101
|
Zheng K, Hai Y, Xi Y, Zhang Y, Liu Z, Chen W, Hu X, Zou X, Hao J. Integrative multi-omics analysis unveils stemness-associated molecular subtypes in prostate cancer and pan-cancer: prognostic and therapeutic significance. J Transl Med 2023; 21:789. [PMID: 37936202 PMCID: PMC10629187 DOI: 10.1186/s12967-023-04683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Prostate cancer (PCA) is the fifth leading cause of cancer-related deaths worldwide, with limited treatment options in the advanced stages. The immunosuppressive tumor microenvironment (TME) of PCA results in lower sensitivity to immunotherapy. Although molecular subtyping is expected to offer important clues for precision treatment of PCA, there is currently a shortage of dependable and effective molecular typing methods available for clinical practice. Therefore, we aim to propose a novel stemness-based classification approach to guide personalized clinical treatments, including immunotherapy. METHODS An integrative multi-omics analysis of PCA was performed to evaluate stemness-level heterogeneities. Unsupervised hierarchical clustering was used to classify PCAs based on stemness signature genes. To make stemness-based patient classification more clinically applicable, a stemness subtype predictor was jointly developed by using four PCA datasets and 76 machine learning algorithms. RESULTS We identified stemness signatures of PCA comprising 18 signaling pathways, by which we classified PCA samples into three stemness subtypes via unsupervised hierarchical clustering: low stemness (LS), medium stemness (MS), and high stemness (HS) subtypes. HS patients are sensitive to androgen deprivation therapy, taxanes, and immunotherapy and have the highest stemness, malignancy, tumor mutation load (TMB) levels, worst prognosis, and immunosuppression. LS patients are sensitive to platinum-based chemotherapy but resistant to immunotherapy and have the lowest stemness, malignancy, and TMB levels, best prognosis, and the highest immune infiltration. MS patients represent an intermediate status of stemness, malignancy, and TMB levels with a moderate prognosis. We further demonstrated that these three stemness subtypes are conserved across pan-tumor. Additionally, the 9-gene stemness subtype predictor we developed has a comparable capability to 18 signaling pathways to make tumor diagnosis and to predict tumor recurrence, metastasis, progression, prognosis, and efficacy of different treatments. CONCLUSIONS The three stemness subtypes we identified have the potential to be a powerful tool for clinical tumor molecular classification in PCA and pan-cancer, and to guide the selection of immunotherapy or other sensitive treatments for tumor patients.
Collapse
Affiliation(s)
- Kun Zheng
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youlong Hai
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Yukun Zhang
- Beijing University of Chinese Medicine East Hospital, Zaozhuang Hospital, Zaozhuang, 277000, Shandong, China
| | - Zheqi Liu
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wantao Chen
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyong Hu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
102
|
Bustos MA, Yokoe T, Shoji Y, Kobayashi Y, Mizuno S, Murakami T, Zhang X, Sekhar SC, Kim S, Ryu S, Knarr M, Vasilev SA, DiFeo A, Drapkin R, Hoon DSB. MiR-181a targets STING to drive PARP inhibitor resistance in BRCA- mutated triple-negative breast cancer and ovarian cancer. Cell Biosci 2023; 13:200. [PMID: 37932806 PMCID: PMC10626784 DOI: 10.1186/s13578-023-01151-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for the treatment of BRCA-mutated breast cancer (BC), including triple-negative BC (TNBC) and ovarian cancer (OvCa). A key challenge is to identify the factors associated with PARPi resistance; although, previous studies suggest that platinum-based agents and PARPi share similar resistance mechanisms. METHODS Olaparib-resistant (OlaR) cell lines were analyzed using HTG EdgeSeq miRNA Whole Transcriptomic Analysis (WTA). Functional assays were performed in three BRCA-mutated TNBC cell lines. In-silico analysis were performed using multiple databases including The Cancer Genome Atlas, the Genotype-Tissue Expression, The Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Gene Omnibus Expression. RESULTS High miR-181a levels were identified in OlaR TNBC cell lines (p = 0.001) as well as in tumor tissues from TNBC patients (p = 0.001). We hypothesized that miR-181a downregulates the stimulator of interferon genes (STING) and the downstream proinflammatory cytokines to mediate PARPi resistance. BRCA1 mutated TNBC cell lines with miR-181a-overexpression were more resistant to olaparib and showed downregulation in STING and the downstream genes controlled by STING. Extracellular vesicles derived from PARPi-resistant TNBC cell lines horizontally transferred miR-181a to parental cells which conferred PARPi-resistance and targeted STING. In clinical settings, STING levels were positively correlated with interferon gamma (IFNG) response scores (p = 0.01). In addition, low IFNG response scores were associated with worse response to neoadjuvant treatment including PARPi for high-risk HER2 negative BC patients (p = 0.001). OlaR TNBC cell lines showed resistance to platinum-based drugs. OvCa cell lines resistant to platinum showed resistance to olaparib. Knockout of miR-181a significantly improved olaparib sensitivity in OvCa cell lines (p = 0.001). CONCLUSION miR-181a is a key factor controlling the STING pathway and driving PARPi and platinum-based drug resistance in TNBC and OvCa. The miR-181a-STING axis can be used as a potential marker for predicting PARPi responses in TNBC and OvCa tumors.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Takamichi Yokoe
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yoshiaki Shoji
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yuta Kobayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Shodai Mizuno
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Tomohiro Murakami
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Xiaoqing Zhang
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Sreeja C Sekhar
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - SooMin Kim
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Suyeon Ryu
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Matthew Knarr
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Steven A Vasilev
- Department of Gynecologic Oncology Research, SJCI at SJHC, Santa Monica, CA, 90404, USA
| | - Analisa DiFeo
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA.
| |
Collapse
|
103
|
Jacobson DH, Pan S, Fisher J, Secrier M. Multi-scale characterisation of homologous recombination deficiency in breast cancer. Genome Med 2023; 15:90. [PMID: 37919776 PMCID: PMC10621207 DOI: 10.1186/s13073-023-01239-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be identified using 'mutational signatures'. However, these patterns are difficult to reliably infer from exome sequencing. Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describing the current status of a tumour. METHODS We apply two methods for characterising homologous recombination deficiency in breast cancer to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method which leverages small insertions and deletions for high-confidence classification of homologous recombination deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency heterogeneity and differential patterns of tumour microenvironment interactivity. RESULTS We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similarities to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu of interactions with their microenvironment compared to their homologous recombination proficient counterparts, typified by a decreased cancer cell response to TNFα signalling. CONCLUSIONS We apply multi-scale approaches to characterise homologous recombination deficiency in breast cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations into interactions between DNA repair deficient cells and their tumour microenvironment.
Collapse
Affiliation(s)
- Daniel H Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Shi Pan
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
104
|
Takahashi M, Cortés J, Dent R, Pusztai L, McArthur H, Kümmel S, Denkert C, Park YH, Im SA, Ahn JH, Mukai H, Huang CS, Chen SC, Kim MH, Jia L, Li XT, Tryfonidis K, Karantza V, Iwata H, Schmid P. Pembrolizumab Plus Chemotherapy Followed by Pembrolizumab in Patients With Early Triple-Negative Breast Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2342107. [PMID: 37966841 PMCID: PMC10652156 DOI: 10.1001/jamanetworkopen.2023.42107] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
Importance In the phase 3 KEYNOTE-522 study, addition of pembrolizumab to neoadjuvant chemotherapy followed by adjuvant pembrolizumab significantly increased pathologic complete response (pCR) and event-free survival (EFS) vs neoadjuvant chemotherapy in patients with early triple-negative breast cancer. Objective To evaluate efficacy and safety outcomes for patients enrolled in East/Southeast Asia (Asia) in KEYNOTE-522. Design, Setting, and Participants KEYNOTE-522, a multicenter, double-blind, randomized clinical trial, enrolled 1174 patients between March 7, 2017, and September 13, 2018. For interim EFS and overall survival (OS) analyses (data cutoff, March 23, 2021), median follow-up was 39.8 months (range, 30.4-46.9 months) for pembrolizumab plus chemotherapy and 40.8 months (range, 30.1-46.9 months) for placebo plus chemotherapy. Data cutoff for pCR analysis was September 24, 2018. This secondary analysis included adults enrolled in Asia with newly diagnosed, previously untreated, nonmetastatic triple-negative breast cancer (tumor stage T1c and nodal stage N1-2 or tumor stage T2-4 and nodal stage N0-2) and Eastern Cooperative Oncology Group performance status of 0 to 1, regardless of programmed cell death ligand 1 (PD-L1) status. Intervention Patients were randomized 2:1 to 4 cycles of pembrolizumab (200 mg every 3 weeks) or placebo plus carboplatin and paclitaxel and another 4 cycles of pembrolizumab or placebo plus doxorubicin or epirubicin and cyclophosphamide before surgery. After definitive surgery, patients received pembrolizumab or placebo every 3 weeks for 9 cycles or until recurrence or unacceptable toxic effects. Main Outcomes and Measures The main outcome was pCR (no evidence of primary tumor after neoadjuvant therapy or carcinoma in situ after neoadjuvant therapy and no regional lymph node involvement after neoadjuvant therapy) at the time of definitive surgery and EFS. Results A total of 216 of 1174 randomized patients (all female; median [range] age, 46.0 [24.0-71.0] years) were from Korea, Japan, Taiwan, and Singapore (136 in the pembrolizumab plus chemotherapy group and 80 in the placebo plus chemotherapy group). Of these patients, 104 (76.5%) in the pembrolizumab plus chemotherapy group and 60 (75.0%) in the placebo plus chemotherapy group had a tumor PD-L1 combined positive score of 1 or greater. Pathologic complete response was 58.7% (95% CI, 46.7%-69.9%) with pembrolizumab plus chemotherapy and 40.0% (95% CI, 26.4%-54.8%) with placebo plus chemotherapy; benefit was observed regardless of PD-L1 status. Thirteen patients (9.6%) in the pembrolizumab plus chemotherapy group and 20 patients (25.0%) in the placebo plus chemotherapy group had EFS events (hazard ratio, 0.35; 95% CI, 0.17-0.71). The 36-month EFS rate was 91.2% (95% CI, 85.0%-94.9%) with pembrolizumab plus chemotherapy and 77.2% (95% CI, 66.3%-85.0%) with placebo plus chemotherapy. Grade 3 to 4 treatment-related adverse events occurred in 109 patients (80.1%) receiving pembrolizumab plus chemotherapy and 64 patients (81.0%) receiving placebo plus chemotherapy. Conclusions and Relevance In this subgroup analysis of patients enrolled in Asia in KEYNOTE-522, neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab led to clinically meaningful improvements in pCR and EFS vs neoadjuvant chemotherapy alone. These findings support the use of neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab as a standard-of-care therapy for patients in Asian countries with early triple-negative breast cancer. Trial Registration ClinicalTrials.gov Identifier: NCT03036488.
Collapse
Affiliation(s)
- Masato Takahashi
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Javier Cortés
- International Breast Cancer Center, Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- Medical Scientia Innovation Research (MEDSIR), Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Rebecca Dent
- National Cancer Center Singapore, Duke-NUS Medical School, Singapore
| | - Lajos Pusztai
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Heather McArthur
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Sherko Kümmel
- Breast Unit, Department of Gynecology with Breast Center, Kliniken Essen-Mitte, Essen, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Yeon Hee Park
- Hematology-Oncology, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Hee Ahn
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hirofumi Mukai
- National Cancer Center Hospital East, Kashiwa-shi, Japan
| | | | | | - Min Hwan Kim
- Yonsei University College of Medicine, Seoul, Korea
| | - Liyi Jia
- Merck & Co Inc, Rahway, New Jersey
| | | | | | | | | | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
105
|
Jiang M, Liu J, Li Q, Xu B. The trichotomy of HER2 expression confers new insights into the understanding and managing for breast cancer stratified by HER2 status. Int J Cancer 2023; 153:1324-1336. [PMID: 37314204 DOI: 10.1002/ijc.34570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/15/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a tyrosine kinase receptor that plays a carcinogenic role in breast cancer (BC) through gene amplification, mutation, or overexpression. Traditional methods of HER2 detection were divided into positive (immunohistochemistry (IHC) 3+/fluorescence in situ hybridization (FISH) amplification) and negative (IHC 2+/FISH-, IHC 1+, IHC 0) according to the dichotomy method. Anti-HER2-targeted therapies, such as trastuzumab and pertuzumab, have significantly improved the prognosis of HER2-positive patients. However, up to 75% to 85% of patients remain HER2-negative. In recent years, with the rapid development of molecular biology, gene detection technology, targeted therapy, and immunotherapy, researchers have actively explored the clinicopathological characteristics, molecular biological characteristics, treatment methods, and HER2 detection methods of HER2-low/zero breast cancer. With the clinical efficacy of new anti-HER2 targeted drugs, accurate classification of breast cancer is very important for the treatment choice. Therefore, the following review summarizes the necessity of developing HER2 detection methods, and the clinicopathological and drug treatment characteristics of patients with HER2-low/zero, to light the dawn of the treatment of breast cancer patients with HER2-low/zero expression.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxuan Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
106
|
Jin X, Zhou YF, Ma D, Zhao S, Lin CJ, Xiao Y, Fu T, Liu CL, Chen YY, Xiao WX, Liu YQ, Chen QW, Yu Y, Shi LM, Shi JX, Huang W, Robertson JFR, Jiang YZ, Shao ZM. Molecular classification of hormone receptor-positive HER2-negative breast cancer. Nat Genet 2023; 55:1696-1708. [PMID: 37770634 DOI: 10.1038/s41588-023-01507-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most prevalent type of breast cancer, in which endocrine therapy resistance and distant relapse remain unmet challenges. Accurate molecular classification is urgently required for guiding precision treatment. We established a large-scale multi-omics cohort of 579 patients with HR+/HER2- breast cancer and identified the following four molecular subtypes: canonical luminal, immunogenic, proliferative and receptor tyrosine kinase (RTK)-driven. Tumors of these four subtypes showed distinct biological and clinical features, suggesting subtype-specific therapeutic strategies. The RTK-driven subtype was characterized by the activation of the RTK pathways and associated with poor outcomes. The immunogenic subtype had enriched immune cells and could benefit from immune checkpoint therapy. In addition, we developed convolutional neural network models to discriminate these subtypes based on digital pathology for potential clinical translation. The molecular classification provides insights into molecular heterogeneity and highlights the potential for precision treatment of HR+/HER2- breast cancer.
Collapse
Affiliation(s)
- Xi Jin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Fan Zhou
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tong Fu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Yu Chen
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wen-Xuan Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ya-Qing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qing-Wang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Le-Ming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Jin-Xiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | | | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
107
|
Litton JK, Regan MM, Pusztai L, Rugo HS, Tolaney SM, Garrett-Mayer E, Amiri-Kordestani L, Basho RK, Best AF, Boileau JF, Denkert C, Foster JC, Harbeck N, Jacene HA, King TA, Mason G, O'Sullivan CC, Prowell TM, Richardson AL, Sepulveda KA, Smith ML, Tjoe JA, Turashvili G, Woodward WA, Butler LP, Schwartz EI, Korde LA. Standardized Definitions for Efficacy End Points in Neoadjuvant Breast Cancer Clinical Trials: NeoSTEEP. J Clin Oncol 2023; 41:4433-4442. [PMID: 37433103 PMCID: PMC10522109 DOI: 10.1200/jco.23.00435] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
PURPOSE The Standardized Definitions for Efficacy End Points (STEEP) criteria, established in 2007 and updated in 2021 (STEEP 2.0), provide standardized definitions of adjuvant breast cancer (BC) end points. STEEP 2.0 identified a need to separately address end points for neoadjuvant clinical trials. The multidisciplinary NeoSTEEP working group of experts was convened to critically evaluate and align neoadjuvant BC trial end points. METHODS The NeoSTEEP working group concentrated on neoadjuvant systemic therapy end points in clinical trials with efficacy outcomes-both pathologic and time-to-event survival end points-particularly for registrational intent. Special considerations for subtypes and therapeutic approaches, imaging, nodal staging at surgery, bilateral and multifocal diseases, correlative tissue collection, and US Food and Drug Administration regulatory considerations were contemplated. RESULTS The working group recommends a preferred definition of pathologic complete response (pCR) as the absence of residual invasive cancer in the complete resected breast specimen and all sampled regional lymph nodes (ypT0/Tis ypN0 per AJCC staging). Residual cancer burden should be a secondary end point to facilitate future assessment of its utility. Alternative end points are needed for hormone receptor-positive disease. Time-to-event survival end point definitions should pay particular attention to the measurement starting point. Trials should include end points originating at random assignment (event-free survival and overall survival) to capture presurgery progression and deaths as events. Secondary end points adapted from STEEP 2.0, which are defined from starting at curative-intent surgery, may also be appropriate. Specification and standardization of biopsy protocols, imaging, and pathologic nodal evaluation are also crucial. CONCLUSION End points in addition to pCR should be selected on the basis of clinical and biologic aspects of the tumor and the therapeutic agent investigated. Consistent prespecified definitions and interventions are paramount for clinically meaningful trial results and cross-trial comparison.
Collapse
Affiliation(s)
- Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Meredith M. Regan
- Division of Biostatistics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | - Hope S. Rugo
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Reva K. Basho
- The Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA
| | - Ana F. Best
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD
| | | | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Jared C. Foster
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD
| | - Nadia Harbeck
- The Breast Center, Department of Obstetrics and Gynecology and Comprehensive Cancer Center Munich, LMU University Hospital, Munich, Germany
| | | | - Tari A. King
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA
| | - Ginny Mason
- The Inflammatory Breast Cancer Research Foundation, Broadway, VA
| | | | - Tatiana M. Prowell
- US Food and Drug Administration, Silver Spring, MD
- Women's Malignancies Disease Group, Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | | | | | | - Judy A. Tjoe
- Division of Breast Surgery, Department of Surgery, Novant Health, Greensboro, NC
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA
| | - Wendy A. Woodward
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Elena I. Schwartz
- Coordinating Center for Clinical Trials, National Cancer Institute, Rockville, MD
| | - Larissa A. Korde
- Cancer Therapy and Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD
| |
Collapse
|
108
|
Topalian SL, Forde PM, Emens LA, Yarchoan M, Smith KN, Pardoll DM. Neoadjuvant immune checkpoint blockade: A window of opportunity to advance cancer immunotherapy. Cancer Cell 2023; 41:1551-1566. [PMID: 37595586 PMCID: PMC10548441 DOI: 10.1016/j.ccell.2023.07.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023]
Abstract
Among new treatment approaches for patients with cancer, few have accelerated as quickly as neoadjuvant immune checkpoint blockade (ICB). Neoadjuvant cancer therapy is administered before curative-intent surgery in treatment-naïve patients. Conventional neoadjuvant chemotherapy and radiotherapy are primarily intended to reduce tumor size, improving surgical resectability. However, recent scientific evidence outlined here suggests that neoadjuvant immunotherapy can expand and transcriptionally modify tumor-specific T cell clones to enhance both intratumoral and systemic anti-tumor immunity. It further offers a unique "window of opportunity" to explore mechanisms and identify novel biomarkers of ICB response and resistance, opening possibilities for refining long-term clinical outcome predictions and developing new, more highly effective ICB combination therapies. Here, we examine advances in clinical and scientific knowledge gleaned from studies in select cancers and describe emerging key principles relevant to neoadjuvant ICB across many cancer types.
Collapse
Affiliation(s)
- Suzanne L Topalian
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Patrick M Forde
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Mark Yarchoan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kellie N Smith
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
109
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
110
|
Gong R, Ma Z, He L, Jiang S, Cao D, Cheng Y. Identification and evaluation of a novel PARP1 inhibitor for the treatment of triple-negative breast cancer. Chem Biol Interact 2023; 382:110567. [PMID: 37271214 DOI: 10.1016/j.cbi.2023.110567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a particularly invasive subtype of breast cancer and usually has a poor prognosis due to the lack of effective therapeutic targets. Approximately 25% of TNBC patients carry a breast cancer susceptibility gene1/2 (BRCA1/2) mutation. Clinically, PARP1 inhibitors have been approved for the treatment of patients with BRCA1/2-mutated breast cancer through the mechanism of synthetic lethality. In this study, we identified compound 6 {systematic name: 2-[2-(4-Hydroxy-phenyl)-vinyl]-3H-quinazolin-4-one} as a novel PARP1 inhibitor from established virtual screening methods. Compound 6 exerted stronger PARP1 inhibitory activity and anti-cancer activity as compared to olaparib in BRCA1-mutated TNBC cells and TNBC patient-derived organoids. Unexpectedly, we found that compound 6 also significantly inhibited cell viability, proliferation, and induced cell apoptosis in BRCA wild-type TNBC cells. To further elucidate the underlying molecular mechanism, we found that tankyrase (TNKS), a vital promoter of homologous-recombination repair, was a potential target of compound 6 by cheminformatics analysis. Compound 6 not only decreased the expression of PAR, but also down-regulated the expression of TNKS, thus resulting in significant DNA single-strand and double-strand breaks in BRCA wild-type TNBC cells. In addition, we demonstrated that compound 6 enhanced the sensitivity of BRCA1-mutated and wild-type TNBC cells to chemotherapy including paclitaxel and cisplatin. Collectively, our study identified a novel PARP1 inhibitor, providing a therapeutic candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Rong Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - ZhongYe Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - LinHao He
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - ShiLong Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - DongSheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.
| |
Collapse
|
111
|
Chehayeb RJ, Kahn A, Pusztai L. Treatment efficacy score: a better surrogate for arm-level survival differences in neoadjuvant breast cancer trials? Future Oncol 2023; 19:1945-1951. [PMID: 37767612 DOI: 10.2217/fon-2022-1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Neoadjuvant chemotherapy is widely used in the therapy of stage II-III breast cancers and pathologic complete response (pCR; ypT0/is, ypN0) predicts excellent long-term survival. However, the correlation between improvement in pCR rate and survival is highly variable across trials. A major limitation of pCR is that it does not capture downstaging in patients with residual disease. We previously introduced the residual cancer burden score that measures pathologic response on a continuous scale. Comparison of residual cancer burden score distributions between trial arms reflects treatment efficacy more accurately than differences in pCR rate. We developed the treatment efficacy score as a new statistical metric that appears to be a better surrogate for trial arm-level survival improvement than pCR rate difference.
Collapse
Affiliation(s)
| | - Adriana Kahn
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
112
|
Steenbruggen TG, Wolf DM, Thijssen B, Sanders J, Cornelissen S, Salgado R, Mittempergher L, Bhaskaran R, Broeks A, Lips EH, Siesling S, Sonke GS, Horlings HM, van 't Veer LJ. Characterization of the Tumor Microenvironment of De Novo Oligometastatic Breast Cancer in a Nationwide Cohort. JCO Precis Oncol 2023; 7:e2200670. [PMID: 37738542 DOI: 10.1200/po.22.00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/25/2023] [Accepted: 07/30/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE Oligometastatic breast cancer (OMBC) has a more favorable outcome than widespread metastatic breast cancer. Some patients with OMBC achieve long-term remission if treated with multimodality therapy, including systemic and locally ablative therapies. However, not all patients with OMBC benefit from such treatment, while all experience toxicity. To explore biomarkers identifying patients with OMBC and potential long-term survival, we compared tumor-immune characteristics of patients with OMBC and long-term versus shorter-term survival. MATERIALS AND METHODS We collected tumor tissue of 97 patients with de novo OMBC (≤5 metastases) via the Dutch nationwide cancer and pathology registries using a case-control design. Long-term survivors (LTS) were defined as patients alive ≥10 years since OMBC diagnosis. Fifty-five LTS and 42 shorter-term survivors (STS) were included. Median follow-up was 15 years (IQR, 14-16). Tumor characteristics and infiltrating immune cells were assessed by immunohistochemistry and next-generation RNA-sequencing. Association of the resulting 52 biomarkers with long-term survival was assessed using logistic regression. Associations with survival within LTS were assessed using Cox-proportional hazards modeling. P values were adjusted for multiple hypothesis testing. RESULTS Most patients had estrogen receptor (ER)-positive OMBC (n = 86; 89%) and 23 (24%) had human epidermal growth factor receptor 2-positive disease. ER positivity in primary tumors distinguished LTS from STS. In addition, extracellular matrix (ECM)2-low and ECM4-high distinguished between long-term and shorter-term survival. Immune levels in the primary tumor did not associate with LTS. However, within the LTS subset, higher immune levels associated with improved progression-free survival. CONCLUSION We identified tumor and ECM features in the primary tumor of patients with de novo OMBC that were associated with long-term survival. Our data should be validated in other patients with OMBC before they can be used in clinical practice.
Collapse
Affiliation(s)
- Tessa G Steenbruggen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Bram Thijssen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sten Cornelissen
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, VIC, Australia
| | | | - Rajith Bhaskaran
- Research and Development, Agendia NV, Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Esther H Lips
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine Siesling
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation, (IKNL), Utrecht, the Netherlands
- Department of Health Technology and Services Research, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hugo M Horlings
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California, San Francisco, CA
| |
Collapse
|
113
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
114
|
Montazeri Aliabadi H, Manda A, Sidgal R, Chung C. Targeting Breast Cancer: The Familiar, the Emerging, and the Uncharted Territories. Biomolecules 2023; 13:1306. [PMID: 37759706 PMCID: PMC10526846 DOI: 10.3390/biom13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer became the most diagnosed cancer in the world in 2020. Chemotherapy is still the leading clinical strategy in breast cancer treatment, followed by hormone therapy (mostly used in hormone receptor-positive types). However, with our ever-expanding knowledge of signaling pathways in cancer biology, new molecular targets are identified for potential novel molecularly targeted drugs in breast cancer treatment. While this has resulted in the approval of a few molecularly targeted drugs by the FDA (including drugs targeting immune checkpoints), a wide array of signaling pathways seem to be still underexplored. Also, while combinatorial treatments have become common practice in clinics, the majority of these approaches seem to combine molecularly targeted drugs with chemotherapeutic agents. In this manuscript, we start by analyzing the list of FDA-approved molecularly targeted drugs for breast cancer to evaluate where molecular targeting stands in breast cancer treatment today. We will then provide an overview of other options currently under clinical trial or being investigated in pre-clinical studies.
Collapse
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | | | | | | |
Collapse
|
115
|
Bhardwaj PV, Wang Y, Brunk E, Spanheimer PM, Abdou YG. Advances in the Management of Early-Stage Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:12478. [PMID: 37569851 PMCID: PMC10419523 DOI: 10.3390/ijms241512478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with both inter- and intratumor heterogeneity, thought to result in a more aggressive course and worse outcomes. Neoadjuvant therapy (NAT) has become the preferred treatment modality of early-stage TNBC as it allows for the downstaging of tumors in the breast and axilla, monitoring early treatment response, and most importantly, provides important prognostic information that is essential to determining post-surgical therapies to improve outcomes. It focuses on combinations of systemic drugs to optimize pathologic complete response (pCR). Excellent response to NAT has allowed surgical de-escalation in ideal candidates. Further, treatment algorithms guide the systemic management of patients based on their pCR status following surgery. The expanding knowledge of molecular pathways, genomic sequencing, and the immunological profile of TNBC has led to the use of immune checkpoint inhibitors and targeted agents, including PARP inhibitors, further revolutionizing the therapeutic landscape of this clinical entity. However, subgroups most likely to benefit from these novel approaches in TNBC remain elusive and are being extensively studied. In this review, we describe current practices and promising therapeutic options on the horizon for TNBC, surgical advances, and future trends in molecular determinants of response to therapy in early-stage TNBC.
Collapse
Affiliation(s)
- Prarthna V. Bhardwaj
- Division of Hematology-Oncology, University of Massachusetts Chan Medical School—Baystate, Springfield, MA 01199, USA
| | - Yue Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Brunk
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genomic Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Computational Medicine Program, UNC Chapel Hill, NC 27599, USA
| | - Philip M. Spanheimer
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yara G. Abdou
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
116
|
Ensenyat-Mendez M, Orozco JIJ, Llinàs-Arias P, Íñiguez-Muñoz S, Baker JL, Salomon MP, Martí M, DiNome ML, Cortés J, Marzese DM. Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer. COMMUNICATIONS MEDICINE 2023; 3:93. [PMID: 37430006 DOI: 10.1038/s43856-023-00311-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/31/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) improve clinical outcomes in triple-negative breast cancer (TNBC) patients. However, a subset of patients does not respond to treatment. Biomarkers that show ICI predictive potential in other solid tumors, such as levels of PD-L1 and the tumor mutational burden, among others, show a modest predictive performance in patients with TNBC. METHODS We built machine learning models based on pre-ICI treatment gene expression profiles to construct gene expression classifiers to identify primary TNBC ICI-responder patients. This study involved 188 ICI-naïve and 721 specimens treated with ICI plus chemotherapy, including TNBC tumors, HR+/HER2- breast tumors, and other solid non-breast tumors. RESULTS The 37-gene TNBC ICI predictive (TNBC-ICI) classifier performs well in predicting pathological complete response (pCR) to ICI plus chemotherapy on an independent TNBC validation cohort (AUC = 0.86). The TNBC-ICI classifier shows better performance than other molecular signatures, including PD-1 (PDCD1) and PD-L1 (CD274) gene expression (AUC = 0.67). Integrating TNBC-ICI with molecular signatures does not improve the efficiency of the classifier (AUC = 0.75). TNBC-ICI displays a modest accuracy in predicting ICI response in two different cohorts of patients with HR + /HER2- breast cancer (AUC = 0.72 to pembrolizumab and AUC = 0.75 to durvalumab). Evaluation of six cohorts of patients with non-breast solid tumors treated with ICI plus chemotherapy shows overall poor performance (median AUC = 0.67). CONCLUSION TNBC-ICI predicts pCR to ICI plus chemotherapy in patients with primary TNBC. The study provides a guide to implementing the TNBC-ICI classifier in clinical studies. Further validations will consolidate a novel predictive panel to improve the treatment decision-making for patients with TNBC.
Collapse
Affiliation(s)
- Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Sandra Íñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jennifer L Baker
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew P Salomon
- Department of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Mercè Martí
- Immunology Unit, Department of Cell Biology, Physiology, and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- Medical Scientia Innovation Research (MedSIR), Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
117
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
118
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
119
|
Nederlof I, Voorwerk L, Kok M. Facts and Hopes in Immunotherapy for Early-Stage Triple-Negative Breast Cancer. Clin Cancer Res 2023; 29:2362-2370. [PMID: 36622327 PMCID: PMC10320476 DOI: 10.1158/1078-0432.ccr-22-0701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 01/10/2023]
Abstract
A substantial fraction of early-stage triple-negative breast cancer (eTNBC) is characterized by high levels of stromal tumor-infiltrating lymphocytes (sTIL) and has a good prognosis even without systemic treatment, highlighting the importance of an endogenous anticancer immune response. Still, a considerable proportion of patients with eTNBC need some "therapeutical push" to kick-start this immune response. Exploiting this immune response with immune-checkpoint inhibition (ICI), in combination with chemotherapy, has made its way into standard of care in eTNBC. Major challenges in the near future include finding those patients with eTNBC who can be treated with ICI alone or with a reduced chemotherapy backbone. Exploring the optimal duration of ICI and finding biomarkers to predict response will be key to enable personalized implementation of ICI in patients with eTNBC. For patients who currently do not respond effectively to ICI plus chemotherapy, challenges lie in finding new immunomodulatory therapies and developing response-guided neoadjuvant approaches.
Collapse
Affiliation(s)
- Iris Nederlof
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leonie Voorwerk
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marleen Kok
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
120
|
Shen L, Huang H, Li J, Chen W, Yao Y, Hu J, Zhou J, Huang F, Ni C. Exploration of prognosis and immunometabolism landscapes in ER+ breast cancer based on a novel lipid metabolism-related signature. Front Immunol 2023; 14:1199465. [PMID: 37469520 PMCID: PMC10352658 DOI: 10.3389/fimmu.2023.1199465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Lipid metabolic reprogramming is gaining attention as a hallmark of cancers. Recent mounting evidence indicates that the malignant behavior of breast cancer (BC) is closely related to lipid metabolism. Here, we focus on the estrogen receptor-positive (ER+) subtype, the most common subgroup of BC, to explore immunometabolism landscapes and prognostic significance according to lipid metabolism-related genes (LMRGs). Methods Samples from The Cancer Genome Atlas (TCGA) database were used as training cohort, and samples from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), Gene Expression Omnibus (GEO) datasets and our cohort were applied for external validation. The survival-related LMRG molecular pattern and signature were constructed by unsupervised consensus clustering and least absolute shrinkage and selection operator (LASSO) analysis. A lipid metabolism-related clinicopathologic nomogram was established. Gene enrichment and pathway analysis were performed to explore the underlying mechanism. Immune landscapes, immunotherapy and chemotherapy response were further explored. Moreover, the relationship between gene expression and clinicopathological features was assessed by immunohistochemistry. Results Two LMRG molecular patterns were identified and associated with distinct prognoses and immune cell infiltration. Next, a prognostic signature based on nine survival-related LMRGs was established and validated. The signature was confirmed to be an independent prognostic factor and an optimal nomogram incorporating age and T stage (AUC of 5-year overall survival: 0.778). Pathway enrichment analysis revealed differences in immune activities, lipid biosynthesis and drug metabolism by comparing groups with low- and high-risk scores. Further exploration verified different immune microenvironment profiles, immune checkpoint expression, and sensitivity to immunotherapy and chemotherapy between the two groups. Finally, arachidonate 15-lipoxygenase (ALOX15) was selected as the most prominent differentially expressed gene between the two groups. Its expression was positively related to larger tumor size, more advanced tumor stage and vascular invasion in our cohort (n = 149). Discussion This is the first lipid metabolism-based signature with value for prognosis prediction and immunotherapy or chemotherapy guidance for ER+ BC.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiaxin Li
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yao Yao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengbo Huang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
121
|
Aristei C, Kaidar-Person O, Boersma L, Leonardi MC, Offersen B, Franco P, Arenas M, Bourgier C, Pfeffer R, Kouloulias V, Bölükbaşı Y, Meattini I, Coles C, Luis AM, Masiello V, Palumbo I, Morganti AG, Perrucci E, Tombolini V, Krengli M, Marazzi F, Trigo L, Borghesi S, Ciabattoni A, Ratoša I, Valentini V, Poortmans P. The 2022 Assisi Think Tank Meeting: White paper on optimising radiation therapy for breast cancer. Crit Rev Oncol Hematol 2023; 187:104035. [PMID: 37244324 DOI: 10.1016/j.critrevonc.2023.104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
The present white paper, referring to the 4th Assisi Think Tank Meeting on breast cancer, reviews state-of-the-art data, on-going studies and research proposals. <70% agreement in an online questionnaire identified the following clinical challenges: 1: Nodal RT in patients who have a) 1-2 positive sentinel nodes without ALND (axillary lymph node dissection); b) cN1 disease transformed into ypN0 by primary systemic therapy and c) 1-3 positive nodes after mastectomy and ALND. 2. The optimal combination of RT and immunotherapy (IT), patient selection, IT-RT timing, and RT optimal dose, fractionation and target volume. Most experts agreed that RT- IT combination does not enhance toxicity. 3: Re-irradiation for local relapse converged on the use of partial breast irradiation after second breast conserving surgery. Hyperthermia aroused support but is not widely available. Further studies are required to finetune best practice, especially given the increasing use of re-irradiation.
Collapse
Affiliation(s)
- C Aristei
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy.
| | - O Kaidar-Person
- Breast Radiation Unit, Radiation Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - L Boersma
- Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M C Leonardi
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - B Offersen
- Department of Experimental Clinical Oncology, Department of Oncology, Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - P Franco
- Depatment of Translational Medicine, University of Eastern Piedmont and Department of Radiation Oncology, 'Maggiore della Carita`' University Hospital, Novara, Italy
| | - M Arenas
- Universitat Rovira I Virgili, Radiation Oncology Department, Hospital Universitari Sant Hoan de Reus, IISPV, Spain
| | - C Bourgier
- Radiation Oncology, ICM-Val d' Aurelle, Univ Montpellier, Montpellier, France
| | - R Pfeffer
- Oncology Institute, Assuta Medical Center, Tel Aviv and Ben Gurion University Medical School, Israel
| | - V Kouloulias
- 2nd Department of Radiology, Radiotherapy Unit, Medical School, National and Kapodistrian University of Athens, Greece
| | - Y Bölükbaşı
- Koc University, Faculty of Medicine, Department of Radiation Oncology, Istanbul, Turkey
| | - I Meattini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence & Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - C Coles
- Department of Oncology, University of Cambridge, UK
| | - A Montero Luis
- Department of Radiation Oncology, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - V Masiello
- Unità Operativa di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - I Palumbo
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy
| | - A G Morganti
- DIMES, Alma Mater Studiorum Bologna University, Bologna, Italy; Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum Bologna University, Bologna, Italy
| | - E Perrucci
- Radiation Oncology Section, Perugia General Hospital, Perugia, Italy
| | - V Tombolini
- Radiation Oncology, Department of Radiological, Oncological and Pathological Science, University "La Sapienza", Roma, Italy
| | - M Krengli
- DISCOG, Università di Padova e Istituto Oncologico Veneto - IRCCS, Italy
| | - F Marazzi
- Unità Operativa di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - L Trigo
- Service of Brachytherapy, Department of Image and Radioncology, Instituto Português Oncologia Porto Francisco Gentil E.P.E., Portugal
| | - S Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - A Ciabattoni
- Department of Radiation Oncology, San Filippo Neri Hospital, ASL Rome 1, Rome, Italy
| | - I Ratoša
- Division of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - V Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore e Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - P Poortmans
- University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Department of Radiation Oncology, Iridium Kankernetwerk, Antwerp, Belgium, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
122
|
Tarekegn K, Keskinkilic M, Kristoff TJ, Evans ST, Kalinsky K. The role of immune checkpoint inhibition in triple negative breast cancer. Expert Rev Anticancer Ther 2023; 23:1095-1106. [PMID: 37771270 DOI: 10.1080/14737140.2023.2265059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Immunotherapy has revolutionized cancer treatment, including TNBC, which has limited options of treatment and poor prognosis. ICIs studied in TNBC include pembrolizumab, nivolumab, atezolizumab, and durvalumab. Initial studies exploring ICI monotherapy demonstrated promising yet limited responses. Subsequent studies, KEYNOTE 522 and KEYNOTE 355, which combined ICI with chemotherapy, have resulted in the FDA approval of pembrolizumab in the early-stage and metastatic setting, respectively. AREAS COVERED This article provides a comprehensive review of the role of ICI in the treatment of TNBC. We reviewed the trials that have evaluated ICI monotherapy, dual therapy, ICI in combination with chemotherapy, targeted therapy, vaccines and radiation. Additionally, we reviewed potential biomarkers of response and immune-related adverse events (irAEs). A literature search was conducted via PubMed and ClinicalTrials.gov as of 5 June 2023. EXPERT OPINION Various approaches combining immunotherapy with chemotherapy, targeted therapy, vaccines and radiation have been assessed. Pembrolizumab remains the only ICI approved in both the early stage and mTNBC. The role of adjuvant pembrolizumab in those who achieved pCR after neoadjuvant therapy is being investigated. Combining ICI with PARP inhibitors and radiation shows promise. More research is needed in identifying predictors of response. Monitoring of irAEs remains crucial.
Collapse
Affiliation(s)
- Kidist Tarekegn
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Merve Keskinkilic
- Department of Medical Oncology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | | | - Sean T Evans
- Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
123
|
Kahn AM, Golestani R, Harigopal M, Pusztai L. Intratumor spatial heterogeneity in programmed death-ligand 1 (PD-L1) protein expression in early-stage breast cancer. Breast Cancer Res Treat 2023:10.1007/s10549-023-06977-1. [PMID: 37378695 DOI: 10.1007/s10549-023-06977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE Programmed death-ligand 1 (PD-L1) expression is required for benefit from immune checkpoint inhibitors in metastatic triple negative breast cancer (TNBC). In contrast, in the neoadjuvant setting patients benefited regardless of PD-L1 expression. We hypothesized that, in stages II-III breast cancers, low levels of PD-L1 expression may be sufficient to confer sensitivity to therapy and focal expression could be missed by a biopsy. METHODS In this study, we examined intratumor spatial heterogeneity of PD-L1 protein expression in multiple biopsies from different regions of breast cancers in 57 primary breast tumors (n = 33 TNBC, n = 19 estrogen receptor-positive [ER-positive], n = 5 human epidermal receptor 2-positive [HER2 +]). E1L3N antibody was used to assess PD-L1 status and staining was scored using the combined positivity score (CPS) with PD-L1 positive defined as CPS ≥ 10. RESULTS Overall, 19% (11/57) of tumors were PD-L1 positive based on positivity in at least 1 biopsy. Among TNBC, PD-L1 positivity was 27% (9/33). The discordance rate, defined as the same tumor yielding PD-L1 positive and negative samples in different regions, was 16% (n = 9) in the whole study population and 23% (n = 7) in TNBC. Cohen's kappa coefficient of agreement was 0.214 for the whole study and 0.239 for TNBC, both of which falling into a non-statistically significant fair agreement range. Among all PD-L1 positive cases, 82% (n = 9/11) had positivity in only one of the tissue assessments. CONCLUSION These results indicate that the overall 84% concordance is driven by concordant negative results. In PD-L1 positive cancers, within-tumor heterogeneity in PD-L1 expression exists.
Collapse
Affiliation(s)
- Adriana Matutino Kahn
- Section of Medical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Reza Golestani
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Malini Harigopal
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Lajos Pusztai
- Section of Medical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, 300 George St, Suite 120, Rm 133, New Haven, CT, 06520, USA.
| |
Collapse
|
124
|
Yu K, Basu A, Yau C, Wolf DM, Goodarzi H, Bandyopadhyay S, Korkola JE, Hirst GL, Asare S, DeMichele A, Hylton N, Yee D, Esserman L, van ‘t Veer L, Sirota M. Computational drug repositioning for the identification of new agents to sensitize drug-resistant breast tumors across treatments and receptor subtypes. Front Oncol 2023; 13:1192208. [PMID: 37384294 PMCID: PMC10294228 DOI: 10.3389/fonc.2023.1192208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Drug resistance is a major obstacle in cancer treatment and can involve a variety of different factors. Identifying effective therapies for drug resistant tumors is integral for improving patient outcomes. Methods In this study, we applied a computational drug repositioning approach to identify potential agents to sensitize primary drug resistant breast cancers. We extracted drug resistance profiles from the I-SPY 2 TRIAL, a neoadjuvant trial for early stage breast cancer, by comparing gene expression profiles of responder and non-responder patients stratified into treatments within HR/HER2 receptor subtypes, yielding 17 treatment-subtype pairs. We then used a rank-based pattern-matching strategy to identify compounds in the Connectivity Map, a database of cell line derived drug perturbation profiles, that can reverse these signatures in a breast cancer cell line. We hypothesize that reversing these drug resistance signatures will sensitize tumors to treatment and prolong survival. Results We found that few individual genes are shared among the drug resistance profiles of different agents. At the pathway level, however, we found enrichment of immune pathways in the responders in 8 treatments within the HR+HER2+, HR+HER2-, and HR-HER2- receptor subtypes. We also found enrichment of estrogen response pathways in the non-responders in 10 treatments primarily within the hormone receptor positive subtypes. Although most of our drug predictions are unique to treatment arms and receptor subtypes, our drug repositioning pipeline identified the estrogen receptor antagonist fulvestrant as a compound that can potentially reverse resistance across 13/17 of the treatments and receptor subtypes including HR+ and triple negative. While fulvestrant showed limited efficacy when tested in a panel of 5 paclitaxel resistant breast cancer cell lines, it did increase drug response in combination with paclitaxel in HCC-1937, a triple negative breast cancer cell line. Conclusion We applied a computational drug repurposing approach to identify potential agents to sensitize drug resistant breast cancers in the I-SPY 2 TRIAL. We identified fulvestrant as a potential drug hit and showed that it increased response in a paclitaxel-resistant triple negative breast cancer cell line, HCC-1937, when treated in combination with paclitaxel.
Collapse
Affiliation(s)
- Katharine Yu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Amrita Basu
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Hani Goodarzi
- University of California, San Francisco, San Francisco, CA, United States
| | | | - James E. Korkola
- Oregon Health and Science University, Portland, OR, United States
| | - Gillian L. Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Smita Asare
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
- QuantumLeap Healthcare Collaborative, San Francisco, CA, United States
| | | | - Nola Hylton
- University of California, San Francisco, San Francisco, CA, United States
| | - Douglas Yee
- University of Minnesota, Minneapolis, MN, United States
| | - Laura Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Laura van ‘t Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
125
|
Zaborowski AM, Wong SM. Neoadjuvant systemic therapy for breast cancer. Br J Surg 2023; 110:765-772. [PMID: 37104057 PMCID: PMC10683941 DOI: 10.1093/bjs/znad103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/02/2023] [Indexed: 04/28/2023]
Affiliation(s)
| | - Stephanie M Wong
- Department of Surgery and Oncology, McGill University Medical School, Montreal, Quebec, Canada
- Segal Cancer Centre, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
126
|
Magbanua MJM, Brown Swigart L, Ahmed Z, Sayaman RW, Renner D, Kalashnikova E, Hirst GL, Yau C, Wolf DM, Li W, Delson AL, Asare S, Liu MC, Albain K, Chien AJ, Forero-Torres A, Isaacs C, Nanda R, Tripathy D, Rodriguez A, Sethi H, Aleshin A, Rabinowitz M, Perlmutter J, Symmans WF, Yee D, Hylton NM, Esserman LJ, DeMichele AM, Rugo HS, van 't Veer LJ. Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy. Cancer Cell 2023; 41:1091-1102.e4. [PMID: 37146605 PMCID: PMC10330514 DOI: 10.1016/j.ccell.2023.04.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
Circulating tumor DNA (ctDNA) analysis may improve early-stage breast cancer treatment via non-invasive tumor burden assessment. To investigate subtype-specific differences in the clinical significance and biology of ctDNA shedding, we perform serial personalized ctDNA analysis in hormone receptor (HR)-positive/HER2-negative breast cancer and triple-negative breast cancer (TNBC) patients receiving neoadjuvant chemotherapy (NAC) in the I-SPY2 trial. ctDNA positivity rates before, during, and after NAC are higher in TNBC than in HR-positive/HER2-negative breast cancer patients. Early clearance of ctDNA 3 weeks after treatment initiation predicts a favorable response to NAC in TNBC only. Whereas ctDNA positivity associates with reduced distant recurrence-free survival in both subtypes. Conversely, ctDNA negativity after NAC correlates with improved outcomes, even in patients with extensive residual cancer. Pretreatment tumor mRNA profiling reveals associations between ctDNA shedding and cell cycle and immune-associated signaling. On the basis of these findings, the I-SPY2 trial will prospectively test ctDNA for utility in redirecting therapy to improve response and prognosis.
Collapse
Affiliation(s)
| | | | - Ziad Ahmed
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rosalyn W Sayaman
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Gillian L Hirst
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Yau
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Denise M Wolf
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wen Li
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy L Delson
- UCSF Breast Science Advocacy Core, San Francisco, CA 94143, USA
| | - Smita Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Minetta C Liu
- Natera, Inc., Austin, TX 78753, USA; Mayo Clinic, Rochester, MN 55905, USA
| | - Kathy Albain
- Loyola University Chicago, Maywood, IL 60153, USA
| | - A Jo Chien
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Rita Nanda
- University of Chicago, Chicago, IL 60637, USA
| | - Debu Tripathy
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | - Jane Perlmutter
- UCSF Breast Science Advocacy Core, San Francisco, CA 94143, USA
| | - W Fraser Symmans
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas Yee
- University of Minnesota, Minneapolis, MN 55455, USA
| | - Nola M Hylton
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J Esserman
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Hope S Rugo
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
127
|
Sprooten J, Laureano RS, Vanmeerbeek I, Govaerts J, Naulaerts S, Borras DM, Kinget L, Fucíková J, Špíšek R, Jelínková LP, Kepp O, Kroemer G, Krysko DV, Coosemans A, Vaes RD, De Ruysscher D, De Vleeschouwer S, Wauters E, Smits E, Tejpar S, Beuselinck B, Hatse S, Wildiers H, Clement PM, Vandenabeele P, Zitvogel L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology 2023; 12:2219591. [PMID: 37284695 PMCID: PMC10240992 DOI: 10.1080/2162402x.2023.2219591] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M. Borras
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jitka Fucíková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Lenka Palová Jelínková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Institut du Cancer Paris CARPEM, Paris, France
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Insitute Ghent, Ghent University, Ghent, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rianne D.W. Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven De Vleeschouwer
- Department Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Department Neuroscience, Laboratory for Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (Breathe), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholiek Universiteit Leuven, Leuven, Belgium
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Benoit Beuselinck
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Paul M. Clement
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laurence Zitvogel
- Tumour Immunology and Immunotherapy of Cancer, European Academy of Tumor Immunology, Gustave Roussy Cancer Center, Inserm, Villejuif, France
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
128
|
Cecchini M, Walther Z, Wei W, Hafez N, Pilat MJ, Boerner SA, Durecki DE, Eder JP, Schalper KA, Chen AP, LoRusso P. NCI 7977: A Phase I Dose-Escalation Study of Intermittent Oral ABT-888 (Veliparib) plus Intravenous Irinotecan Administered in Patients with Advanced Solid Tumors. CANCER RESEARCH COMMUNICATIONS 2023; 3:1113-1117. [PMID: 37377610 PMCID: PMC10292219 DOI: 10.1158/2767-9764.crc-22-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Purpose Veliparib is a PARP inhibitor (PARPi) with activity in BRCA 1/2/PALB2-deficient tumors. Preclinical observations reveal topoisomerase inhibitors like irinotecan are synergistic with PARPi irrespective of homologous recombination deficiency (HRD), potentially expanding the role for PARPi. Experimental Design NCI 7977 was a multicohort phase I clinical trial evaluating the safety and efficacy of multiple dose schedules of veliparib with irinotecan for solid tumors. In the intermittent veliparib cohort, escalating doses of veliparib were given twice daily at dose level (DL) 1 (50 mg) and DL 2 (100 mg) days 1-4 and 8-11 with irinotecan 100 mg/m2 days 3 and 10 in 21-day cycles. Results Fifteen patients enrolled, 8 of 15 (53%) received ≥4 prior systemic treatments. At DL1, 1 of 6 patients experienced a dose-limiting toxicity (DLT) of diarrhea. At DL2, 9 patients were treated, with 3 unevaluable for DLT, and 2 of 6 evaluable patients experienced a DLT of grade 3 neutropenia. Irinotecan 100 mg/m2 and veliparib 50 mg twice daily was the MTD. No objective responses were observed, although 4 patients had progression-free survival >6 months. Conclusions The MTD of intermittent veliparib is 50 mg twice daily days 1-4 and 8-11 with weekly irinotecan 100 mg/m2 days 3 and 10 every 21 days. Multiple patients experienced prolonged stable disease irrespective of HRD and prior irinotecan. However, due to the toxicities with higher dose intermittent veliparib and irinotecan, this schedule was determined too toxic for further development and the arm was closed prematurely. Significance The combination of intermittent veliparib with weekly irinotecan was deemed too toxic for further development. Future PARPi combinations should focus on agents with nonoverlapping toxicities to improve tolerability. The treatment combination showed limited efficacy with prolonged stable disease observed in multiple heavily pretreated patients, but no objective responses were seen.
Collapse
Affiliation(s)
- Michael Cecchini
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Zenta Walther
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Wei Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Navid Hafez
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Mary Jo Pilat
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Scott A. Boerner
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Diane E. Durecki
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Joseph P. Eder
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Kurt A. Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Alice P. Chen
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Patricia LoRusso
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
129
|
Parker BA, Shatsky RA, Schwab RB, Wallace AM, Wolf DM, Hirst GL, Brown-Swigart L, Esserman LJ, van 't Veer LJ, Ghia EM, Yau C, Kipps TJ. Association of baseline ROR1 and ROR2 gene expression with clinical outcomes in the I-SPY2 neoadjuvant breast cancer trial. Breast Cancer Res Treat 2023; 199:281-291. [PMID: 37029329 PMCID: PMC10175386 DOI: 10.1007/s10549-023-06914-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/12/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE ROR1 and ROR2 are Type 1 tyrosine kinase-like orphan receptors for Wnt5a that are associated with breast cancer progression. Experimental agents targeting ROR1 and ROR2 are in clinical trials. This study evaluated whether expression levels of ROR1 or ROR2 correlated with one another or with clinical outcomes. METHODS We interrogated the clinical significance of high-level gene expression of ROR1 and/or ROR2 in the annotated transcriptome dataset from 989 patients with high-risk early breast cancer enrolled in one of nine completed/graduated/experimental and control arms in the neoadjuvant I-SPY2 clinical trial (NCT01042379). RESULTS High ROR1 or high ROR2 was associated with breast cancer subtypes. High ROR1 was more prevalent among hormone receptor-negative and human epidermal growth factor receptor 2-negative (HR-HER2-) tumors and high ROR2 was less prevalent in this subtype. Although not associated with pathologic complete response, high ROR1 or high ROR2 each was associated with event-free survival (EFS) in distinct subtypes. High ROR1 associated with a worse EFS in HR + HER2- patients with high post-treatment residual cancer burden (RCB-II/III) (HR 1.41, 95% CI = 1.11-1.80) but not in patients with minimal post-treatment disease (RCB-0/I) (HR 1.85, 95% CI = 0.74-4.61). High ROR2 associated with an increased risk of relapse in patients with HER2 + disease and RCB-0/I (HR 3.46, 95% CI = 1.33-9.020) but not RCB-II/III (HR 1.07, 95% CI = 0.69-1.64). CONCLUSION High ROR1 or high ROR2 distinctly identified subsets of breast cancer patients with adverse outcomes. Further studies are warranted to determine if high ROR1 or high ROR2 may identify high-risk populations for studies of targeted therapies.
Collapse
Affiliation(s)
- Barbara A Parker
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Rebecca A Shatsky
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard B Schwab
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anne M Wallace
- Department of Surgery and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gillian L Hirst
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura J Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Emanuela M Ghia
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Christina Yau
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Thomas J Kipps
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
130
|
Li B, Jin J, Guo D, Tao Z, Hu X. Immune Checkpoint Inhibitors Combined with Targeted Therapy: The Recent Advances and Future Potentials. Cancers (Basel) 2023; 15:2858. [PMID: 37345194 PMCID: PMC10216018 DOI: 10.3390/cancers15102858] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic landscape of cancer and have been widely approved for use in the treatment of diverse solid tumors. Targeted therapy has been an essential part of cancer treatment for decades, and in most cases, a special drug target is required. Numerous studies have confirmed the synergistic effect of combining ICIs with targeted therapy. For example, triple therapy of PD-L1 inhibitor atezolizumab plus BRAF inhibitor vemurafenib and MEK inhibitor cobimetinib has been approved as the first-line treatment in advanced melanoma patients with BRAFV600 mutations. However, not all combinations of ICIs and targeted therapy work. Combining ICIs with EGFR inhibitors in non-small-cell lung cancer (NSCLC) with EGFR mutations only triggered toxicities and did not improve efficacy. Therefore, the efficacies of combinations of ICIs and different targeted agents are distinct. This review firstly and comprehensively covered the current status of studies on the combination of ICIs mainly referring to PD-1 and PD-L1 inhibitors and targeted drugs, including angiogenesis inhibitors, EGFR/HER2 inhibitors, PARP inhibitors and MAPK/ERK signaling pathway inhibitors, in the treatment of solid tumors. We discussed the underlying mechanisms, clinical efficacies, side effects, and potential predictive biomarkers to give an integrated view of the combination strategy and provide perspectives for future directions in solid tumors.
Collapse
Affiliation(s)
- Bin Li
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juan Jin
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duancheng Guo
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
| | - Zhonghua Tao
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xichun Hu
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
131
|
Voorwerk L, Sanders J, Keusters MS, Balduzzi S, Cornelissen S, Duijst M, Lips EH, Sonke GS, Linn SC, Horlings HM, Kok M. Immune landscape of breast tumors with low and intermediate estrogen receptor expression. NPJ Breast Cancer 2023; 9:39. [PMID: 37179445 PMCID: PMC10182974 DOI: 10.1038/s41523-023-00543-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade (ICB) is currently approved for patients with triple-negative breast cancer (TNBC), whereas responses to ICB are also observed in a small subgroup of Estrogen Receptor (ER)-positive breast cancer. The cut-off for ER-positivity (≥1%) is based on likelihood of endocrine treatment response, but ER-positive breast cancer represents a very heterogeneous group. This raises the question whether selection based on ER-negativity should be revisited to select patients for ICB treatment in the context of clinical trials. Stromal tumor-infiltrating lymphocytes (sTILs) and other immune parameters are higher in TNBC compared to ER-positive breast cancer, but it is unknown whether lower ER levels are associated with more inflamed tumor microenvironments (TME). We collected a consecutive series of primary tumors from 173 HER2-negative breast cancer patients, enriched for tumors with ER expression between 1 and 99% and found levels of stromal TILs, CD8 + T cells, and PD-L1 positivity in breast tumors with ER 1-9% and ER 10-50% to be comparable to tumors with ER 0%. Expression of immune-related gene signatures in tumors with ER 1-9% and ER 10-50% was comparable to ER 0%, and higher than in tumors with ER 51-99% and ER 100%. Our results suggest that the immune landscape of ER low tumors (1-9%) and ER intermediate tumors (10-50%) mimic that of primary TNBC.
Collapse
Affiliation(s)
- Leonie Voorwerk
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joyce Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Milou S Keusters
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sara Balduzzi
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sten Cornelissen
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maxime Duijst
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hugo M Horlings
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marleen Kok
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
132
|
Lin CJ, Xiao WX, Fu T, Jin X, Shao ZM, Di GH. Calcifications in triple-negative breast cancer: Molecular features and treatment strategies. NPJ Breast Cancer 2023; 9:26. [PMID: 37061514 PMCID: PMC10105779 DOI: 10.1038/s41523-023-00531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/30/2023] [Indexed: 04/17/2023] Open
Abstract
Despite the high prevalence of mammographic calcifications, our understanding remains limited regarding the clinical and molecular features of calcifications within triple-negative breast cancer (TNBC). To investigate the clinical relevance and biological basis of TNBC with calcifications of high suspicion for malignancy, we established a study cohort (N = 312) by integrating mammographic records with clinical data and genomic, transcriptomic, and metabolomic profiling. Despite similar clinicopathological features, patients with highly suspicious calcifications exhibited a worse overall survival than those without. In addition, TNBC with highly suspicious calcifications was characterized by a higher frequency of PIK3CA mutation, lower infiltration of immune cells, and increased abnormality of lipid metabolism. Overall, our study systematically revealed clinical and molecular heterogeneity between TNBC with or without calcifications of high suspicion for malignancy. These data might help to understand the clinical relevance and biological basis of mammographic calcifications.
Collapse
Affiliation(s)
- Cai-Jin Lin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wen-Xuan Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
133
|
Abstract
Immunotherapy, particularly agents targeting the immunoregulatory PD-1/PD-L1 axis, harnesses the power of the immune system to treat cancer, with unique potential for a durable treatment effect due to immunologic memory. The PD-1 inhibitor pembrolizumab combined with neoadjuvant chemotherapy followed by adjuvant pembrolizumab improves event-free survival and is a new standard of care for high-risk, early-stage triple-negative breast cancer (TNBC), regardless of tumor PD-L1 expression. For metastatic TNBC, pembrolizumab combined with chemotherapy is a new standard of care for the first-line therapy of PD-L1+ metastatic TNBC, with improvement in overall survival. The PD-L1 inhibitor atezolizumab combined with nab-paclitaxel is also approved outside the United States for the first-line treatment of metastatic PD-L1+ TNBC. Current research focuses on refining the use of immunotherapy in TNBC by defining informative predictive biomarkers, developing immunotherapy in early and advanced HER2-driven and luminal breast cancers, and overcoming primary and secondary resistance to immunotherapy through unique immune-based strategies.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Medicine, University of Pittsburgh/UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, USA
- Ankyra Therapeutics, Boston, Massachusetts 02116, USA
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| |
Collapse
|
134
|
Palazzo A, Ciccarese C, Iacovelli R, Cannizzaro MC, Stefani A, Salvatore L, Bria E, Tortora G. Major adverse cardiac events and cardiovascular toxicity with PARP inhibitors-based therapy for solid tumors: a systematic review and safety meta-analysis. ESMO Open 2023; 8:101154. [PMID: 36893518 PMCID: PMC10163166 DOI: 10.1016/j.esmoop.2023.101154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) provided significant antitumor activity in various tumors, mainly carrying deleterious mutations of BRCA1/BRCA2 genes. Only few data are available regarding the cardiac and vascular safety profile of this drug class. We carried out a meta-analysis for assessing the incidence and relative risk (RR) of major adverse cardiovascular events (MACEs), hypertension, and thromboembolic events in patients with solid tumors treated with PARPi-based therapy. METHODS Prospective studies were identified by searching the Medline/PubMed, Cochrane Library, and ASCO Meeting abstracts. Data extraction was conducted according to the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) statement. Combined odds ratios (ORs), RRs, and 95% confidence intervals (CIs) were calculated using fixed- or random-effects methods, depending on studies heterogeneity. RevMan software for meta-analysis (v.5.2.3) was used to carry out statistical analyses. RESULTS Thirty-two studies were selected for the final analysis. The incidence of PARPi-related MACEs of any and high grade was 5.0% and 0.9%, respectively, compared with 3.6% and 0.9% in the control arms, corresponding to a significant increased risk of MACEs of any grade (Peto OR 1.62; P = 0.0009) but not of high grade (P = 0.49). The incidence of hypertension of any grade and high grade was 17.5% and 6.0% with PARPi, respectively, compared with 12.6% and 4.4% in the controls. Treatment with PARPi significantly increased the risk of hypertension of any grade (random-effects, RR = 1.53; P = 0.03) but not of high grade (random-effects, RR = 1.47; P = 0.09) compared with controls. Finally, PARPi-based therapies significantly increased the risk of thromboembolic events of any grade (Peto OR = 1.49, P = 0.004) and not of high grade (Peto OR = 1.31; P = 0.13) compared with controls. CONCLUSIONS PARPi-based therapy is associated with a significantly increased risk of MACEs, hypertension, and thromboembolic events of any grade compared with controls. The lack of a significant increased risk of high-grade events together with the absolute low incidence of these adverse events led not to consider routine cardiovascular monitoring as recommended in asymptomatic patients.
Collapse
Affiliation(s)
- A Palazzo
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - C Ciccarese
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - R Iacovelli
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - M C Cannizzaro
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Stefani
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Salvatore
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - E Bria
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Tortora
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
135
|
Chen C, Wang J, Dong C, Lim D, Feng Z. Development of a risk model to predict prognosis in breast cancer based on cGAS-STING-related genes. Front Genet 2023; 14:1121018. [PMID: 37051596 PMCID: PMC10083333 DOI: 10.3389/fgene.2023.1121018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Breast cancer (BRCA) is regarded as a lethal and aggressive cancer with increasing morbidity and mortality worldwide. cGAS-STING signaling regulates the crosstalk between tumor cells and immune cells in the tumor microenvironment (TME), emerging as an important DNA-damage mechanism. However, cGAS-STING-related genes (CSRGs) have rarely been investigated for their prognostic value in breast cancer patients.Methods: Our study aimed to construct a risk model to predict the survival and prognosis of breast cancer patients. We obtained 1087 breast cancer samples and 179 normal breast tissue samples from the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEX) database, 35 immune-related differentially expression genes (DEGs) from cGAS-STING-related genes were systematically assessed. The Cox regression was applied for further selection, and 11 prognostic-related DEGs were used to develop a machine learning-based risk assessment and prognostic model.Results: We successfully developed a risk model to predict the prognostic value of breast cancer patients and its performance acquired effective validation. The results derived from Kaplan-Meier analysis revealed that the low-risk score patients had better overall survival (OS). The nomogram that integrated the risk score and clinical information was established and had good validity in predicting the overall survival of breast cancer patients. Significant correlations were observed between the risk score and tumor-infiltrating immune cells, immune checkpoints and the response to immunotherapy. The cGAS-STING-related genes risk score was also relevant to a series of clinic prognostic indicators such as tumor staging, molecular subtype, tumor recurrence, and drug therapeutic sensibility in breast cancer patients.Conclusion: cGAS-STING-related genes risk model provides a new credible risk stratification method to improve the clinical prognostic assessment for breast cancer.
Collapse
Affiliation(s)
- Chen Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junxiao Wang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Dong
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Zhihui Feng,
| |
Collapse
|
136
|
Yang T, Li W, Huang T, Zhou J. Immunotherapy Targeting PD-1/PD-L1 in Early-Stage Triple-Negative Breast Cancer. J Pers Med 2023; 13:526. [PMID: 36983708 PMCID: PMC10055616 DOI: 10.3390/jpm13030526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The advent of immunotherapy, especially immune checkpoint inhibitors (ICIs), has revolutionized antitumor therapy. Programmed cell death receptor 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are among the most promising targets for encouraging the immune system to eliminate cancer cells. PD-1/PD-L1 have made clinical remission for numerous solid tumors, including metastatic triple-negative breast cancer (TNBC). In recent years, integrating PD-1/PD-L1 inhibitors into existing treatments in early-stage TNBC has attracted wide attention. Herein, we summarize the clinical benefit of PD-1/PD-L1 inhibitors plus neoadjuvant chemotherapy, adjuvant chemotherapy, and targeted therapy in early-stage TNBC. Possible immunotherapy biomarkers, immune-related adverse events (irAEs), and the key challenges faced in TNBC anti-PD-1/PD-L1 therapy are also concluded. Numerous studies on immunotherapy are ongoing, and PD-1/PD-L1 inhibitors have demonstrated great clinical prospects in early-stage TNBC. To maximize the efficacy of anti-PD-1/PD-L1 therapy, further research into the challenges which still exist is necessary.
Collapse
Affiliation(s)
| | | | | | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
137
|
Concannon K, Morris BB, Gay CM, Byers LA. Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control. Mol Cell 2023; 83:660-680. [PMID: 36669489 PMCID: PMC9992136 DOI: 10.1016/j.molcel.2022.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.
Collapse
Affiliation(s)
- Kyle Concannon
- Department of Hematology/Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin B Morris
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
138
|
Liu K, Chen Y, Li B, Li Y, Liang X, Lin H, Luo L, Chen T, Dai Y, Pang W, Zeng L. Upregulation of Apolipoprotein L6 Improves Tumor Immunotherapy by Inducing Immunogenic Cell Death. Biomolecules 2023; 13:415. [PMID: 36979348 PMCID: PMC10046184 DOI: 10.3390/biom13030415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
In the past few years, immune checkpoint blockade (ICB) therapy has emerged as a breakthrough treatment for cancers and has demonstrated inspiring effects in tumor patients with Epstein-Barr virus (EBV) infection. To allow more patients to benefit from immunotherapy, exploring novel biomarkers based on EBV-related tumors and immunotherapy cohorts was pursued in the present study. The essential biomarkers that may enhance antitumor immunity across EBV-related tumors were identified using the large-scale transcriptomic profiles of EBV-associated tumors and tumor immunotherapy cohorts. The clinical significance of vital genes was evaluated in multiple tumor immunotherapy cohorts. Moreover, the potential function of essential genes in immunotherapy was explored via bioinformatic analyses and verified by qRT-PCR, Western blot analysis, CCK8 assay and flow cytometry. Apolipoprotein L6 (APOL6) was considered the essential biomarker for enhancing antitumor immunity across EBV-positive tumors. The upregulation of APOL6 was correlated with increased response rates and prolonged survival in multiple tumor immunotherapy cohorts. Bioinformatic analyses suggested that APOL6 may enhance tumor immunotherapy by inducing immunogenic cell death. Pancreatic cancer cells transfected with APOL6 overexpression plasmid underwent apoptosis, necroptosis, and pyroptosis with immunogenic features. The biomarker upregulated in EBV-related tumors could further elucidate the drivers of immunotherapy response. The upregulation of APOL6 could improve immunotherapy by triggering immunogenic cell death, thus offering a new target to optimize cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wenzheng Pang
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Linjuan Zeng
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
139
|
Mei J, Fu Z, Cai Y, Song C, Zhou J, Zhu Y, Mao W, Xu J, Yin Y. SECTM1 is upregulated in immuno-hot tumors and predicts immunotherapeutic efficacy in multiple cancers. iScience 2023; 26:106027. [PMID: 36818292 PMCID: PMC9932126 DOI: 10.1016/j.isci.2023.106027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the management of advanced cancers. However, many patients could not benefit from ICIs therapy, and thus several biomarkers for therapeutic prediction have been uncovered. In this research, more than ten public and in-house cohorts were used to explore the predictive value and immunological correlations of secreted and transmembrane 1 (SECTM1) in cancers. SECTM1 expression was enhanced in tumors from patients with well immunotherapeutic responses in multiple cancers. In addition, SECTM1 was immuno-correlated in pan-cancer and enhanced in immuno-hot tumors. In vitro assays revealed that SECTM1 was upregulated by the IFN-γ/STAT1 signaling. Moreover, analysis of in-house immunotherapy cohorts suggested both tumor-expressed and circulating SECTM1 are promising biomarkers to predict therapeutic responses. Overall, this study reveals that SECTM1 is a biomarker of benefit to ICIs in cancer patients. Further studies including large-scale patients are needed to establish its utilization as a biomarker of benefit to ICIs.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
- Wuxi Clinical College of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Yun Cai
- Wuxi Clinical College of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Chenghu Song
- Department of Thoracic Surgery, Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Jiaofeng Zhou
- Department of Physiology, Nanjing Medical University, No. 818 Tianyuan East Road, Nanjing 211166, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, No. 818 Tianyuan East Road, Nanjing 211166, China
| | - Wenjun Mao
- Department of Thoracic Surgery, Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, No. 818 Tianyuan East Road, Nanjing 211166, China
| |
Collapse
|
140
|
New Approaches in Early-Stage NSCL Management: Potential Use of PARP Inhibitors and Immunotherapy Combination. Int J Mol Sci 2023; 24:ijms24044044. [PMID: 36835456 PMCID: PMC9961654 DOI: 10.3390/ijms24044044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Lung cancer is the second most common cancer in the world, being the first cause of cancer-related mortality. Surgery remains the only potentially curative treatment for Non-Small Cell Lung Cancer (NSCLC), but the recurrence risk remains high (30-55%) and Overall Survival (OS) is still lower than desirable (63% at 5 years), even with adjuvant treatment. Neoadjuvant treatment can be helpful and new therapies and pharmacologic associations are being studied. Immune Checkpoint Inhibitors (ICI) and PARP inhibitors (PARPi) are two pharmacological classes already in use to treat several cancers. Some pre-clinical studies have shown that its association can be synergic and this is being studied in different settings. Here, we review the PARPi and ICI strategies in cancer management and the information will be used to develop a clinical trial to evaluate the potential of PARPi association with ICI in early-stage neoadjuvant setting NSCLC.
Collapse
|
141
|
Current Treatment Landscape for Early Triple-Negative Breast Cancer (TNBC). J Clin Med 2023; 12:jcm12041524. [PMID: 36836059 PMCID: PMC9962369 DOI: 10.3390/jcm12041524] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancers and is characterized by an aggressive nature and a high rate of recurrence despite neoadjuvant and adjuvant chemotherapy. Although novel agents are constantly being introduced for the treatment of breast cancer, conventional cytotoxic chemotherapy based on anthracyclines and taxanes is the mainstay treatment option for TNBC. Based on CTNeoBC pooled analysis data, the achievement of pathologic CR (pCR) in TNBC is directly linked to improved survival outcomes. Therefore, the treatment paradigm for early TNBC has shifted to neoadjuvant treatment, and the escalation of neoadjuvant chemotherapy to improve the pCR rate and the addition of post-neoadjuvant chemotherapy to control the residual disease have been investigated. In this article, we review the current treatment landscape for early TNBC, from standard cytotoxic chemotherapy to recent data on immune checkpoint inhibitors, capecitabine, and olaparib.
Collapse
|
142
|
Chen X, Wen Q, Kou L, Xie X, Li J, Li Y. Incidence and risk of hypertension associated with PARP inhibitors in cancer patients: a systematic review and meta-analysis. BMC Cancer 2023; 23:107. [PMID: 36717798 PMCID: PMC9887889 DOI: 10.1186/s12885-023-10571-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To analyze the incidence and risk of hypertension associated with poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors in cancer patients and provide reference for clinicians. METHODS We used R software to conduct a meta-analysis of phase II/III randomized controlled trials (RCT) on PARP inhibitors for cancer treatment published in PubMed, Embase, Clinical Trials, Cochrane Library and Web of Science from inception to July 29th, 2022. RESULTS We included 32 RCTs with 10,654 participants for this meta-analysis. For total PARP inhibitors, the incidence and risk ratio of all-grade hypertension were 12% and 1.22 (95% CI: 0.91-1.65, P = 0.19, I2 = 81%), and the incidence and risk ratio of grade 3-4 hypertension were 4% and 1.24 (95% CI: 0.74-2.08, P = 0.42, I2 = 68%). Compared with the control group, the niraparib group, olaparib 800 mg/day group, and olaparib plus cediranib group increased the risk of any grade and grade 3-4 hypertension, while the veliparib group and rucaparib group did not increase the risk of any grade and grade 3-4 hypertension, and olaparib 200 mg-600 mg/day group (exclude olaparib plus cediranib regime) reduced the risk of any grade and grade 3-4 hypertension. CONCLUSION Olaparib 200-600 mg/day (excluding olaparib plus cediranib regimen) may be the most suitable PARP inhibitor for cancer patients with high risk of hypertension, followed by veliparib and rucaparib. Niraparib, olaparib 800 mg/day and olaparib combined with cediranib may increase the risk of developing hypertension in cancer patients, clinicians should strengthen the monitoring of blood pressure in cancer patients and give medication in severe cases.
Collapse
Affiliation(s)
- Xiu Chen
- grid.488387.8Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China ,grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- grid.488387.8Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Liqiu Kou
- grid.488387.8Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China ,grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- grid.488387.8Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China ,grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Li
- grid.488387.8Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yaling Li
- grid.488387.8Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
143
|
Valenza C, Rizzo G, Passalacqua MI, Boldrini L, Corti C, Trapani D, Curigliano G. Evolving treatment landscape of immunotherapy in breast cancer: current issues and future perspectives. Ther Adv Med Oncol 2023; 15:17588359221146129. [PMID: 36743524 PMCID: PMC9893403 DOI: 10.1177/17588359221146129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/01/2022] [Indexed: 01/21/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) deeply changed the treatment landscape of breast cancer (BC). In particular, anti-programmed-death (ligand) 1 antibodies were approved for the treatment of triple-negative breast cancer (TNBC), both in first line for metastatic disease and in neoadjuvant setting, on the basis of a demonstrated improvement of the survival outcomes. In light of these results, current clinical trials aim at improving this benefit investigating novel combinations and strategies, at exploring the role of ICIs beyond TNBC, and at better selecting the patients in order to spare non-responders from avoidable toxicities. This narrative review aims at summarizing and discussing the evolving landscape of immunotherapeutic treatments for BC, highlighting the current challenges and the future perspectives.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Graziella Rizzo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Maria Ilenia Passalacqua
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Laura Boldrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| |
Collapse
|
144
|
Dinstag G, Shulman ED, Elis E, Ben-Zvi DS, Tirosh O, Maimon E, Meilijson I, Elalouf E, Temkin B, Vitkovsky P, Schiff E, Hoang DT, Sinha S, Nair NU, Lee JS, Schäffer AA, Ronai Z, Juric D, Apolo AB, Dahut WL, Lipkowitz S, Berger R, Kurzrock R, Papanicolau-Sengos A, Karzai F, Gilbert MR, Aldape K, Rajagopal PS, Beker T, Ruppin E, Aharonov R. Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. MED 2023; 4:15-30.e8. [PMID: 36513065 PMCID: PMC10029756 DOI: 10.1016/j.medj.2022.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Precision oncology is gradually advancing into mainstream clinical practice, demonstrating significant survival benefits. However, eligibility and response rates remain limited in many cases, calling for better predictive biomarkers. METHODS We present ENLIGHT, a transcriptomics-based computational approach that identifies clinically relevant genetic interactions and uses them to predict a patient's response to a variety of therapies in multiple cancer types without training on previous treatment response data. We study ENLIGHT in two translationally oriented scenarios: personalized oncology (PO), aimed at prioritizing treatments for a single patient, and clinical trial design (CTD), selecting the most likely responders in a patient cohort. FINDINGS Evaluating ENLIGHT's performance on 21 blinded clinical trial datasets in the PO setting, we show that it can effectively predict a patient's treatment response across multiple therapies and cancer types. Its prediction accuracy is better than previously published transcriptomics-based signatures and is comparable with that of supervised predictors developed for specific indications and drugs. In combination with the interferon-γ signature, ENLIGHT achieves an odds ratio larger than 4 in predicting response to immune checkpoint therapy. In the CTD scenario, ENLIGHT can potentially enhance clinical trial success for immunotherapies and other monoclonal antibodies by excluding non-responders while overall achieving more than 90% of the response rate attainable under an optimal exclusion strategy. CONCLUSIONS ENLIGHT demonstrably enhances the ability to predict therapeutic response across multiple cancer types from the bulk tumor transcriptome. FUNDING This research was supported in part by the Intramural Research Program, NIH and by the Israeli Innovation Authority.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isaac Meilijson
- Pangea Biomed Ltd., Tel Aviv, Israel; Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | - Danh-Tai Hoang
- Biological Data Science Institute, College of Science, The Australian National University, Canberra, ACT, Australia
| | - Sanju Sinha
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joo Sang Lee
- Department of Precision Medicine, School of Medicine & Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ze'ev Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Dejan Juric
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William L Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raanan Berger
- Cancer Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Razelle Kurzrock
- Worldwide Innovative Network (WIN) for Personalized Cancer Therapy, Chevilly-Larue, France
| | | | - Fatima Karzai
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Padma S Rajagopal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
145
|
Abstract
The advent of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has revolutionized the treatment of solid tumor malignancies. In breast cancer, the most robust data to date for ICI exist for triple-negative breast cancer (TNBC). Preclinical studies suggested increased antitumoral immune response in patients with TNBC undergoing ICI treatment. Early clinical trials investigated the use of ICI monotherapy in patients with metastatic TNBC with promising results, particularly in the first-line setting and for those patients whose tumors had high programmed cell death 1 (PD-1) or programmed cell death ligand 1 (PD-L1) expression. Subsequent trials evaluated the use of ICI in combination with conventional chemotherapy to enhance the host immune response. Pembrolizumab combined with chemotherapy in the KEYNOTE-355 study resulted in improved progression-free survival and overall survival benefits for patients with PD-L1 combined positive score > 10 metastatic TNBC. In early-stage disease, two phase III trials demonstrated increased rates of pathologic complete response at the time of surgery with the addition of neoadjuvant ICI to standard chemotherapy. The large KEYNOTE-522 trial showed improved event-free survival with neoadjuvant and adjuvant ICI. Several biomarkers have been identified, which may be predictive of response to ICI therapy including PD-1/PD-L1 expression, tumor mutational burden, tumor-infiltrating lymphocytes, and multigene assays capturing favorable immune cell signatures. For hormone receptor-positive and human epidermal growth factor receptor-positive breast cancer, there are ongoing studies evaluating ICI therapy in combination with chemotherapy and targeted agents. Finally, across all subtypes, several novel immunotherapeutic agents are under investigation including novel ICIs, cancer vaccines, adoptive cellular therapy, and oncolytic viruses.
Collapse
Affiliation(s)
- Saya L Jacob
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Laura A Huppert
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| |
Collapse
|
146
|
Li L, Zhang F, Liu Z, Fan Z. Immunotherapy for Triple-Negative Breast Cancer: Combination Strategies to Improve Outcome. Cancers (Basel) 2023; 15:cancers15010321. [PMID: 36612317 PMCID: PMC9818757 DOI: 10.3390/cancers15010321] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Due to the absence of hormone receptor (both estrogen receptors and progesterone receptors) along with human epidermal growth factor receptor 2 (HER-2) amplification, the treatment of triple-negative breast cancer (TNBC) cannot benefit from endocrine or anti-HER-2 therapy. For a long time, chemotherapy was the only systemic treatment for TNBC. Due to the lack of effective treatment options, the prognosis for TNBC is extremely poor. The successful application of immune checkpoint inhibitors (ICIs) launched the era of immunotherapy in TNBC. However, the current findings show modest efficacy of programmed cell death- (ligand) 1 (PD-(L)1) inhibitors monotherapy and only a small proportion of patients can benefit from this approach. Based on the basic principles of immunotherapy and the characteristics of the tumor immune microenvironment (TIME) in TNBC, immune combination therapy is expected to further enhance the efficacy and expand the beneficiary population of patients. Given the diversity of drugs that can be combined, it is important to select effective biomarkers to identify the target population. Moreover, the side effects associated with the combination of multiple drugs should also be considered.
Collapse
|
147
|
Yang F, Xiao Y, Ding JH, Jin X, Ma D, Li DQ, Shi JX, Huang W, Wang YP, Jiang YZ, Shao ZM. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metab 2023; 35:84-100.e8. [PMID: 36257316 DOI: 10.1016/j.cmet.2022.09.021] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 01/20/2023]
Abstract
Treatment of triple-negative breast cancer (TNBC) remains challenging. Deciphering the orchestration of metabolic pathways in regulating ferroptosis will provide new insights into TNBC therapeutic strategies. Here, we integrated the multiomics data of our large TNBC cohort (n = 465) to develop the ferroptosis atlas. We discovered that TNBCs had heterogeneous phenotypes in ferroptosis-related metabolites and metabolic pathways. The luminal androgen receptor (LAR) subtype of TNBC was characterized by the upregulation of oxidized phosphatidylethanolamines and glutathione metabolism (especially GPX4), which allowed the utilization of GPX4 inhibitors to induce ferroptosis. Furthermore, we verified that GPX4 inhibition not only induced tumor ferroptosis but also enhanced antitumor immunity. The combination of GPX4 inhibitors and anti-PD1 possessed greater therapeutic efficacy than monotherapy. Clinically, higher GPX4 expression correlated with lower cytolytic scores and worse prognosis in immunotherapy cohorts. Collectively, this study demonstrated the ferroptosis landscape of TNBC and revealed an innovative immunotherapy combination strategy for refractory LAR tumors.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jia-Han Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jin-Xiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 201203, China
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 201203, China
| | - Yi-Ping Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
148
|
Jarroudi OA, Bairi KE, Curigliano G, Afqir S. Immune-Checkpoint Inhibitors: A New Line of Attack in Triple-Negative Breast Cancer. Cancer Treat Res 2023; 188:29-62. [PMID: 38175341 DOI: 10.1007/978-3-031-33602-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Poor prognosis is a distinctive feature of triple-negative breast cancer (TNBC). Chemotherapy has long represented the main and unique treatment for patients with TNBC. Recently, immune checkpoint inhibitors (ICIs) were investigated in several clinical trials and were approved for clinical use in TNBC patients that express programmed cell death protein-1 (PD-1) in combination with chemotherapy in the first-line setting. ICIs are also being investigated in the neoadjuvant and adjuvant settings for TNBC. This chapter aims to discuss different ICIs used to treat all TNBC stages to date.
Collapse
Affiliation(s)
- Ouissam Al Jarroudi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco.
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco.
| | - Khalid El Bairi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
149
|
Ma H, Qiu Q, Tan D, Chen Q, Liu Y, Chen B, Wang M. The Cancer-Associated Fibroblasts-Related Gene COMP Is a Novel Predictor for Prognosis and Immunotherapy Efficacy and Is Correlated with M2 Macrophage Infiltration in Colon Cancer. Biomolecules 2022; 13:biom13010062. [PMID: 36671447 PMCID: PMC9856124 DOI: 10.3390/biom13010062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Colon cancer is characterized by a sophisticated tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which make up the majority of the stromal cells in TME, participate in tumor development and immune regulation. Further investigations of CAFs would facilitate an in-depth understanding of its role in colon cancer TME. METHODS In this study, we estimated CAF abundance based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases using the Microenvironment Cell Populations-counter (MCP-counter) algorithm. CAF-related genes were identified by differential gene expression analysis combined with weighted gene coexpression network analysis. For further selection, the least absolute shrinkage and selection operator (LASSO)-Cox regression was used, and the prognostic value of the selected gene was confirmed in numerous external cohorts. The function enrichment, immunological characteristics, tumor mutation signature, immunotherapy response, and drug sensitivity of the selected gene were subsequently explored. The bioinformatics analysis results were validated using immunohistochemistry on clinical samples from our institution. RESULTS According to our findings, cartilage oligomeric matrix protein (COMP) was uncovered as a candidate CAFs-driven biomarker in colon cancer and plays an important role in predicting prognosis in colon cancer. COMP upregulation was associated with enhanced stromal and immune activation, and immune cell infiltration, especially M2 macrophages. Genes that mutated differently between the high- and low-COMP expression subgroups may be correlated with TME change. Following verification, COMP reliably predicted the immunotherapy response and drug response. In addition, our experimental validation demonstrated that COMP overexpression is associated with colon cancer carcinogenesis and is strongly associated with CAFs and M2 macrophage infiltration. CONCLUSION Our study uncovered that COMP was a key CAFs-driven gene associated with M2 macrophage infiltration and acted as a convincing predictor for prognosis and immunotherapy response in colon cancer patients.
Collapse
Affiliation(s)
- He Ma
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Qingqing Qiu
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Dan Tan
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Qiaofeng Chen
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Yaping Liu
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Bing Chen
- Central Laboratory, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (B.C.); (M.W.)
| | - Mingliang Wang
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
- Department of General Surgery, RuiJin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Correspondence: (B.C.); (M.W.)
| |
Collapse
|
150
|
Pan-Cancer Landscape of NEIL3 in Tumor Microenvironment: A Promising Predictor for Chemotherapy and Immunotherapy. Cancers (Basel) 2022; 15:cancers15010109. [PMID: 36612106 PMCID: PMC9817722 DOI: 10.3390/cancers15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
With the aim of enhancing the understanding of NEIL3 in prognosis prediction and therapy administration, we conducted a pan-cancer landscape analysis on NEIL3. The mutation characteristics, survival patterns, and immune features of NEIL3 across cancers were analyzed. Western blotting, qPCR, and immunohistochemistry were conducted to validate the bioinformatics results. The correlation between NEIL3 and chemotherapeutic drugs, as well as immunotherapies, was estimated. NEIL3 was identified as an oncogene with prognostic value in predicting clinical outcomes in multiple cancers. Combined with the neoantigen, tumor mutational burden (TMB), and microsatellite instability (MSI) results, a strong relationship between NEIL3 and the TME was observed. NEIL3 was demonstrated to be closely associated with multiple immune parameters, including infiltrating immunocytes and pro-inflammatory chemokines, which was verified by experiments. More importantly, patients with a higher expression of NEIL3 were revealed to be more sensitive to chemotherapeutic regimens and immune checkpoint inhibitors in selected cancers, implying that NEIL3 may be an indicator for therapeutic administration. Our study indicated NEIL3 has a strong association with the immune microenvironment and phenotypic changes in certain types of cancers, which facilitated the improved understanding of NEIL3 across cancers and highlighted the potential for clinical application of NEIL3 in precision medical stratification.
Collapse
|