101
|
Waites W, Mısırlı G, Cavaliere M, Danos V, Wipat A. A Genetic Circuit Compiler: Generating Combinatorial Genetic Circuits with Web Semantics and Inference. ACS Synth Biol 2018; 7:2812-2823. [PMID: 30408409 PMCID: PMC6305556 DOI: 10.1021/acssynbio.8b00201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A central strategy of synthetic biology is to understand the basic processes of living creatures through engineering organisms using the same building blocks. Biological machines described in terms of parts can be studied by computer simulation in any of several languages or robotically assembled in vitro. In this paper we present a language, the Genetic Circuit Description Language (GCDL) and a compiler, the Genetic Circuit Compiler (GCC). This language describes genetic circuits at a level of granularity appropriate both for automated assembly in the laboratory and deriving simulation code. The GCDL follows Semantic Web practice, and the compiler makes novel use of the logical inference facilities that are therefore available. We present the GCDL and compiler structure as a study of a tool for generating κ-language simulations from semantic descriptions of genetic circuits.
Collapse
Affiliation(s)
- William Waites
- School
of Informatics, University of Edinburgh, Edinburgh EH8 9YL, U.K.,E-mail:
| | - Göksel Mısırlı
- School
of Computing and Mathematics, Keele University, Newcastle ST5 5BG, U.K.
| | - Matteo Cavaliere
- School
of Computing & Mathematics, Manchester
Metropolitan University, Manchester M15 6BH, U.K.
| | - Vincent Danos
- School
of Informatics, University of Edinburgh, Edinburgh EH8 9YL, U.K.,École
Normale Supérieure, Paris, CNRS, 75005 Paris, France
| | - Anil Wipat
- School
of Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| |
Collapse
|
102
|
Sutherland AR, Alam MK, Geyer CR. Post‐translational Assembly of Protein Parts into Complex Devices by Using SpyTag/SpyCatcher Protein Ligase. Chembiochem 2018; 20:319-328. [DOI: 10.1002/cbic.201800538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ashley R. Sutherland
- Department of BiochemistryUniversity of Saskatchewan Saskatoon SK S7N 5E5 Canada
| | - Md. Kausar Alam
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto Toronto ON M5S3E1 Canada
| | - C. Ronald Geyer
- Department of Pathology and Laboratory MedicineUniversity of Saskatchewan Saskatoon SK S7N 5E5 Canada
| |
Collapse
|
103
|
D’Atri V, Nováková L, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D. Orthogonal Middle-up Approaches for Characterization of the Glycan Heterogeneity of Etanercept by Hydrophilic Interaction Chromatography Coupled to High-Resolution Mass Spectrometry. Anal Chem 2018; 91:873-880. [DOI: 10.1021/acs.analchem.8b03584] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Valentina D’Atri
- Section of Pharmaceutical Sciences, School of Pharmacy Geneva−Lausanne, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Szabolcs Fekete
- Section of Pharmaceutical Sciences, School of Pharmacy Geneva−Lausanne, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Dwight Stoll
- Department of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56082, United States
| | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- Section of Pharmaceutical Sciences, School of Pharmacy Geneva−Lausanne, University of Geneva, Centre Médical Universitaire, Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
104
|
Burnside D, Schoenrock A, Moteshareie H, Hooshyar M, Basra P, Hajikarimlou M, Dick K, Barnes B, Kazmirchuk T, Jessulat M, Pitre S, Samanfar B, Babu M, Green JR, Wong A, Dehne F, Biggar KK, Golshani A. In Silico Engineering of Synthetic Binding Proteins from Random Amino Acid Sequences. iScience 2018; 11:375-387. [PMID: 30660105 PMCID: PMC6348295 DOI: 10.1016/j.isci.2018.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/19/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
Synthetic proteins with high affinity and selectivity for a protein target can be used as research tools, biomarkers, and pharmacological agents, but few methods exist to design such proteins de novo. To this end, the In-Silico Protein Synthesizer (InSiPS) was developed to design synthetic binding proteins (SBPs) that bind pre-determined targets while minimizing off-target interactions. InSiPS is a genetic algorithm that refines a pool of random sequences over hundreds of generations of mutation and selection to produce SBPs with pre-specified binding characteristics. As a proof of concept, we design SBPs against three yeast proteins and demonstrate binding and functional inhibition of two of three targets in vivo. Peptide SPOT arrays confirm binding sites, and a permutation array demonstrates target specificity. Our foundational approach will support the field of de novo design of small binding polypeptide motifs and has robust applicability while offering potential advantages over the limited number of techniques currently available. InSiPS engineers synthetic binding proteins (SBPs) using primary protein sequence SBPs are designed to a bind a target protein and avoid “off-target” interactions Binding and functional inhibition of two of three target proteins in yeast is demonstrated Our new approach offers advantages over alternative tools that rely on 3D models
Collapse
Affiliation(s)
- Daniel Burnside
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Andrew Schoenrock
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Prabh Basra
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Maryam Hajikarimlou
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Kevin Dick
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Brad Barnes
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Tom Kazmirchuk
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Matthew Jessulat
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sylvain Pitre
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C5, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Kyle K Biggar
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S5B6, Canada; Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada.
| |
Collapse
|
105
|
Ravasco JMJM, Faustino H, Trindade A, Gois PMP. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemistry 2018; 25:43-59. [PMID: 30095185 DOI: 10.1002/chem.201803174] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 02/06/2023]
Abstract
Maleimide chemistry stands out in the bioconjugation toolbox by virtue of its synthetic accessibility, excellent reactivity, and practicability. The second-generation of clinically approved antibody-drug conjugates (ADC) and much of the current ADC pipeline in clinical trials contain the maleimide linkage. However, thiosuccinimide linkages are now known to be less robust than once thought, and ergo, are correlated with suboptimal pharmacodynamics, pharmacokinetics, and safety profiles in some ADC constructs. Rational design of novel generations of maleimides and maleimide-type reagents have been reported to address the shortcomings of classical maleimides, allowing for the formation of robust bioconjugate linkages. This review highlights the main strategies for rational reagent design that have allowed irreversible bioconjugations in cysteines, reversible labelling strategies and disulfide re-bridging.
Collapse
Affiliation(s)
- João M J M Ravasco
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Hélio Faustino
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Alexandre Trindade
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Pedro M P Gois
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
106
|
Fan L, Wang Y, Tuyishime P, Gao N, Li Q, Zheng P, Sun J, Ma Y. Engineering Artificial Fusion Proteins for Enhanced Methanol Bioconversion. Chembiochem 2018; 19:2465-2471. [DOI: 10.1002/cbic.201800424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/14/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Liwen Fan
- School of Life SciencesUniversity of Science and Technology of China Hefei 230026 China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Yu Wang
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Philibert Tuyishime
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ning Gao
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinggang Li
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Ping Zheng
- School of Life SciencesUniversity of Science and Technology of China Hefei 230026 China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Jibin Sun
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Yanhe Ma
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
107
|
Oyeleye A, Normi YM. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Biosci Rep 2018; 38:BSR2018032300. [PMID: 30042170 PMCID: PMC6131217 DOI: 10.1042/bsr20180323] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023] Open
Abstract
Chitinases catalyze the degradation of chitin, a ubiquitous polymer generated from the cell walls of fungi, shells of crustaceans, and cuticles of insects. They are gaining increasing attention in medicine, agriculture, food and drug industries, and environmental management. Their roles in the degradation of chitin for the production of industrially useful products and in the control of fungal pathogens and insect pests render them attractive for such purposes. However, chitinases have diverse sources, characteristics, and mechanisms of action that seem to restrain optimization procedures and render standardization techniques for enhanced practical applications complex. Hence, results of laboratory trials are not usually consistent with real-life applications. With the growing field of protein engineering, these complexities can be overcome by modifying or redesigning chitinases to enhance specific features required for specific applications. In this review, the variations in features and mechanisms of chitinases that limit their exploitation in biotechnological applications are compiled. Recent attempts to engineer chitinases for improved efficiency are also highlighted.
Collapse
Affiliation(s)
- Ayokunmi Oyeleye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
108
|
Garba B, Bahaman AR, Zakaria Z, Bejo SK, Mutalib AR, Bande F, Suleiman N. Antigenic potential of a recombinant polyvalent DNA vaccine against pathogenic leptospiral infection. Microb Pathog 2018; 124:136-144. [PMID: 30138761 DOI: 10.1016/j.micpath.2018.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/02/2018] [Accepted: 08/18/2018] [Indexed: 11/18/2022]
Abstract
Leptospirosis is a serious epidemic disease caused by pathogenic Leptospira species. The disease is endemic in most tropical and sub-tropical regions of the world. Currently, there is no effective polyvalent vaccine for prevention against most of the circulating serovars. Moreover, development of an efficient leptospiral vaccine capable of stimulating cross-protective immune responses against a wide range of serovars remains a daunting challenge. This, in part, is associated with the extensive diversity and variation of leptospiral serovars from region to region. In this study, a multi-epitope DNA vaccine encoding highly immunogenic epitopes from LipL32 and LipL41 was designed using in-silico approach. The DNA encoding antigenic epitopes was constructed from conserved pathogenic Leptospira genes (LipL32 and LipL41). Immunization of golden Syrian hamsters with the multi-epitope chimeric DNA vaccine resulted in the production of both agglutinating and neutralizing antibodies as evidence by MAT and in-vitro growth inhibition tests respectively. The antibodies produced reacted against eight different serovars and significantly reduced renal colonization following in vivo challenge. The vaccine was also able to significantly reduce renal colonization which is a very important factor responsible for persistence of leptospires among susceptible and reservoir animal hosts. In conclusion, the leptospiral multi-epitope chimeric DNA vaccine can serve as a potentially effective and safe vaccine against infection with different pathogenic leptospiral serovars.
Collapse
Affiliation(s)
- Bashiru Garba
- Veterinary Public Health Lab, Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria; Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Abdul Rani Bahaman
- Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Zunita Zakaria
- Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Khairani Bejo
- Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abdul Rahim Mutalib
- Department of Veterinary Laboratory Diagnostics Services Unit, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Faruku Bande
- Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Services, Ministry of Animal Health and Fisheries Development, Usman Faruk Secretariat Complex, 840245, Sokoto State, Nigeria
| | - Nasiru Suleiman
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
109
|
Norris JL, Hughes RM. protaTETHER - a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc-GFP fusion protein. FEBS Open Bio 2018; 8:1029-1042. [PMID: 29928581 PMCID: PMC5986021 DOI: 10.1002/2211-5463.12414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 11/11/2022] Open
Abstract
Protein fusions are of fundamental importance in the study of cellular biology and the elucidation of cell signaling pathways, and the importance of linkers for the proper function of protein fusions is well documented in the literature. However, there are few convenient methods available to experimentalists for the systematic implementation of linkers in protein fusions. In this work, we describe a universal approach to the creation and insertion of focused linker libraries into protein fusions. This process, deemed protaTETHER, utilizes reiterative oligomer design, PCR-mediated linker library generation, and restriction enzyme-free cloning methods in a straightforward, three-step cloning process. We utilize a fusion between the catalytic subunit of cAMP-dependent protein kinase A (PKAc) and green fluorescent protein (GFP) for the development of the protaTETHER method, implementing small linker libraries that vary by length, sequence, and predicted secondary structural elements. We analyze the impact of linker length and sequence on the expression, activity, and subcellular localization of the PKAc-GFP fusions, and use these results to select a PKAc-GFP fusion construct with robust expression and enzymatic activity. Based upon the results of both biochemical experiments and molecular modeling, we determine that linker flexibility is more important than linker length for optimal kinase activity and expression.
Collapse
|
110
|
Chirani AS, Ghazi M, Goudarzi M, Peerayeh SN, Soleimanjahi H, Dadashi M, Hajikhani B. A survey on chimeric UreB 229-561-HpaA protein targeting Helicobacter pylori: Computational and in vitro urease activity valuation. Comput Biol Chem 2018; 76:42-52. [PMID: 29929167 DOI: 10.1016/j.compbiolchem.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) as microaerophilic, Gram-negative bacterium colonize the human gastric milieu, where it impetuses chronic disorders. Vaccination is a complementary plan, along with antibiotic therapy, for clearance of H. pylori. Today, Computer based tools are essential for the evaluation, design, and experiment for novel chimeric targets for immunological administration. The purpose of this experiment was immunoinformatic analysis of UreB and HpaA molecules in a fusion arrangement and also, construction and expression of recombinant protein containing chimeric sequences. The targets sequences were screened by using of standard in silico tools and immunoinformatic web servers. The high-resolution 3D models of the protein were created and were validated; indeed, the B-and T-cell restricted epitopes were mapped on the chimeric protein. The recombinant protein in frame of the expression vector pET28a were expressed and purified successfully. The urease activity and immunoblotting were performed in vitro condition. This study confirmed that the engineered protein as a highly conserved, hydrophilic, non-allergenic contained remarkable B-cell and T-cell epitopes. It was magnificently attained; chimeric UreB229-561-HpaA could provoke both humoral and cellular immunity. The immunoblotting was shown that the chimeric protein could be detected by serum of immunized animal and H.pylori positive patients. In this study, several antigenic patches from UreB and HpaA were identified that could be an efficient immune system activator. The in vitro analysis of our chimeric molecule confirmed its urease activity. It also confirmed that the chimeric protein could be detected by serum of immunized animal and H.pylori positive patients.
Collapse
Affiliation(s)
- Alireza Salimi Chirani
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Ghazi
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Najar Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Dadashi
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Medical Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
111
|
Wang Y, Ren H, Zhao H. Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production. Crit Rev Biochem Mol Biol 2018; 53:115-129. [PMID: 29411648 PMCID: PMC6112242 DOI: 10.1080/10409238.2018.1431201] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Biocatalysts have been increasingly used in the synthesis of fine chemicals and medicinal compounds due to significant advances in enzyme discovery and engineering. To mimic the synergistic effects of cascade reactions catalyzed by multiple enzymes in nature, researchers have been developing artificial tandem enzymatic reactions in vivo by harnessing synthetic biology and metabolic engineering tools. There is also growing interest in the development of one-pot tandem enzymatic or chemo-enzymatic processes in vitro due to their neat and concise catalytic systems and product purification procedures. In this review, we will briefly summarize the strategies of designing and optimizing in vitro tandem catalytic reactions, highlight a few representative examples, and discuss the future trend in this field.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6180
| | - Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6180
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 6180
- Departments of Chemistry, Biochemistry, and Bioengineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
112
|
Caparco AA, Bommarius AS, Champion JA. Effect of peptide linker length and composition on immobilization and catalysis of leucine zipper‐enzyme fusion proteins. AIChE J 2018. [DOI: 10.1002/aic.16150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Adam A. Caparco
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| |
Collapse
|
113
|
Tyurin AA, Kabardaeva KV, Mustafaev ON, Pavlenko OS, Sadovskaya NS, Fadeev VS, Zvonova EA, Goldenkova-Pavlova IV. Expression of Soluble Active Interferon αA in Escherichia coli Periplasm by Fusion with Thermostable Lichenase Using the Domain Insertion Approach. BIOCHEMISTRY (MOSCOW) 2018; 83:259-269. [DOI: 10.1134/s0006297918030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
114
|
Negahdaripour M, Nezafat N, Eslami M, Ghoshoon MB, Shoolian E, Najafipour S, Morowvat MH, Dehshahri A, Erfani N, Ghasemi Y. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. INFECTION GENETICS AND EVOLUTION 2018; 58:96-109. [DOI: 10.1016/j.meegid.2017.12.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 01/26/2023]
|
115
|
Forte N, Livanos M, Miranda E, Morais M, Yang X, Rajkumar VS, Chester KA, Chudasama V, Baker JR. Tuning the Hydrolytic Stability of Next Generation Maleimide Cross-Linkers Enables Access to Albumin-Antibody Fragment Conjugates and tri-scFvs. Bioconjug Chem 2018; 29:486-492. [PMID: 29384367 DOI: 10.1021/acs.bioconjchem.7b00795] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe investigations to expand the scope of next generation maleimide cross-linkers for the construction of homogeneous protein-protein conjugates. Diiodomaleimides are shown to offer the ideal properties of rapid bioconjugation with reduced hydrolysis, allowing the cross-linking of even sterically hindered systems. The optimized linkers are exploited to link human serum albumin to antibody fragments (Fab or scFv) as a prospective half-life extension platform, with retention of antigen binding and robust serum stability. Finally, a triprotein conjugate is formed, by linking scFv antibody fragments targeting carcinoembryonic antigen. This tri-scFv is shown to infer a combination of greater antigen avidity and increased in vivo half-life, representing a promising platform for antibody therapeutic development.
Collapse
Affiliation(s)
- Nafsika Forte
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom
| | - Maria Livanos
- Cancer Institute, University College London , 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Enrique Miranda
- Cancer Institute, University College London , 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Maurício Morais
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom
| | - Xiaoping Yang
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom
| | - Vineeth S Rajkumar
- Cancer Institute, University College London , 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Kerry A Chester
- Cancer Institute, University College London , 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Vijay Chudasama
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , 1649-004 Lisbon, Portugal
| | - James R Baker
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom
| |
Collapse
|
116
|
Gavya SL, Arora N, Ghosh SS. Retention of functional characteristics of glutathione-S-transferase and lactate dehydrogenase-A in fusion protein. Prep Biochem Biotechnol 2018; 48:128-135. [PMID: 29194006 DOI: 10.1080/10826068.2017.1405022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A paradigm shift toward fusion proteins to render multiple functionalities and applications on a single platform has been incurred in enzyme based diagnosis. Herein, we report development and systematic characterizations of glutathione-S-transferase (GST) and human lactate dehydrogenase A (hLDHA) in a fusion protein (GST-hLDHA) to achieve functional activities of GST and hLDHA simultaneously. The GST-pGEX-4T-2 vector system was used for cloning and purification of hLDHA, utilizing the affinity based interaction between GST and GSH in column chromatography. Bacterially purified protein was subjected to the Western blot analysis and structural analysis by circular dichroism spectroscopy, which revealed intact structural framework of the fusion construct. Kinetic characterization of the fusion GST-hLDHA protein toward GSH and NADH, suggested retention of functional activities of GST and hLDHA in fused protein as indicated by the kinetic parameters km and kcat/km. Further analysis of effect of temperature and pH on GST-hLDHA activity revealed maximum activity around human physiological conditions (37°C and pH 8). Preservation of the structural and functional characteristics of the fusion enzyme paves the way for potential application for the detection of NADH and GSH in conjunction as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- S Lalitha Gavya
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Neha Arora
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Siddhartha Sankar Ghosh
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India.,b Centre for Nanotechnology , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| |
Collapse
|
117
|
Pinheiro AM, Carreira A, Ferreira RB, Monteiro S. Fusion proteins towards fungi and bacteria in plant protection. MICROBIOLOGY (READING, ENGLAND) 2018; 164:11-19. [PMID: 29239714 PMCID: PMC5892777 DOI: 10.1099/mic.0.000592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
In agriculture, although fungi are considered the foremost problem, infections by bacteria also cause significant economical losses. The presence of different diseases in crops often leads to a misuse of the proper therapeutic, or the combination of different diseases forces the use of more than one pesticide. This work concerns the development of a 'super-Blad': a chimeric protein consisting of Blad polypeptide, the active ingredient of a biological fungicide already on the market, and two selected peptides, SP10-5 and Sub5, proven to possess biological potential as antibacterial agents. The resulting chimeric protein obtained from the fusion of Blad with SP10-5 not only maintained strong antibacterial activity, especially against Xanthomonas spp. and Pseudomonas syringae, but was also able to retain the ability to inhibit the growth of both yeast and filamentous fungi. However, the antibacterial activity of Sub5 was considerably diminished when fused with Blad, which seems to indicate that not all fusion proteins behave equally. These newly designed drugs can be considered promising compounds for use in plant protection. A deeper and focused development of an appropriate formulation may result in a potent biopesticide that can replace, per se, two conventional chemistries with less impact on the environment.
Collapse
Affiliation(s)
- Ana Margarida Pinheiro
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Alexandra Carreira
- CEV, SA, Parque Industrial de Cantanhede/Biocant-Park, lote 120, 3060-197 Cantanhede, Portugal
| | - Ricardo B. Ferreira
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Sara Monteiro
- LEAF – Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
- CEV, SA, Parque Industrial de Cantanhede/Biocant-Park, lote 120, 3060-197 Cantanhede, Portugal
| |
Collapse
|
118
|
Zhang L, Xiao WH, Wang Y, Yao MD, Jiang GZ, Zeng BX, Zhang RS, Yuan YJ. Chassis and key enzymes engineering for monoterpenes production. Biotechnol Adv 2017; 35:1022-1031. [DOI: 10.1016/j.biotechadv.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
|
119
|
Colpa DI, Lončar N, Schmidt M, Fraaije MW. Creating Oxidase-Peroxidase Fusion Enzymes as a Toolbox for Cascade Reactions. Chembiochem 2017; 18:2226-2230. [PMID: 28885767 PMCID: PMC5708271 DOI: 10.1002/cbic.201700478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/31/2022]
Abstract
A set of bifunctional oxidase-peroxidases has been prepared by fusing four distinct oxidases to a peroxidase. Although such fusion enzymes have not been observed in nature, they could be expressed and purified in good yields. Characterization revealed that the artificial enzymes retained the capability to bind the two required cofactors and were catalytically active as oxidase and peroxidase. Peroxidase fusions of alditol oxidase and chitooligosaccharide oxidase could be used for the selective detection of xylitol and cellobiose with a detection limit in the low-micromolar range. The peroxidase fusions of eugenol oxidase and 5-hydroxymethylfurfural oxidase could be used for dioxygen-driven, one-pot, two-step cascade reactions to convert vanillyl alcohol into divanillin and eugenol into lignin oligomers. The designed oxidase-peroxidase fusions represent attractive biocatalysts that allow efficient biocatalytic cascade oxidations that only require molecular oxygen as an oxidant.
Collapse
Affiliation(s)
- Dana I. Colpa
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Nikola Lončar
- Groningen Enzyme and Cofactor Collection (GECCO)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Mareike Schmidt
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
120
|
Negahdaripour M, Eslami M, Nezafat N, Hajighahramani N, Ghoshoon MB, Shoolian E, Dehshahri A, Erfani N, Morowvat MH, Ghasemi Y. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. INFECTION GENETICS AND EVOLUTION 2017; 54:402-416. [DOI: 10.1016/j.meegid.2017.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
|
121
|
Ullah J, Chen H, Vastermark A, Jia J, Wu B, Ni Z, Le Y, Wang H. Impact of orientation and flexibility of peptide linkers on T. maritima lipase Tm1350 displayed on Bacillus subtilis spores surface using CotB as fusion partner. World J Microbiol Biotechnol 2017; 33:166. [PMID: 28822027 DOI: 10.1007/s11274-017-2327-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022]
Abstract
Fusion protein construction often requires peptide linkers for prolonged conformation, extended stability and enzyme activity. In this study a series of fusion between Thermotoga maritima lipase Tm1350 and Bacillus subtillis coat protein CotB, comprising of several peptide linkers, with different length, flexibility and orientations were constructed. Effects of temperature, pH and chemicals were examined, on the activity of displayed enzyme. The fusion protein with longer flexible linkers L9 [(GGGGS)4] and L7 (GGGGS-GGGGS-EAAAK-EAAAK-GGGGS-GGGGS) possess 1.29 and 1.16-fold higher activity than the original, under optimum temperature and pH respectively. Moreover, spore surface displaying Tm1350 with L3 (EAAAK-GGGGS) and L9 ((GGGGS)4) showed extended thermostably, maintaining 1.40 and 1.35-fold higher activity than the original respectively, at 80 °C after 5 h of incubation. The enzyme activity of linkers with different orientation, including L5, L6 and L7 was determined, where L7 maintained 1.05 and 1.27-fold higher activity than L5 and L6. Effect of 0.1% proteinase K, bromelain, 20% ethanol and 30% methanol was investigated. Linkers with appropriate Glycine residues (flexible) showed higher activity than Alanine residues (rigid). The activity of the displayed enzyme can be improved by maintaining orientation and flexibility of peptide linkers, to evaluate high activity and stability in industrial processes.
Collapse
Affiliation(s)
- Jawad Ullah
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Huayou Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China.
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Ake Vastermark
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093‑0116, USA
- Nitech, Showa-ku, Nagoya, 466-8555, Japan
| | - Jinru Jia
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Bangguo Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Zhong Ni
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Yilin Le
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Hongcheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| |
Collapse
|
122
|
Guo H, Yang Y, Xue F, Zhang H, Huang T, Liu W, Liu H, Zhang F, Yang M, Liu C, Lu H, Zhang Y, Ma L. Effect of flexible linker length on the activity of fusion protein 4-coumaroyl-CoA ligase::stilbene synthase. MOLECULAR BIOSYSTEMS 2017; 13:598-606. [PMID: 28181620 DOI: 10.1039/c6mb00563b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to elucidate the effect of flexible linker length on the catalytic efficiency of fusion proteins, two short flexible peptide linkers of various lengths were fused between Arabidopsis thaliana 4-coumaroyl-CoA ligase (4CL) and Polygonum cuspidatum stilbene synthase (STS) to generate fusion proteins 4CL-(GSG)n-STS (n ≤ 5) and 4CL-(GGGGS)n-STS (n ≤ 4). The fusion proteins were expressed in both Escherichia coli and Saccharomyces cerevisiae, and their bioactivities were tested in vitro and in vivo using purified proteins and engineered strains, respectively. The catalytic efficiency of the fusions decreased gradually with the increase of GSG or GGGGS repeats. In both engineered S. cerevisiae and E. coli in vivo experiments, the capacity of resveratrol production decreased gradually with increasing linker length. In silico analysis showed that the prediction of homology models of fusion proteins was consistent with the in vitro and in vivo results.
Collapse
Affiliation(s)
- Huili Guo
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Yadong Yang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Feiyan Xue
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Hong Zhang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Tiran Huang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Wenbin Liu
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Huan Liu
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Fenqiang Zhang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Mingfeng Yang
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Chunmei Liu
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Heshu Lu
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China.
| | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Lanqing Ma
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China. and Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| |
Collapse
|
123
|
Hagel JM, Facchini PJ. Tying the knot: occurrence and possible significance of gene fusions in plant metabolism and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4029-4043. [PMID: 28521055 DOI: 10.1093/jxb/erx152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gene fusions have recently attracted attention especially in the field of plant specialized metabolism. The occurrence of a gene fusion, in which originally separate gene products are combined into a single polypeptide, often corresponds to the functional association of individual components within a single metabolic pathway. Examples include gene fusions implicated in benzylisoquinoline alkaloid (BIA), terpenoid, and amino acid biosynthetic pathways, in which distinct domains within a fusion catalyze consecutive, yet independent reactions. Both genomic and transcriptional mechanisms result in the fusion of gene products, which can include partial or complete domain repeats and extensive domain shuffling as evident in the BIA biosynthetic enzyme norcoclaurine synthase. Artificial gene fusions are commonly deployed in attempts to engineer new or improved pathways in plants or microorganisms, based on the premise that fusions are advantageous. However, a survey of functionally characterized fusions in microbial systems shows that the functional impact of fused gene products is not straightforward. For example, whereas enzyme fusions might facilitate the metabolic channeling of unstable intermediates, this channeling can also occur between tightly associated independent enzymes. The frequent occurrence of both fused and unfused enzymes in plant and microbial metabolism adds additional complexity, in terms of both pathway functionality and evolution.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| |
Collapse
|
124
|
Peters C, Rudroff F, Mihovilovic MD, T Bornscheuer U. Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones. Biol Chem 2017; 398:31-37. [PMID: 27289001 DOI: 10.1515/hsz-2016-0150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/08/2016] [Indexed: 11/15/2022]
Abstract
Nature uses the advantages of fusion proteins for multi-step reactions to facilitate the metabolism in cells as the conversion of substrates through intermediates to the final product can take place more rapidly and with less side-product formation. In a similar fashion, also for enzyme cascade reactions, the fusion of biocatalysts involved can be advantageous. In the present study, we investigated fusion of an alcohol dehydrogenase (ADH), an enoate reductase (ERED) and a Baeyer-Villiger monooxygenase (BVMO) to enable the synthesis of (chiral) lactones starting from unsaturated alcohols as substrates. The domain order and various linkers were studied to find optimal conditions with respect to expression levels and enzymatic activities. Best results were achieved for the ERED xenobiotic reductase B (XenB) from Pseudomonas putida and the cyclohexanone monooxygenase (CHMO) from Acinetobacter sp., whereas none of the ADHs studied could be fused successfully. This fusion protein together with separately supplied ADH resulted in similar reaction rates in in vivo biocatalysis reactions. After 1.5 h we could detect 40% more dihydrocarvone lactone in in vivo reactions with the fusion protein and ADH then with the single enzymes.
Collapse
|
125
|
Milczek EM. Commercial Applications for Enzyme-Mediated Protein Conjugation: New Developments in Enzymatic Processes to Deliver Functionalized Proteins on the Commercial Scale. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.6b00832] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
126
|
Zhang Y, Wang Y, Wang S, Fang B. Engineering bi-functional enzyme complex of formate dehydrogenase and leucine dehydrogenase by peptide linker mediated fusion for accelerating cofactor regeneration. Eng Life Sci 2017; 17:989-996. [PMID: 32624849 DOI: 10.1002/elsc.201600232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/01/2017] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
This study reports the application of peptide linker in the construction of bi-functional formate dehydrogenase (FDH) and leucine dehydrogenase (LeuDH) enzymatic complex for efficient cofactor regeneration and L-tert leucine (L-tle) biotransformation. Seven FDH-LeuDH fusion enzymes with different peptide linker were successfully developed and displayed both parental enzyme activities. The incorporation order of FDH and LeuDH was investigated by predicting three-dimensional structures of LeuDH-FDH and FDH-LeuDH models using the I-TASSER server. The enzymatic characterization showed that insertion of rigid peptide linker obtained better activity and thermal stability in comparison with flexible peptide linker. The production rate of fusion enzymatic complex with suitable flexible peptide linker was increased by 1.2 times compared with free enzyme mixture. Moreover, structural analysis of FDH and LeuDH suggested the secondary structure of the N-, C-terminal domain and their relative positions to functional domains was also greatly relevant to the catalytic properties of the fusion enzymatic complex. The results show that rigid peptide linker could ensure the independent folding of moieties and stabilized enzyme structure, while the flexible peptide linker was likely to bring enzyme moieties in close proximity for superior cofactor channeling.
Collapse
Affiliation(s)
- Yonghui Zhang
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen P. R. China
| | - Yali Wang
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen P. R. China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen P. R. China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering College of Chemistry and Chemical Engineering Xiamen University Xiamen P. R. China.,The Key Lab for Synthetic Biotechnology of Xiamen City Xiamen University Xiamen Fujian P. R. China.,The Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian P. R. China
| |
Collapse
|
127
|
Dhakal D, Sohng JK. Coalition of Biology and Chemistry for Ameliorating Antimicrobial Drug Discovery. Front Microbiol 2017; 8:734. [PMID: 28522993 PMCID: PMC5415603 DOI: 10.3389/fmicb.2017.00734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon UniversityAsan-si, South Korea
| |
Collapse
|
128
|
A review on chimeric xylanases: methods and conditions. 3 Biotech 2017; 7:67. [PMID: 28452014 DOI: 10.1007/s13205-017-0660-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/14/2017] [Indexed: 12/30/2022] Open
Abstract
Multi-functional enzymes are one of the nature's solutions to facilitate metabolic pathways, thus several reactions are regulated and performed simultaneously on one polypeptide chain. Inspired by nature, artificial chimeric proteins have been designed to reduce the production costs and improve the performance. One of the interesting applications of this method is in the plant-based industries such as feed additive, waste treatment, biofuel production, and pulp and paper bleaching. In fact, the heterogeneous texture of plants needs using a combination of different enzymes to achieve an optimal quality in the manufacturing process. Given that xylans are the most abundant non-cellulosic polysaccharides in nature, xylanases are widely utilized in the mentioned industries. In this regard, several studies have been conducted to develop the relevant chimeric enzymes. Despite the successes that have been attained in this field, misfolding, functional or structural interference, and linker breakage have been reported in some cases. The present paper reviews the research to introduce the prerequisites to design an appropriate chimeric xylanase.
Collapse
|
129
|
Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. NANO CONVERGENCE 2017; 4:9. [PMID: 28491487 PMCID: PMC5401866 DOI: 10.1186/s40580-017-0103-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 05/02/2023]
Abstract
Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.
Collapse
Affiliation(s)
- Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
130
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
131
|
Lee SQE, Tan TS, Kawamukai M, Chen ES. Cellular factories for coenzyme Q 10 production. Microb Cell Fact 2017; 16:39. [PMID: 28253886 PMCID: PMC5335738 DOI: 10.1186/s12934-017-0646-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/10/2017] [Indexed: 04/20/2023] Open
Abstract
Coenzyme Q10 (CoQ10), a benzoquinone present in most organisms, plays an important role in the electron-transport chain, and its deficiency is associated with various neuropathies and muscular disorders. CoQ10 is the only lipid-soluble antioxidant found in humans, and for this, it is gaining popularity in the cosmetic and healthcare industries. To meet the growing demand for CoQ10, there has been considerable interest in ways to enhance its production, the most effective of which remains microbial fermentation. Previous attempts to increase CoQ10 production to an industrial scale have thus far conformed to the strategies used in typical metabolic engineering endeavors. However, the emergence of new tools in the expanding field of synthetic biology has provided a suite of possibilities that extend beyond the traditional modes of metabolic engineering. In this review, we cover the various strategies currently undertaken to upscale CoQ10 production, and discuss some of the potential novel areas for future research.
Collapse
Affiliation(s)
- Sean Qiu En Lee
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Tsu Soo Tan
- School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore, Singapore
| | - Makoto Kawamukai
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Singapore, Singapore. .,National University Health System (NUHS), Singapore, Singapore. .,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
132
|
Younger AKD, Dalvie NC, Rottinghaus AG, Leonard JN. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription. ACS Synth Biol 2017; 6:311-325. [PMID: 27744683 DOI: 10.1021/acssynbio.6b00184] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Efforts to engineer microbial factories have benefitted from mining biological diversity and high throughput synthesis of novel enzymatic pathways, yet screening and optimizing metabolic pathways remain rate-limiting steps. Metabolite-responsive biosensors may help to address these persistent challenges by enabling the monitoring of metabolite levels in individual cells and metabolite-responsive feedback control. We are currently limited to naturally evolved biosensors, which are insufficient for monitoring many metabolites of interest. Thus, a method for engineering novel biosensors would be powerful, yet we lack a generalizable approach that enables the construction of a wide range of biosensors. As a step toward this goal, we here explore several strategies for converting a metabolite-binding protein into a metabolite-responsive transcriptional regulator. By pairing a modular protein design approach with a library of synthetic promoters and applying robust statistical analyses, we identified strategies for engineering biosensor-regulated bacterial promoters and for achieving design-driven improvements of biosensor performance. We demonstrated the feasibility of this strategy by fusing a programmable DNA binding motif (zinc finger module) with a model ligand binding protein (maltose binding protein), to generate a novel biosensor conferring maltose-regulated gene expression. This systematic investigation provides insights that may guide the development of additional novel biosensors for diverse synthetic biology applications.
Collapse
Affiliation(s)
- Andrew K. D. Younger
- Interdisciplinary
Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil C. Dalvie
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin G. Rottinghaus
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Joshua N. Leonard
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Member, Robert
H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
133
|
Chen H, Chen Z, Wu B, Ullah J, Zhang T, Jia J, Wang H, Tan T. Influences of Various Peptide Linkers on the Thermotoga maritima MSB8 Nitrilase Displayed on the Spore Surface of Bacillus subtilis. J Mol Microbiol Biotechnol 2017; 27:64-71. [PMID: 28103592 DOI: 10.1159/000454813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/25/2016] [Indexed: 11/19/2022] Open
Abstract
In the present study, fusion genes composed of Thermotoga maritima MSB8 nitrilase and Bacillus subtilis 168 outer coat protein CotG were constructed with various peptide linkers and displayed on B. subtilis DB 403 spores. The successful display of CotG-nit fusion proteins on the spore surface of B. subtilis was verified by Western blot analysis and activity measurement. It was demonstrated that the fusion with linker GGGGSEAAAKGGGGS presented the highest thermal and pH stability, which is 2.67- and 1.9-fold of the fusion without linker. In addition, fusion with flexible linker (GGGGS)3 demonstrated better thermal and pH stability than fusions with linkers GGGGS and (GGGGS)2. Fusion with rigid linker (EAAAK) demonstrated better thermal stability than fusions with linkers (EAAAK)2 and (EAAAK)3. Fusions with linker (EAAAK)2 demonstrated better pH stability than fusions with linkers (EAAAK) and (EAAAK)3. In the presence of 1 mM dithiothreitol, 1% (v/v) sodium dodecyl sulfate, and 20% (v/v) ethanol, the optimal linkers of the fusions were MGSSSN, GGGGSEAAAKGGGGS, and (GGGGS)3, respectively. In summary, our results showed that optimizing the peptide linkers with different type, length, and amino acid composition of the fusion proteins would be an efficient way to maintain the stability of fusion proteins and thus improve the nitrilase display efficiency, which could provide an effective method for rational design peptide linkers of displayed nitrilase on B. subtilis.
Collapse
Affiliation(s)
- Huayou Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Gudiukaite R, Sadauskas M, Gegeckas A, Malunavicius V, Citavicius D. Construction of a novel lipolytic fusion biocatalyst GDEst-lip for industrial application. J Ind Microbiol Biotechnol 2017; 44:799-815. [PMID: 28105534 DOI: 10.1007/s10295-017-1905-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/07/2017] [Indexed: 01/11/2023]
Abstract
The gene encoding esterase (GDEst-95) from Geobacillus sp. 95 was cloned and sequenced. The resulting open reading frame of 1497 nucleotides encoded a protein with calculated molecular weight of 54.7 kDa, which was classified as a carboxylesterase with an identity of 93-97% to carboxylesterases from Geobacillus bacteria. This esterase can be grouped into family VII of bacterial lipolytic enzymes, was active at broad pH (7-12) and temperature (5-85 °C) range and displayed maximum activity toward short acyl chain p-nitrophenyl (p-NP) esters. Together with GD-95 lipase from Geobacillus sp. strain 95, GDEst-95 esterase was used for construction of fused chimeric biocatalyst GDEst-lip. GDEst-lip esterase/lipase possessed high lipolytic activity (600 U/mg), a broad pH range of 6-12, thermoactivity (5-85 °C), thermostability and resistance to various organic solvents or detergents. For these features GDEst-lip biocatalyst has high potential for applications in various industrial areas. In this work the effect of additional homodomains on monomeric GDEst-95 esterase and GD-95 lipase activity, thermostability, substrate specificity and catalytic properties was also investigated. Altogether, this article shows that domain fusing strategies can modulate the activity and physicochemical characteristics of target enzymes for industrial applications.
Collapse
Affiliation(s)
- Renata Gudiukaite
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania.
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Audrius Gegeckas
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Vilius Malunavicius
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Donaldas Citavicius
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| |
Collapse
|
135
|
Current Strategies for the Delivery of Therapeutic Proteins and Enzymes to Treat Brain Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:1-28. [DOI: 10.1016/bs.irn.2017.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
136
|
Abstract
The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.
Collapse
Affiliation(s)
- Eli Zamir
- a Department of Systemic Cell Biology , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
137
|
Kirubakaran P, Pfeiferová L, Boušová K, Bednarova L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins. Proteins 2016; 84:1358-74. [DOI: 10.1002/prot.25082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Lucie Pfeiferová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Kristýna Boušová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Veronika Obšilová
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| |
Collapse
|
138
|
Abstract
Several groups have generated programmable transcription factors based on the versatile Cas9 protein, yet their relative potency and effectiveness across various cell types and species remain unexplored. Here, we compare Cas9 activator systems and examine their ability to induce robust gene expression in several human, mouse, and fly cell lines. We also explore the potential for improved activation through the combination of the most potent activator systems and assess the role of cooperativity in maximizing gene expression.
Collapse
|
139
|
Davis IC, Randell J, Davis SN. Immunotherapies currently in development for the treatment of type 1 diabetes. Expert Opin Investig Drugs 2016; 24:1331-41. [PMID: 26364507 DOI: 10.1517/13543784.2015.1075973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Type I diabetes (T1DM) is an autoimmune disorder that affects the pancreas' ability to produce insulin. While T1DM can be managed using insulin therapy, patients face financial burden, serious complications and premature mortality, from the disease. Efforts have sought to define and ultimately suppress the underlying autoimmune attack that results in T1DM. AREAS COVERED The authors lay out promising immunosuppressive and immunomodulating drugs currently in development for T1DM and outline options for future immune treatment for the disorder. There have been several pharmacological strategies to combat the immune attack which will serve as the organization for this review: antigen-specific therapies; monoclonal antibodies; fusion proteins; alternate Treg affectors. EXPERT OPINION Immunosuppression and immunomodulation studies in T1DM demonstrated differing levels of slowing the progression of the immune attack; however, no single therapeutic approach provides a lasting halt of the immune attack and remission of the disease. The immunosuppressants (teplizumab, rituximab and abatacept) show promise in slowing the T1DM progressions for a specific subpopulation of T1DM patients, but this approach appears temporary and has the potential for unwanted side affects. Combination therapies may have the greatest chance of achieving durable cessation of the T1DM autoimmune attack.
Collapse
Affiliation(s)
- Ian C Davis
- a 1 University of Maryland School of Medicine , 3805 Greenway, Baltimore, MD 21218, USA
| | | | - Stephen N Davis
- c 3 University of Maryland School of Medicine , 22 South Greene St. N3W42, Baltimore, MD 21201, USA +1 41 0328 2488 ; +1 41 0328 8688 ;
| |
Collapse
|
140
|
Oo C, Kalbag SS. Leveraging the attributes of biologics and small molecules, and releasing the bottlenecks: a new wave of revolution in drug development. Expert Rev Clin Pharmacol 2016; 9:747-9. [DOI: 10.1586/17512433.2016.1160778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Charles Oo
- SunLife Biopharma, Morris Plains, NJ, USA
| | | |
Collapse
|
141
|
Gramlich PA, Westbroek W, Feldman RA, Awad O, Mello N, Remington MP, Sun Y, Zhang W, Sidransky E, Betenbaugh MJ, Fishman PS. A peptide-linked recombinant glucocerebrosidase for targeted neuronal delivery: Design, production, and assessment. J Biotechnol 2016; 221:1-12. [PMID: 26795355 DOI: 10.1016/j.jbiotec.2016.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
Although recombinant glucocerebrosidase (GCase) is the standard therapy for the inherited lysosomal storage disease Gaucher's disease (GD), enzyme replacement is not effective when the central nervous system is affected. We created a series of recombinant genes/proteins where GCase was linked to different membrane binding peptides including the Tat peptide, the rabies glycoprotein derived peptide (RDP), the binding domain from tetanus toxin (TTC), and a tetanus like peptide (Tet1). The majority of these proteins were well-expressed in a mammalian producer cell line (HEK 293F). Purified recombinant Tat-GCase and RDP-GCase showed similar GCase protein delivery to a neuronal cell line that genetically lacks the functional enzyme, and greater delivery than control GCase, Cerezyme (Genzyme). This initial result was unexpected based on observations of superior protein delivery to neurons with RDP as a vector. A recombinant protein where a fragment of the flexible hinge region from IgA (IgAh) was introduced between RDP and GCase showed substantially enhanced GCase neuronal delivery (2.5 times over Tat-GCase), suggesting that the original construct resulted in interference with the capacity of RDP to bind neuronal membranes. Extended treatment of these knockout neuronal cells with either Tat-GCase or RDP-IgAh-GCase resulted in an >90% reduction in the lipid substrate glucosylsphingosine, approaching normal levels. Further in vivo studies of RDP-IgAh-GCase as well as Tat-GCase are warranted to assess their potential as treatments for neuronopathic forms of GD. These peptide vectors are especially attractive as they have the potential to carry a protein across the blood-brain barrier, avoiding invasive direct brain delivery.
Collapse
Affiliation(s)
- Paul A Gramlich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA.
| | - Wendy Westbroek
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, MD, USA
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, MD, USA
| | - Nicholas Mello
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA; Department of Molecular Medicine, University of Maryland School of Medicine, MD, USA
| | - Mary P Remington
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Paul S Fishman
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA; Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
142
|
Liu D, Evans T, Zhang F. Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng 2015; 31:35-43. [DOI: 10.1016/j.ymben.2015.06.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
|
143
|
Lai YT, Jiang L, Chen W, Yeates TO. On the predictability of the orientation of protein domains joined by a spanning alpha-helical linker. Protein Eng Des Sel 2015; 28:491-9. [DOI: 10.1093/protein/gzv035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
|
144
|
Liu C, Chin JX, Lee DY. SynLinker: an integrated system for designing linkers and synthetic fusion proteins: Fig. 1. Bioinformatics 2015; 31:3700-2. [DOI: 10.1093/bioinformatics/btv447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/24/2015] [Indexed: 11/12/2022] Open
|
145
|
Kobe B, Ve T, Williams SJ. Fusion-protein-assisted protein crystallization. Acta Crystallogr F Struct Biol Commun 2015; 71:861-9. [PMID: 26144231 PMCID: PMC4498707 DOI: 10.1107/s2053230x15011061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/07/2015] [Indexed: 01/29/2023] Open
Abstract
Fusion proteins can be used directly in protein crystallization to assist crystallization in at least two different ways. In one approach, the `heterologous fusion-protein approach', the fusion partner can provide additional surface area to promote crystal contact formation. In another approach, the `fusion of interacting proteins approach', protein assemblies can be stabilized by covalently linking the interacting partners. The linker connecting the proteins plays different roles in the two applications: in the first approach a rigid linker is required to reduce conformational heterogeneity; in the second, conversely, a flexible linker is required that allows the native interaction between the fused proteins. The two approaches can also be combined. The recent applications of fusion-protein technology in protein crystallization from the work of our own and other laboratories are briefly reviewed.
Collapse
Affiliation(s)
- Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| |
Collapse
|
146
|
Klement M, Liu C, Loo BLW, Choo ABH, Ow DSW, Lee DY. Effect of linker flexibility and length on the functionality of a cytotoxic engineered antibody fragment. J Biotechnol 2015; 199:90-7. [DOI: 10.1016/j.jbiotec.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/09/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|