101
|
Kumar M, Pushpa K, Mylavarapu SVS. Splitting the cell, building the organism: Mechanisms of cell division in metazoan embryos. IUBMB Life 2015; 67:575-87. [PMID: 26173082 PMCID: PMC5937677 DOI: 10.1002/iub.1404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/12/2022]
Abstract
The unicellular metazoan zygote undergoes a series of cell divisions that are central to its development into an embryo. Differentiation of embryonic cells leads eventually to the development of a functional adult. Fate specification of pluripotent embryonic cells occurs during the early embryonic cleavage divisions in several animals. Early development is characterized by well-known stages of embryogenesis documented across animals--morulation, blastulation, and morphogenetic processes such as gastrulation, all of which contribute to differentiation and tissue specification. Despite this broad conservation, there exist clearly discernible morphological and functional differences across early embryonic stages in metazoans. Variations in the mitotic mechanisms of early embryonic cell divisions play key roles in governing these gross differences that eventually encode developmental patterns. In this review, we discuss molecular mechanisms of both karyokinesis (nuclear division) and cytokinesis (cytoplasmic separation) during early embryonic divisions. We outline the broadly conserved molecular pathways that operate in these two stages in early embryonic mitoses. In addition, we highlight mechanistic variations in these two stages across different organisms. We finally discuss outstanding questions of interest, answers to which would illuminate the role of divergent mitotic mechanisms in shaping early animal embryogenesis.
Collapse
Affiliation(s)
- Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sivaram V. S. Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
102
|
Maître JL, Niwayama R, Turlier H, Nédélec F, Hiiragi T. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat Cell Biol 2015; 17:849-55. [PMID: 26075357 DOI: 10.1038/ncb3185] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/24/2015] [Indexed: 12/15/2022]
Abstract
Mammalian embryos initiate morphogenesis with compaction, which is essential for specifying the first lineages of the blastocyst. The 8-cell-stage mouse embryo compacts by enlarging its cell-cell contacts in a Cdh1-dependent manner. It was therefore proposed that Cdh1 adhesion molecules generate the forces driving compaction. Using micropipette aspiration to map all tensions in a developing embryo, we show that compaction is primarily driven by a twofold increase in tension at the cell-medium interface. We show that the principal force generator of compaction is the actomyosin cortex, which gives rise to pulsed contractions starting at the 8-cell stage. Remarkably, contractions emerge as periodic cortical waves when cells are disengaged from adhesive contacts. In line with this, tension mapping of mzCdh1(-/-) embryos suggests that Cdh1 acts by redirecting contractility away from cell-cell contacts. Our study provides a framework to understand early mammalian embryogenesis and original perspectives on evolutionary conserved pulsed contractions.
Collapse
Affiliation(s)
- Jean-Léon Maître
- European Molecular Biology Laboratory, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - Ritsuya Niwayama
- European Molecular Biology Laboratory, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - Hervé Turlier
- European Molecular Biology Laboratory, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - François Nédélec
- European Molecular Biology Laboratory, Meyerhofstrasse 1 69117 Heidelberg, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, Meyerhofstrasse 1 69117 Heidelberg, Germany
| |
Collapse
|
103
|
Ahmed WW, Fodor É, Betz T. Active cell mechanics: Measurement and theory. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3083-94. [PMID: 26025677 DOI: 10.1016/j.bbamcr.2015.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 10/25/2022]
Abstract
Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Wylie W Ahmed
- Institut Curie, Centre de recherche, 11, rue Pierre et Marie Curie, 75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Centre National de la Recherche Scientifique, UMR168, Paris, France.
| | - Étienne Fodor
- Laboratoire Matière et Systèmes Complexes, UMR7057, Université Paris Diderot, 75013 Paris, France
| | - Timo Betz
- Institut Curie, Centre de recherche, 11, rue Pierre et Marie Curie, 75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Centre National de la Recherche Scientifique, UMR168, Paris, France
| |
Collapse
|
104
|
Dissecting protein reaction dynamics in living cells by fluorescence recovery after photobleaching. Nat Protoc 2015; 10:660-80. [DOI: 10.1038/nprot.2015.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
105
|
Sear RP, Pagonabarraga I, Flaus A. Life at the mesoscale: the self-organised cytoplasm and nucleoplasm. BMC BIOPHYSICS 2015; 8:4. [PMID: 25815164 PMCID: PMC4374369 DOI: 10.1186/s13628-015-0018-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/17/2015] [Indexed: 11/30/2022]
Abstract
The cell contains highly dynamic structures exploiting physical principles of self-organisation at the mesoscale (100 nm to 10 μm). Examples include non-membrane bound cytoplasmic bodies, cytoskeleton-based motor networks and multi-scale chromatin organisation. The challenges of mesoscale self-organisation were discussed at a CECAM workshop in July 2014. Biologists need approaches to observe highly dynamic, low affinity, low specificity associations and to perturb single structures, while biological physicists and biomathematicians need to work closely with biologists to build and validate quantitative models. A table of terminology is included to facilitate multidisciplinary efforts to reveal the richness and diversity of mesoscale cell biology.
Collapse
Affiliation(s)
- Richard P Sear
- Department of Physics, University of Surrey, GU2 7XH Guildford, Surrey UK
| | | | - Andrew Flaus
- Centre for Chromosome Biology, School of Life Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
106
|
Sain A, Inamdar MM, Jülicher F. Dynamic force balances and cell shape changes during cytokinesis. PHYSICAL REVIEW LETTERS 2015; 114:048102. [PMID: 25679910 DOI: 10.1103/physrevlett.114.048102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Indexed: 06/04/2023]
Abstract
During the division of animal cells, an actomyosin ring is formed in the cell cortex. The contraction of this ring induces shape changes of the cell and the formation of a cytokinesis furrow. In many cases, a cell-cell interface forms that separates the two new cells. Here we present a simple physical description of the cell shape changes and the dynamics of the interface closure, based on force balances involving active stresses and viscous friction. We discuss conditions in which the interface closure is either axially symmetric or asymmetric. We show that our model can account for the observed dynamics of ring contraction and interface closure in the C. elegans embryo.
Collapse
Affiliation(s)
- Anirban Sain
- Physics Department, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Frank Jülicher
- Max-Planck-Institute for the Physics of Complex Systems Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
107
|
Bidone TC, Tang H, Vavylonis D. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly. Biophys J 2014; 107:2618-28. [PMID: 25468341 DOI: 10.1016/j.bpj.2014.10.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 11/19/2022] Open
Abstract
During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed.
Collapse
Affiliation(s)
- Tamara C Bidone
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Haosu Tang
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
108
|
Bourdages KG, Lacroix B, Dorn JF, Descovich CP, Maddox AS. Quantitative analysis of cytokinesis in situ during C. elegans postembryonic development. PLoS One 2014; 9:e110689. [PMID: 25329167 PMCID: PMC4203819 DOI: 10.1371/journal.pone.0110689] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
The physical separation of a cell into two daughter cells during cytokinesis requires cell-intrinsic shape changes driven by a contractile ring. However, in vivo, cells interact with their environment, which includes other cells. How cytokinesis occurs in tissues is not well understood. Here, we studied cytokinesis in an intact animal during tissue biogenesis. We used high-resolution microscopy and quantitative analysis to study the three rounds of division of the C. elegans vulval precursor cells (VPCs). The VPCs are cut in half longitudinally with each division. Contractile ring breadth, but not the speed of ring closure, scales with cell length. Furrowing speed instead scales with division plane dimensions, and scaling is consistent between the VPCs and C. elegans blastomeres. We compared our VPC cytokinesis kinetics data with measurements from the C. elegans zygote and HeLa and Drosophila S2 cells. Both the speed dynamics and asymmetry of ring closure are qualitatively conserved among cell types. Unlike in the C. elegans zygote but similar to other epithelial cells, Anillin is required for proper ring closure speed but not asymmetry in the VPCs. We present evidence that tissue organization impacts the dynamics of cytokinesis by comparing our results on the VPCs with the cells of the somatic gonad. In sum, this work establishes somatic lineages in post-embryonic C. elegans development as cell biological models for the study of cytokinesis in situ.
Collapse
Affiliation(s)
- Karine G. Bourdages
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Lacroix
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Jonas F. Dorn
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Advanced Quantitative Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Carlos P. Descovich
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amy S. Maddox
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
109
|
Dierkes K, Sumi A, Solon J, Salbreux G. Spontaneous oscillations of elastic contractile materials with turnover. PHYSICAL REVIEW LETTERS 2014; 113:148102. [PMID: 25325664 DOI: 10.1103/physrevlett.113.148102] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 06/04/2023]
Abstract
Single and collective cellular oscillations driven by the actomyosin cytoskeleton have been observed in numerous biological systems. Here, we propose that these oscillations can be accounted for by a generic oscillator model of a material turning over and contracting against an elastic element. As an example, we show that during dorsal closure of the Drosophila embryo, experimentally observed changes in actomyosin concentration and oscillatory cell shape changes can, indeed, be captured by the dynamic equations studied here. We also investigate the collective dynamics of an ensemble of such contractile elements and show that the relative contribution of viscous and friction losses yields different regimes of collective oscillations. Taking into account the diffusion of force-producing molecules between contractile elements, our theoretical framework predicts the appearance of traveling waves, resembling the propagation of actomyosin waves observed during morphogenesis.
Collapse
Affiliation(s)
- Kai Dierkes
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Angughali Sumi
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Jérôme Solon
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
110
|
Big cells cleave as fast as small ones: the physics of cytokinesis. Biophys J 2014; 106:5-6. [PMID: 24411231 DOI: 10.1016/j.bpj.2013.11.3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022] Open
|