101
|
Li SZ, Liu SH, Hao M, Yu T, Hu S, Liu L, Liu ZL. Thrombocytopenia as an important determinant of poor prognosis in patients with pyogenic liver abscess: a retrospective case series. Front Surg 2023; 10:1192523. [PMID: 37560317 PMCID: PMC10407093 DOI: 10.3389/fsurg.2023.1192523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Thrombocytopenia and poor prognosis in severe conditions are associated. However, the clinical significance of thrombocytopenia in pyogenic liver abscess (PLA) has not been evaluated. OBJECTIVE To evaluate the association between thrombocytopenia and the prognosis of patients with PLA. METHODS A consecutive case series of 458 adult patients with PLA hospitalized at Tongji Hospital (Wuhan, China) between October 2011 and June 2021 was included in this cross-sectional analysis. Patient data were compared between the thrombocytopenia and non-thrombocytopenia groups. Multivariate logistic regression, receiver operating characteristic (ROC) curve and propensity score -matched analyses (PSM) were performed. RESULTS Of the 458 patients with PLA, 94 (20.5%) developed thrombocytopenia, 19 (4.1%) developed septic shock, 14 (3.1%) were admitted to the ICU, and 15 (3.3%) died during hospitalization. Thrombocytopenia was independently associated with shock (95%CI = 3.529-57.944, P < 0.001), ICU admission (95%CI = 1.286-25.733, P = 0.022), and mortality (95%CI = 1.947-34.223, P = 0.004) in multivariate regression analysis. ROC analysis showed that thrombocytopenia may be an identified marker of shock [area under the ROC curve (AUC), 0.8119; cut-off, 92.50; P < 0.0001], ICU admission (AUC, 0.7484; cut-off, 82.50; P < 0.0015), and mortality (AUC, 0.7827; cut-off, 122.50; P < 0.002). These findings remained consistent across 86 pairs of patients analyzed for PSM analyses. CONCLUSIONS Thrombocytopenia is an independent risk factor for poor prognosis in PLA and patients may be more prone to adverse outcomes.
Collapse
Affiliation(s)
- Sheng-zhong Li
- Department of Surgery, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-hua Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Meng Hao
- Department of Gastroenterology, Zigui County People’s Hospital, Yichang, China
| | - Tian Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Song Hu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Zhe-long Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
102
|
Drysdale A, Unsworth AJ, White SJ, Jones S. The Contribution of Vascular Proteoglycans to Atherothrombosis: Clinical Implications. Int J Mol Sci 2023; 24:11854. [PMID: 37511615 PMCID: PMC10380219 DOI: 10.3390/ijms241411854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The vascular extracellular matrix (ECM) produced by endothelial and smooth muscle cells is composed of collagens and glycoproteins and plays an integral role in regulating the structure and function of the vascular wall. Alteration in the expression of these proteins is associated with endothelial dysfunction and has been implicated in the development and progression of atherosclerosis. The ECM composition of atherosclerotic plaques varies depending on plaque phenotype and vulnerability, with distinct differences observed between ruptured and erodes plaques. Moreover, the thrombi on the exposed ECM are diverse in structure and composition, suggesting that the best antithrombotic approach may differ depending on plaque phenotype. This review provides a comprehensive overview of the role of proteoglycans in atherogenesis and thrombosis. It discusses the differential expression of the proteoglycans in different plaque phenotypes and the potential impact on platelet function and thrombosis. Finally, the review highlights the importance of this concept in developing a targeted approach to antithrombotic treatments to improve clinical outcomes in cardiovascular disease.
Collapse
Affiliation(s)
- Amelia Drysdale
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (A.J.U.)
| | - Amanda J. Unsworth
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (A.J.U.)
| | - Stephen J. White
- Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK;
| | - Sarah Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (A.J.U.)
| |
Collapse
|
103
|
Zhang Z, Zhou XH, Cheng ZP, Hu Y. [Research on immunological function of platelet receptor FcγRⅡA]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:609-614. [PMID: 37749049 PMCID: PMC10509618 DOI: 10.3760/cma.j.issn.0253-2727.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 09/27/2023]
Affiliation(s)
- Z Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - X H Zhou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Z P Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Y Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
104
|
Roman J. Fibroblasts-Warriors at the Intersection of Wound Healing and Disrepair. Biomolecules 2023; 13:945. [PMID: 37371525 DOI: 10.3390/biom13060945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Wound healing is triggered by inflammation elicited after tissue injury. Mesenchymal cells, specifically fibroblasts, accumulate in the injured tissues, where they engage in tissue repair through the expression and assembly of extracellular matrices that provide a scaffold for cell adhesion, the re-epithelialization of tissues, the production of soluble bioactive mediators that promote cellular recruitment and differentiation, and the regulation of immune responses. If appropriately deployed, these processes promote adaptive repair, resulting in the preservation of the tissue structure and function. Conversely, the dysregulation of these processes leads to maladaptive repair or disrepair, which causes tissue destruction and a loss of organ function. Thus, fibroblasts not only serve as structural cells that maintain tissue integrity, but are key effector cells in the process of wound healing. The review will discuss the general concepts about the origins and heterogeneity of this cell population and highlight the specific fibroblast functions disrupted in human disease. Finally, the review will explore the role of fibroblasts in tissue disrepair, with special attention to the lung, the role of aging, and how alterations in the fibroblast phenotype underpin disorders characterized by pulmonary fibrosis.
Collapse
Affiliation(s)
- Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and The Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
105
|
Ma H, Siu WS, Leung PC. The Potential of MSC-Based Cell-Free Therapy in Wound Healing-A Thorough Literature Review. Int J Mol Sci 2023; 24:ijms24119356. [PMID: 37298306 DOI: 10.3390/ijms24119356] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
A wound is an interruption of the normal anatomic structure and function of the skin, which is critical in protecting against foreign pathogens, regulating body temperature and water balance. Wound healing is a complex process involving various phases, including coagulation, inflammation, angiogenesis, re-epithelialization, and re-modeling. Factors such as infection, ischemia, and chronic diseases such as diabetes can compromise wound healing, leading to chronic and refractory ulcers. Mesenchymal stem cells (MSCs) have been used to treat various wound models due to their paracrine activity (secretome) and extracellular vehicles (exosomes) that contain several molecules, including long non-coding RNAs (lncRNAs), micro-RNAs (miRNAs), proteins, and lipids. Studies have shown that MSCs-based cell-free therapy using secretome and exosomes has great potential in regenerative medicine compared to MSCs, as there are fewer safety concerns. This review provides an overview of the pathophysiology of cutaneous wounds and the potential of MSCs-based cell-free therapy in each phase of wound healing. It also discusses clinical studies of MSCs-based cell-free therapies.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
106
|
Graca FA, Stephan A, Minden-Birkenmaier BA, Shirinifard A, Wang YD, Demontis F, Labelle M. Platelet-derived chemokines promote skeletal muscle regeneration by guiding neutrophil recruitment to injured muscles. Nat Commun 2023; 14:2900. [PMID: 37217480 DOI: 10.1038/s41467-023-38624-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Skeletal muscle regeneration involves coordinated interactions between different cell types. Injection of platelet-rich plasma is circumstantially considered an aid to muscle repair but whether platelets promote regeneration beyond their role in hemostasis remains unexplored. Here, we find that signaling via platelet-released chemokines is an early event necessary for muscle repair in mice. Platelet depletion reduces the levels of the platelet-secreted neutrophil chemoattractants CXCL5 and CXCL7/PPBP. Consequently, early-phase neutrophil infiltration to injured muscles is impaired whereas later inflammation is exacerbated. Consistent with this model, neutrophil infiltration to injured muscles is compromised in male mice with Cxcl7-knockout platelets. Moreover, neo-angiogenesis and the re-establishment of myofiber size and muscle strength occurs optimally in control mice post-injury but not in Cxcl7ko mice and in neutrophil-depleted mice. Altogether, these findings indicate that platelet-secreted CXCL7 promotes regeneration by recruiting neutrophils to injured muscles, and that this signaling axis could be utilized therapeutically to boost muscle regeneration.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Benjamin A Minden-Birkenmaier
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
107
|
Fritz DI, Ding Y, Merrill-Skoloff G, Flaumenhaft R, Hanada T, Chishti AH. Dematin Regulates Calcium Mobilization, Thrombosis, and Early Akt Activation in Platelets. Mol Cell Biol 2023; 43:283-299. [PMID: 37216480 PMCID: PMC10251785 DOI: 10.1080/10985549.2023.2210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
The complex intrinsic and extrinsic pathways contributing to platelet activation profoundly impact hemostasis and thrombosis. Detailed cellular mechanisms that regulate calcium mobilization, Akt activation, and integrin signaling in platelets remain incompletely understood. Dematin is a broadly expressed actin binding and bundling cytoskeletal adaptor protein regulated by phosphorylation via cAMP-dependent protein kinase. Here, we report the development of a conditional mouse model specifically lacking dematin in platelets. Using the new mouse model termed PDKO, we provide direct evidence that dematin is a major regulator of calcium mobilization, and its genetic deletion inhibits the early phase of Akt activation in response to collagen and thrombin agonists in platelets. The aberrant platelet shape change, clot retraction, and in vivo thrombosis observed in PDKO mice will enable future characterization of dematin-mediated integrin activation mechanisms in thrombogenic as well as nonvascular pathologies.
Collapse
Affiliation(s)
- Daniel I. Fritz
- Programs in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yiwen Ding
- Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Athar H. Chishti
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
108
|
Golla K, Paul M, Lengyell TC, Simpson EM, Falet H, Kim H. A novel association between platelet filamin A and soluble N-ethylmaleimide sensitive factor attachment proteins regulates granule secretion. Res Pract Thromb Haemost 2023; 7:100019. [PMID: 37538498 PMCID: PMC10394388 DOI: 10.1016/j.rpth.2022.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 08/05/2023] Open
Abstract
Background and Objective The molecular mechanisms that underpin platelet granule secretion remain poorly defined. Filamin A (FLNA) is an actin-crosslinking and signaling scaffold protein whose role in granule exocytosis has not been explored despite evidence that FLNA gene mutations confer platelet defects in humans. Methods and Results Using platelets from platelet-specific conditional Flna-knockout mice, we showed that the loss of FLNA confers a severe defect in alpha (α)- and dense (δ)-granule exocytosis, as measured based on the release of platelet factor 4 (aka CXCL4) and adenosine triphosphate (ATP), respectively. This defect was observed following activation of both immunoreceptor tyrosine-based activation motif (ITAM) signaling by collagen-related peptide (CRP) and G protein-coupled receptor (GPCR) signaling by thrombin and the thromboxane mimetic U46619. CRP-induced spikes in intracellular calcium [Ca2+]i were impaired in FLNA-null platelets relative to controls, confirming that FLNA regulates ITAM-driven proximal signaling. In contrast, GPCR-mediated spikes in [Ca2+]i in response to thrombin and U46619 were unaffected by FLNA. Normal platelet secretion requires complexing of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins synaptosomal-associated protein 23 (SNAP23) and syntaxin-11 (STX11). We determined that FLNA coimmunoprecipitates with both SNAP23 and STX11 upon platelet stimulation. Conclusion FLNA regulates GPCR-driven platelet granule secretion and associates with SNAP23 and STX11 in an activation-dependent manner.
Collapse
Affiliation(s)
- Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Hervé Falet
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
109
|
Stupakova Z, Diagil I, Melnyk U, Karnabeda O, Sergeieva A. Primary hemostasis dysfunctions and bleeding risk in newly diagnosed acute myeloid leukemia. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04751-w. [PMID: 37060474 DOI: 10.1007/s00432-023-04751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Acute myeloid leukaemia carries the risk of complications associated with dysfunctions in haemostasis system. The purpose of this study was to investigate the factors associated with the risk of bleeding in patients with newly diagnosed acute myeloid leukaemia (AML). METHODS This study involved the methods of immunoenzymatic analysis and classical coagulation studies. The number of biochemical parameters important for establishing coagulative dysfunction in acute myeloid leukaemia was determined, the main ones being the level of von Willebrand factor, the Ristocetin-cofactor activity of von Willebrand factor and factor VIII activity, prothrombin time, platelet count, and fibrinogen concentration. RESULTS According to the results of the present study, the reduced activity of von Willebrand factor in patients with AML was associated with severe bleeding. The authors observed an increase in the number of platelets count in patients with AML who experienced haemorrhages compared to patients with no bleeding signs. The study also established an increase in the concentration of fibrinogen in cancer patients, compared to the control sample. Symptoms and quantitative indicators for diagnosing the severity of haemorrhagic syndrome were grouped. The authors considered the advantages and disadvantages of many therapeutic preparations and focussed on specific markers of activated haemorrhage-predicting platelets. CONCLUSION Further studies concern the search for effective markers and therapeutic approaches to minimize haemorrhagic syndrome. The results were statistically processed using the functions ANOVA, t test, CORREL, determination of the value of reliability, and mean square deviation.
Collapse
Affiliation(s)
- Zinaida Stupakova
- Department of Radiologic Hematology, National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.
| | - Iryna Diagil
- Department of Radiologic Hematology, National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | | - Anna Sergeieva
- Department of Radiologic Hematology, National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
110
|
Törnudd M, Ramström S, Kvitting JPE, Alfredsson J, Nyberg L, Björkman E, Berg S. Platelet Function is Preserved After Moderate Cardiopulmonary Bypass Times But Transiently Impaired After Protamine. J Cardiothorac Vasc Anesth 2023:S1053-0770(23)00180-5. [PMID: 37059638 DOI: 10.1053/j.jvca.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVES Previous studies have described impaired platelet function after cardiopulmonary bypass (CPB). Whether this is still valid in contemporary cardiac surgery is unclear. This study aimed to quantify changes in function and number of platelets during CPB in a present-day cardiac surgery cohort. DESIGN Prospective, controlled clinical study. SETTING A single-center university hospital. PARTICIPANTS Thirty-nine patients scheduled for coronary artery bypass graft surgery with CPB. INTERVENTIONS Platelet function and numbers were measured at 6 timepoints in 39 patients during and after coronary artery bypass graft surgery; at baseline before anesthesia, at the end of CPB, after protamine administration, at intensive care unit (ICU) arrival, 3 hours after ICU arrival, and on the morning after surgery. MEASUREMENTS AND MAIN RESULTS Platelet function was assessed with impedance aggregometry and flow cytometry. Platelet numbers are expressed as actual concentration and as numbers corrected for dilution using hemoglobin as a reference marker. There was no consistent impairment of platelet function during CPB with either impedance aggregometry or flow cytometry. After protamine administration, a decrease in platelet function was seen with impedance aggregometry and for some markers of activation with flow cytometry. Platelet function was restored 3 hours after arrival in the ICU. During CPB (85.0 ± 21 min), the number of circulating platelets corrected for dilution increased from 1.73 ± 0.42 × 109/g to 1.91 ± 0.51 × 109/g (p < 0.001). CONCLUSIONS During cardiac surgery with moderate CPB times, platelet function was not impaired, and no consumption of circulating platelets could be detected. Administration of protamine transiently affected platelet function.
Collapse
Affiliation(s)
- Mattias Törnudd
- Department of Cardiothoracic and Vascular Surgery and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - John-Peder Escobar Kvitting
- Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Joakim Alfredsson
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Linnea Nyberg
- Department of Cardiothoracic and Vascular Surgery and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Erik Björkman
- Department of Cardiothoracic and Vascular Surgery and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sören Berg
- Department of Cardiothoracic and Vascular Surgery and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
111
|
Zhang Z, Qi Z, Kong W, Zhang R, Yao C. Applications of MXene and its modified materials in skin wound repair. Front Bioeng Biotechnol 2023; 11:1154301. [PMID: 36994359 PMCID: PMC10042448 DOI: 10.3389/fbioe.2023.1154301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
The rapid healing and repair of skin wounds has been receiving much clinical attention. Covering the wound with wound dressing to promote wound healing is currently the main treatment for skin wound repair. However, the performance of wound dressing prepared by a single material is limited and cannot meet the requirements of complex conditions for wound healing. MXene is a new two-dimensional material with electrical conductivity, antibacterial and photothermal properties and other physical and biological properties, which has a wide range of applications in the field of biomedicine. Based on the pathophysiological process of wound healing and the properties of ideal wound dressing, this review will introduce the preparation and modification methods of MXene, systematically summarize and review the application status and mechanism of MXene in skin wound healing, and provide guidance for subsequent researchers to further apply MXene in the design of skin wound dressing.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weijian Kong
- The Second Hospital of Jilin University, Changchun, China
| | - Renfeng Zhang
- The Second Hospital of Jilin University, Changchun, China
| | - Chunli Yao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chunli Yao,
| |
Collapse
|
112
|
Moellerberndt J, Hagen A, Niebert S, Büttner K, Burk J. Cytokines in equine platelet lysate and related blood products. Front Vet Sci 2023; 10:1117829. [PMID: 36968472 PMCID: PMC10033973 DOI: 10.3389/fvets.2023.1117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
In equine medicine, the use of regenerative therapeutics has gained growing attention, but is still a new and complex field with room for improvement. Platelet lysate (PL) can be used as therapeutic agent but is also a promising supplement for the culture of multipotent mesenchymal stromal cells. To enable a targeted use of PL both in clinic and laboratory, it is crucial to learn more details on its effective ingredients. While so far, mainly growth factor components have been analyzed in platelet-based products such as PL, the current study focuses on the content of cytokines in serum, plasma, platelet concentrate and PL. Blood was harvested from 20 clinically healthy horses and subjected to blood count and chemistry analysis, as well as to further processing to PL. Plasma and platelet concentrate were produced by a buffy-coat-based method and PL was produced from the concentrate by freeze-thawing. Samples from each horse were analyzed regarding interleukin (IL)-1β, −4, −6 and −10, interferon-γ and tumor necrosis factor-α concentrations using sandwich ELISAs. Cytokine concentrations in serum, plasma, concentrate and PL were similar and correlated significantly. However, there was a large inter-individual variability in cytokine concentrations between the different donor horses. The samples from some donor animals had overall very high cytokine concentrations, while samples from other donors had no measurable cytokine ingredient. This pattern was observed for all cytokines. There was a noticeable link between high cytokine concentrations in the blood products and abnormal findings in blood chemistry. Cytokine concentrations in samples from horses with abnormal findings were significantly higher than in samples from the remaining horses. The interindividual differences in cytokine concentrations could be highly relevant when using PL for therapy and cell culture, as the mode of action of the PL is likely changed depending on the presence of pro- and anti-inflammatory cytokines. Blood chemistry might be useful to predict cytokine concentrations in blood products.
Collapse
Affiliation(s)
- Julia Moellerberndt
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Niebert
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - Kathrin Büttner
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Janina Burk
| |
Collapse
|
113
|
Ling L, Zhang J, Li Y, Liu C, Du L, Zhou J. Platelets play a dual role in the pathophysiology of transfusion-related acute lung injury. Respir Physiol Neurobiol 2023; 309:104004. [PMID: 36574868 DOI: 10.1016/j.resp.2022.104004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Platelets are increasingly recognized as key regulators of inflammatory and immune responses, through their interaction with endothelium and immune cells. Therefore they might have a role in transfusion-related acute lung injury (TRALI), in which endothelial cells and neutrophils are the key players. In this study, by a classic TRALI animal model, combining a custom-designed system for intravital confocal microscopy of pulmonary microvasculature and a platelet tracking technique, we found that thrombin-activated platelets transfusion aggravated TRALI while resting platelets transfusion alleviated TRALI. Promoting endogenous platelets activation also aggravated TRALI while inhibiting endogenous platelets activation alleviated TRALI. Activated platelets interfered with the stability of endothelial barrier function while resting platelets modulated the activation of neutrophils. Anti-thrombin could alleviate TRALI, which was not reproduced upon anti-GPIIbIIIa or anti-P-selectin In conclusion, platelets might play a dual role (protective and pathogenic) in TRALI, the balance between the two roles is highly dependent on whether platelets are activated by thrombin or not. This might explain the conflicting results of previous researches studying the contribution of platelets in TRALI by platelet depletion technology, in which the induction of TRALI and the condition of animals were different, hence the state of platelets during TRALI was different. Moreover, anti-platelet-activation (such as anti-thrombin) might be a better approach than anti-activated-platelets (such as anti-P-selectin) to search for potential therapies in TRALI. Considering the involvement of thrombin-activated platelets in TRALI, anti-thrombin might be needed when blood component transfusion is performed.
Collapse
Affiliation(s)
- Liqin Ling
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China
| | - Yansong Li
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China; Department of Anesthesiology, Center for Brian Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chaonan Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China.
| | - Jing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, China.
| |
Collapse
|
114
|
Dixit K, Bora H, Lakshmi Parimi J, Mukherjee G, Dhara S. Biomaterial mediated immunomodulation: An interplay of material environment interaction for ameliorating wound regeneration. J Biomater Appl 2023; 37:1509-1528. [PMID: 37069479 DOI: 10.1177/08853282231156484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chronic wounds are the outcome of an imbalanced inflammatory response caused by sustenance of immune microenvironment. In this context, tissue engineered graft played great role in healing wounds but faced difficulty in scar remodelling, immune rejection and poor vascularization. All the limitations faced are somewhere linked with the immune cells involved in healing. In this consideration, immunomodulatory biomaterials bridge a large gap with the delivery of modulating factors for triggering key inflammatory cells responsible towards interplay in the wound micro-environment. Inherent physico-chemical properties of biomaterials substantially determine the nature of cell-materials interaction thereby facilitating differential cytokine gradient involved in activation or suppression of inflammatory signalling pathways, and followed by surface marker expression. This review aims to systematically describe the interplay of immune cells involved in different phases in the wound microenvironment and biomaterials. Additionally, it also focuses on modulating innate immune cell responses in the context of triggering the halted phase of the wound healing, i.e., inflammatory phase. The various strategies are highlighted for modulation of wound microenvironment towards wound regeneration including stem cells, cytokines, growth factors, vitamins, and anti-inflammatory agents to induce interactive ability of biomaterials with immune cells. The last section focuses on prospective approaches and current potential strategies for wound regeneration. This includes the development of different models to bridge the gap between mouse models and human patients. Emerging new tools to study inflammatory response owing to biomaterials and novel strategies for modulation of monocyte and macrophage behaviour in the wound environment are also discussed.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hema Bora
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jhansi Lakshmi Parimi
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
115
|
Fang WC, Lan CCE. The Epidermal Keratinocyte as a Therapeutic Target for Management of Diabetic Wounds. Int J Mol Sci 2023; 24:4290. [PMID: 36901720 PMCID: PMC10002069 DOI: 10.3390/ijms24054290] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Diabetes mellitus (DM) is an important cause of chronic wounds and non-traumatic amputation. The prevalence and number of cases of diabetic mellitus are increasing worldwide. Keratinocytes, the outermost layer of the epidermis, play an important role in wound healing. A high glucose environment may disrupt the physiologic functions of keratinocytes, resulting in prolonged inflammation, impaired proliferation, and the migration of keratinocytes and impaired angiogenesis. This review provides an overview of keratinocyte dysfunctions in a high glucose environment. Effective and safe therapeutic approaches for promoting diabetic wound healing can be developed if molecular mechanisms responsible for keratinocyte dysfunction in high glucose environments are elucidated.
Collapse
Affiliation(s)
- Wei-Cheng Fang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Che E. Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
116
|
Immunomodulatory Effects of Endodontic Sealers: A Systematic Review. Dent J (Basel) 2023; 11:dj11020054. [PMID: 36826199 PMCID: PMC9955805 DOI: 10.3390/dj11020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Inflammation is a crucial step prior to healing, and the regulatory effects of endodontic materials on the immune response can influence tissue repair. This review aimed to answer whether endodontic sealers can modulate the immune cells and inflammation. An electronic search in Scopus, Web of Science, PubMed, and Google Scholar databases were performed. This systematic review was mainly based on PRISMA guidelines, and the risk of bias was evaluated by SYRCLEs and the Modified CONSORT checklist for in vivo and in vitro studies, respectively. In total, 28 articles: 22 in vitro studies, and six in vivo studies were included in this systematic review. AH Plus and AH 26 can down-regulate iNOS mRNA, while S-PRG sealers can down-regulate p65 of NF-κB pathways to inhibit the production of TNF-α, IL-1, and IL-6. In vitro and in vivo studies suggested that various endodontic sealers exhibited immunomodulatory impact in macrophages polarization and inflammatory cytokine production, which could promote healing, tissue repair, and inhibit inflammation. Since the paradigm change from immune inert biomaterials to bioactive materials, endodontic materials, particularly sealers, are required to have modulatory effects in clinical conditions. New generations of endodontic sealers could hamper detrimental inflammatory responses and maintain periodontal tissue, which represent a breakthrough in biocompatibility and functionality of endodontic biomaterials.
Collapse
|
117
|
Leite CDS, Bonafé GA, Pires OC, dos Santos TW, Pereira GP, Pereira JA, Rocha T, Martinez CAR, Ortega MM, Ribeiro ML. Dipotassium Glycyrrhizininate Improves Skin Wound Healing by Modulating Inflammatory Process. Int J Mol Sci 2023; 24:ijms24043839. [PMID: 36835248 PMCID: PMC9965141 DOI: 10.3390/ijms24043839] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.
Collapse
Affiliation(s)
- Camila dos Santos Leite
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Oscar César Pires
- Laboratory of Pharmacology, Taubaté University (UNITAU), Taubaté, São Paulo 12030-180, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Geovanna Pacciulli Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - José Aires Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo 05014-901, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Correspondence:
| |
Collapse
|
118
|
Fang L, Yu S, Tian X, Fu W, Su L, Chen Z, Yan C, He J, Hong J, Lian W, Liu G, Zhang Y, Zhou J, Hu L. Severe fever with thrombocytopenia syndrome virus replicates in platelets and enhances platelet activation. J Thromb Haemost 2023; 21:1336-1351. [PMID: 36792011 DOI: 10.1016/j.jtha.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) infection causes an emerging hemorrhagic fever in East Asia with a high mortality rate. Thrombocytopenia is a consistent feature of SFTS illness, but the mechanism remains elusive. OBJECTIVES We aimed to better understand the role of platelets in the pathophysiology of SFTSV infection, including the development of thrombocytopenia. METHODS Using platelets from healthy volunteers and patients with SFTS, we evaluated the functional changes in platelets against SFTSV infection. We investigated the direct effect of glycoprotein VI on platelet-SFTSV interaction by quantitative real-time PCR, molecular docking, surface plasmon resonance spectrometry, flow cytometry, western blot, and platelet functional studies in vitro. Interactions of SFTSV and platelet-SFTSV complexes with macrophages were also determined by scanning electron microscope, quantitative real-time PCR, and flow cytometry. RESULTS This study is the first to demonstrate that platelets are capable of harboring and producing SFTSV particles. Structural and functional studies found that SFTSVs bind platelet glycoprotein VI to potentiate platelet activation, including platelet aggregation, adenosine triphosphate release, spreading, clot retraction, coagulation, phosphatidylserine exposure, thrombus formation, and adherence. In vitro mechanistic studies highlighted that the interaction of platelets with human THP-1 cells promoted SFTSV clearance and suppressed cytokine production in macrophages. However, unwanted SFTSV replication in macrophages reciprocally aggravated SFTSV persistence in the circulation, which may contribute to thrombocytopenia and other complications during SFTSV infection. CONCLUSION These findings together highlighted the pathophysiological role of platelets in initial intrinsic defense against SFTSV infections, as well as intertwined processes with host immunity, which can also lead to thrombocytopenia and poor prognosis.
Collapse
Affiliation(s)
- Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Sicong Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxu Tian
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wanrong Fu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingxuan Su
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
| | - Zhi Chen
- National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, China
| | - Chunlan Yan
- Department of Biophysics, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ji He
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Jin Hong
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenwen Lian
- National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, China
| | - Gangqiong Liu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjun Zhang
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China.
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Liang Hu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary, Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
119
|
Saravanan P, R P, Balachander N, K KRS, S S, S R. Anti-inflammatory and wound healing properties of lactic acid bacteria and its peptides. Folia Microbiol (Praha) 2023; 68:337-353. [PMID: 36780113 PMCID: PMC9924211 DOI: 10.1007/s12223-022-01030-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/29/2022] [Indexed: 02/14/2023]
Abstract
Recent studies manifest an increase of inflammatory diseases at an alarming rate due to gut microbiota dysbiosis, genetic and other environmental factors. Lactic acid bacteria (LAB) are known for their antimicrobial properties and their extensive applications in food and pharmaceutical industries. Cyclic peptides are receiving increased attention due to their remarkable stability to withstand variations in temperature and pH. LAB produces anti-inflammatory that can inhibit lipopolysaccharide-induced production of proinflammatory cytokines in macrophages. The structural backbones of cyclic peptides offer a promising approach for the treatment of chronic inflammatory conditions. The current review aims to present the overview of anti-inflammatory and wound healing properties of LAB-derived cyclic peptides.
Collapse
Affiliation(s)
- Parikhshith Saravanan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Pooja R
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Nanditaa Balachander
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Kesav Ram Singh K
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Silpa S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India.
| |
Collapse
|
120
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
121
|
Goeritzer M, Kuentzel KB, Beck S, Korbelius M, Rainer S, Bradić I, Kolb D, Mussbacher M, Schrottmaier WC, Assinger A, Schlagenhauf A, Rost R, Gottschalk B, Eichmann TO, Züllig T, Graier WF, Vujić N, Kratky D. Monoglyceride Lipase Deficiency Is Associated with Altered Thrombogenesis in Mice. Int J Mol Sci 2023; 24:3116. [PMID: 36834530 PMCID: PMC9958834 DOI: 10.3390/ijms24043116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina B. Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1190 Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | | | - Alice Assinger
- Core Facility Ultrastructural Analysis, Medical University of Graz, 8010 Graz, Austria
| | - Axel Schlagenhauf
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, 8010 Graz, Austria
| | - René Rost
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Thomas O. Eichmann
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, 8010 Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
122
|
Kulkarni PP, Ekhlak M, Singh V, Kailashiya V, Singh N, Dash D. Fatty acid oxidation fuels agonist-induced platelet activation and thrombus formation: Targeting β-oxidation of fatty acids as an effective anti-platelet strategy. FASEB J 2023; 37:e22768. [PMID: 36624703 DOI: 10.1096/fj.202201321rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Platelet mitochondria possess remarkable plasticity for oxidation of energy substrates, where metabolic dependency on glucose or fatty acids is higher than glutamine. Since platelets metabolize nearly the entire pool of glucose to lactate rather than fluxing through mitochondrial tricarboxylic acid cycle, we posit that majority of mitochondrial ATP, which is essential for platelet granule secretion and thrombus formation, is sourced from oxidation of fatty acids. We performed a comprehensive analysis of bioenergetics and function of stimulated platelets in the presence of etomoxir, trimetazidine and oxfenicine, three pharmacologically distinct inhibitors of β-oxidation. Each of them significantly impaired oxidative phosphorylation in unstimulated as well as thrombin-stimulated platelets leading to a small but consistent drop in ATP level in activated cells due to a lack of compensation from glycolytic ATP. Trimetazidine and oxfenicine attenuated platelet aggregation, P-selectin externalization and integrin αIIb β3 activation. Both etomoxir and trimetazidine impeded agonist-induced dense granule release and platelet thrombus formation on collagen under arterial shear. The effect of inhibitors on platelet aggregation and dense granule release was dose- and incubation time- dependent with significant inhibition at higher doses and prolonged incubation times. Neither of the inhibitors could protect mice from collagen-epinephrine-induced pulmonary embolism or prolong mouse tail bleeding times. However, mice pre-administered with etomoxir, trimetazidine and oxfenicine were protected from ferric chloride-induced mesenteric thrombosis. In conclusion, β-oxidation of fatty acids sustains ATP level in stimulated platelets and is therefore essential for energy-intensive agonist-induced platelet responses. Thus, fatty acid oxidation may constitute an attractive therapeutic target for novel antiplatelet agents.
Collapse
Affiliation(s)
- Paresh P Kulkarni
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mohammad Ekhlak
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vipin Singh
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nitesh Singh
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
123
|
Smith LB, Chagas AC, Martin-Martin I, Ribeiro JMC, Calvo E. An insight into the female and male Sabethes cyaneus mosquito salivary glands transcriptome. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 153:103898. [PMID: 36587808 PMCID: PMC9899327 DOI: 10.1016/j.ibmb.2022.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Mosquitoes are responsible for the death and debilitation of millions of people every year due to the pathogens they can transmit while blood feeding. While a handful of mosquitoes, namely those in the Aedes, Anopheles, and Culex genus, are the dominant vectors, many other species belonging to different genus are also involved in various pathogen cycles. Sabethes cyaneus is one of the many poorly understood mosquito species involved in the sylvatic cycle of Yellow Fever Virus. Here, we report the expression profile differences between male and female of Sa.cyaneus salivary glands (SGs). We find that female Sa.cyaneus SGs have 165 up-regulated and 18 down-regulated genes compared to male SGs. Most of the up-regulated genes have unknown functions, however, odorant binding proteins, such as those in the D7 protein family, and mucins were among the top 30 genes. We also performed various in vitro activity assays of female SGs. In the activity analysis we found that female SG extracts inhibit coagulation by blocking factor Xa and has endonuclease activity. Knowledge about mosquitoes and their physiology are important for understanding how different species differ in their ability to feed on and transmits pathogens to humans. These results provide us with an insight into the Sabethes SG activity and gene expression that expands our understanding of mosquito salivary glands.
Collapse
Affiliation(s)
- Leticia Barion Smith
- Laboratory of Malaria and Vector Research, National Institutes of Health, 12735 Twinbrook Parkway, Room 2W09, Bethesda, MD, 20892, USA
| | - Andrezza Campos Chagas
- Laboratory of Malaria and Vector Research, National Institutes of Health, 12735 Twinbrook Parkway, Room 2W09, Bethesda, MD, 20892, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institutes of Health, 12735 Twinbrook Parkway, Room 2W09, Bethesda, MD, 20892, USA
| | - Jose M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institutes of Health, 12735 Twinbrook Parkway, Room 2W09, Bethesda, MD, 20892, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institutes of Health, 12735 Twinbrook Parkway, Room 2W09, Bethesda, MD, 20892, USA.
| |
Collapse
|
124
|
Paul M, Golla K, Kim H. Gelsolin Modulates Platelet Dense Granule Secretion and Hemostasis via the Actin Cytoskeleton. Thromb Haemost 2023; 123:219-230. [PMID: 36522181 DOI: 10.1055/s-0042-1758800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE The mechanisms underlying platelet granule release are not fully understood. The actin cytoskeleton serves as the platelet's structural framework that is remodeled upon platelet activation. Gelsolin is a calcium-dependent protein that severs and caps existing actin filaments although its role in modulating platelet granule exocytosis is unknown. METHODS The hemostatic function of wild-type (WT) and gelsolin null (Gsn-/- ) mice was measured ex vivo by rotational thromboelastometry analysis of whole blood. Platelets were purified from WT and Gsn-/- mouse blood and activated with thrombin. Platelet aggregation was assessed by light-transmission aggregometry. Clot retraction was measured to assess outside-in integrin signaling. Adenosine triphosphate (ATP) release and surface P-selectin were measured as markers of dense- and α-granule secretion, respectively. RESULTS The kinetics of agonist-induced aggregation, clot retraction, and ATP release were accelerated in Gsn-/- platelets relative to WT. However, levels of surface P-selectin were diminished in Gsn-/- platelets. ATP release was also accelerated in WT platelets pretreated with the actin-depolymerizing drug cytochalasin D, thus mimicking the kinetics observed in Gsn-/- platelets. Conversely, ATP release kinetics were normalized in Gsn-/- platelets treated with the actin polymerization agonist jasplakinolide. Rab27b and Munc13-4 are vesicle-priming proteins known to promote dense granule secretion. Co-immunoprecipitation indicates that the association between Rab27b and Munc13-4 is enhanced in Gsn-/- platelets. CONCLUSIONS Gelsolin regulates the kinetics of hemostasis by modulating the platelet's actin cytoskeleton and the protein machinery of dense granule exocytosis.
Collapse
Affiliation(s)
- Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
125
|
Orthobiologic Treatment of Ligament Injuries. Phys Med Rehabil Clin N Am 2023; 34:135-163. [DOI: 10.1016/j.pmr.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
126
|
Uchida DT, Bruschi ML. 3D Printing as a Technological Strategy for the Personalized Treatment of Wound Healing. AAPS PharmSciTech 2023; 24:41. [PMID: 36698047 PMCID: PMC9876655 DOI: 10.1208/s12249-023-02503-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Wound healing is a dynamic process which involves stages of hemostasis, inflammation, proliferation and remodeling. Any error in this process results in abnormal wound healing, generating financial burdens for health systems and even affecting the physical and mental health of the patient. Traditional dressings do not meet the complexities of ideal treatment in all types of wounds. For this reason, in the last decades, different materials for drug delivery and for the treatment of wounds have been proposed reaching novel level of standards, such as 3D printing techniques. The use of natural or synthetic polymers, and the correct design of these printed products loaded with cells and/or combined with active compounds, can generate an effective system for the treatment of wounds, improving the healing process and generating customized dressings according to the patient needs. This manuscript provides a comprehensive review of different types of 3D printing techniques, as well as its use in wound healing and its different stages, including the advantages and limitations of additive manufacturing and future perspectives.
Collapse
Affiliation(s)
- Denise Tiemi Uchida
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Avenida Colombo, n. 5790, K68, S05, 87020-900, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Avenida Colombo, n. 5790, K68, S05, 87020-900, Maringa, PR, Brazil.
| |
Collapse
|
127
|
Zakeri A, Khaseb S, Akhavan Rahnama M, Hajaliaskari A, Soufi Zomorrod M. Exosomes derived from mesenchymal stem cells: A promising cell-free therapeutic tool for cutaneous wound healing. Biochimie 2023; 209:73-84. [PMID: 36681232 DOI: 10.1016/j.biochi.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Skin wound healing is a multifaceted process involving a cascade of molecular and cellular procedures that occur in four different phases: (a) hemostasis, (b) inflammation, (c) proliferation, and (d) tissue remodeling. Prolonged wound healing in skin is still a major challenge in treatment of wounds. Mesenchymal stem cells (MSCs) accelerate cutaneous wound healing through their paracrine activity. Exosomes are one of the key secretory products of MSCs, mimicking the effects of parental MSCs in skin wound healing process. Exosomes are small membrane vesicles (30-150 nm in diameter) that originate from endosomal pathways and transport numerous biomolecules, including DNAs, messenger RNAs, microRNAs, lipids, and proteins. They can be taken up by target cells and release their contents to modulate the activity of recipient cells. Exosomes derived from mesenchymal stem cells (MSC-Exo) reduce inflammation, promote proliferation, inhibit apoptosis, and enhance angiogenesis in skin wound healing process. Therefore, exosomes are emerging as novel cell-cell communication mediators and have opened a novel viewpoint for developing cell-free therapies. This review aims to demonstrate the roles of exosomes in each step of skin wound healing through a comprehensive literature search.
Collapse
Affiliation(s)
- Armin Zakeri
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Sanaz Khaseb
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Mahshid Akhavan Rahnama
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Akram Hajaliaskari
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| |
Collapse
|
128
|
Li J, Xiao L, Gao S, Huang H, Lei Q, Chen Y, Chen Z, Xue L, Yan F, Cai L. Radial Sponges Facilitate Wound Healing by Promoting Cell Migration and Angiogenesis. Adv Healthc Mater 2023; 12:e2202737. [PMID: 36603134 DOI: 10.1002/adhm.202202737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Indexed: 01/07/2023]
Abstract
The topographic cues of wound dressings play important roles in regulating cellular behaviors, such as cellular migration and morphology, and are capable of providing a prolonged stimulus for promoting wound healing. However, 3D porous dressings that can guide wound healing from the periphery to the center are poorly studied. Herein, radial sponges with adjustable lamellar spacing and microridge spacing by ice templating are developed to facilitate wound healing. With denser lamellae and microridges, fibroblasts achieve a more orderly arrangement, a larger elongation, and a greater migration rate. Meanwhile, the elongated state enables human umbilical vein endothelial cells to vascularization. The faster healing rate and a higher degree of vascularization based on radial sponges are further demonstrated in full-thickness skin defects in rats. Taken together, radial sponges with the densest lamellae and microridges perform the best in guiding the wound from the periphery to the center of the repair environment. It is believed that the proposed structure here can be combined with various biochemical factors to provide dressings with functions.
Collapse
Affiliation(s)
- Jiawen Li
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Shijie Gao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Huayi Huang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Qingjian Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Yan Chen
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Zhe Chen
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Longjian Xue
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, South Donghu Road 8, Wuhan, 430072, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| |
Collapse
|
129
|
Abstract
The formation of new blood and lymphatic vessels is essential for both the development of multicellular organisms and (patho)physiological processes like wound repair and tumor growth. In the 1990s, circulating blood platelets were first postulated to regulate tumor angiogenesis by interacting with the endothelium and releasing angiogenic regulators from specialized α granules. Since then, many studies have validated the contributions of platelets to tumor angiogenesis, while uncovering novel roles for platelets in other angiogenic processes like wound resolution and retinal vascular disease. Although the majority of (lymph)angiogenesis occurs during development, platelets appear necessary for lymphatic but not vascular growth, implying their particular importance in pathological cases of adult angiogenesis. Future work is required to determine whether drugs targeting platelet production or function offer a clinically relevant tool to limit detrimental angiogenesis.
Collapse
Affiliation(s)
- Harvey G Roweth
- Hematology Division, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Elisabeth M Battinelli
- Hematology Division, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
130
|
Sasmal PK, Ganguly S. Polymer in hemostasis and follow‐up wound healing. J Appl Polym Sci 2023. [DOI: 10.1002/app.53559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Somenath Ganguly
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| |
Collapse
|
131
|
Rai S, Yasaswi K, Raj R, Hiremath R, Singh S. Can intrauterine infusion of granulocyte colony-stimulating factor or platelet-rich plasma increase implantation rate in women undergoing in vitro fertilization with normal endometrium: boon or bane? JOURNAL OF MARINE MEDICAL SOCIETY 2023. [DOI: 10.4103/jmms.jmms_89_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
132
|
Wang G, Yang F, Zhou W, Xiao N, Luo M, Tang Z. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed Pharmacother 2023; 157:114004. [PMID: 36375308 DOI: 10.1016/j.biopha.2022.114004] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
When the production of reactive oxygen species (ROS) is overloaded surpassing the capacity of the reductive rheostat, mammalian cells undergo a series of oxidative damage termed oxidative stress (OS). This phenomenon is ubiquitously detected in many human pathological conditions. Wound healing program implicates continuous neovascularization, cell proliferation, and wound remodeling. Increasing evidence indicates that reactive oxygen species (ROS) have profound impacts on the wound healing process through regulating a series of the physiological and pathological program including inflammatory response, cell proliferation, angiogenesis, granulation as well as extracellular matrix formation. In most pathological wound healing processes, excessive ROS exerts a negative role on the wound healing process. Interestingly, the moderate increase of ROS levels is beneficial in killing bacteria at the wound site, which creates a sterile niche for revascularization. In this review, we discussed the physiological rhythms of wound healing and the role of ROS in this progress, aim to explore the potential manipulation of OS as a promising therapeutic avenue.
Collapse
Affiliation(s)
- Gang Wang
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Drug Metabolism, Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China, Chongqing, China
| | - Feifei Yang
- Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Drug Metabolism, Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China, Chongqing, China
| | - Nanyang Xiao
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Mao Luo
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China.
| | - Zonghao Tang
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
133
|
Harper MT. Platelet-Derived Extracellular Vesicles in Arterial Thrombosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:259-275. [PMID: 37603285 DOI: 10.1007/978-981-99-1443-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Blood platelets are necessary for normal haemostasis but also form life-threatening arterial thrombi when atherosclerotic plaques rupture. Activated platelets release many extracellular vesicles during thrombosis. Phosphatidylserine-exposing microparticles promote coagulation. Small exosomes released during granule secretion deliver cargoes including microRNAs to cells throughout the cardiovascular system. Here, we discuss the mechanisms by which platelets release these extracellular vesicles, together with the possibility of inhibiting this release as an antithrombotic strategy.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
134
|
Cherny I, Hasin P, Philosoph LK, Shahal-Zimra Y, Gurion R, Rabizadeh E. Presence and activity of Fibrinogen like protein 2 in platelets. PLoS One 2023; 18:e0285735. [PMID: 37200306 DOI: 10.1371/journal.pone.0285735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2) is a serine protease capable of converting prothrombin into thrombin (i.e., prothrombinase-like activity) while bypassing the classic coagulation cascade. It has been reported to be expressed by mononuclear blood cells and endothelial cells. There are multiple reports that FGL2 supports tumor development and metastasis. However, in the blood, the origin and functional significance of FGL2 has not been established. OBJECTIVE To determine if FGL2, a malignancy related enzyme, is present in platelets. METHODS Peripheral blood samples were collected in K2 EDTA tubes. Blood cells and platelets were separated and thoroughly washed to produce plasma-free samples. Procoagulant activity was measured in the cell lysates using a thrombin generation test or an adjusted prothrombin time (PT) test in plasma deficient of factor X. The findings were further supported by confocal microscopy, immunoprecipitation, flow cytometry, enzyme-linked immunosorbent assays and specific inhibition assays. RESULTS FGL2 protein was readily detected in platelets. Also, despite being expressed by lymphocytes, FGL2 prothrombinase-like activity was solely detected in platelet samples, but not in white blood cell samples. Quiescent platelets were shown to contain the FGL2 protein in an active form. Upon activation, platelets secreted the active FGL2 into the milieu. CONCLUSIONS Active FGL2 is found in platelets. This suggests another role for the involvement of platelets in malignancies.
Collapse
Affiliation(s)
- Izhack Cherny
- Hemato-Oncology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pinhas Hasin
- Hematology Laboratory, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | | | - Yael Shahal-Zimra
- Hematology Laboratory, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Ronit Gurion
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Esther Rabizadeh
- Hemato-Oncology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
135
|
Synergic Effect of Honey with Other Natural Agents in Developing Efficient Wound Dressings. Antioxidants (Basel) 2022; 12:antiox12010034. [PMID: 36670896 PMCID: PMC9854511 DOI: 10.3390/antiox12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Honey has been used for therapeutic and nutritional purposes since ancient times. It was considered one of the essential medical assets in wound healing. According to research, honeybees have significant antibacterial, antioxidant, anti-inflammatory, antitumor, and wound-healing properties. Lately, scientific researchers have focused on apitherapy, using bee products to protect and strengthen the immune system. Since honey is the most important natural product rich in minerals, proteins, and vitamins, it has been intensively used in such therapies. Honey has gained significant consideration because of the beneficial role of its antioxidant compounds, such as enzymes, proteins, amino and organic acids, polyphenols, and carotenoids, but mainly due to flavonoids and phenolic acids. It has been proven that phenolic compounds are responsible for honey's biological activity and that its physicochemical properties, antioxidants, and antimicrobial potential are significant for human health. The review also presents some mechanisms of action and the medical applications of honey, such as wound healing dressings, skin grafts, honey-based nanofibers, and cochlear implants, as the most promising wound healing tools. This extensive review has been written to highlight honey's applications in medicine; its composition with the most important bioactive compounds also illustrates its synergistic effect with other natural products having remarkable therapeutic properties in wound healing.
Collapse
|
136
|
Yu Y, Cheng Q, Ji X, Chen H, Zeng W, Zeng X, Zhao Y, Mei L. Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. SCIENCE ADVANCES 2022; 8:eadd3599. [PMID: 36490349 PMCID: PMC9733928 DOI: 10.1126/sciadv.add3599] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/02/2022] [Indexed: 05/26/2023]
Abstract
Cancer recurrence and metastasis are still common causes of postsurgery death in patients with solid tumors, suggesting that additional consolidation therapeutic strategies are necessary. We have previously found that oxaliplatin (OXA) treatment causes further up-regulation of CD155, which is abundantly expressed in tumors for resulting in increased sensitivity of cancer to anti-CD155 therapy. Here, we report O-TPNVs, which are TIGIT-expressing cell membrane and platelet cell membrane fusion nanovesicles (TPNVs) loaded with OXA. Platelet-derived membrane components enable O-TPNVs to target postsurgery wounds and interact with circulating tumor cells (CTCs). OXA directly kills residual tumor cells and CTCs, induces immunogenic cell death, and activates the immune system. TPNVs bind to CD155 on tumor cells, block the CD155/TIGIT pathway, and restore CD8+ T cell activity. In vivo analyses reveal that O-TPNVs achieve synergistic chemotherapeutic and immunotherapeutic effects, effectively inhibiting the recurrence and metastasis of triple-negative breast cancer (4T1) after surgery.
Collapse
Affiliation(s)
- Yongkang Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Qinzhen Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wenfeng Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| |
Collapse
|
137
|
Xulu KR, Augustine TN. Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs. Pharmaceuticals (Basel) 2022; 15:1532. [PMID: 36558983 PMCID: PMC9784118 DOI: 10.3390/ph15121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The association between cancer and a hypercoagulatory environment is well described. Thrombotic complications serve not only as a major mortality risk but the underlying molecular structure and function play significant roles in enhancing tumour progression, which is defined as the tumour's capacity to survive, invade and metastasise, amongst other hallmarks of the disease. The use of anticoagulant or antiplatelet drugs in cardiovascular disease lessens thrombotic effects, but the consequences on tumour progression require interrogation. Therefore, this review considered developments in the management of platelet activation pathways (thromboxane, ADP and thrombin), focusing on the use of Aspirin, Clopidogrel and Atopaxar, and their potential impacts on tumour progression. Published data suggested a cautionary tale in ensuring we adequately investigate not only drug-drug interactions but also those unforeseen reciprocal interactions between drugs and their targets within the tumour microenvironment that may act as selective pressures, enhancing tumour survival and progression.
Collapse
Affiliation(s)
- Kutlwano R. Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Tanya N. Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
138
|
Subtype-specific plasma signatures of platelet-related protein releasate in acute pulmonary embolism. Thromb Res 2022; 220:75-87. [DOI: 10.1016/j.thromres.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
|
139
|
Zhu W, Dong Y, Xu P, Pan Q, Jia K, Jin P, Zhou M, Xu Y, Guo R, Cheng B. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomater 2022; 154:212-230. [PMID: 36309190 DOI: 10.1016/j.actbio.2022.10.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023]
Abstract
Diabetic wounds are difficult to heal because of persistent inflammation and limited angiogenesis. Resveratrol (RES) is an anti-inflammatory and antioxidant agent. Platelet-derived extracellular vesicles (PDEVs) are rich in growth factors and cytokines, which promote proliferation and angiogenesis. However, single drug treatment has limited efficacy and delivery efficiency. Bioengineering can improve the limited effect of single drugs by combining drugs and materials to obtain complementary or cooperative bioengineered drugs. In this study, gelatin methacrylate (GelMA) and silk fibroin glycidyl methacrylate (SFMA) were used to synthesize GelMA/SFMA composite hydrogels with suitable mechanical properties, swelling ratio and biodegradability. The composite hydrogel was used as a wound dressing for sustained drug release. RES was loaded into mesoporous silica nanoparticles (MSNs) to synthesize MSN-RES to enhance the release dynamic, and MSN-RES and PDEVs were combined with the composite hydrogels to form GelMA/SFMA/MSN-RES/PDEVs hydrogels. The GelMA/SFMA/MSN-RES/PDEVs had low cytotoxicity and good biocompatibility, inhibited macrophage iNOS expression, and promoted the tube formation by human umbilical vein endothelial cells (HUVECs) in vitro. In a diabetic mouse wound model, the GelMA/SFMA/MSN-RES/PDEVs hydrogels decreased the expression of pro-inflammatory factors TNF-α and iNOS, increased the expression of anti-inflammatory factors TGF-β1 and Arg-1, promoted angiogenesis, and accelerated wound healing. Interestingly, the GelMA/SFMA/MSN-RES/PDEVs hydrogels promoted the expression of extracellular purinergic signaling pathway-related CD73 and adenosine 2A receptor (A2A-R). Therefore, the GelMA/SFMA/MSN-RES/PDEVs hydrogels could be used as wound dressings to regulate the inflammation and angiogenesis of diabetic wounds and accelerate wound healing. STATEMENT OF SIGNIFICANCE: Drugs often fail to function because of a continuous oxidative stress microenvironment and inflammation. Here, a GelMA/SFMA hydrogel, with enhanced mechanical properties and liquid absorption ability, is proposed for sustained release of drugs. In addition to carrying platelet-derived extracellular vesicles (PDEVs) with pro-angiogenic effects, the hydrogels were also loaded with nanoparticle-encapsulated resveratrol with anti-inflammatory activities, aiming to reduce inflammation and oxidative stress in the wound microenvironment, such that the wound could receive proliferative repair signals to achieve sequential treatment and heal quickly. We also experimentally predicted that the regulatory mechanism of the GelMA/SFMA/MSN-RES/PDEVs in wound healing might be related to the extracellular purinergic signaling pathway.
Collapse
Affiliation(s)
- Weidong Zhu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Yunqing Dong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Pengcheng Xu
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Qiao Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Keyao Jia
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Panshi Jin
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China
| | - Mou Zhou
- Department of Blood Transfusion, General Hospital of Southern Theater Command, PLA, Guangzhou 510515, China
| | - Yubing Xu
- Department of Blood Transfusion, General Hospital of Southern Theater Command, PLA, Guangzhou 510515, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Biao Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510120, China.
| |
Collapse
|
140
|
VanZweden E, Tolsma R, Hung V, Awad P, Sawyer R, Li Y. The advances of blood clots used as biomaterials in regenerative medicine. Regen Med 2022; 17:957-969. [DOI: 10.2217/rme-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The physiologic process of blood clot formation is well understood and occurs naturally in the setting of tissue injury to achieve hemostasis and begin the process of wound healing. While the investigation of blood clots as a biomaterial is still in the early stages, there has been some research with similar biomaterials made of the components of blood clots that support the innovative idea of using an autologous blood clot as a scaffold or delivery method for therapeutic agents. Here, we review the physiology of blood clots in wound healing and how using blood clots as a biomaterial and delivery system can potentially promote wound healing, provide targeted therapeutic agent delivery and use it as an innovative tool in regenerative medicine.
Collapse
Affiliation(s)
| | - Rachael Tolsma
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| | - Victor Hung
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| | - Peter Awad
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| | - Robert Sawyer
- Department of General Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| | - Yong Li
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| |
Collapse
|
141
|
Jiang SZ, To JL, Hughes MR, McNagny KM, Kim H. Platelet signaling at the nexus of innate immunity and rheumatoid arthritis. Front Immunol 2022; 13:977828. [PMID: 36505402 PMCID: PMC9732516 DOI: 10.3389/fimmu.2022.977828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disorder characterized by chronic inflammation of the synovial tissues and progressive destruction of bone and cartilage. The inflammatory response and subsequent tissue degradation are orchestrated by complex signaling networks between immune cells and their products in the blood, vascular endothelia and the connective tissue cells residing in the joints. Platelets are recognized as immune-competent cells with an important role in chronic inflammatory diseases such as RA. Here we review the specific aspects of platelet function relevant to arthritic disease, including current knowledge of the molecular crosstalk between platelets and other innate immune cells that modulate RA pathogenesis.
Collapse
Affiliation(s)
- Steven Z. Jiang
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L. To
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
142
|
Use of Autologous Platelet Rich Plasma (A-PRP) for Postpartum Perineal Repair Failure: A Case Report. J Pers Med 2022; 12:jpm12111917. [PMID: 36422093 PMCID: PMC9697075 DOI: 10.3390/jpm12111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Perineal wound dehiscence is an uncommon but important postpartum complication. In many cases, it leads to extreme pain and urinary and defecation problems. For up to several weeks, it can interfere with the mother’s daily activity, affecting psychosexual health and body image. The best way to manage perineal wound breakdown (resuturing vs. spontaneous closure) after childbirth remains controversial. A-PRP is the autologous human plasma containing an increased platelet concentration, rich in growth factors, and mediators with hemostatic, anti-inflammatory, and antimicrobial properties. It accelerates the natural healing process. Even though A-PRP is widely used in orthopedics and dermatology, its use in gynecological injuries is limited. We describe here a case of a woman with postpartum perineal dehiscence treated with A-PRP with positive outcomes.
Collapse
|
143
|
Jin X, Zhang W, Shan J, He J, Qian H, Chen X, Wang X. Thermosensitive Hydrogel Loaded with Nickel-Copper Bimetallic Hollow Nanospheres with SOD and CAT Enzymatic-Like Activity Promotes Acute Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50677-50691. [PMID: 36326126 DOI: 10.1021/acsami.2c17242] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Various injury defense and repair functions are performed by the skin. Free radicals secreted after injury cause oxidative stress and inflammatory responses, which make wound healing difficult. However, the current metal nanomaterials for wound repair do not have sufficient catalytic activity or complex material design and cannot properly fit wounds. Therefore, it is imperative to develop more effective therapeutic approaches. This study investigated the effect of Ni4Cu2 hollow nanospheres composited with F127 hydrogel on promoting wound healing by applying them to wounds. Ni4Cu2 hollow nanospheres exhibited a superior spatial structure, contained many catalytic sites, and could be synthesized in a simple manner. In vitro experiments showed that Ni4Cu2 hollow nanospheres had superoxide dismutase-like activity and promoted fibroblast migration, angiogenesis, and macrophage polarization. F127, which is a thermosensitive, nontoxic, phase-change and porous hydrogel material, has proven to be an effective choice for injectable and sprayable medical dressings. Ni4Cu2 hollow nanospheres were mixed with F127 hydrogel without significantly affecting its performance. In addition to adapting to the complex, irregular gaps of acute wounds, the mixture lengthened the nanozyme release time, which enhanced healing. Based on the animal experiments, the Ni4Cu2/F127 composite hydrogel effectively promoted wound healing, epithelial regeneration, and the formation of skin appendages such as hair follicles in mice. Furthermore, the Ni4Cu2/F127 composite hydrogel was nontoxic to animals and had high biological safety. The Ni4Cu2/F127 composite hydrogel has provided an innovative strategy to develop composite hydrogels for the treatment of acute skin wounds.
Collapse
Affiliation(s)
- Xu Jin
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei230022, P. R. China
| | - Wei Zhang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, P. R. China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei230022, P. R. China
| | - Jia He
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei230022, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, P. R. China
| | - Xulin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, P. R. China
| |
Collapse
|
144
|
Sklenářová R, Akla N, Latorre MJ, Ulrichová J, Franková J. Collagen as a Biomaterial for Skin and Corneal Wound Healing. J Funct Biomater 2022; 13:jfb13040249. [PMID: 36412890 PMCID: PMC9680244 DOI: 10.3390/jfb13040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
The cornea and the skin are two organs that form the outer barrier of the human body. When either is injured (e.g., from surgery, physical trauma, or chemical burns), wound healing is initiated to restore integrity. Many cells are activated during wound healing. In particular, fibroblasts that are stimulated often transition into repair fibroblasts or myofibroblasts that synthesize extracellular matrix (ECM) components into the wound area. Control of wound ECM deposition is critical, as a disorganized ECM can block restoration of function. One of the most abundant structural proteins in the mammalian ECM is collagen. Collagen type I is the main component in connective tissues. It can be readily obtained and purified, and short analogs have also been developed for tissue engineering applications, including modulating the wound healing response. This review discusses the effect of several current collagen implants on the stimulation of corneal and skin wound healing. These range from collagen sponges and hydrogels to films and membranes.
Collapse
Affiliation(s)
- Renáta Sklenářová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University in Olomouc, 775 15 Olomouc, Czech Republic
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
| | - Naoufal Akla
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University in Olomouc, 775 15 Olomouc, Czech Republic
| | - Jana Franková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University in Olomouc, 775 15 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
145
|
Sim SL, Kumari S, Kaur S, Khosrotehrani K. Macrophages in Skin Wounds: Functions and Therapeutic Potential. Biomolecules 2022; 12:1659. [PMID: 36359009 PMCID: PMC9687369 DOI: 10.3390/biom12111659] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 08/29/2023] Open
Abstract
Macrophages regulate cutaneous wound healing by immune surveillance, tissue repair and remodelling. The depletion of dermal macrophages during the early and middle stages of wound healing has a detrimental impact on wound closure, characterised by reduced vessel density, fibroblast and myofibroblast proliferation, delayed re-epithelization and abated post-healing fibrosis and scar formation. However, in some animal species, oral mucosa and foetal life, cutaneous wounds can heal normally and remain scarless without any involvement of macrophages. These paradoxical observations have created much controversy on macrophages' indispensable role in skin wound healing. Advanced knowledge gained by characterising macrophage subsets, their plasticity in switching phenotypes and molecular drivers provides new insights into their functional importance during cutaneous wound healing. In this review, we highlight the recent findings on skin macrophage subsets, their functional role in adult cutaneous wound healing and the potential benefits of targeting them for therapeutic use.
Collapse
Affiliation(s)
- Seen Ling Sim
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Snehlata Kumari
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Simranpreet Kaur
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
146
|
Pociute A, Kottilingal Farook MF, Dagys A, Kevalas R, Laucaityte G, Jankauskaite L. Platelet-Derived Biomarkers: Potential Role in Early Pediatric Serious Bacterial Infection and Sepsis Diagnostics. J Clin Med 2022; 11:jcm11216475. [PMID: 36362702 PMCID: PMC9658833 DOI: 10.3390/jcm11216475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Fever is the most common complaint of children who are attending a pediatric emergency department (PED). Most of the fever cases are of viral origin; however, the most common markers, such as leucocyte, neutrophil count, or C-reactive protein, are not sensitive or specific enough to distinguish the etiology of fever, especially if children present at the early phase of infection. Currently, platelets have been attributed a role as important sentinels in viral and bacterial infection pathogenesis. Thus, our aim was to analyze different platelet indices, such as PNLR (platelet-to-neutrophil/lymphocyte ratio), PNR (platelet-to-neutrophil ratio) as well as specific secreted proteins, such as sP-selectin, CXCL4, CXCL7, and serotonin. We included 68 children who were referred to PED with the early onset of fever (<12 h). All children with comorbidities, older than five years, and psychiatric diseases, who refused to participate were excluded. All the participants were divided into viral, bacterial, or serious bacterial infection (SBI) groups. All the children underwent blood sampling, and an additional sample was collected for protein analysis. Our analysis revealed statistically significant differences between leucocyte, neutrophil, and CRP levels between SBI and other groups. However, leucocyte and neutrophil counts were within the age norms. A higher PNLR value was observed in a bacterial group, PNR-in viral. As we tested CXCL7 and sP-selectin, alone and together those markers were statistically significant to discriminate SBI and sepsis from other causes of infection. Together with tachypnoe and SpO2 < 94%, it improved the prediction value of sepsis as well as SBI. CXCL4 and serotonin did not differ between the groups. Concluding, CXCL7 and sP-selectin showed promising results in early SBI and sepsis diagnosis.
Collapse
Affiliation(s)
- Aiste Pociute
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | | | - Algirdas Dagys
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rimantas Kevalas
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Goda Laucaityte
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lina Jankauskaite
- Department of Pediatrics, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence:
| |
Collapse
|
147
|
Immunothrombosis and the Role of Platelets in Venous Thromboembolic Diseases. Int J Mol Sci 2022; 23:ijms232113176. [PMID: 36361963 PMCID: PMC9656618 DOI: 10.3390/ijms232113176] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Venous thromboembolism (VTE) is the third leading cardiovascular cause of death and is conventionally treated with anticoagulants that directly antagonize coagulation. However, recent data have demonstrated that also platelets play a crucial role in VTE pathophysiology. In the current review, we outline how platelets are involved during all stages of experimental venous thrombosis. Platelets mediate initiation of the disease by attaching to the vessel wall upon which they mediate leukocyte recruitment. This process is referred to as immunothrombosis, and within this novel concept inflammatory cells such as leukocytes and platelets directly drive the progression of VTE. In addition to their involvement in immunothrombosis, activated platelets can directly drive venous thrombosis by supporting coagulation and secreting procoagulant factors. Furthermore, fibrinolysis and vessel resolution are (partly) mediated by platelets. Finally, we summarize how conventional antiplatelet therapy can prevent experimental venous thrombosis and impacts (recurrent) VTE in humans.
Collapse
|
148
|
Dysregulated Hemostasis and Immunothrombosis in Cerebral Cavernous Malformations. Int J Mol Sci 2022; 23:ijms232012575. [PMID: 36293431 PMCID: PMC9604397 DOI: 10.3390/ijms232012575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular disease that affects 0.5% of the general population. For a long time, CCM research focused on genetic mutations, endothelial junctions and proliferation, but recently, transcriptome and proteome studies have revealed that the hemostatic system and neuroinflammation play a crucial role in the development and severity of cavernomas, with some of these publications coming from our group. The aim of this review is to give an overview of the latest molecular insights into the interaction between CCM-deficient endothelial cells with blood components and the neurovascular unit. Specifically, we underscore how endothelial dysfunction can result in dysregulated hemostasis, bleeding, hypoxia and neurological symptoms. We conducted a thorough review of the literature and found a field that is increasingly poised to regard CCM as a hemostatic disease, which may have implications for therapy.
Collapse
|
149
|
Platelet-rich plasma: a comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank 2022; 24:285-306. [PMID: 36222966 PMCID: PMC9555256 DOI: 10.1007/s10561-022-10039-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Rise in the incidences of chronic degenerative diseases with aging makes wound care a socio-economic burden and unceasingly necessitates a novel, economical, and efficient wound healing treatment. Platelets have a crucial role in hemostasis and thrombosis by modulating distinct mechanistic phases of wound healing, such as promoting and stabilizing the clot. Platelet-rich plasma (PRP) contains a high concentration of platelets than naïve plasma and has an autologous origin with no immunogenic adverse reactions. As a consequence, PRP has gained significant attention as a therapeutic to augment the healing process. Since the past few decades, a robust volume of research and clinical trials have been performed to exploit extensive role of PRP in wound healing/tissue regeneration. Despite these rigorous studies and their application in diversified medical fields, efficacy of PRP-based therapies is continuously questioned owing to the paucity of large samplesizes, controlled clinical trials, and standard protocols. This review systematically delineates the process of wound healing and involvement of platelets in tissue repair mechanisms. Additionally, emphasis is laid on PRP, its preparation methods, handling, classification,application in wound healing, and PRP as regenerative therapeutics combined with biomaterials and mesenchymal stem cells (MSCs).
Collapse
|
150
|
Li X, Hu L, Tan C, Wang X, Ran Q, Chen L, Li Z. Platelet-promoting drug delivery efficiency for inhibition of tumor growth, metastasis, and recurrence. Front Oncol 2022; 12:983874. [PMID: 36276066 PMCID: PMC9582853 DOI: 10.3389/fonc.2022.983874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines are considered one of the promising strategies for anticancer therapy; however, the low targeting efficiency of nanomedicines in vivo is a great obstacle to their clinical applications. Camouflaging nanomedicines with either platelet membrane (PM) or platelet would significantly prolong the retention time of nanomedicines in the bloodstream, enhance the targeting ability of nanomedicines to tumor cells, and reduce the off-target effect of nanomedicines in major organs during the anticancer treatment. In the current review, the advantages of using PM or platelet as smart carriers for delivering nanomedicines to inhibit tumor growth, metastasis, and recurrence were summarized. The opportunities and challenges of this camouflaging strategy for anticancer treatment were also discussed.
Collapse
Affiliation(s)
- Xiaoliang Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaojie Wang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Li Chen, ; Zhongjun Li,
| | - Zhongjun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Li Chen, ; Zhongjun Li,
| |
Collapse
|