to identify epitopes targeted after vaccination or filovirus infection. We optimized the assay using a panel of well-characterized monoclonal antibodies. After optimization, we utilized the system to longitudinally characterize the immunoglobulin (Ig) isotype-specific responses in non-human primates vaccinated with rVSV-ΔG-EBOV-glycoprotein (GP). Strikingly, we observed that, although the IgM response was directed against epitopes over the whole GP, the IgG and IgA responses were almost exclusively directed against the mucin-like domain (MLD) of the glycan cap. Further research will be needed to characterize this possible biased IgG and IgA response toward the MLD, but the results corroborate that DPA is a valuable tool to qualitatively measure the humoral response after vaccination.
Collapse
Affiliation(s)
- Mariano Sanchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel S Reyes
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeanette C Gonzalez
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Karla Y Garcia
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erika C Villa
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley P Pfeffer
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - John C Trefry
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Jeffrey R Kugelman
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Margaret L Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
122
|
Kim WG, Zueger C, Kim C, Wong W, Devaraj V, Yoo HW, Hwang S, Oh JW, Lee SW. Experimental and numerical evaluation of a genetically engineered M13 bacteriophage with high sensitivity and selectivity for 2,4,6-trinitrotoluene. Org Biomol Chem 2020; 17:5666-5670. [PMID: 30973549 DOI: 10.1039/c8ob03075h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Selective and sensitive detection of desired targets is very critical in sensor design. Here, we report a genetically engineered M13 bacteriophage-based sensor system evaluated by quantum mechanics (QM) calculations. Phage display is a facile way to develop the desired peptide sequences, but the resulting sequences can be imperfect peptides for binding of target molecules. A TNT binding peptide (WHW) carrying phage was self-assembled to fabricate thin films and tested for the sensitive and selective surface plasmon resonance-based detection of TNT molecules at the 500 femtomole level. SPR studies performed with the WHW peptide and control peptides (WAW, WHA, AHW) were well-matched with those of the QM calculations. Our combined method between phage engineering and QM calculation will significantly enhance our ability to design selective and sensitive sensors.
Collapse
Affiliation(s)
- Won-Geun Kim
- Department of Nano Fusion Technology, Pusan National University, Busan, 609-735, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
124
|
Abstract
Monoclonal antibodies are among the most significant biological tools used in medicine and biology that have revolutionized the field of diagnostics, therapeutics, and targeted drug delivery systems for many diseases. Among them, rabbit monoclonal antibodies have attracted significant attention for having high affinity and specificity. During the past few decades, different techniques have been developed to produce monoclonal antibodies. Single B cell cloning technology offers many advantages compared to other methods and has been used to generate monoclonal antibodies from different species including rabbits. This review briefly describes some of these methods, with main focus on single B cell cloning and production of rabbit monoclonal antibodies.
Collapse
|
125
|
Xi J, He M, Pi J. Identification of antigenic sites destructed by high hydrostatic pressure (HHP) of the β subunit of β-conglycinin. Int J Biol Macromol 2019; 141:1287-1292. [PMID: 31499107 DOI: 10.1016/j.ijbiomac.2019.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/02/2023]
Abstract
β-conglycinin is one of the most allergenic proteins, and its constituent subunits α', α, and β are all potential allergens to humans. In the present study, we concentrated on the destructed antigenic sites of β subunit of β-conglycinin after high hydrostatic pressure (HHP) treatment. In this paper, the overlapping gene fragments of the β subunit of β-conglycinin were amplified by polymerase chain reaction (PCR) and cloned into T7 phage vectors. After being packaged in vitro, the recombinant T7 phage was constructed, and the overlapping fragments of the β subunit were displayed on the phage surface. The recombinant phages that expressed the overlapping fragments of the β subunit were used to react with specific antiserum by indirect ELISA to identify the HHP destructed antigenic sites. After three rounds of expression and identification, we used synthetic peptide technology to identify that the obtained fragment was a conformational epitope. We further confirmed that HHP treatment changed the conformational structure of β-conglycinin, which reduced the antigenicity of the protein.
Collapse
Affiliation(s)
- Jun Xi
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - MengXue He
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - JiangYi Pi
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
126
|
Adhikari S, Leissa JA, Karlsson AJ. Beyond function: Engineering improved peptides for therapeutic applications. AIChE J 2019. [DOI: 10.1002/aic.16776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sayanee Adhikari
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
| | - Jesse A. Leissa
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
| | - Amy J. Karlsson
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
- Fischell Department of Bioengineering University of Maryland College Park Maryland
| |
Collapse
|
127
|
Stern Z, Stylianou DC, Kostrikis LG. The development of inovirus-associated vector vaccines using phage-display technologies. Expert Rev Vaccines 2019; 18:913-920. [PMID: 31373843 PMCID: PMC7103683 DOI: 10.1080/14760584.2019.1651649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
Introduction: Inovirus-associated vectors (IAVs) are derived from bacterial filamentous viruses (phages). As vaccine carriers, they have elicited both cellular and humoral responses against a variety of pathogens causing infectious diseases and other non-infectious diseases. By displaying specific antigen epitopes or proteins on their coat proteins, IAVs have merited much study, as their unique abilities are exploited for widespread vaccine development. Areas covered: The architectural traits of filamentous viruses and their derivatives, IAVs, facilitate the display of specific antigenic peptides which induce antibody production to prevent or curtail infection. Inoviruses provide a foundation for cost-efficient large-scale specific phage display. In this paper, the development of different applications of inovirus-based phage display vaccines across a broad range of pathogens and hosts is reviewed. The references cited in this review were selected from established databases based on the authors' knowledge of the study subject. Expert commentary: The importance of phage-display technology has been recently highlighted by the Nobel Prize in Chemistry 2018 awarded to George P. Smith and Sir Gregory P. Winter. Furthermore, the symbiotic nature of filamentous viruses infecting intestinal F+E. coli strains offers an attractive platform for the development of novel vaccines that stimulate mucosal immunity.
Collapse
Affiliation(s)
- Zachariah Stern
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
128
|
Oller‐Salvia B, Chin JW. Efficient Phage Display with Multiple Distinct Non‐Canonical Amino Acids Using Orthogonal Ribosome‐Mediated Genetic Code Expansion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Benjamí Oller‐Salvia
- Medical Research Council Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| |
Collapse
|
129
|
Nascimento A, Mullerpatan A, Azevedo AM, Karande P, Cramer S. Development of phage biopanning strategies to identify affinity peptide ligands for kappa light chain Fab fragments. Biotechnol Prog 2019; 35:e2884. [DOI: 10.1002/btpr.2884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 01/28/2023]
Affiliation(s)
- André Nascimento
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa Lisbon Portugal
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| | - Akshat Mullerpatan
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| | - Ana Margarida Azevedo
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa Lisbon Portugal
| | - Pankaj Karande
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| | - Steven Cramer
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| |
Collapse
|
130
|
Oller-Salvia B, Chin JW. Efficient Phage Display with Multiple Distinct Non-Canonical Amino Acids Using Orthogonal Ribosome-Mediated Genetic Code Expansion. Angew Chem Int Ed Engl 2019; 58:10844-10848. [PMID: 31157495 PMCID: PMC6771915 DOI: 10.1002/anie.201902658] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Indexed: 11/10/2022]
Abstract
Phage display is a powerful approach for evolving proteins and peptides with new functions, but the properties of the molecules that can be evolved are limited by the chemical diversity encoded. Herein, we report a system for incorporating non-canonical amino acids (ncAAs) into proteins displayed on phage using the pyrrolysyl-tRNA synthetase/tRNA pair. We improve the efficiency of ncAA incorporation using an evolved orthogonal ribosome (riboQ1), and encode a cyclopropene-containing ncAA (CypK) at diverse sites on a displayed single-chain antibody variable fragment (ScFv), in response to amber and quadruplet codons. CypK and an alkyne-containing ncAA are incorporated at distinct sites, enabling the double labeling of ScFv with distinct probes, through mutually orthogonal reactions, in a one-pot procedure. These advances expand the number of functionalities that can be encoded on phage-displayed proteins and provide a foundation to further expand the scope of phage display applications.
Collapse
Affiliation(s)
- Benjamí Oller-Salvia
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
131
|
Wang T, Nguyen A, Zhang L, Turko IV. Mass spectrometry enumeration of filamentous M13 bacteriophage. Anal Biochem 2019; 582:113354. [PMID: 31276652 DOI: 10.1016/j.ab.2019.113354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022]
Abstract
In the last decade, filamentous M13 bacteriophage has emerged into numerous biotechnological applications as a promising nontoxic and self-assembling biomaterial with specific binding properties. This raises a question about its upscale production that consequently requires an accurate phage enumeration during the various protocol developments. However, traditional methods of measuring phage concentration are mainly biological in nature and therefore time and labor intensive. These traditional methods also demonstrate poor reproducibility and are semi-quantitative at best. In the present work, we capitalized on mass spectrometry based absolute protein quantitation. We have optimized the quantitation conditions for a major coat protein, pVIII. Enumeration of M13 bacteriophage can be further performed using the determined molar concentration of pVIII, Avogadro's number, and known copy number of pVIII per phage. Since many different phages have well-defined copy number of capsid proteins, the proposed approach can be simply applied to any phage with known copy number of a specific capsid protein.
Collapse
Affiliation(s)
- Tingting Wang
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States; Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, United States; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32601, United States
| | - Ai Nguyen
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, United States
| | - Linwen Zhang
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States; Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, United States
| | - Illarion V Turko
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States; Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, United States.
| |
Collapse
|
132
|
He B, Chen H, Huang J. PhD7Faster 2.0: predicting clones propagating faster from the Ph.D.-7 phage display library by coupling PseAAC and tripeptide composition. PeerJ 2019; 7:e7131. [PMID: 31245183 PMCID: PMC6585900 DOI: 10.7717/peerj.7131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
Selection from phage display libraries empowers isolation of high-affinity ligands for various targets. However, this method also identifies propagation-related target-unrelated peptides (PrTUPs). These false positive hits appear because of their amplification advantages. In this report, we present PhD7Faster 2.0 for predicting fast-propagating clones from the Ph.D.-7 phage display library, which was developed based on the support vector machine. Feature selection was performed against PseAAC and tripeptide composition using the incremental feature selection method. Ten-fold cross-validation results show that PhD7Faster 2.0 succeeds a decent performance with the accuracy of 81.84%, the Matthews correlation coefficient of 0.64 and the area under the ROC curve of 0.90. The permutation test with 1,000 shuffles resulted in p < 0.001. We implemented PhD7Faster 2.0 into a publicly accessible web tool (http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl) and constructed standalone graphical user interface and command-line versions for different systems. The standalone PhD7Faster 2.0 is able to detect PrTUPs within small datasets as well as large-scale datasets. This makes PhD7Faster 2.0 an enhanced and powerful tool for scanning and reporting faster-growing clones from the Ph.D.-7 phage display library.
Collapse
Affiliation(s)
- Bifang He
- School of Medicine, Guizhou University, Guiyang, Guizhou, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
133
|
He B, Chen H, Li N, Huang J. SAROTUP: a suite of tools for finding potential target-unrelated peptides from phage display data. Int J Biol Sci 2019; 15:1452-1459. [PMID: 31337975 PMCID: PMC6643146 DOI: 10.7150/ijbs.31957] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/09/2019] [Indexed: 01/13/2023] Open
Abstract
SAROTUP (Scanner And Reporter Of Target-Unrelated Peptides) 3.1 is a significant upgrade to the widely used SAROTUP web server for the rapid identification of target-unrelated peptides (TUPs) in phage display data. At present, SAROTUP has gathered a suite of tools for finding potential TUPs and other purposes. Besides the TUPScan, the motif-based tool, and three tools based on the BDB database, i.e., MimoScan, MimoSearch, and MimoBlast, three predictors based on support vector machine, i.e., PhD7Faster, SABinder and PSBinder, are integrated into SAROTUP. The current version of SAROTUP contains 27 TUP motifs and 823 TUP sequences. We also developed the standalone SAROTUP application with graphical user interface (GUI) and command line versions for processing deep sequencing phage display data and distributed it as an open source package, which can perform perfectly locally on almost all systems that support C++ with little or no modification. The web interfaces of SAROTUP have also been redesigned to be more self-evident and user-friendly. The latest version of SAROTUP is freely available at http://i.uestc.edu.cn/sarotup3.
Collapse
Affiliation(s)
- Bifang He
- School of Medicine, Guizhou University, Guiyang 550025, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Ning Li
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
134
|
Cyclic peptide: a safe and effective alternative to synthetic aflatoxin B1-competitive antigens. Anal Bioanal Chem 2019; 411:3881-3890. [DOI: 10.1007/s00216-019-01862-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
|
135
|
Efficient development and expression of scFv recombinant proteins against PD-L1 surface domain and potency in cancer therapy. Cytotechnology 2019; 71:705-722. [PMID: 31098772 DOI: 10.1007/s10616-019-00316-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
PD-L1 is a 40 kDa trans-membrane protein of B7 family and an important T cell regulator. Binding of PD-L1 and PD-1 inhibits proliferation and activation of T cell results cell exhaustion. This phenomenon can be reversed by blocking PD-L1/PD-1 interactions with single chain variables fragment (scFv) fusion proteins and by direct inhibition of tumor cells with drug conjugates. The human phage-displayed scFv library was utilized to generate scFv against the PD-L1 antigen by affinity bio-panning. The positive clones were selected by continuous transfection of bacterial cells and sequence analysis. The binding affinity and specificity of the scFv and antibody fragments were determined by using surface plasmon resonance biosensor, western blot analysis, and immunofluorescence assay. After three rounds of panning selection, about 30% of clones have a binding affinity with targeted PD-L1 antigen. Eight positive clones with accurate sequences were isolated and analyzed for binding affinity with PD-L1 antigen. Three of those with accurate sequences and binding affinity were selected for the recombinant formation and soluble expression by Escherichia coli host machinery. The highly positive recombinant clones with the exact orientation of FR and CDR domains were developed and can be used as a drug carrier tools in ADC formation or direct inhibition of immune checkpoint in cancer immunotherapy. The conjugate achieved its initial potency and need efficient improvement to enhance direct tumor suppression and bio-therapeutics strategies enrichment.
Collapse
|
136
|
Sokullu E, Soleymani Abyaneh H, Gauthier MA. Plant/Bacterial Virus-Based Drug Discovery, Drug Delivery, and Therapeutics. Pharmaceutics 2019; 11:E211. [PMID: 31058814 PMCID: PMC6572107 DOI: 10.3390/pharmaceutics11050211] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Viruses have recently emerged as promising nanomaterials for biotechnological applications. One of the most important applications of viruses is phage display, which has already been employed to identify a broad range of potential therapeutic peptides and antibodies, as well as other biotechnologically relevant polypeptides (including protease inhibitors, minimizing proteins, and cell/organ targeting peptides). Additionally, their high stability, easily modifiable surface, and enormous diversity in shape and size, distinguish viruses from synthetic nanocarriers used for drug delivery. Indeed, several plant and bacterial viruses (e.g., phages) have been investigated and applied as drug carriers. The ability to remove the genetic material within the capsids of some plant viruses and phages produces empty viral-like particles that are replication-deficient and can be loaded with therapeutic agents. This review summarizes the current applications of plant viruses and phages in drug discovery and as drug delivery systems and includes a discussion of the present status of virus-based materials in clinical research, alongside the observed challenges and opportunities.
Collapse
Affiliation(s)
- Esen Sokullu
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| |
Collapse
|
137
|
Cao B, Li Y, Yang T, Bao Q, Yang M, Mao C. Bacteriophage-based biomaterials for tissue regeneration. Adv Drug Deliv Rev 2019; 145:73-95. [PMID: 30452949 PMCID: PMC6522342 DOI: 10.1016/j.addr.2018.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Bacteriophage, also called phage, is a human-safe bacteria-specific virus. It is a monodisperse biological nanostructure made of proteins (forming the outside surface) and nucleic acids (encased in the protein capsid). Among different types of phages, filamentous phages have received great attention in tissue regeneration research due to their unique nanofiber-like morphology. They can be produced in an error-free format, self-assemble into ordered scaffolds, display multiple signaling peptides site-specifically, and serve as a platform for identifying novel signaling or homing peptides. They can direct stem cell differentiation into specific cell types when they are organized into proper patterns or display suitable peptides. These unusual features have allowed scientists to employ them to regenerate a variety of tissues, including bone, nerves, cartilage, skin, and heart. This review will summarize the progress in the field of phage-based tissue regeneration and the future directions in this field.
Collapse
Affiliation(s)
- Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Zhejiang, Hangzhou 310058, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| |
Collapse
|
138
|
Kim S, Xing L, Islam AE, Hsiao MS, Ngo Y, Pavlyuk OM, Martineau RL, Hampton CM, Crasto C, Slocik J, Kadakia MP, Hagen JA, Kelley-Loughnane N, Naik RR, Drummy LF. In Operando Observation of Neuropeptide Capture and Release on Graphene Field-Effect Transistor Biosensors with Picomolar Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13927-13934. [PMID: 30884221 DOI: 10.1021/acsami.8b20498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transmission electron microscopy (TEM) is being pushed to new capabilities which enable studies on systems that were previously out of reach. Among recent innovations, TEM through liquid cells (LC-TEM) enables in operando observation of biological phenomena. This work applies LC-TEM to the study of biological components as they interact on an abiotic surface. Specifically, analytes or target molecules like neuropeptide Y (NPY) are observed in operando on functional graphene field-effect transistor (GFET) biosensors. Biological recognition elements (BREs) identified using biopanning with affinity to NPY are used to functionalize graphene to obtain selectivity. On working devices capable of achieving picomolar responsivity to neuropeptide Y, LC-TEM reveals translational motion, stochastic positional fluctuations due to constrained Brownian motion, and rotational dynamics of captured analyte. Coupling these observations with the electrical responses of the GFET biosensors in response to analyte capture and/or release will potentially enable new insights leading to more advanced and capable biosensor designs.
Collapse
Affiliation(s)
| | - Li Xing
- Biological and Nanoscale Technologies Division , UES Inc. , Dayton , Ohio 45432 , United States
| | - Ahmad E Islam
- Biological and Nanoscale Technologies Division , UES Inc. , Dayton , Ohio 45432 , United States
| | - Ming-Siao Hsiao
- Biological and Nanoscale Technologies Division , UES Inc. , Dayton , Ohio 45432 , United States
| | - Yen Ngo
- Biological and Nanoscale Technologies Division , UES Inc. , Dayton , Ohio 45432 , United States
| | - Oksana M Pavlyuk
- Department of Biochemistry and Molecular Biology , Wright State University , Dayton , Ohio 45431 , United States
| | - Rhett L Martineau
- Biological and Nanoscale Technologies Division , UES Inc. , Dayton , Ohio 45432 , United States
| | - Cheri M Hampton
- Biological and Nanoscale Technologies Division , UES Inc. , Dayton , Ohio 45432 , United States
| | - Cameron Crasto
- Biological and Nanoscale Technologies Division , UES Inc. , Dayton , Ohio 45432 , United States
| | - Joseph Slocik
- Biological and Nanoscale Technologies Division , UES Inc. , Dayton , Ohio 45432 , United States
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology , Wright State University , Dayton , Ohio 45431 , United States
| | - Joshua A Hagen
- Rockefeller Neuroscience Institute, School of Medicine , West Virginia University , Morgantown , West Virginia 26506 , United States
| | | | | | | |
Collapse
|
139
|
Meijer FA, Leijten-van de Gevel IA, de Vries RMJM, Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol 2019; 485:20-34. [PMID: 30703487 DOI: 10.1016/j.mce.2019.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Iris A Leijten-van de Gevel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
140
|
Exploitation of phage display for the development of anti-cancer agents targeting fibroblast growth factor signaling pathways: New strategies to tackle an old challenge. Cytokine Growth Factor Rev 2019; 46:54-65. [DOI: 10.1016/j.cytogfr.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 01/20/2023]
|
141
|
Zambrano-Mila MS, Sánchez Blacio KE, Santiago Vispo N. Peptide Phage Display: Molecular Principles and Biomedical Applications. Ther Innov Regul Sci 2019. [DOI: 10.1177/2168479019837624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marlon S. Zambrano-Mila
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | | | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
142
|
Vassiliou AG, Siaterli MZ, Frakolaki E, Gkogkosi P, Paspaltsis I, Sklaviadis T, Vassilacopoulou D, Vassilaki N. L-Dopa decarboxylase interaction with the major signaling regulator ΡΙ3Κ in tissues and cells of neural and peripheral origin. Biochimie 2019; 160:76-87. [PMID: 30796964 DOI: 10.1016/j.biochi.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
Abstract
L-Dopa decarboxylase (DDC) catalyzes the decarboxylation of L-Dopa to dopamine and 5-hydroxytryptophan (5-HTP) to serotonin. Although DDC has been purified from a variety of peripheral organs, including the liver, kidney and pancreas, the physiological significance of the peripherally expressed enzyme is not yet fully understood. DDC has been considered as a potential novel biomarker for various types of cancer, however, the role of DDC in the development of hepatocellular carcinoma (HCC) remains to be evaluated. Phosphatidylinositol 3-kinase (PI3K), on the other hand, has been shown to play a key role in the tumorigenesis, proliferation, metastasis, apoptosis, and angiogenesis of HCC by regulating gene expression. We initially identified the interaction of DDC with PI3K by means of the phage display methodology. This association was further confirmed in human hepatocellular carcinoma cell lines, human embryonic kidney cells, human neuroblastoma cells, as well as mouse brain, by the use of specific antibodies raised against DDC and PI3K. Functional aspects of the above interaction were studied upon treatment with the DDC inhibitor carbidopa and the PI3K inhibitor LY294002. Interestingly, our data demonstrate the expression of the neuronal type DDC mRNA in HCC cells. The present investigation provides new evidence on the possible link of DDC with the PI3K pathway, underlining the biological significance of this complex enzyme.
Collapse
Affiliation(s)
- Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Ipsilantou 45-47, 10676, Athens, Greece; Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece
| | - Maria-Zacharenia Siaterli
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias ave., 11521, Athens, Greece
| | - Panayiota Gkogkosi
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece
| | - Ioannis Paspaltsis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15701, Athens, Greece.
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias ave., 11521, Athens, Greece.
| |
Collapse
|
143
|
Solemani Zadeh A, Grässer A, Dinter H, Hermes M, Schindowski K. Efficient Construction and Effective Screening of Synthetic Domain Antibody Libraries. Methods Protoc 2019; 2:mps2010017. [PMID: 31164599 PMCID: PMC6481084 DOI: 10.3390/mps2010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 01/02/2023] Open
Abstract
Phage display is a powerful technique for drug discovery in biomedical research in particular for antibody libraries. But, several technical challenges are associated with the selection process. For instance, during the panning step, the successful elution of the phages bound to the antigen is critical in order to avoid losing the most promising binders. Here, we present an efficient protocol to establish, screen and select synthetic libraries of domain antibodies using phage display. We do not only present suitable solutions to the above-mentioned challenges to improve elution by 50-fold, but we also present a step by step in-depth protocol with miniaturized volumes and optimized procedures to save material, costs and time for a successful phage display with domain antibodies. Hence, this protocol improves the selection process for an efficient handling process. The here presented library is based on the variable domain (vNAR) of the naturally occurring novel antibody receptor (IgNAR) from cartilage fishes. Diversity was introduced in the Complementarity-Determining Region 3 (CDR3) of the antigen-binding site with different composition and length.
Collapse
Affiliation(s)
- Arghavan Solemani Zadeh
- Institute for Applied Biotechnology, Biberach University of Applied Science, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
- Faculty of Medicine, Graduate School "Molecular Medicine", University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
- Faculty of Natural Sciences, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Alissa Grässer
- Institute for Applied Biotechnology, Biberach University of Applied Science, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
- Faculty of Natural Sciences, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Heiko Dinter
- Institute for Applied Biotechnology, Biberach University of Applied Science, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
| | - Maximilian Hermes
- Institute for Applied Biotechnology, Biberach University of Applied Science, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
- Faculty of Natural Sciences, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Katharina Schindowski
- Institute for Applied Biotechnology, Biberach University of Applied Science, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
| |
Collapse
|
144
|
Pourtaghi-Anvarian S, Mohammadi S, Hamzeh-Mivehroud M, Alizadeh AA, Dastmalchi S. Characterization of the novel anti-TNF-α single-chain fragment antibodies using experimental and computational approaches. Prep Biochem Biotechnol 2019; 49:38-47. [DOI: 10.1080/10826068.2018.1487855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samira Pourtaghi-Anvarian
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Mohammadi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, North Cyprus, Turkey
| |
Collapse
|
145
|
A novel discovery, maturation, and assay integration approach for the development of ruggedized multi-valent capture receptors exemplified against the chikungunya virus E2 protein. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2018.100248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
146
|
Abstract
Bacteriophages, discovered about a century ago, have been pivotal as models for understanding the fundamental principles of molecular biology. While interest in phage biology declined after the phage "golden era," key recent developments, including advances in phage genomics, microscopy, and the discovery of the CRISPR-Cas anti-phage defense system, have sparked a renaissance in phage research in the past decade. This review highlights recently discovered unexpected complexities in phage biology, describes a new arsenal of phage genes that help them overcome bacterial defenses, and discusses advances toward documentation of the phage biodiversity on a global scale.
Collapse
Affiliation(s)
- Gal Ofir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
147
|
Tesauro D, Accardo A, Diaferia C, Milano V, Guillon J, Ronga L, Rossi F. Peptide-Based Drug-Delivery Systems in Biotechnological Applications: Recent Advances and Perspectives. Molecules 2019; 24:E351. [PMID: 30669445 PMCID: PMC6359574 DOI: 10.3390/molecules24020351] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
Peptides of natural and synthetic sources are compounds operating in a wide range of biological interactions. They play a key role in biotechnological applications as both therapeutic and diagnostic tools. They are easily synthesized thanks to solid-phase peptide devices where the amino acid sequence can be exactly selected at molecular levels, by tuning the basic units. Recently, peptides achieved resounding success in drug delivery and in nanomedicine smart applications. These applications are the most significant challenge of recent decades: they can selectively deliver drugs to only pathological tissues whilst saving the other districts of the body. This specific feature allows a reduction in the drug side effects and increases the drug efficacy. In this context, peptide-based aggregates present many advantages, including biocompatibility, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery. A dual behavior is observed: on the one hand they can fulfill a structural and bioactive role. In this review, we focus on the design and the characterization of drug delivery systems using peptide-based carriers; moreover, we will also highlight the peptide ability to self-assemble and to actively address nanosystems toward specific targets.
Collapse
Affiliation(s)
- Diego Tesauro
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Carlo Diaferia
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Vittoria Milano
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
- ARNA, INSERM U1212/UMR CNRS 5320, UFR des Sciences Pharmaceutiques, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Jean Guillon
- ARNA, INSERM U1212/UMR CNRS 5320, UFR des Sciences Pharmaceutiques, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Luisa Ronga
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-University of Pau, 64000 Pau, France.
| | - Filomena Rossi
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| |
Collapse
|
148
|
Xu C, Liu X, Liu Y, Zhang X, Zhang C, Li J, Liu X. High sensitive single chain variable fragment screening from a microcystin-LR immunized mouse phage antibody library and its application in immunoassay. Talanta 2019; 197:397-405. [PMID: 30771953 DOI: 10.1016/j.talanta.2019.01.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 12/23/2022]
Abstract
Microcystin-LR (MC-LR) is one of common high-toxic biotoxins produced by cyanobacteria in waterbody. A high sensitive and convenient detection method is necessary for monitoring for MC-LR. To establish a high sensitive indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) based on single chain variable fragment (scFv) for detecting MC-LR, 16 positive anti-MC-LR phage scFv particles were screened out from a MC-LR-immunized mouse phage scFv library, which was successfully constructed with the capacity of 8.67 × 107 CFU/mL. The most positive anti-MC-LR phage scFv (MscFv7) was successfully expressed in Escherichia coli (E.coli) HB2151. The molecular weight (M.W.) of expressed protein was about 30 kDa, and the concentration of purified protein was 512.6 μg/mL analyzed by SDS-PAGE and protein quantitative respectively. The IC-ELISA based on MscFv7-scFv for MC-LR shows a half-maximum inhibition (IC50) of 0.471 μg/L and a limit of detection (LOD) of 0.044 μg/L, which is below the maximum residue limit standard (MRLs) of 1.0 μg/L in drinking water. The MscFv7-scFv has a strong cross-recognition for MC-RR and MC-YR with cross-reactivity (CRs) of 93.1% and 85.9%, respectively, but weak for MC-LW with that of 9.7%, even non-recognition for MC-WR, MC-LF and MC-LY. The recovery rates of IC-ELISA to detect MC-LR spiked in different cleanliness of water samples were 81.2-106.3% with CVs of 2.62-10.22% at intra-assay and inter-assay. The results showed that we obtained a high sensitive anti-MC-LR scFv, and the established IC-ELISA based on MscFv7-scFv should be promising for ultrasensitive monitoring MC-LR, MC-RR and MC-YR in water samples.
Collapse
Affiliation(s)
- Chongxin Xu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoqin Liu
- Huaihua Vocational and Technical College, Huaihua 418007, China
| | - Yuan Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianhong Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xianjin Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
149
|
Vallade M, Jewginski M, Fischer L, Buratto J, Bathany K, Schmitter JM, Stupfel M, Godde F, Mackereth CD, Huc I. Assessing Interactions between Helical Aromatic Oligoamide Foldamers and Protein Surfaces: A Tethering Approach. Bioconjug Chem 2019; 30:54-62. [PMID: 30395443 DOI: 10.1021/acs.bioconjchem.8b00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Helically folded aromatic foldamers may constitute suitable candidates for the ab initio design of ligands for protein surfaces. As preliminary steps toward the exploration of this hypothesis, a tethering approach was developed to detect interactions between a protein and a foldamer by confining the former at the surface of the latter. Cysteine mutants of two therapeutically relevant enzymes, CypA and IL4, were produced. Two series of ten foldamers were synthesized bearing different proteinogenic side chains and either a long or a short linker functionalized with an activated disulfide. Disulfide exchange between the mutated cysteines and the activated disulfides yielded 20 foldamer-IL4 and 20 foldamer-CypA adducts. Effectiveness of the reaction was demonstrated by LC-MS, by MS analysis after proteolytic digestion, and by 2D NMR. Circular dichroism then revealed diastereoselective interactions between the proteins and the foldamers confined at their surface which resulted in a preferred handedness of the foldamer helix. Helix sense bias occurred sometimes with both the short and the long linkers and sometimes with only one of them. In a few cases, helix handedness preference is found to be close to quantitative. These cases constitute valid candidates for structural elucidation of the interactions involved.
Collapse
Affiliation(s)
- Maëlle Vallade
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Michal Jewginski
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department of Bioorganic Chemistry, Faculty of Chemistry , Wrocław University of Technology , 50-370 Wrocław , Poland
| | - Lucile Fischer
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jérémie Buratto
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Katell Bathany
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jean-Marie Schmitter
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Marine Stupfel
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Frédéric Godde
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Cameron D Mackereth
- Université Bordeaux, INSERM, CNRS, ARNA (U 1212 and UMR 5320), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Ivan Huc
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department Pharmazie , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 München , Germany
| |
Collapse
|
150
|
Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S, Nawaz MA, Hussain T, Rahman SU, Shah SSA. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol 2018; 59:123-133. [PMID: 30485461 DOI: 10.1002/jobm.201800412] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Bacteriophages (phages/viruses) need host bacteria to replicate and propagate. Primarily, a bacteriophage contains a head/capsid to encapsidate the genetic material. Some phages contain tails. Phages encode endolysins to hydrolyze bacterial cell wall. The two main classes of phages are lytic or virulent and lysogenic or temperate. In comparison with antibiotics, to deal with bacterial infections, phage therapy is thought to be more effective. In 1921, the use of phages against bacterial infections was first demonstrated. Later on, in humans, phage therapy was used to treat skin infections caused by Pseudomonas species. Furthermore, phages were successfully employed against infections in animals - calves, lambs, and pigs infected with Escherichia coli. In agriculture, for instance, phages have successfully been used e.g., Apple blossom infection, caused by Erwinia amylovora, was effectively catered with the use of bacteriophages. Bacteriophages were also used to control E. coli, Salmonella, Listeria, and Campylobacter contamination in food. Comparatively, phage display is a recently discovered technology, whereby, bacteriophages play a significant role. This review is an effort to collect almost recent and relevant information regarding applications and complications associated with the use of bacteriophages.
Collapse
Affiliation(s)
- Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Sayed M A U S Bukhari
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Sana Raza
- Institute of Health Sciences, Mardan, Pakistan
| | - Muhammad A Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Sadeeq U Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| | - Syed S A Shah
- Department of Zoology, Abdul Wali Khan University, Garden Campus, Mardan, Pakistan
| |
Collapse
|