101
|
Hein LE, SenGupta S, Gunasekaran G, Johnson C, Parent CA. TGF-β1 activates neutrophil signaling and gene expression but not migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542468. [PMID: 37292899 PMCID: PMC10246019 DOI: 10.1101/2023.05.26.542468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor-associated neutrophils are found in many types of cancer and are often reported to contribute to negative outcomes. The presence of transforming growth factor-beta (TGF-β) in the tumor microenvironment reportedly contributes to the skewing of neutrophils to a more pro-tumor phenotype. The effects of TGF-β on neutrophil signaling and migration are, however, unclear. We sought to characterize TGF-β signaling in both primary human neutrophils and the neutrophil-like cell line HL-60 and determine whether it directly induces neutrophil migration. We found that TGF-β1 does not induce neutrophil chemotaxis in transwell or underagarose migration assays. TGF-β1 does activate canonical signaling through SMAD3 and noncanonical signaling through ERK1/2 in neutrophils in a time-and dose-dependent manner. Additionally, TGF-β1 present in the tumor-conditioned media (TCM) of invasive breast cancer cells results in SMAD3 activation. We discovered that TCM induces neutrophils to secrete leukotriene B 4 (LTB 4 ), which is a lipid mediator important for amplifying the range of neutrophil recruitment. However, TGF-β1 alone does not induce secretion of LTB 4 . RNA-sequencing revealed that TGF-β1 and TCM alter gene expression in HL-60 cells, including the mRNA levels of the pro-tumor oncostatin M ( OSM ) and vascular endothelial growth factor A ( VEGFA ). These new insights into the role and impact of TGF-β1 on neutrophil signaling, migration, and gene expression have significant implications in the understanding of the changes in neutrophils that occur in the tumor microenvironment.
Collapse
|
102
|
Ye B, Duan Y, Zhou M, Wang Y, Lai Q, Yue K, Cao J, Wu Y, Wang X, Jing C. Hypoxic tumor-derived exosomal miR-21 induces cancer-associated fibroblast activation to promote head and neck squamous cell carcinoma metastasis. Cell Signal 2023; 108:110725. [PMID: 37230199 DOI: 10.1016/j.cellsig.2023.110725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Both microRNA-21-5p (miR-21) and the tumor microenvironment, including hypoxia and cancer-associated fibroblasts (CAFs), play a vital role in head and neck squamous cell carcinoma (HNSCC), but whether there is an interaction and the specific regulatory mechanism between them in the process of metastasis is still unclear. In this study, we aimed to elucidate the connection and regulatory mechanism of miR-21, hypoxia, and CAFs in HNSCC metastasis. METHODS The underlying mechanisms of HIF1α regulating miR-21 transcription, promoting exosome secretion, CAFs activation, tumor invasion, and lymph node metastasis were determined through quantitative real-time PCR, immunoblotting, transwell, wound healing, immunofluorescence, ChIP, electron microscopy, nanoparticle tracking analysis, dual-luciferase reporter assay, co-culture model and xenografts experiments. RESULTS MiR-21 promoted the invasion and metastasis of HNSCC in vitro and in vivo, whereas HIF1α knockdown inhibited these processes. HIF1α upregulated transcription of miR-21 and promoted the release of exosomes from HNSCC cells. Exosomes derived from hypoxic tumor cells were rich in miR-21, which induced NFs activation towards CAFs by targeting YOD1. Knockdown the expression level of miR-21 in CAFs prevented lymph node metastasis in HNSCC. CONCLUSION Hypoxic tumor cell-derived exosomal miR-21 might be a therapeutic target to prevent or delay HNSCC invasion and metastasis.
Collapse
Affiliation(s)
- Beibei Ye
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Mengqian Zhou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yuxuan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Qingchuan Lai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Jiayan Cao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China.
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China.
| |
Collapse
|
103
|
Zhang X, Wu T, Zhou J, Chen X, Dong C, Guo Z, Yang R, Liang R, Feng Q, Hu R, Li Y, Ding R. Establishment and verification of prognostic model and ceRNA network analysis for colorectal cancer liver metastasis. BMC Med Genomics 2023; 16:99. [PMID: 37161577 PMCID: PMC10169504 DOI: 10.1186/s12920-023-01523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
OBJECTS Colorectal cancer (CRC) is one of the most common cancers in the world. Approximately two-thirds of patients with CRC will develop colorectal cancer liver metastases (CRLM) at some point in time. In this study, we aimed to construct a prognostic model of CRLM and its competing endogenous RNA (ceRNA) network. METHODS RNA-seq of CRC, CRLM and normal samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database. Limma was used to obtain differential expression genes (DEGs) between CRLM and CRC from sequencing data and GSE22834, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses were performed, respectively. Univariate Cox regression analysis and lasso Cox regression models were performed to screen prognostic gene features and construct prognostic models. Functional enrichment, estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) algorithm, single-sample gene set enrichment analysis, and ceRNA network construction were applied to explore potential mechanisms. RESULTS An 8-gene prognostic model was constructed by screening 112 DEGs from TCGA and GSE22834. CRC patients in the TCGA and GSE29621 cohorts were stratified into either a high-risk group or a low-risk group. Patients with CRC in the high-risk group had a significantly poorer prognosis compared to in the low-risk group. The risk score was identified as an independent predictor of prognosis. Functional analysis revealed that the risk score was closly correlated with various immune cells and immune-related signaling pathways. And a prognostic gene-associated ceRNA network was constructed that obtained 3 prognosis gene, 14 microRNAs (miRNAs) and 7 long noncoding RNAs (lncRNAs). CONCLUSIONS In conclusion, a prognostic model for CRLM identification was proposed, which could independently identify high-risk patients with low survival, suggesting a relationship between local immune status and prognosis of CRLM. Moreover, the key prognostic genes-related ceRNA network were established for the CRC investigation. Based on the differentially expressed genes between CRLM and CRC, the prognosis model of CRC patients was constructed.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tao Wu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinmei Zhou
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519, Kunzhou Road, Kunming, 650118, China
| | - Xiaoqiong Chen
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chao Dong
- Department of Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhangyou Guo
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519, Kunzhou Road, Kunming, 650118, China
| | - Renfang Yang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Liang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Feng
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruixi Hu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunfeng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Rong Ding
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519, Kunzhou Road, Kunming, 650118, China.
| |
Collapse
|
104
|
Chen E, Yu J. The role and metabolic adaptations of neutrophils in premetastatic niches. Biomark Res 2023; 11:50. [PMID: 37158964 PMCID: PMC10169509 DOI: 10.1186/s40364-023-00493-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
It has been found that tumor cells create microenvironments in distant organs that promote their survival and growth in advance of their arrival. These predetermined microenvironments are referred to as "pre-metastatic niches". Increasing attention is being paid to neutrophils' role in forming the pre-metastatic niche. As major components of the pre-metastatic niche, tumor-associated neutrophils (TANs) play an important role in the formation of the pre-metastatic niche through communication with multiple growth factors, chemokines, inflammatory factors, and other immune cells, which together create a pre-metastatic niche well suited for tumor cell seeding and growth. However, how TANs modulate their metabolism to survive and exert their functions in the process of metastasis remains largely to be discovered. Accordingly, the objective of this review is to assess the role that neutrophils play in the formation of pre-metastatic niche and to explore the metabolism alteration of neutrophils in cancer metastasis. A better understanding of the role of TANs in pre-metastatic niche will help us discover new mechanisms of metastasis and develop new therapies targeting TANs.
Collapse
Affiliation(s)
- Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Beijing, 100053, Xi Cheng District, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Beijing, 100053, Xi Cheng District, China.
| |
Collapse
|
105
|
Li X, Yan X, Wang Y, Kaur B, Han H, Yu J. The Notch signaling pathway: a potential target for cancer immunotherapy. J Hematol Oncol 2023; 16:45. [PMID: 37131214 PMCID: PMC10155406 DOI: 10.1186/s13045-023-01439-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Dysregulation of the Notch signaling pathway, which is highly conserved across species, can drive aberrant epigenetic modification, transcription, and translation. Defective gene regulation caused by dysregulated Notch signaling often affects networks controlling oncogenesis and tumor progression. Meanwhile, Notch signaling can modulate immune cells involved in anti- or pro-tumor responses and tumor immunogenicity. A comprehensive understanding of these processes can help with designing new drugs that target Notch signaling, thereby enhancing the effects of cancer immunotherapy. Here, we provide an up-to-date and comprehensive overview of how Notch signaling intrinsically regulates immune cells and how alterations in Notch signaling in tumor cells or stromal cells extrinsically regulate immune responses in the tumor microenvironment (TME). We also discuss the potential role of Notch signaling in tumor immunity mediated by gut microbiota. Finally, we propose strategies for targeting Notch signaling in cancer immunotherapy. These include oncolytic virotherapy combined with inhibition of Notch signaling, nanoparticles (NPs) loaded with Notch signaling regulators to specifically target tumor-associated macrophages (TAMs) to repolarize their functions and remodel the TME, combining specific and efficient inhibitors or activators of Notch signaling with immune checkpoint blockers (ICBs) for synergistic anti-tumor therapy, and implementing a customized and effective synNotch circuit system to enhance safety of chimeric antigen receptor (CAR) immune cells. Collectively, this review aims to summarize how Notch signaling intrinsically and extrinsically shapes immune responses to improve immunotherapy.
Collapse
Affiliation(s)
- Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yufeng Wang
- Cancer Institute, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77225, USA
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
| |
Collapse
|
106
|
Wood CS, Pennel KA, Leslie H, Legrini A, Cameron AJ, Melissourgou-Syka L, Quinn JA, van Wyk HC, Hay J, Roseweir AK, Nixon C, Roxburgh CS, McMillan DC, Biankin AV, Sansom OJ, Horgan PG, Edwards J, Steele CW, Jamieson NB. Spatially Resolved Transcriptomics Deconvolutes Prognostic Histological Subgroups in Patients with Colorectal Cancer and Synchronous Liver Metastases. Cancer Res 2023; 83:1329-1344. [PMID: 37057593 PMCID: PMC10102851 DOI: 10.1158/0008-5472.can-22-2794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 04/15/2023]
Abstract
Strong immune responses in primary colorectal cancer correspond with better patient survival following surgery compared with tumors with predominantly stromal microenvironments. However, biomarkers to identify patients with colorectal cancer liver metastases (CRLM) with good prognosis following surgery for oligometastatic disease remain elusive. The aim of this study was to determine the practical application of a simple histological assessment of immune cell infiltration and stromal content in predicting outcome following synchronous resection of primary colorectal cancer and CRLM and to interrogate the underlying functional biology that drives disease progression. Samples from patients undergoing synchronous resection of primary colorectal cancer and CRLM were evaluated in detail through histological assessment, panel genomic and bulk transcriptomic assessment, IHC, and GeoMx spatial transcriptomics (ST) analysis. High immune infiltration of metastases was associated with improved cancer-specific survival. Bulk transcriptomic analysis was confounded by stromal content, but ST demonstrated that the invasive edge of the metastases of long-term survivors was characterized by adaptive immune cell populations enriched for type II IFN signaling and MHC-class II antigen presentation. In contrast, patients with poor prognosis demonstrated increased abundance of regulatory T cells and neutrophils with enrichment of Notch and TGFβ signaling pathways at the metastatic tumor center. In summary, histological assessment can stratify outcomes in patients undergoing synchronous resection of CRLM, suggesting that it has potential as a prognostic biomarker. Furthermore, ST analysis has revealed significant intratumoral and interlesional heterogeneity and identified the underlying transcriptomic programs driving each phenotype. SIGNIFICANCE Spatial transcriptomics uncovers heterogeneity between patients, between matched lesions in the same patient, and within individual lesions and identifies drivers of metastatic progression in colorectal cancer with reactive and suppressed immune microenvironments.
Collapse
Affiliation(s)
- Colin S. Wood
- University Department of Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | | | - Holly Leslie
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Assya Legrini
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J. Cameron
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jean A. Quinn
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Hester C. van Wyk
- University Department of Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Jennifer Hay
- Glasgow Tissue Research Facility, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | | | - Colin Nixon
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Campbell S.D. Roxburgh
- University Department of Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Donald C. McMillan
- University Department of Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Andrew V. Biankin
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Owen J. Sansom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Paul G. Horgan
- University Department of Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Colin W. Steele
- University Department of Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Nigel B. Jamieson
- University Department of Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
107
|
Waldner MJ, Neurath MF. TGFβ and the Tumor Microenvironment in Colorectal Cancer. Cells 2023; 12:1139. [PMID: 37190048 PMCID: PMC10137236 DOI: 10.3390/cells12081139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Growing evidence supports an important role of the tumor microenvironment (TME) in the pathogenesis of colorectal cancer (CRC). Resident cells such as fibroblasts or immune cells infiltrating into the TME maintain continuous crosstalk with cancer cells and thereby regulate CRC progression. One of the most important molecules involved is the immunoregulatory cytokine transforming growth factor-β (TGFβ). TGFβ is released by various cells in the TME, including macrophages and fibroblasts, and it modulates cancer cell growth, differentiation, and cell death. Mutations in components of the TGF pathway, including TGFβ receptor type 2 or SMAD4, are among the most frequently detected mutations in CRC and have been associated with the clinical course of disease. Within this review, we will discuss our current understanding about the role of TGFβ in the pathogenesis of CRC. This includes novel data on the molecular mechanisms of TGFβ signaling in TME, as well as possible strategies for CRC therapy targeting the TGFβ pathway, including potential combinations with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Maximilian J. Waldner
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
108
|
Zeng X, Liao G, Li S, Liu H, Zhao X, Li S, Lei K, Zhu S, Chen Z, Zhao Y, Ren X, Su T, Cheng ASL, Peng S, Lin S, Wang J, Chen S, Kuang M. Eliminating METTL1-mediated accumulation of PMN-MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation. Hepatology 2023; 77:1122-1138. [PMID: 35598182 DOI: 10.1002/hep.32585] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Radiofrequency ablation (RFA) is an important curative therapy in hepatocellular carcinoma (HCC), but recurrence rate remains as high as all the other HCC therapeutic modalities. Methyltransferase 1 (METTL1), an enzyme for m 7 G tRNA modification, was reported to promote HCC development. Here, we assessed the role of METTL1 in shaping the immunosuppressive tumor microenvironment after insufficient RFA (iRFA). APPROACH AND RESULTS By immunohistochemistry and multiplex immunofluorescence (mIF) staining, we showed that METTL1 expression was enhanced in post-RFA recurrent HCC, accompanied by increased CD11b + CD15 + polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) and decreased CD8 + T cells. Mechanistically, heat-mediated METTL1 upregulation enhanced TGF-β2 translation to form the immunosuppressive environment by induction of myeloid-derived suppressor cell. Liver-specific overexpression or knockdown of Mettl1 significantly affected the accumulation of PMN-MDSCs and subsequently affected CD8 + T cell infiltration. Complete RFA successfully eliminated the tumor, whereas iRFA-treated mice exhibited enhanced tumor growth and metastasis with increased PMN-MDSC accumulation and decreased CD8 + T cells compared to sham surgery. Interrupting METTL1-TGF-β2-PMN-MDSC axis by anti-Ly6G antibody, or knockdown of hepatoma-intrinsic Mettl1 or Tgfb2 , or TGF-β signaling blockade significantly mitigated tumor progression induced by iRFA and restored CD8 + T cell population. CONCLUSIONS Our study sheds light on the pivotal role of METTL1 in modulating an immunosuppressive microenvironment and demonstrated that interrupting METTL1-TGF-β2-PMN-MDSC axis could be a therapeutic strategy to restore antitumor immunity and prevent HCC recurrence after RFA treatment, meriting further clinical studies.
Collapse
Affiliation(s)
- Xuezhen Zeng
- Department of Liver Surgery , Center of Hepato-Pancreato-Biliary Surgery , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
- Institute of Precision Medicine , the First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Guanrui Liao
- Department of Liver Surgery , Center of Hepato-Pancreato-Biliary Surgery , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Shumin Li
- Department of Gastroenterology and Hepatology , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Haining Liu
- Department of Liver Surgery , Center of Hepato-Pancreato-Biliary Surgery , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Xiao Zhao
- Department of Oncology , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Shuang Li
- Department of Liver Surgery , Center of Hepato-Pancreato-Biliary Surgery , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Kai Lei
- Department of Liver Surgery , Center of Hepato-Pancreato-Biliary Surgery , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Shenghua Zhu
- Department of Gastroenterology and Hepatology , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Zhihang Chen
- Department of Liver Surgery , Center of Hepato-Pancreato-Biliary Surgery , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Yi Zhao
- Institute of Precision Medicine , the First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Xuxin Ren
- Institute of Precision Medicine , the First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Tianhong Su
- Institute of Precision Medicine , the First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
- Department of Oncology , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences , The Chinese University of Hong Kong , Hong Kong , China
| | - Sui Peng
- Institute of Precision Medicine , the First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
- Department of Gastroenterology and Hepatology , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
- Clinical Trials Unit , The First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Shuibin Lin
- Institute of Precision Medicine , the First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
- Center for Translational Medicine , The First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Ji Wang
- Institute of Precision Medicine , the First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Shuling Chen
- Division of Interventional Ultrasound , The First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Ming Kuang
- Department of Liver Surgery , Center of Hepato-Pancreato-Biliary Surgery , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
- Institute of Precision Medicine , the First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
- Department of Oncology , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong Province , China
- Division of Interventional Ultrasound , The First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
- Cancer Center , The First Affiliated Hospital , Sun Yat-sen University , Guangzhou , Guangdong Province , China
| |
Collapse
|
109
|
Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer 2023; 23:216-237. [PMID: 36747021 DOI: 10.1038/s41568-022-00546-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
Myeloid cells are pivotal within the immunosuppressive tumour microenvironment. The accumulation of tumour-modified myeloid cells derived from monocytes or neutrophils - termed 'myeloid-derived suppressor cells' - and tumour-associated macrophages is associated with poor outcome and resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Unfortunately, there has been little success in large-scale clinical trials of myeloid cell modulators, and only a few distinct strategies have been used to target suppressive myeloid cells clinically so far. Preclinical and translational studies have now elucidated specific functions for different myeloid cell subpopulations within the tumour microenvironment, revealing context-specific roles of different myeloid cell populations in disease progression and influencing response to therapy. To improve the success of myeloid cell-targeted therapies, it will be important to target tumour types and patient subsets in which myeloid cells represent the dominant driver of therapy resistance, as well as to determine the most efficacious treatment regimens and combination partners. This Review discusses what we can learn from work with the first generation of myeloid modulators and highlights recent developments in modelling context-specific roles for different myeloid cell subtypes, which can ultimately inform how to drive more successful clinical trials.
Collapse
Affiliation(s)
- Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
110
|
Chandramohan K, Balan DJ, Devi KP, Nabavi SF, Reshadat S, Khayatkashani M, Mahmoodifar S, Filosa R, Amirkhalili N, Pishvaei S, Aval OS, Nabavi SM. Short interfering RNA in colorectal cancer: is it wise to shoot the messenger? Eur J Pharmacol 2023; 949:175699. [PMID: 37011722 DOI: 10.1016/j.ejphar.2023.175699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the leading cause of gastrointestinal cancer death. 90% of people diagnosed with colorectal cancer are over the age of 50; nevertheless, the illness is more aggressive among those detected at a younger age. Chemotherapy-based treatment has several adverse effects on both normal and malignant cells. The primary signaling pathways implicated in the advancement of CRC include hedgehog (Hh), janus kinase and signal transducer and activator of transcription (JAK/STAT), Wingless-related integration site (Wnt)/β-catenin, transforming growth factor-β (TNF-β), epidermal growth factor receptor (EGFR)/Mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), nuclear factor kappa B (NF-κB), and Notch. Loss of heterozygosity in tumor suppressor genes like adenomatous polyposis coli, as well as mutation or deletion of genes like p53 and Kirsten rat sarcoma viral oncogene (KRAS), are all responsible for the occurrence of CRC. Novel therapeutic targets linked to these signal-transduction cascades have been identified as a consequence of advances in small interfering RNA (siRNA) treatments. This study focuses on many innovative siRNA therapies and methodologies for delivering siRNA therapeutics to the malignant site safely and effectively for the treatment of CRC. Treatment of CRC using siRNA-associated nanoparticles (NPs) may inhibit the activity of oncogenes and MDR-related genes by targeting a range of signaling mechanisms. This study summarizes several siRNAs targeting signaling molecules, as well as the therapeutic approaches that might be employed to treat CRC in the future.
Collapse
|
111
|
Betge J, Jackstadt R. From organoids to bedside: Advances in modeling, decoding and targeting of colorectal cancer. Int J Cancer 2023; 152:1304-1313. [PMID: 36121667 DOI: 10.1002/ijc.34297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
Patient derived organoids closely resemble the biology of tissues and tumors. They are enabling ex vivo modeling of human diseases and dissecting key features of tumor biology like anatomical diversity or inter- and intra-tumoral heterogeneity. In the last years, organoids were established as models for drug discovery and explored to guide clinical decision making. In this review, we discuss the recent developments in organoid based research, elaborating on the developments in colorectal cancer as a prime example. We focus our review on the role of organoids to decode cancer cell dynamics and tumor microenvironmental complexity with the underlying bi-directional crosstalk. Additionally, advancements in the development of living biobanks, screening approaches, organoid based precision medicine and challenges of co-clinical trials are highlighted. We discuss ongoing efforts to overcome challenges that the field faces and indicate potential future directions.
Collapse
Affiliation(s)
- Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
112
|
Hypocretin-1 suppresses malignant progression of glioblastoma cells through Notch1 signaling pathway. Brain Res Bull 2023; 196:46-58. [PMID: 36925051 DOI: 10.1016/j.brainresbull.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Hypocretin-1 is a multifunctional neuropeptide that has been identified as a potential antitumor agent for its role in inhibiting tumor growth, including in colon cancer, neuroendocrine tumor, and prostate cancer. However, the role and mechanism of hypocretin-1 in the occurrence and development of malignant glioma have not been well studied. Therefore, we investigated the effect of hypocretin-1 on glioblastoma proliferation, apoptosis, migration and invasion and its mechanism. We found that the hypocretin-1 receptor was expressed in both glioma cell lines and glioma tissues. Hypocretin-1 treatment can inhibit glioblastoma cell proliferation, migration and invasion, and induce cell apoptosis. Meanwhile, hypocretin-1 treatment significantly reduces tumor growth rate and tumor weight. In addition, mechanistic studies have found that hypocretin-1 exerts antitumor effects by inhibiting NOTCH signaling pathway. Overexpression of NICD significantly reversed the antitumor effect of hypocretin on glioblastoma. Taken together, these findings suggest that hypocretin-1 inhibits glioblastoma proliferation, migration and invasion and induces apoptosis in vitro and in vivo through NOTCH signaling pathway.
Collapse
|
113
|
Jiang W, Ouyang X, Jiang C, Yin L, Yao Q, Pei X, Ji Z, Li M, Song S, Yang W, Huang S, Yang H, Shan B. A NOTCH1 Mutation Found in a Newly Established Ovarian Cancer Cell Line (FDOVL) Promotes Lymph Node Metastasis in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24065091. [PMID: 36982170 PMCID: PMC10049685 DOI: 10.3390/ijms24065091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Peritoneal implantation and lymph node metastasis have different driving mechanisms in ovarian cancer. Elucidating the underlying mechanism of lymph node metastasis is important for treatment outcomes. A new cell line, FDOVL, was established from a metastatic lymph node of a patient with primary platinum-resistant ovarian cancer and was then characterized. The effect of NOTCH1-p.C702fs mutation and NOTCH1 inhibitor on migration was evaluated in vitro and in vivo. Ten paired primary sites and metastatic lymph nodes were analyzed by RNA sequencing. The FDOVL cell line with serious karyotype abnormalities could be stably passaged and could be used to generated xenografts. NOTCH1-p.C702fs mutation was found exclusively in the FDOVL cell line and the metastatic lymph node. The mutation promoted migration and invasion in cell and animal models, and these effects were markedly repressed by the NOTCH inhibitor LY3039478. RNA sequencing confirmed CSF3 as the downstream effector of NOTCH1 mutation. Furthermore, the mutation was significantly more common in metastatic lymph nodes than in other peritoneal metastases in 10 paired samples (60% vs. 20%). The study revealed that NOTCH1 mutation is probably a driver of lymph node metastasis in ovarian cancer, which offers new ideas for the treatment of ovarian cancer lymph node metastasis with NOTCH inhibitors.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xueyan Ouyang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunjuan Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Lina Yin
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qianlan Yao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Xuan Pei
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhaodong Ji
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ming Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Shaoli Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Wentao Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Huijuan Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Boer Shan
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
114
|
Buikhuisen JY, Gomez Barila PM, Cameron K, Suijkerbuijk SJE, Lieftink C, di Franco S, Krotenberg Garcia A, Uceda Castro R, Lenos KJ, Nijman LE, Torang A, Longobardi C, de Jong JH, Dekker D, Stassi G, Vermeulen L, Beijersbergen RL, van Rheenen J, Huveneers S, Medema JP. Subtype-specific kinase dependency regulates growth and metastasis of poor-prognosis mesenchymal colorectal cancer. J Exp Clin Cancer Res 2023; 42:56. [PMID: 36869386 PMCID: PMC9983221 DOI: 10.1186/s13046-023-02600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/15/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) can be divided into four consensus molecular subtypes (CMS), each with distinct biological features. CMS4 is associated with epithelial-mesenchymal transition and stromal infiltration (Guinney et al., Nat Med 21:1350-6, 2015; Linnekamp et al., Cell Death Differ 25:616-33, 2018), whereas clinically it is characterized by lower responses to adjuvant therapy, higher incidence of metastatic spreading and hence dismal prognosis (Buikhuisen et al., Oncogenesis 9:66, 2020). METHODS To understand the biology of the mesenchymal subtype and unveil specific vulnerabilities, a large CRISPR-Cas9 drop-out screen was performed on 14 subtyped CRC cell lines to uncover essential kinases in all CMSs. Dependency of CMS4 cells on p21-activated kinase 2 (PAK2) was validated in independent 2D and 3D in vitro cultures and in vivo models assessing primary and metastatic outgrowth in liver and peritoneum. TIRF microscopy was used to uncover actin cytoskeleton dynamics and focal adhesion localization upon PAK2 loss. Subsequent functional assays were performed to determine altered growth and invasion patterns. RESULTS PAK2 was identified as a key kinase uniquely required for growth of the mesenchymal subtype CMS4, both in vitro and in vivo. PAK2 plays an important role in cellular attachment and cytoskeletal rearrangements (Coniglio et al., Mol Cell Biol 28:4162-72, 2008; Grebenova et al., Sci Rep 9:17171, 2019). In agreement, deletion or inhibition of PAK2 impaired actin cytoskeleton dynamics in CMS4 cells and, as a consequence, significantly reduced invasive capacity, while it was dispensable for CMS2 cells. Clinical relevance of these findings was supported by the observation that deletion of PAK2 from CMS4 cells prevented metastatic spreading in vivo. Moreover, growth in a model for peritoneal metastasis was hampered when CMS4 tumor cells were deficient for PAK2. CONCLUSION Our data reveal a unique dependency of mesenchymal CRC and provide a rationale for PAK2 inhibition to target this aggressive subgroup of colorectal cancer.
Collapse
Affiliation(s)
- Joyce Y Buikhuisen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Patricia M Gomez Barila
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Kate Cameron
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Saskia J E Suijkerbuijk
- Oncode Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Oncode Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Simone di Franco
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Ana Krotenberg Garcia
- Oncode Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rebeca Uceda Castro
- Oncode Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kristiaan J Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Lisanne E Nijman
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Arezo Torang
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Ciro Longobardi
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Joan H de Jong
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Daniëlle Dekker
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Oncode Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Oncode Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Oncode Institute, Amsterdam, The Netherlands.
| |
Collapse
|
115
|
Amirkhah R, Gilroy K, Malla SB, Lannagan TRM, Byrne RM, Fisher NC, Corry SM, Mohamed NE, Naderi-Meshkin H, Mills ML, Campbell AD, Ridgway RA, Ahmaderaghi B, Murray R, Llergo AB, Sanz-Pamplona R, Villanueva A, Batlle E, Salazar R, Lawler M, Sansom OJ, Dunne PD. MmCMS: mouse models' consensus molecular subtypes of colorectal cancer. Br J Cancer 2023; 128:1333-1343. [PMID: 36717674 PMCID: PMC10050155 DOI: 10.1038/s41416-023-02157-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) primary tumours are molecularly classified into four consensus molecular subtypes (CMS1-4). Genetically engineered mouse models aim to faithfully mimic the complexity of human cancers and, when appropriately aligned, represent ideal pre-clinical systems to test new drug treatments. Despite its importance, dual-species classification has been limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-to-mouse CMS classifications of CRC tissue. METHODS Using transcriptional data from established collections of CRC tumours, including human (TCGA cohort; n = 577) and mouse (n = 57 across n = 8 genotypes) tumours with combinations of random forest and nearest template prediction algorithms, alongside gene ontology collections, we comprehensively assess the performance of a suite of new dual-species classifiers. RESULTS We developed three approaches: MmCMS-A; a gene-level classifier, MmCMS-B; an ontology-level approach and MmCMS-C; a combined pathway system encompassing multiple biological and histological signalling cascades. Although all options could identify tumours associated with stromal-rich CMS4-like biology, MmCMS-A was unable to accurately classify the biology underpinning epithelial-like subtypes (CMS2/3) in mouse tumours. CONCLUSIONS When applying human-based transcriptional classifiers to mouse tumour data, a pathway-level classifier, rather than an individual gene-level system, is optimal. Our R package enables researchers to select suitable mouse models of human CRC subtype for their experimental testing.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Sudhir B Malla
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Ryan M Byrne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Natalie C Fisher
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Shania M Corry
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Hojjat Naderi-Meshkin
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | | | | | - Baharak Ahmaderaghi
- School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, UK
| | - Richard Murray
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Antoni Berenguer Llergo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC and Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Mark Lawler
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Philip D Dunne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
- Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
116
|
Yin JZ, Shi XQ, Wang MD, Du H, Zhao XW, Li B, Yang MH. Arsenic trioxide elicits anti-tumor activity by inhibiting polarization of M2-like tumor-associated macrophages via Notch signaling pathway in lung adenocarcinoma. Int Immunopharmacol 2023; 117:109899. [PMID: 36827926 DOI: 10.1016/j.intimp.2023.109899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Drug-resistant advanced lung adenocarcinoma (LUAD) is an aggressive malignancy with limited treatment options. A therapeutic strategy for drug-resistant LUAD is to target the tumor associated macrophages (TAMs), because they play an important role in tumor immune escape, progression and metastasis. In this study, we conducted in vivo and in vitro investigation of the inhibitory effect of arsenic trioxide (ATO) on polarization of TAMs educated by LUAD. We found that ATO at a concentration of 4 μM disrupted the Notch-dependent positive feedback loop between LUAD and TAMs. In this loop, ATO inhibited the expression of Jagged1 and Notch1 in LUAD and suppressed M2 polarization via down-regulating Notch-dependent paracrine of CCL2 and IL1β. As a result, the secretion of M2-derived TGF-β1 decreased, thus inducing inhibitions of LUAD proliferation, migration, invasion, colony formation and epithelial-mesenchymal transition. In xenograft mouse models, ATO significantly inhibited tumor growth and down-regulated infiltration of M2-like TAMs in tumor tissues. In clinical LUAD biopsy samples, high Jagged1/Notch1 expression positively correlated with tumor-infiltrated M2-like TAMs, leading to poor prognosis. In conclusion, our results identified a novel tumor immunomodulating function for ATO, which can inhibit the polarization of M2-type TAMs to exert anti-tumor effects in the tumor microenvironment. Our results demonstrated the translational potential of repurposing ATO to target TAMs for lung adenocarcinoma treatment.
Collapse
Affiliation(s)
- Ji-Zhong Yin
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiao-Qian Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai 200434, China
| | - Ming-Dong Wang
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai 200434, China
| | - He Du
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai 200433, China
| | - Xue-Wei Zhao
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai 200434, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China; Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai 200434, China.
| | - Meng-Hang Yang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai 200433, China.
| |
Collapse
|
117
|
Wang L, Gu W, Kalady M, Xin W, Zhou L. Loss of HES1 Expression is Associated with Extracellular Matrix Remodeling and Tumor Immune Suppression in KRAS Mutant Colon Adenocarcinomas. RESEARCH SQUARE 2023:rs.3.rs-2489562. [PMID: 36824959 PMCID: PMC9949260 DOI: 10.21203/rs.3.rs-2489562/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The loss of HES1, a canonical Notch signaling target, may cooperate with KRAS mutations to remodel the extracellular matrix and to suppress the anti-tumor immune response. While HES1 expression is normal in benign hyperplastic polyps and normal colon tissue, HES1 expression is often lost in sessile serrated adenomas/polyps (SSAs/SSPs) and colorectal cancers (CRCs) such as those right-sided CRCs that commonly harbor BRAF or KRAS mutations. To develop a deeper understanding of interaction between KRAS and HES1 in colorectal carcinogenesis, we selected microsatellite stable (MSS) and KRAS mutant or KRAS wild type CRCs that show aberrant expression of HES1 by immunohistochemistry. By comparing the transcriptional landscapes of microsatellite stable (MSS) CRCs with or without nuclear HES1 expression, we investigated differentially expressed genes and activated pathways. We identified pathways and markers in the extracellular matrix and immune microenvironment that are associated with mutations in KRAS. We found that loss of HES1 expression positively correlated with matrix remodeling and epithelial-mesenchymal transition (EMT) but negatively correlated with tumor cell proliferation. Furthermore, loss of HES1 expression in KRAS mutant CRCs correlates with a higher M2 macrophage polarization and activation of IL6 and IL10 immunosuppressive signature. Identifying these HES1-related markers may be useful for prognosis and developing treatment of KRAS-mutant CRCs.
Collapse
Affiliation(s)
| | | | | | - Wei Xin
- University of South Alabama Hospital
| | | |
Collapse
|
118
|
Transcriptome-Based Traits of Radioresistant Sublines of Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24033042. [PMID: 36769365 PMCID: PMC9917840 DOI: 10.3390/ijms24033042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Radioresistance is a major obstacle for the successful therapy of many cancers, including non-small cell lung cancer (NSCLC). To elucidate the mechanism of radioresistance of NSCLC cells and to identify key molecules conferring radioresistance, the radioresistant subclones of p53 wild-type A549 and p53-deficient H1299 cell cultures were established. The transcriptional changes between parental and radioresistant NSCLC cells were investigated by RNA-seq. In total, expression levels of 36,596 genes were measured. Changes in the activation of intracellular molecular pathways of cells surviving irradiation relative to parental cells were quantified using the Oncobox bioinformatics platform. Following 30 rounds of 2 Gy irradiation, a total of 322 genes were differentially expressed between p53 wild-type radioresistant A549IR and parental A549 cells. For the p53-deficient (H1299) NSCLC cells, the parental and irradiated populations differed in the expression of 1628 genes and 1616 pathways. The expression of genes associated with radioresistance reflects the complex biological processes involved in clinical cancer cell eradication and might serve as a potential biomarker and therapeutic target for NSCLC treatment.
Collapse
|
119
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
120
|
Clark AG, Bertrand FE, Sigounas G. A potential requirement for Smad3 phosphorylation in Notch-mediated EMT in colon cancer. Adv Biol Regul 2023; 88:100957. [PMID: 36739740 DOI: 10.1016/j.jbior.2023.100957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Colorectal cancer (CRC) remains a challenging disease to treat due to several factors including stemness and epithelial to mesenchymal transition (EMT). Dysfunctional signaling pathways such as Notch and TGF-β contribute to these phenomena. We previously found that cells expressing constitutively active Notch1 also had increased expression of Smad3, an important member of the TGF-β signaling pathway. We hypothesized that Smad3, mediates the Notch-induced stemness and EMT observed in CRC cells. The human colorectal carcinoma cell line HCT-116, stably transduced with constitutively active Notch-1 (ICN) or a GFP-vector control was treated with different combinations of TGF-β1, DAPT (a Notch inhibitor), or SIS3 (a Smad3 inhibitor). Western blot analysis was performed to determine the effects of Smad3 stimulation and inhibition on Notch and potential downstream EMT-related targets, CD44, Slug and Snail. Smad3 inhibition induced a decrease in Notch1 and Notch3 receptor expression and effectively inhibited CD44, Slug, and Snail expression. Colosphere forming ability was also reduced in cells with inhibited Smad3. These results indicate a key role of TGF-β signaling in Notch1-induced tumorigenesis, and suggest a potential use for Smad3 inhibitors in combination with Notch1 inhibitors that are already in use for CRC treatments.
Collapse
Affiliation(s)
- Alexander G Clark
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Fred E Bertrand
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - George Sigounas
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
121
|
Mei S, Chen X, Wang K, Chen Y. Tumor microenvironment in ovarian cancer peritoneal metastasis. Cancer Cell Int 2023; 23:11. [PMID: 36698173 PMCID: PMC9875479 DOI: 10.1186/s12935-023-02854-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecological malignancies with high morbidity and mortality. The peritoneum is one of the most common metastatic sites in ovarian cancer, involving large amounts of ascites. However, its mechanism is unclear. The peritoneal microenvironment composed of peritoneal effusion and peritoneum creates favorable conditions for ovarian cancer progression and metastasis. Here, we reviewed the peritoneal metastasis patterns and molecular mechanisms of ovarian cancer, as well as major components of the peritoneal microenvironment, peritoneal effusion, and immune microenvironment, and investigated the relationship between the peritoneal microenvironment and ovarian cancer metastasis.
Collapse
Affiliation(s)
- Shuangshuang Mei
- grid.469636.8Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Xi Men Road, Taizhou, 317000 Zhejiang China
| | - Xing Chen
- grid.469636.8Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Xi Men Road, Taizhou, 317000 Zhejiang China
| | - Kai Wang
- grid.469636.8Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Xi Men Road, Taizhou, 317000 Zhejiang China
| | - Yuxin Chen
- grid.469636.8Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University (Enze Hospital, Taizhou Enze Medical Center Group), Tong Yang Road, Taizhou, 318053 Zhejiang China
| |
Collapse
|
122
|
Huang K, Luo W, Fang J, Yu C, Liu G, Yuan X, Liu Y, Wu W. Notch3 signaling promotes colorectal tumor growth by enhancing immunosuppressive cells infiltration in the microenvironment. BMC Cancer 2023; 23:55. [PMID: 36647017 PMCID: PMC9843853 DOI: 10.1186/s12885-023-10526-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Macrophage infiltration in the tumor microenvironment participates in the regulation of tumor progression. Previous studies have found that Notch signaling pathway is involved in regulating the progression of colorectal cancer (CRC), however, the specific mechanism is still unclear. METHODS The correlation between Notch signaling pathway and macrophage infiltration was investigated in TCGA database and verified in clinical samples of patients with CRC using immunohistochemistry. Gene Set Enrichment Analysis was used to find out genes related to Notch3 expression. Colony formation assay, and flow cytometry were utilized to test tumor growth and immune cell infiltration in vitro and in vivo. RESULTS Using bioinformatics analysis and clinical sample validation, we found that Notch3 was highly expressed in colon tumor tissues compared to adjacent normal tissues, and it participated in regulating the recruitment of macrophages to the tumor microenvironment. Furthermore, we found that the Notch3 expression was positively correlated with the expression of macrophage recruitment-related cytokines in colon tumor tissues. Finally, we demonstrated that depletion of Notch3 had no significant effect on the growth of colon tumor cells in vitro, while, attenuated the growth of colon cancer tumors in vivo. Simultaneous, immunosuppressive cells, macrophages and myeloid-derived suppressor cell (MDSC) infiltration were dramatically reduced in the tumor microenvironment. CONCLUSION Our study illustrated that Notch3 could facilitate the progression of CRC by increasing the infiltration of macrophages and MDSCs to promote the immunosuppressive tumor microenvironment. Targeting Notch3 specifically is a potentially effective treatment for CRC.
Collapse
Affiliation(s)
- Kai Huang
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Wenwu Luo
- grid.412679.f0000 0004 1771 3402Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Jinmei Fang
- grid.59053.3a0000000121679639Department of Radiation Oncology, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changjun Yu
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Guangjie Liu
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Xiaodong Yuan
- grid.59053.3a0000000121679639Organ Transplant Center, Department of Hepatobiliary and Transplantation Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun Liu
- grid.59053.3a0000000121679639Department of Radiation Oncology, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenyong Wu
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China ,Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230011 China
| |
Collapse
|
123
|
He R, Zhang H, Zhao H, Yin X, Lu J, Gu C, Gao J, Xu Q. Multiomics Analysis Reveals Cuproptosis-Related Signature for Evaluating Prognosis and Immunotherapy Efficacy in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15020387. [PMID: 36672336 PMCID: PMC9856392 DOI: 10.3390/cancers15020387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cuproptosis is a copper-induced form of mitochondrial cell death which is engaged in the proliferation and migration of a variety of tumors. Nevertheless, the role of cuproptosis in tumor microenvironment (TME) remodeling and antitumor therapy is still poorly understood. We characterized two diverse cuproptosis-associated molecular isoforms in CRC which exhibit distinct prognostic and TME characteristics. Subsequently, we constructed a cuproptosis-associated prognostic model containing five genes and divided the patients into a high CPS-score group and a low CPS-score group. Univariate and multivariate Cox analyses showed that the CPS score could be used as an independent prognostic factor. The nomogram, and its consequent calibration curves, indicated that this prognostic signature had good predictive power for CRC. The analysis of single-cell sequencing data showed the significant expression of HES4 and SPHK1 in various immune and stromal (including fibroblasts) cells. Further studies showed that tumor mutational burden (TMB), high microsatellite instability (MSI-H) ratio, immune checkpoint blockade (ICB), and human leukocyte antigen (HLA) gene expression all positively correlated with the CPS score, predicting a better reaction to immunotherapy in high CPS-core patients. The CPS score constructed from cuproptosis subtypes can be used as a predictive tool to evaluate the prognosis of CRC patients and their response to immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Xu
- Correspondence: ; Tel.: +86-13661778856
| |
Collapse
|
124
|
Lin A, Yao J, Cheng Q, Liu Z, Luo P, Zhang J. Mutations Status of NOTCH Signaling Pathway Predict Prognosis of Immune Checkpoint Inhibitors in Colorectal Cancer. J Inflamm Res 2023; 16:1693-1709. [PMID: 37092128 PMCID: PMC10120821 DOI: 10.2147/jir.s394894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose In recent years, tumour immunotherapy has ushered in a new era of oncology treatment. However, the use of immune checkpoint inhibitors (ICIs) in the treatment of CRC remains limited. There is an urgent clinical need for precise biomarkers that can aid in the screening and treatment of CRC subtypes. Therefore, we focused on the NOTCH pathway mutation status and conducted a systematic analysis for its predictive value of ICI therapy efficacy. Methods We collected mutational and clinical data from cohorts of CRC patients treated with ICIs. The relationship between NOTCH pathway mutations (NOTCH-MT) and CRC immunotherapy prognosis was analysed using univariate and multivariate Cox regression models. CRC cohort data from The Cancer Genome Atlas (TCGA) database were combined to obtain a comprehensive overview of immunogenicity and tumour microenvironment (TME) differences among different NOTCH pathway mutation statuses. Results We observed greater infiltration of M1 macrophages, CD8+ T cells, neutrophils, and activated natural killer (NK) cells with NOTCH-MT status. Immunogenicity was also significantly higher in patients with NOTCH-MT, as were tumour mutational burden (TMB), neoantigen load (NAL), and the number of mutations in DNA damage repair (DDR) pathways. Conclusion NOTCH-MT status was strongly associated with the prognosis of CRC patients treated with ICIs and is expected to serve as a novel biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiarong Yao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Peng Luo; Jian Zhang, Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China, Tel +86-18588447321; +86-13925091863, Email ;
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
125
|
Chan MKK, Chan ELY, Ji ZZ, Chan ASW, Li C, Leung KT, To KF, Tang PMK. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:316-343. [PMID: 37205317 PMCID: PMC10185444 DOI: 10.37349/etat.2023.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/09/2023] [Indexed: 05/21/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is an important pathway for promoting the pathogenesis of inflammatory diseases, including cancer. The roles of TGF-β signaling are heterogeneous and versatile in cancer development and progression, both anticancer and protumoral actions are reported. Interestingly, increasing evidence suggests that TGF-β enhances disease progression and drug resistance via immune-modulatory actions in the tumor microenvironment (TME) of solid tumors. A better understanding of its regulatory mechanisms in the TME at the molecular level can facilitate the development of precision medicine to block the protumoral actions of TGF-β in the TME. Here, the latest information about the regulatory mechanisms and translational research of TGF-β signaling in the TME for therapeutic development had been summarized.
Collapse
Affiliation(s)
- Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Emily Lok-Yiu Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: Patrick Ming-Kuen Tang, Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
126
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
127
|
Antuamwine BB, Bosnjakovic R, Hofmann-Vega F, Wang X, Theodosiou T, Iliopoulos I, Brandau S. N1 versus N2 and PMN-MDSC: A critical appraisal of current concepts on tumor-associated neutrophils and new directions for human oncology. Immunol Rev 2022; 314:250-279. [PMID: 36504274 DOI: 10.1111/imr.13176] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Research on tumor-associated neutrophils (TAN) currently surges because of the well-documented strong clinical relevance of tumor-infiltrating neutrophils. This relevance is illustrated by strong correlations between high frequencies of intratumoral neutrophils and poor outcome in the majority of human cancers. Recent high-dimensional analysis of murine neutrophils provides evidence for unexpected plasticity of neutrophils in murine models of cancer and other inflammatory non-malignant diseases. New analysis tools enable deeper insight into the process of neutrophil differentiation and maturation. These technological and scientific developments led to the description of an ever-increasing number of distinct transcriptional states and associated phenotypes in murine models of disease and more recently also in humans. At present, functional validation of these different transcriptional states and potential phenotypes in cancer is lacking. Current functional concepts on neutrophils in cancer rely mainly on the myeloid-derived suppressor cell (MDSC) concept and the dichotomous and simple N1-N2 paradigm. In this manuscript, we review the historic development of those concepts, critically evaluate these concepts against the background of our own work and provide suggestions for a refinement of current concepts in order to facilitate the transition of TAN research from experimental insight to clinical translation.
Collapse
Affiliation(s)
- Benedict Boateng Antuamwine
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Rebeka Bosnjakovic
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Francisca Hofmann-Vega
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Xi Wang
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Theodosios Theodosiou
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| |
Collapse
|
128
|
Flanagan DJ, Amirkhah R, Vincent DF, Gunduz N, Gentaz P, Cammareri P, McCooey AJ, McCorry AMB, Fisher NC, Davis HL, Ridgway RA, Lohuis J, Leach JDG, Jackstadt R, Gilroy K, Mariella E, Nixon C, Clark W, Hedley A, Markert EK, Strathdee D, Bartholin L, Redmond KL, Kerr EM, Longley DB, Ginty F, Cho S, Coleman HG, Loughrey MB, Bardelli A, Maughan TS, Campbell AD, Lawler M, Leedham SJ, Barry ST, Inman GJ, van Rheenen J, Dunne PD, Sansom OJ. Epithelial TGFβ engages growth-factor signalling to circumvent apoptosis and drive intestinal tumourigenesis with aggressive features. Nat Commun 2022; 13:7551. [PMID: 36477656 PMCID: PMC9729215 DOI: 10.1038/s41467-022-35134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The pro-tumourigenic role of epithelial TGFβ signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFβ signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFβ signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFβ signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFβ signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Raheleh Amirkhah
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Nuray Gunduz
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | - Aoife J McCooey
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Amy M B McCorry
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Natalie C Fisher
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Hayley L Davis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Jeroen Lohuis
- Department of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joshua D G Leach
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Glasgow, UK
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) and Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Elisa Mariella
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
- University of Newcastle upon Tyne, Newcastle, UK
| | - Elke K Markert
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Keara L Redmond
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma M Kerr
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Fiona Ginty
- GE Global Research Center, Niskayuna, NY, USA
| | - Sanghee Cho
- GE Global Research Center, Niskayuna, NY, USA
| | - Helen G Coleman
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Timothy S Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Mark Lawler
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Simon J Leedham
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philip D Dunne
- Cancer Research UK Beatson Institute, Glasgow, UK
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
129
|
Corry SM, McCorry AM, Lannagan TR, Leonard NA, Fisher NC, Byrne RM, Tsantoulis P, Cortes-Lavaud X, Amirkhah R, Redmond KL, McCooey AJ, Malla SB, Rogan E, Sakhnevych S, Gillespie MA, White M, Richman SD, Jackstadt RF, Campbell AD, Maguire S, McDade SS, Longley DB, Loughrey MB, Coleman HG, Kerr EM, Tejpar S, Maughan T, Leedham SJ, Small DM, Ryan AE, Sansom OJ, Lawler M, Dunne PD. Activation of innate-adaptive immune machinery by poly(I:C) exposes a therapeutic vulnerability to prevent relapse in stroma-rich colon cancer. Gut 2022; 71:2502-2517. [PMID: 35477539 PMCID: PMC9664095 DOI: 10.1136/gutjnl-2021-326183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/12/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Stroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy. DESIGN To address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series of in vitro and stroma-rich in vivo models to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours. RESULTS By performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Using in silico, in vitro and in vivo models, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype across in vitro and in vivo models. In an in vivo model of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002). CONCLUSION This study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.
Collapse
Affiliation(s)
- Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Amy Mb McCorry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Niamh A Leonard
- Lambe Institute for Translational Research, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Natalie C Fisher
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ryan M Byrne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | | | - Raheleh Amirkhah
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Keara L Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Aoife J McCooey
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Sudhir B Malla
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emily Rogan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Svetlana Sakhnevych
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Michael A Gillespie
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark White
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Susan D Richman
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Rene-Filip Jackstadt
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) and Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew D Campbell
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Helen G Coleman
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Sabine Tejpar
- Digestive Oncology Unit, University Ospital Gasthuisberg, Leuven, Belgium
| | | | - Simon J Leedham
- Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Donna M Small
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Aideen E Ryan
- Lambe Institute for Translational Research, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Owen J Sansom
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark Lawler
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
130
|
Rahrmann EP, Shorthouse D, Jassim A, Hu LP, Ortiz M, Mahler-Araujo B, Vogel P, Paez-Ribes M, Fatemi A, Hannon GJ, Iyer R, Blundon JA, Lourenço FC, Kay J, Nazarian RM, Hall BA, Zakharenko SS, Winton DJ, Zhu L, Gilbertson RJ. The NALCN channel regulates metastasis and nonmalignant cell dissemination. Nat Genet 2022; 54:1827-1838. [PMID: 36175792 PMCID: PMC9729110 DOI: 10.1038/s41588-022-01182-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.
Collapse
Affiliation(s)
- Eric P Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - David Shorthouse
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amir Jassim
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Linda P Hu
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mariaestela Ortiz
- Molecular Pharmacology Lab, Organoid Models Research and Biology, National Cancer Institute, Leidos Biomedical Research, Frederick, MD, USA
| | - Betania Mahler-Araujo
- Wellcome-MRC Institute of Metabolic Science, Histopathology Core, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Peter Vogel
- Veterinary Pathology Core Laboratory, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta Paez-Ribes
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Atefeh Fatemi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Radhika Iyer
- Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Filipe C Lourenço
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Kay
- Departments of Medicine and of Population and Quantitative Health Sciences, University of Massachusetts Medical School and UMass Memorial Medical Center, Worcester, MA, USA
| | - Rosalynn M Nazarian
- Massachusetts General Hospital, Pathology Service, Dermatopathology Unit, Boston, MA, USA
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Liqin Zhu
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
131
|
Shasha T, Gruijs M, van Egmond M. Mechanisms of colorectal liver metastasis development. Cell Mol Life Sci 2022; 79:607. [PMID: 36436127 PMCID: PMC9701652 DOI: 10.1007/s00018-022-04630-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/28/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, largely due to the development of colorectal liver metastases (CRLM). For the establishment of CRLM, CRC cells must remodel their tumor-microenvironment (TME), avoid the immune system, invade the underlying stroma, survive the hostile environment of the circulation, extravasate into the liver, reprogram the hepatic microenvironment into a permissive pre-metastatic niche, and finally, awake from a dormant state to grow out into clinically detectable CRLM. These steps form part of the invasion-metastasis cascade that relies on reciprocal interactions between the tumor and its ever-changing microenvironment. Such interplay provides a strong rational for therapeutically targeting the TME. In fact, several TME constituents, such as VEGF, TGF-β coreceptor endoglin, and CXCR4, are already targeted in clinical trials. It is, however, of utmost importance to fully understand the complex interactions in the invasion-metastasis cascade to identify novel potential therapeutic targets and prevent the establishment of CRLM, which may ultimately greatly improve patient outcome.
Collapse
Affiliation(s)
- Tal Shasha
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Mandy Gruijs
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands.
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Surgery, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
132
|
Wang J, Qin D, Tao Z, Wang B, Xie Y, Wang Y, Li B, Cao J, Qiao X, Zhong S, Hu X. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer. Front Immunol 2022; 13:1056932. [PMID: 36479114 PMCID: PMC9719959 DOI: 10.3389/fimmu.2022.1056932] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Cuproptosis is a novel identified regulated cell death (RCD), which is correlated with the development, treatment response and prognosis of cancer. However, the potential role of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) of gastric cancer (GC) remains unknown. Methods Transcriptome profiling, somatic mutation, somatic copy number alteration and clinical data of GC samples were downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database to describe the alterations of CRGs from genetic and transcriptional fields. Differential, survival and univariate cox regression analyses of CRGs were carried out to investigate the role of CRGs in GC. Cuproptosis molecular subtypes were identified by using consensus unsupervised clustering analysis based on the expression profiles of CRGs, and further analyzed by GO and KEGG gene set variation analyses (GSVA). Genes in distinct molecular subtypes were also analyzed by GO and KEGG gene enrichment analyses (GSEA). Differentially expressed genes (DEGs) were screened out from distinct molecular subtypes and further analyzed by GO enrichment analysis and univariate cox regression analysis. Consensus clustering analysis of prognostic DEGs was performed to identify genomic subtypes. Next, patients were randomly categorized into the training and testing group at a ratio of 1:1. CRG Risk scoring system was constructed through logistic least absolute shrinkage and selection operator (LASSO) cox regression analysis, univariate and multivariate cox analyses in the training group and validated in the testing and combined groups. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the expression of key Risk scoring genes. Sensitivity and specificity of Risk scoring system were examined by using receiver operating characteristic (ROC) curves. pRRophetic package in R was used to investigate the therapeutic effects of drugs in high- and low- risk score group. Finally, the nomogram scoring system was developed to predict patients' survival through incorporating the clinicopathological features and CRG Risk score. Results Most CRGs were up-regulated in tumor tissues and showed a relatively high mutation frequency. Survival and univariate cox regression analysis revealed that LIAS and FDX1 were significantly associated with GC patients' survival. After consensus unsupervised clustering analysis, GC patients were classified into two cuproptosis molecular subtypes, which were significantly associated with clinical features (gender, age, grade and TNM stage), prognosis, metabolic related pathways and immune cell infiltration in TME of GC. GO enrichment analyses of 84 DEGs, obtained from distinct molecular subtypes, revealed that DEGs primarily enriched in the regulation of metabolism and intracellular/extracellular structure in GC. Univariate cox regression analysis of 84 DEGs further screened out 32 prognostic DEGs. According to the expression profiles of 32 prognostic DEGs, patients were re-classified into two gene subtypes, which were significantly associated with patients' age, grade, T and N stage, and survival of patients. Nest, the Risk score system was constructed with moderate sensitivity and specificity. A high CRG Risk score, characterized by decreased microsatellite instability-high (MSI-H), tumor mutation burden (TMB) and cancer stem cell (CSC) index, and high stromal and immune score in TME, indicated poor survival. Four of five key Risk scoring genes expression were dysregulated in tumor compared with normal samples. Moreover, CRG Risk score was greatly related with sensitivity of multiple drugs. Finally, we established a highly accurate nomogram for promoting the clinical applicability of the CRG Risk scoring system. Discussion Our comprehensive analysis of CRGs in GC demonstrated their potential roles in TME, clinicopathological features, and prognosis. These findings may improve our understanding of CRGs in GC and provide new perceptions for doctors to predict prognosis and develop more effective and personalized therapy strategies.
Collapse
Affiliation(s)
- Jinyan Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongmei Qin
- Department of Pathology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhonghua Tao
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biyun Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizhao Xie
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Li
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianing Cao
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaosu Qiao
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xichun Hu
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Xichun Hu,
| |
Collapse
|
133
|
Li X, Wu Y, Tian T. TGF-β Signaling in Metastatic Colorectal Cancer (mCRC): From Underlying Mechanism to Potential Applications in Clinical Development. Int J Mol Sci 2022; 23:14436. [PMID: 36430910 PMCID: PMC9698504 DOI: 10.3390/ijms232214436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is a serious public health issue, and it has the leading incidence and mortality among malignant tumors worldwide. CRC patients with metastasis in the liver, lung or other distant sites always have poor prognosis. Thus, there is an urgent need to discover the underlying mechanisms of metastatic colorectal cancer (mCRC) and to develop optimal therapy for mCRC. Transforming growth factor-β (TGF-β) signaling plays a significant role in various physiologic and pathologic processes, and aberrant TGF-β signal transduction contributes to mCRC progression. In this review, we summarize the alterations of the TGF-β signaling pathway in mCRC patients, the functional mechanisms of TGF-β signaling, its promotion of epithelial-mesenchymal transition, its facilitation of angiogenesis, its suppression of anti-tumor activity of immune cells in the microenvironment and its contribution to stemness of CRC cells. We also discuss the possible applications of TGF-β signaling in mCRC diagnosis, prognosis and targeted therapies in clinical trials. Hopefully, these research advances in TGF-β signaling in mCRC will improve the development of new strategies that can be combined with molecular targeted therapy, immunotherapy and traditional therapies to achieve better efficacy and benefit mCRC patients in the near future.
Collapse
Affiliation(s)
| | | | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
134
|
Zhu W, Qian W, Liao W, Huang X, Xu J, Qu W, Xue J, Feng F, Liu W, Liu F, Han L. Non-Invasive and Real-Time Monitoring of the Breast Cancer Metastasis Degree via Metabolomics. Cancers (Basel) 2022; 14:cancers14225589. [PMID: 36428687 PMCID: PMC9688400 DOI: 10.3390/cancers14225589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is a serious threat to women's health and metastasis is the major cause of BC-associated mortality. Various techniques are currently used to preoperatively describe the metastatic status of tumors, based on which a comprehensive treatment protocol was determined. However, accurately staging a tumor before surgery remains a challenge, which may lead to the miss of optimal treatment options. More severely, the failure to detect and remove occult micrometastases often causes tumor recurrences. There is an urgent need to develop a more precise and non-invasive strategy for the detection of the tumor metastasis in lymph nodes and distant organs. Based on the facts that tumor metastasis is closely related to the primary tumor microenvironment (TME) evolutions and that metabolomics profiling of the circulatory system can precisely reflect subtle changes within TME, we suppose whether metabolomic technology can be used to achieve non-invasive and real-time monitoring of BC metastatic status. In this study, the metastasis status of BC mouse models with different tumor-bearing times was firstly depicted to mimic clinical anatomic TNM staging system. Metabolomic profiling together with metastasis-related changes in TME among tumor-bearing mice with different metastatic status was conducted. A range of differential metabolites reflecting tumor metastatic states were screened and in vivo experiments proved that two main metastasis-driving factors in TME, TGF-β and hypoxia, were closely related to the regular changes of these metabolites. The differential metabolites level changes were also preliminarily confirmed in a limited number of clinical BC samples. Metabolite lysoPC (16:0) was found to be useful for clinical N stage diagnosis and the possible cause of its changes was analyzed by bioinformatics techniques.
Collapse
Affiliation(s)
- Wanfang Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wenxin Qian
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Wenting Liao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jiawen Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jingwei Xue
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an 271000, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- Zhejiang Center for Safety Study of Drug Substances (Industrial Technology Innovation Platform), Hangzhou 310018, China
| | - Fulei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an 271000, China
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an 271000, China
- Correspondence: (F.L.); (L.H.)
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (F.L.); (L.H.)
| |
Collapse
|
135
|
Geng Y, Feng J, Huang H, Wang Y, Yi X, Wei S, Zhang M, Li Z, Wang W, Hu W. Single-cell transcriptome analysis of tumor immune microenvironment characteristics in colorectal cancer liver metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1170. [PMID: 36467341 PMCID: PMC9708492 DOI: 10.21037/atm-22-5270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 10/22/2023]
Abstract
BACKGROUND Liver metastasis is the leading cause of death in colorectal cancer (CRC) patients, and the precise mechanisms remain unclear. In this study, single-cell RNA sequencing (scRNA-seq) was used to analyze the cellular and molecular heterogeneity between CRC primary lesion and corresponding liver metastasis, and to clarify the characteristics of the tumor microenvironment (TME) in synchronous liver metastasis of CRC. METHODS A case of microsatellite stable (MSS) sigmoid carcinoma with synchronous liver metastasis was selected, and tissues from the primary tumor and the liver metastasis were collected for scRNA-seq. The EdgeR package software was used to identify the differentially expressed genes between cells. Gene Set Enrichment Analysis (GSEA) was performed and the clusterProfiler R package was used for Gene Ontology (GO) enrichment analysis. The SCENIC and CellphoneDB packages were used to reconstruct the transcriptional regulatory networks and to analyze the intercellular interaction network, respectively. RESULTS Compared to the primary tumor, the proportion of myeloid cells in the metastatic tumor was significantly increased, while B cells and plasma cells were decreased. In the metastatic tumor, the myeloid-derived suppressor cell (MDSC) characteristic gene, mannose receptor C-type 1 (MRC1) and tumor associated macrophage 2 (TAM2)-related gene, were highly expressed. Furthermore, angiogenesis, oxidative phosphorylation, and endothelial mesenchymal transition (EMT) of myeloid cells were also significantly enhanced. There were less myeloid cells in primary tumors, and these were mainly monocytes and TAM1; while the number of TAM2 was significantly upregulated in the metastatic samples. In liver metastasis, the T cell population was exhausted, and this was accompanied by a significant increase in the number of CD4+ T cells and a decrease in the number of CD8+ T cells. Furthermore, some immune checkpoint molecules were highly expressed. Interactions between myeloid cells and other cell populations appeared to be strong. CONCLUSIONS The TME of CRC liver metastasis is significantly immunosuppressed. Interactions between myeloid cells and other cell populations in the TME contribute to the establishment of a pro-metastatic niche that promotes colonization and growth of CRC cells in the liver. TAMs may be a potential immunotherapeutic target for MSS CRC.
Collapse
Affiliation(s)
- Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Huang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xing Yi
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mingyue Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhong Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
136
|
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22:316. [PMID: 36229883 PMCID: PMC9558410 DOI: 10.1186/s12935-022-02736-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent digestive cancers, ranking the 2nd cause of cancer-related fatality worldwide. The worldwide burden of CRC is predicted to rise by 60% by 2030. Environmental factors drive, first, inflammation and hence, cancer incidence increase. Main The Notch-signaling system is an evolutionarily conserved cascade, has role in the biological normal developmental processes as well as malignancies. Long non-coding RNAs (LncRNAs) have become major contributors in the advancement of cancer by serving as signal pathways regulators. They can control gene expression through post-translational changes, interactions with micro-RNAs or down-stream effector proteins. Recent emerging evidence has emphasized the role of lncRNAs in controlling Notch-signaling activity, regulating development of several cancers including CRC. Conclusion Notch-associated lncRNAs might be useful prognostic biomarkers or promising potential therapeutic targets for CRC treatment. Therefore, here-in we will focus on the role of “Notch-associated lncRNAs in CRC” highlighting “the impact of Notch-associated lncRNAs as player for cancer induction and/or progression.” Graphical Abstract ![]()
Collapse
Affiliation(s)
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
137
|
Zhou YJ, Lu XF, Chen H, Wang XY, Cheng W, Zhang QW, Chen JN, Wang XY, Jin JZ, Yan FR, Chen H, Li XB. Single-cell Transcriptomics Reveals Early Molecular and Immune Alterations Underlying the Serrated Neoplasia Pathway Toward Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2022; 15:393-424. [PMID: 36216310 PMCID: PMC9791140 DOI: 10.1016/j.jcmgh.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Approximately one-third of colorectal cancers develop from serrated lesions (SLs), including hyperplastic polyp (HP), sessile serrated lesion (SSL), traditional serrated adenoma (TSA), and SSL with dysplasia (SSLD) through the serrated neoplasia pathway, which progresses faster than the conventional adenoma-carcinoma pathway. We sought to depict the currently unclarified molecular and immune alterations by the single-cell landscape in SLs. METHODS We performed single-cell RNA sequencing of 16 SLs (including 4 proximal HPs, 5 SSLs, 2 SSLDs, and 5 TSAs) vs 3 normal colonic tissues. RESULTS A total of 60,568 high-quality cells were obtained. Two distinct epithelial clusters with redox imbalance in SLs were observed, along with upregulation of tumor-promoting SerpinB6 that regulated ROS level. Epithelial clusters of SSL and TSA showed distinct molecular features: SSL-specific epithelium manifested overexpressed proliferative markers with Notch pathway activation, whereas TSA-specific epithelium showed Paneth cell metaplasia with aberrant lysozyme expression. As for immune contexture, enhanced cytotoxic activity of CD8+ T cells was observed in SLs; it was mainly attributable to increased proportion of CD103+CD8+ tissue-resident memory T cells, which might be regulated by retinoic acid metabolism. Microenvironment of SLs was generally immune-activated, whereas some immunosuppressive cells (regulatory T cells, anti-inflammatory macrophages, MDK+IgA+ plasma cells, MMP11-secreting PDGFRA+ fibroblasts) also emerged at early stage and further accumulated in SSLD. CONCLUSION Epithelial, immune, and stromal components in the serrated pathway undergo fundamental alterations. Future molecular subtypes of SLs and potential immune therapy might be developed.
Collapse
Affiliation(s)
- Yu-Jie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Fan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Yuan Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxuan Cheng
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qing-Wei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Nan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yi Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Zheng Jin
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang-Rong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China,Fang-Rong Yan, State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Haoyan Chen, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| | - Xiao-Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Correspondence Address correspondence to: Xiao-Bo Li, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
138
|
Dou Y, Pizarro T, Zhou L. Organoids as a Model System for Studying Notch Signaling in Intestinal Epithelial Homeostasis and Intestinal Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1347-1357. [PMID: 35752229 PMCID: PMC9552028 DOI: 10.1016/j.ajpath.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Organoid culture is an approach that allows three-dimensional growth for stem cells to self-organize and develop multicellular structures. Intestinal organoids have been widely used to study cellular or molecular processes in stem cell and cancer research. These cultures possess the ability to maintain cellular complexity as well as recapitulate many properties of the human intestinal epithelium, thereby providing an ideal in vitro model to investigate cellular and molecular signaling pathways. These include, but are not limited to, the mechanisms required for maintaining balanced populations of epithelial cells. Notch signaling is one of the major pathways of regulating stem cell functions in the gut, driving proliferation and controlling cell fate determination. Notch also plays an important role in regulating tumor progression and metastasis. Understanding how Notch pathway regulates epithelial regeneration and differentiation by using intestinal organoids is critical for studying both homeostasis and pathogenesis of intestinal stem cells that can lead to discoveries of new targets for drug development to treat intestinal diseases. In addition, use of patient-derived organoids can provide effective personalized medicine. This review summarizes the current literature regarding epithelial Notch pathways regulating intestinal homeostasis and regeneration, highlighting the use of organoid cultures and their potential therapeutic applications.
Collapse
Affiliation(s)
- Yingtong Dou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Theresa Pizarro
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
139
|
Si Y, Li L, Zhang W, Liu Q, Liu B. GANT61 exerts anticancer cell and anticancer stem cell capacity in colorectal cancer by blocking the Wnt/β‑catenin and Notch signalling pathways. Oncol Rep 2022; 48:182. [PMID: 36069229 PMCID: PMC9478957 DOI: 10.3892/or.2022.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to assess the anticancer cell and anticancer stem cell (CSC) effects of GANT61, and its regulatory influence on the Wnt/β-catenin and Notch signalling pathways in colorectal cancer (CRC). HT-29 and HCT-116 cells were treated with 0, 2.5, 5, 10, 20 or 40 µM GANT61, after which relative cell viability and the expression of Gli1, β-catenin and Notch1, as well as the percentage of CD133+ cells, were detected. Subsequently, HT-29/HCT-116 cells and CSCs were treated with 20 µM GANT61, 10 mM of the Wnt/β-catenin pathway agonist HLY78, and 30 mM of the Notch pathway agonist JAG1 (alone or in combination), which was followed by the assessment of cell viability and apoptosis. In both cell lines, GANT61 reduced relative cell viability in a time- and dose-dependent manner, inhibited Gli1, β-catenin and Notch1 expression, and decreased the percentage of CD133+ cells in a dose-dependent manner. Furthermore, HLY78 and JAG1 were both found to improve the relative viability, while downregulating the apoptosis of untreated and GANT61-treated HT-29 and HCT-116 cells. Moreover, Wnt/β-catenin and Notch signalling pathway activity were upregulated in CSCs isolated from HT-29 and HCT-116 cells, compared with the associated control groups. GANT61 also reduced the viability of HT-29 and HCT-116 cells and increased apoptosis, whereas HLY78 and JAG1 treatment resulted in the opposite effect. Moreover, both HLY78 and JAG1 attenuated the effects of GANT61 on cellular viability and apoptosis. In conclusion, GANT61 was found to effectively eliminate cancer cells and CSCs by blocking the Wnt/β-catenin and Notch signalling pathways in CRC.
Collapse
Affiliation(s)
- Yanhui Si
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Lei Li
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Weiwei Zhang
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Qiling Liu
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Baochi Liu
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
140
|
Tumor-Associated Neutrophils in Colorectal Cancer Development, Progression and Immunotherapy. Cancers (Basel) 2022; 14:cancers14194755. [PMID: 36230676 PMCID: PMC9563115 DOI: 10.3390/cancers14194755] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The colorectal-cancer (CRC) incidence rate and mortality have remained high for several years. In recent years, immune-checkpoint-inhibitor (ICI) therapy has rapidly developed. However, it is only effective in a few CRC patients with microsatellite-instability-high (MSI-H) or mismatch-repair-deficient (dMMR) CRC. How to improve the efficiency of ICI therapy in CRC patients with microsatellite stability (MSS) remains a huge obstacle. Tumor-associated neutrophils (TANs), which are similar to macrophages, also have N1 and N2 phenotypes. They can be recruited and polarized through different cytokines or chemokines, and then play an antitumor or tumor-promoting role. In CRC, we find that the prognostic significance of TANs is still controversial. In this review, we describe the antitumor regulation of TANs, and their mechanism of promoting tumor progression by boosting the transformation of inflammation into tumors, facilitating tumor-cell proliferation, metastasis and angiogenesis. The targeting of TANs combined with ICIs may be a new treatment model for CRC. Relevant animal experiments have shown good responses, and clinical trials have also been carried out in succession. TANs, as “assistants” of ICI treatment, may become the key to the success of CRC immunotherapy, although no significant results have been obtained.
Collapse
|
141
|
Chan MKK, Chung JYF, Tang PCT, Chan ASW, Ho JYY, Lin TPT, Chen J, Leung KT, To KF, Lan HY, Tang PMK. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550:215925. [DOI: 10.1016/j.canlet.2022.215925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
142
|
Modeling Colorectal Cancer Progression Reveals Niche-Dependent Clonal Selection. Cancers (Basel) 2022; 14:cancers14174260. [PMID: 36077793 PMCID: PMC9454531 DOI: 10.3390/cancers14174260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the deadliest cancers worldwide, with metastasis being the main cause of patient mortality. During CRC progression the complex tumor ecosystem changes in its composition at virtually every stage. However, clonal dynamics and associated niche-dependencies at these stages are unknown. Hence, it is of importance to utilize models that faithfully recapitulate human CRC to define its clonal dynamics. We used an optical barcoding approach in mouse-derived organoids (MDOs) that revealed niche-dependent clonal selection. Our findings highlight that clonal selection is controlled by a site-specific niche, which critically contributes to cancer heterogeneity and has implications for therapeutic intervention.
Collapse
|
143
|
Zahid KR, Raza U, Tumbath S, Jiang L, Xu W, Huang X. Neutrophils: Musketeers against immunotherapy. Front Oncol 2022; 12:975981. [PMID: 36091114 PMCID: PMC9453237 DOI: 10.3389/fonc.2022.975981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Neutrophils, the most copious leukocytes in human blood, play a critical role in tumorigenesis, cancer progression, and immune suppression. Recently, neutrophils have attracted the attention of researchers, immunologists, and oncologists because of their potential role in orchestrating immune evasion in human diseases including cancer, which has led to a hot debate redefining the contribution of neutrophils in tumor progression and immunity. To make this debate fruitful, this review seeks to provide a recent update about the contribution of neutrophils in immune suppression and tumor progression. Here, we first described the molecular pathways through which neutrophils aid in cancer progression and orchestrate immune suppression/evasion. Later, we summarized the underlying molecular mechanisms of neutrophil-mediated therapy resistance and highlighted various approaches through which neutrophil antagonism may heighten the efficacy of the immune checkpoint blockade therapy. Finally, we have highlighted several unsolved questions and hope that answering these questions will provide a new avenue toward immunotherapy revolution.
Collapse
Affiliation(s)
- Kashif Rafiq Zahid
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Soumya Tumbath
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lingxiang Jiang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjuan Xu
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Xiumei Huang,
| |
Collapse
|
144
|
Pang H, Lei D, Guo Y, Yu Y, Liu T, Liu Y, Chen T, Fan C. Three categories of similarities between the placenta and cancer that can aid cancer treatment: Cells, the microenvironment, and metabolites. Front Oncol 2022; 12:977618. [PMID: 36059660 PMCID: PMC9434275 DOI: 10.3389/fonc.2022.977618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most harmful diseases, while pregnancy is a common condition of females. Placenta is the most important organ for fetal growth, which has not been fully understand. It's well known that placenta and solid tumor have some similar biological behaviors. What's more, decidua, the microenvironment of placenta, and metabolism all undergo adaptive shift for healthy pregnancy. Interestingly, decidua and the tumor microenvironment (TME); metabolism changes during pregnancy and cancer cachexia all have underlying links. However, whether the close link between pregnancy and cancer can bring some new ideas to treat cancer is still unclear. So, in this review we note that pregnancy may offer clues to treat cancer related to three categories: from cell perspective, through the shared development process of the placenta and cancer; from microenvironment perspective, though the shared features of the decidua and TME; and from metabolism perspective, through shared metabolites changes during pregnancy and cancer cachexia. Firstly, comparing gene mutations of both placenta and cancer, which is the underlying mechanism of many similar biological behaviors, helps us understand the origin of cancer and find the key factors to restore tumorigenesis. Secondly, exploring how decidua affect placenta development and similarities of decidua and TME is helpful to reshape TME, then to inhibit cancer. Thirdly, we also illustrate the possibility that the altered metabolites during pregnancy may reverse cancer cachexia. So, some key molecules changed in circulation of pregnancy may help relieve cachexia and make survival with cancer realized.
Collapse
Affiliation(s)
- Huiyuan Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuping Guo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ying Yu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
145
|
Wang N, He DN, Wu ZY, Zhu X, Wen XL, Li XH, Guo Y, Wang HJ, Wang ZZ. Oncogenic signaling pathway dysregulation landscape reveals the role of pathways at multiple omics levels in pan-cancer. Front Genet 2022; 13:916400. [PMID: 36061170 PMCID: PMC9428557 DOI: 10.3389/fgene.2022.916400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of signaling pathways plays an essential role in cancer. However, there is not a comprehensive understanding on how oncogenic signaling pathways affect the occurrence and development with a common molecular mechanism of pan-cancer. Here, we investigated the oncogenic signaling pathway dysregulation by using multi-omics data on patients from TCGA from a pan-cancer perspective to identify commonalities across different cancer types. First, the pathway dysregulation profile was constructed by integrating typical oncogenic signaling pathways and the gene expression of TCGA samples, and four molecular subtypes with significant phenotypic and clinical differences induced by different oncogenic signaling pathways were identified: TGF-β+ subtype; cell cycle, MYC, and NF2− subtype; cell cycle and TP53+ subtype; and TGF-β and TP53− subtype. Patients in the TGF-β+ subtype have the best prognosis; meanwhile, the TGF-β+ subtype is associated with hypomethylation. Moreover, there is a higher level of immune cell infiltration but a slightly worse survival prognosis in the cell cycle, MYC, and NF2− subtype patients due to the effect of T-cell dysfunction. Then, the prognosis and subtype classifiers constructed by differential genes on a multi-omics level show great performance, indicating that these genes can be considered as biomarkers with potential therapeutic and prognostic significance for cancers. In summary, our study identified four oncogenic signaling pathway–driven patterns presented as molecular subtypes and their related potential prognostic biomarkers by integrating multiple omics data. Our discovery provides a perspective for understanding the role of oncogenic signaling pathways in pan-cancer.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Dan-Ni He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhe-Yu Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xu Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Xiao-Ling Wen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Xu-Hua Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Yu Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Hong-Jiu Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Zhen-Zhen Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| |
Collapse
|
146
|
Vasquez EG, Nasreddin N, Valbuena GN, Mulholland EJ, Belnoue-Davis HL, Eggington HR, Schenck RO, Wouters VM, Wirapati P, Gilroy K, Lannagan TRM, Flanagan DJ, Najumudeen AK, Omwenga S, McCorry AMB, Easton A, Koelzer VH, East JE, Morton D, Trusolino L, Maughan T, Campbell AD, Loughrey MB, Dunne PD, Tsantoulis P, Huels DJ, Tejpar S, Sansom OJ, Leedham SJ. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell 2022; 29:1213-1228.e8. [PMID: 35931031 PMCID: PMC9592560 DOI: 10.1016/j.stem.2022.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022]
Abstract
Intestinal homeostasis is underpinned by LGR5+ve crypt-base columnar stem cells (CBCs), but following injury, dedifferentiation results in the emergence of LGR5-ve regenerative stem cell populations (RSCs), characterized by fetal transcriptional profiles. Neoplasia hijacks regenerative signaling, so we assessed the distribution of CBCs and RSCs in mouse and human intestinal tumors. Using combined molecular-morphological analysis, we demonstrate variable expression of stem cell markers across a range of lesions. The degree of CBC-RSC admixture was associated with both epithelial mutation and microenvironmental signaling disruption and could be mapped across disease molecular subtypes. The CBC-RSC equilibrium was adaptive, with a dynamic response to acute selective pressure, and adaptability was associated with chemoresistance. We propose a fitness landscape model where individual tumors have equilibrated stem cell population distributions along a CBC-RSC phenotypic axis. Cellular plasticity is represented by position shift along this axis and is influenced by cell-intrinsic, extrinsic, and therapeutic selective pressures.
Collapse
Affiliation(s)
- Ester Gil Vasquez
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Nadia Nasreddin
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Gabriel N Valbuena
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Eoghan J Mulholland
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | | | - Holly R Eggington
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Ryan O Schenck
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Valérie M Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Pratyaksha Wirapati
- Swiss Institute for Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | - Sulochana Omwenga
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Amy M B McCorry
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Alistair Easton
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Rämistrasse 100, 8006 Zürich, Switzerland
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, and Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Dion Morton
- Academic Department of Surgery, University of Birmingham, Birmingham, UK
| | - Livio Trusolino
- Candiolo Cancer Institute FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Timothy Maughan
- Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | | | - Maurice B Loughrey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Petros Tsantoulis
- University of Geneva and Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - David J Huels
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 Amsterdam, the Netherlands
| | - Sabine Tejpar
- Molecular Digestive Oncology Unit, KU Leuven, Leuven, Belgium
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
| | - Simon J Leedham
- Wellcome Centre Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK; Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Rämistrasse 100, 8006 Zürich, Switzerland.
| |
Collapse
|
147
|
Wang S, Cheng L, Wu H, Li G. Mechanisms and prospects of circular RNAs and their interacting signaling pathways in colorectal cancer. Front Oncol 2022; 12:949656. [PMID: 35992800 PMCID: PMC9382640 DOI: 10.3389/fonc.2022.949656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the leading malignant tumor in terms of morbidity and mortality worldwide, and its pathogenesis involves multiple factors, including environment, lifestyle, and genetics. Continuing evidence suggests that circular RNAs (circRNAs), as a novel non-coding RNA, constitute an important genetic variable in the pathogenesis of CRC. These circRNAs with covalently closed-loop structures exist objectively in organisms. They not only have the biological functions of regulating the expression of target genes, changing the activity of proteins, and translating proteins, but also play a key role in the proliferation, invasion, migration, and apoptosis of tumor cells. CRC is one of the most common cancers in which circRNAs are involved in tumorigenesis, metastasis, and drug resistance, and circRNAs have been demonstrated to function through crosstalk with multiple signaling pathways. Therefore, this review summarizes the biological and carcinogenic functions of circRNAs and their related PI3K/AKT, MAPK, Notch, JAK/STAT, Hippo/YAP, WNT/β-catenin, and VEGF signaling pathways in CRC. We further explore the clinical value of circRNAs and important signaling proteins in the diagnosis, prognosis, and treatment of CRC.
Collapse
|
148
|
Lu D, Wang L, Wang L, An L, Huo M, Xu H, Shi J. Probiotic Engineering and Targeted Sonoimmuno-Therapy Augmented by STING Agonist. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201711. [PMID: 35603970 PMCID: PMC9353485 DOI: 10.1002/advs.202201711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Indexed: 05/08/2023]
Abstract
Tumor targeting and effective immunomodulation are of critical significance during tumor treatment by sonodynamic therapy (SDT). Herein, the probiotic engineering of the clinically approved sonosensitizer (hematoporphyrin monomethyl ether (HMME)) is reported onto the probiotic bacterium Bifidobacteria Longum (BiL) for sonosensitive bifidobacterium construction (HMME@BiL cells). Based on the hypoxic tropism feature of the strain, effective tumor-targeted sonodynamic therapeutics can be achieved both in vitro and in vivo. To improve the immunological responses against tumor during sonodynamics, a recently-developed stimulator of interferon genes immune agonist SR717 has been employed to improve the anti-tumor immunity with prominent activities, eradicating both primary and metastatic tumors with high efficiency and satisfied biocompatibility. The present work provides a promising paradigm of microbiotic nanomedicine in a sophisticated sonoimmunotherapeutic strategy against malignant tumors.
Collapse
Affiliation(s)
- Dan Lu
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Liying Wang
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Liping Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Liwei An
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Minfeng Huo
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Huixiong Xu
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jianlin Shi
- Department of Medical UltrasoundShanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentNational Clinical Research Center of Interventional MedicineUltrasound Research and Education InstituteShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| |
Collapse
|
149
|
Yan X, Cheng Y, Zhang X, Hu Y, Huang H, Ren J, Wen B, Yang Y, Xiao K, Hu W, Wang W. NICD3 regulates the expression of MUC5AC and MUC2 by recruiting SMARCA4 and is involved in the differentiation of mucinous colorectal adenocarcinoma. Mol Oncol 2022; 16:3509-3532. [PMID: 35900231 PMCID: PMC9533685 DOI: 10.1002/1878-0261.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/08/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Adenocarcinoma is the most prevalent histological subtype of colorectal cancer (CRC), with mucinous colorectal adenocarcinoma (MCA) being a unique form. Although the mucinous subtype is known to elicit a worse response to chemotherapy and immunotherapy than the nonmucinous subtype, its pathogenesis remains poorly understood. Neurogenic locus notch homolog protein 3 (NOTCH3), a member of the NOTCH subfamilies, is highly expressed in CRC. In the past three decades, many studies have been performed evaluating the biological role of NOTCH3 in CRC. However, the precise activities of NOTCH3 in MCA, as well as the mechanisms involved in its transcriptional control, are yet to be elucidated. Our finding showed that the critical transcriptional regulatory factor transcription activator BRG1 (SMARCA4) directly binds to the intracellular domain of NOTCH3 to control transcriptional regulation. Moreover, RNA‐sequencing results indicated a common targeting effect on the transcriptional activity of mucin‐5AC (MUC5AC) and mucin‐2 (MUC2) in CRC cells by NOTCH3 and SMARCA4. Furthermore, NOTCH3 was found to control the expressions of MUC5AC and MUC2 in a SMARCA4‐dependent manner. MUC5AC and MUC2, which encode two secreted mucins, are located on chromosome 11p15.5, and are linked to the development of MCA. This finding suggests that the interaction between NOTCH3 and SMARCA4 may be involved in MCA differentiation by jointly targeting MUC5AC and MUC2. Patients with MCA are often treated in accordance with CRC guidelines. Determining the relationship between NOTCH3 and SMARCA4 by demonstrating their interactions in the pathophysiology of MCA could provide novel therapeutic targets and help identify potential prognostic markers for MCA.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, 046000, China
| | - Yuan Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xia Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yi Hu
- Fuxing Hospital, Capital Medical University, Beijing, 100038, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jie Ren
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Boye Wen
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuhui Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Keyuan Xiao
- Central laboratory, Changzhi People's Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, 046000, China
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, 046000, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
150
|
Zhu S, Xing C, Li R, Cheng Z, Deng M, Luo Y, Li H, Zhang G, Sheng Y, Peng H, Wang Z. Proteomic profiling of plasma exosomes from patients with B-cell acute lymphoblastic leukemia. Sci Rep 2022; 12:11975. [PMID: 35831551 PMCID: PMC9279438 DOI: 10.1038/s41598-022-16282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
We aimed to comprehensively investigate the proteomic profile and underlying biological function of exosomal proteins associated with B-cell acute lymphoblastic leukemia. Exosomes were isolated from plasma samples collected from five patients with B-ALL and five healthy individuals, and their protein content was quantitatively analyzed by liquid chromatography with tandem mass spectrometry. A total of 342 differentially expressed proteins were identified in patients with B-ALL. The DEPs were mainly associated with protein metabolic processes and protein activity regulation and were significantly enriched in the Notch and autophagy pathways. Furthermore, we found that ADAM17 and ATG3 were upregulated in patients with B-ALL and enriched in the Notch and autophagy pathways, respectively. Further western blot analysis of exosomes collected from additional 18 patients with B-ALL and 10 healthy controls confirmed that both ADAM17 and ATG3 were overexpressed in exosomes derived from patients with B-ALL (p < 0.001). The areas under the curves of ADAM17 and ATG3 were 0.989 and 0.956, respectively, demonstrating their diagnostic potential. In conclusion, ADAM17 and ATG3 in plasma-derived exosomes may contribute to the progression of B-ALL by regulating the Notch and autophagy pathways. Hence, these proteins may represent valuable diagnostic biomarkers and therapeutic targets for B-ALL.
Collapse
Affiliation(s)
- Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunya Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Heng Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| |
Collapse
|