101
|
Affiliation(s)
- Sara Charmsaz
- Sara Charmsaz: Leukaemia Foundation of Queensland Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Department of Medicine, University of Queensland, Brisbane, QLD, Australia; Department of Surgery, Royal College of Surgeons, Dublin, Ireland
| | - Andrew W Boyd
- Sara Charmsaz: Leukaemia Foundation of Queensland Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Department of Medicine, University of Queensland, Brisbane, QLD, Australia; Department of Surgery, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
102
|
Gilabert-Oriol R, Furness SGB, Stringer BW, Weng A, Fuchs H, Day BW, Kourakis A, Boyd AW, Hare DL, Thakur M, Johns TG, Wookey PJ. Dianthin-30 or gelonin versus monomethyl auristatin E, each configured with an anti-calcitonin receptor antibody, are differentially potent in vitro in high-grade glioma cell lines derived from glioblastoma. Cancer Immunol Immunother 2017; 66:1217-1228. [PMID: 28501939 PMCID: PMC11029669 DOI: 10.1007/s00262-017-2013-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/06/2017] [Indexed: 11/27/2022]
Abstract
We have reported that calcitonin receptor (CTR) is widely expressed in biopsies from the lethal brain tumour glioblastoma by malignant glioma and brain tumour-initiating cells (glioma stem cells) using anti-human CTR antibodies. A monoclonal antibody against an epitope within the extracellular domain of CTR was raised (mAb2C4) and chemically conjugated to either plant ribosome-inactivating proteins (RIPs) dianthin-30 or gelonin, or the drug monomethyl auristatin E (MMAE), and purified. In the high-grade glioma cell line (HGG, representing glioma stem cells) SB2b, in the presence of the triterpene glycoside SO1861, the EC50 for mAb2C4:dianthin was 10.0 pM and for mAb2C4:MMAE [antibody drug conjugate (ADC)] 2.5 nM, 250-fold less potent. With the cell line U87MG, in the presence of SO1861, the EC50 for mAb2C4:dianthin was 20 pM, mAb2C4:gelonin, 20 pM, compared to the ADC (6.3 nM), which is >300 less potent. Several other HGG cell lines that express CTR were tested and the efficacies of mAb2C4:RIP (dianthin or gelonin) were similar. Co-administration of the enhancer SO1861 purified from plants enhances lysosomal escape. Enhancement with SO1861 increased potency of the immunotoxin (>3 log values) compared to the ADC (1 log). The uptake of antibody was demonstrated with the fluorescent conjugate mAb2C4:Alexa Fluor 568, and the release of dianthin-30:Alexa Fluor488 into the cytosol following addition of SO1861 supports our model. These data demonstrate that the immunotoxins are highly potent and that CTR is an effective target expressed by a large proportion of HGG cell lines representative of glioma stem cells and isolated from individual patients.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Experimental Therapeutics, BC Cancer Research Centre, 675 W 10th Ave, Vancouver, BC, V5Z IL3, Canada
| | - Sebastian G B Furness
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University (Parkville), Parkville, VIC, Australia
| | - Brett W Stringer
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Weng
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Pharmacy, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Hendrik Fuchs
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bryan W Day
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Angela Kourakis
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Andrew W Boyd
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David L Hare
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Mayank Thakur
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Terrance G Johns
- Hudson Institute of Medical Research, Monash University (Clayton), Clayton, VIC, Australia
| | - Peter J Wookey
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
103
|
Targeted therapies in hematological malignancies using therapeutic monoclonal antibodies against Eph family receptors. Exp Hematol 2017; 54:31-39. [PMID: 28751189 DOI: 10.1016/j.exphem.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
The use of monoclonal antibodies (mAbs) and molecules derived from them has achieved considerable attention and success in recent years, establishing this mode of therapy as an important therapeutic strategy in many cancers, in particular hematological tumors. mAbs recognize cell surface antigens expressed on target cells and mediate their function through various mechanisms such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, or immune system modulation. The efficacy of mAb therapy can be improved when they are conjugated to a highly potent payloads, including cytotoxic drugs and radiolabeled isotopes. The Eph family of proteins has received considerable attention in recent years as therapeutic targets for treatment of both solid and hematological cancers. High expression of Eph receptors on cancer cells compared with low expression levels in normal adult tissues makes them an attractive candidate for cancer immunotherapy. In this review, we detail the modes of action of antibody-based therapies with a focus on the Eph family of proteins as potential targets for therapy in hematological malignancies.
Collapse
|
104
|
Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem 2017; 142:152-162. [PMID: 28780190 DOI: 10.1016/j.ejmech.2017.07.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022]
Abstract
It is well established that the Eph/ephrin system plays a central role in the embryonic development, with minor implications in the physiology of the adult. However, it is overexpressed and deregulated in a variety of tumors, with a primary involvement in tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. Targeting the Eph/ephrin system with biologicals, including antibodies and recombinant proteins, reduces tumor growth in animal models of hematological malignancies, breast, prostate, colon, head and neck cancers and glioblastoma. Currently, some of these biopharmaceutical agents are under investigations in phase I or phase II clinical trials. Peptides and small molecules targeting protein-protein-interaction (PPI) are in the late preclinical phase where they are showing promising activity in models of glioblastoma, ovarian and lung cancer. The present review summarizes the most critical findings proposing the Eph/ephrin signaling system as a new target in molecularly targeted oncology.
Collapse
|
105
|
EphA3 targeting reduces in vitro adhesion and invasion and in vivo growth and angiogenesis of multiple myeloma cells. Cell Oncol (Dordr) 2017; 40:483-496. [PMID: 28721629 DOI: 10.1007/s13402-017-0338-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Multiple myeloma (MM) is a hematologic malignancy characterized by a clonal expansion of plasma cells (PCs) in the bone marrow (BM). Since MM has so far remained incurable, further insights into its pathogenesis and the concomitant identification of new therapeutic targets are urgently needed. The tyrosine kinase receptor EphA3 is known to be involved in various cellular processes including cell viability, cell movement and cell-cell interactions. Recently, EphA3 has emerged as a potential therapeutic target in several hematologic and solid tumors. Here, we aimed to uncover the role of EphA3 in MM. METHODS EphA3 mRNA and protein expression in primary MM bone marrow plasma cells (BMPCs), in MM-derived cell lines and in healthy controls (HCs) was assessed using qRT-PCR, Western blotting and flow cytometry. The effects of siRNA-mediated EphA3 silencing and anti EphA3 antibody (EphA3mAb) treatment on MM PC trafficking and viability were evaluated using in vitro assays. The effects of EphA3mAb treatment were also assessed in two MM-derived mouse xenograft models. RESULTS We found that EphA3 was overexpressed in primary MM BMPCs and MM-derived cell lines compared to HCs. We also found that siRNA-mediated EphA3 silencing and EphA3mAb treatment significantly inhibited the ability of MM PCs to adhere to fibronectin and stromal cells and to invade in vitro, without affecting cell proliferation and viability. Gene expression profiling showed that EphA3 silencing resulted in expression modulation of several molecules that regulate adhesion, migration and invasion processes. Importantly, we found that EphA3mAb treatment significantly inhibited in vivo tumor growth and angiogenesis in two MM-derived mouse xenograft models. CONCLUSIONS Our findings suggest that EphA3 plays an important role in the pathogenesis of MM and provide support for the notion that its targeting may represent a novel therapeutic opportunity for MM.
Collapse
|
106
|
Sharma A, Bendre A, Mondal A, Muzumdar D, Goel N, Shiras A. Angiogenic Gene Signature Derived from Subtype Specific Cell Models Segregate Proneural and Mesenchymal Glioblastoma. Front Oncol 2017; 7:146. [PMID: 28744448 PMCID: PMC5504164 DOI: 10.3389/fonc.2017.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022] Open
Abstract
Intertumoral molecular heterogeneity in glioblastoma identifies four major subtypes based on expression of molecular markers. Among them, the two clinically interrelated subtypes, proneural and mesenchymal, are the most aggressive with proneural liable for conversion to mesenchymal upon therapy. Using two patient-derived novel primary cell culture models (MTA10 and KW10), we developed a minimal but unique four-gene signature comprising genes vascular endothelial growth factor A (VEGF-A), vascular endothelial growth factor B (VEGF-B) and angiopoietin 1 (ANG1), angiopoietin 2 (ANG2) that effectively segregated the proneural (MTA10) and mesenchymal (KW10) glioblastoma subtypes. The cell culture preclassified as mesenchymal showed elevated expression of genes VEGF-A, VEGF-B and ANG1, ANG2 as compared to the other cell culture model that mimicked the proneural subtype. The differentially expressed genes in these two cell culture models were confirmed by us using TCGA and Verhaak databases and we refer to it as a minimal multigene signature (MMS). We validated this MMS on human glioblastoma tissue sections with the use of immunohistochemistry on preclassified (YKL-40 high or mesenchymal glioblastoma and OLIG2 high or proneural glioblastoma) tumor samples (n = 30). MMS segregated mesenchymal and proneural subtypes with 83% efficiency using a simple histopathology scoring approach (p = 0.008 for ANG2 and p = 0.01 for ANG1). Furthermore, MMS expression negatively correlated with patient survival. Importantly, MMS staining demonstrated spatiotemporal heterogeneity within each subclass, adding further complexity to subtype identification in glioblastoma. In conclusion, we report a novel and simple sequencing-independent histopathology-based biomarker signature comprising genes VEGF-A, VEGF-B and ANG1, ANG2 for subtyping of proneural and mesenchymal glioblastoma.
Collapse
Affiliation(s)
- Aman Sharma
- National Centre for Cell Science (NCCS), SP Pune University Campus, Pune, India.,ExoCan Healthcare Technologies Pvt Ltd, Venture Centre, NCL Innovation Park, Pune, India
| | - Ajinkya Bendre
- National Centre for Cell Science (NCCS), SP Pune University Campus, Pune, India
| | - Abir Mondal
- National Centre for Cell Science (NCCS), SP Pune University Campus, Pune, India
| | | | - Naina Goel
- Seth G.S. Medical College, KEM Hospital, Mumbai, India
| | - Anjali Shiras
- National Centre for Cell Science (NCCS), SP Pune University Campus, Pune, India
| |
Collapse
|
107
|
Haas TL, Sciuto MR, Brunetto L, Valvo C, Signore M, Fiori ME, di Martino S, Giannetti S, Morgante L, Boe A, Patrizii M, Warnken U, Schnölzer M, Ciolfi A, Di Stefano C, Biffoni M, Ricci-Vitiani L, Pallini R, De Maria R. Integrin α7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma. Cell Stem Cell 2017; 21:35-50.e9. [DOI: 10.1016/j.stem.2017.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/16/2017] [Accepted: 04/20/2017] [Indexed: 12/26/2022]
|
108
|
Nasri B, Inokuchi M, Ishikawa T, Uetake H, Takagi Y, Otsuki S, Kojima K, Kawano T. High expression of EphA3 (erythropoietin-producing hepatocellular A3) in gastric cancer is associated with metastasis and poor survival. BMC Clin Pathol 2017; 17:8. [PMID: 28465671 PMCID: PMC5408411 DOI: 10.1186/s12907-017-0047-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/20/2017] [Indexed: 12/29/2022] Open
Abstract
Background As the major subfamily of receptor tyrosine, erythropoietin-producing hepatocellular (Eph) receptor has been related to progression and prognosis in different types of tumors. However, the role and mechanism of EPHA3 in gastric cancer is still not well understood. Methods Specimen were collected from 202 patients who underwent gastric resection for gastric adenocarcinoma. The expression of EphA3 was studied using immunohistochemistry. We analyzed the clinicopathological factors and prognostic relevance of EphA3 expression in gastric cancer. Results High expression of EphA3 was associated with male predominance (p = 0.031), differentiated histology (p < 0.001), depth of tumor (p = 0.002), lymph node metastasis (p = 0.001), distant metastasis (p = 0.021), liver metastasis (p = 0.024), advanced stage (p < 0.001), and high HER2 expression (p = 0.017). Relapse-free survival (RFS) was significantly worse in patients with high expression of EphA3 than in those with low expression of EphA3 (p = 0.014). Multivariate analysis for RFS showed that depth of tumor [hazard ratio (HR) 9.333, 95% confidence interval (CI) 2.183–39.911, p = 0.003] and lymph node metastasis [hazard ratio (HR) 5.734, 95% confidence interval (CI) 2.349–13.997, p < 0.001] were independent prognostic factors. Conclusions These findings suggest that high expression EphA3 may participate in metastasis and worse survival.
Collapse
Affiliation(s)
| | - Mikito Inokuchi
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Toshiaki Ishikawa
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Uetake
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoko Takagi
- Department of Translational Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Sho Otsuki
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
109
|
Döbber A, Phoa AF, Abbassi RH, Stringer BW, Day BW, Johns TG, Abadleh M, Peifer C, Munoz L. Development and Biological Evaluation of a Photoactivatable Small Molecule Microtubule-Targeting Agent. ACS Med Chem Lett 2017; 8:395-400. [PMID: 28435525 DOI: 10.1021/acsmedchemlett.6b00483] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/15/2017] [Indexed: 01/21/2023] Open
Abstract
Photoremovable protecting groups added to bioactive molecules provide spatial and temporal control of the biological effects. We present synthesis and characterization of the first photoactivatable small-molecule tubulin inhibitor. By blocking the pharmacophoric OH group on compound 1 with photoremovable 4,5-dimethoxy-2-nitrobenzyl moiety we developed the photocaged prodrug 2 that had no effect in biological assays. Short UV light exposure of the derivative 2 or UV-irradiation of cells treated with 2 resulted in fast and potent inhibition of tubulin polymerization, attenuation of cell viability, and apoptotic cell death, implicating release of the parent active compound. This study validates for the first time the photoactivatable prodrug concept in the field of small molecule tubulin inhibitors. The caged derivative 2 represents a novel tool in antitubulin approaches.
Collapse
Affiliation(s)
- Alexander Döbber
- School of Medical
Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße
76, 24118 Kiel, Germany
| | - Athena F. Phoa
- School of Medical
Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ramzi H. Abbassi
- School of Medical
Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brett W. Stringer
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Bryan W. Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Terrance G. Johns
- Oncogenic Signalling Laboratory and Brain
Cancer Discovery Collaborative, Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
- Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Mohammed Abadleh
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße
76, 24118 Kiel, Germany
| | - Christian Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße
76, 24118 Kiel, Germany
| | - Lenka Munoz
- School of Medical
Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
110
|
Zhou Q, Phoa AF, Abbassi RH, Hoque M, Reekie TA, Font JS, Ryan RM, Stringer BW, Day BW, Johns TG, Munoz L, Kassiou M. Structural Optimization and Pharmacological Evaluation of Inhibitors Targeting Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases (DYRK) and CDC-like kinases (CLK) in Glioblastoma. J Med Chem 2017; 60:2052-2070. [DOI: 10.1021/acs.jmedchem.6b01840] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Brett W. Stringer
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Bryan W. Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Terrance G. Johns
- Oncogenic
Signaling Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, 27 Wright Street, Clayton, Victoria 3168, Australia
| | | | | |
Collapse
|
111
|
Andretta E, Cartón-García F, Martínez-Barriocanal Á, de Marcondes PG, Jimenez-Flores LM, Macaya I, Bazzocco S, Bilic J, Rodrigues P, Nieto R, Landolfi S, Ramon y Cajal S, Schwartz S, Brown A, Dopeso H, Arango D. Investigation of the role of tyrosine kinase receptor EPHA3 in colorectal cancer. Sci Rep 2017; 7:41576. [PMID: 28169277 PMCID: PMC5294649 DOI: 10.1038/srep41576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2016] [Indexed: 12/23/2022] Open
Abstract
EPH signaling deregulation has been shown to be important for colorectal carcinogenesis and genome-wide sequencing efforts have identified EPHA3 as one of the most frequently mutated genes in these tumors. However, the role of EPHA3 in colorectal cancer has not been thoroughly investigated. We show here that ectopic expression of wild type EPHA3 in colon cancer cells did not affect their growth, motility/invasion or metastatic potential in vivo. Moreover, overexpression of mutant EPHA3 or deletion of the endogenous mutant EPHA3 in colon cancer cells did not affect their growth or motility. EPHA3 inactivation in mice did not initiate the tumorigenic process in their intestine, and had no effects on tumor size/multiplicity after tumor initiation either genetically or pharmacologically. In addition, immunohistochemical analysis of EPHA3 tumor levels did not reveal associations with survival or clinicopathological features of colorectal cancer patients. In conclusion, we show that EPHA3 does not play a major role in colorectal tumorigenesis. These results significantly contribute to our understanding of the role of EPH signaling during colorectal carcinogenesis, and highlighting the need for detailed functional studies to confirm the relevance of putative cancer driver genes identified in sequencing efforts of the cancer genome.
Collapse
Affiliation(s)
- Elena Andretta
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Fernando Cartón-García
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Priscila Guimarães de Marcondes
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Lizbeth M. Jimenez-Flores
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Irati Macaya
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Sarah Bazzocco
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Josipa Bilic
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Paulo Rodrigues
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Rocio Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | | | | | - Simo Schwartz
- Group of Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Arthur Brown
- Robarts Research Institute, London, Ontario, Canada
| | - Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| |
Collapse
|
112
|
EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia. Leukemia 2016; 31:1779-1787. [PMID: 27922598 DOI: 10.1038/leu.2016.371] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/23/2016] [Accepted: 11/28/2016] [Indexed: 01/26/2023]
Abstract
The human EphA3 gene was discovered in a pre-B acute lymphoblastic leukemia (pre-B-ALL) using the EphA3-specific monoclonal antibody (mAb), IIIA4, which binds and activates both human and mouse EphA3. We use two models of human pre-B-ALL to examine EphA3 function, demonstrating effects on pre-B-cell receptor signaling. In therapeutic targeting studies, we demonstrated antitumor effects of the IIIA4 mAb in EphA3-expressing leukemic xenografts and no antitumor effect in the xenografts with no EphA3 expression providing evidence that EphA3 is a functional therapeutic target in pre-B-ALL. Here we show that the therapeutic effect of the anti-EphA3 antibody was greatly enhanced by adding an α-particle-emitting 213Bismuth payload.
Collapse
|
113
|
Li D, Ji Y, Wang F, Wang Y, Wang M, Zhang C, Zhang W, Lu Z, Sun C, Ahmed MF, He N, Jin K, Cheng S, Wang Y, He Y, Song J, Zhang Y, Li B. Regulation of crucial lncRNAs in differentiation of chicken embryonic stem cells to spermatogonia stem cells. Anim Genet 2016; 48:191-204. [PMID: 27862128 DOI: 10.1111/age.12510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/15/2022]
Abstract
Regulation of crucial lncRNAs involved in differentiation of chicken embryonic stem cells (ESCs) to spermatogonia stem cells (SSCs) was explored by sequencing the transcriptome of ESCs, primordial germ cells (PGCs) and SSCs with RNA-Seq; analytical bioinformatic methods were used to excavate candidate lncRNAs. We detected expression of candidate lncRNAs in ESCs, PGCs and SSCs and forecasted related target genes. Utilizing wego, david and string, function and protein-protein interactions of target genes were analyzed. Finally, based on string analysis, interaction diagrams and relevant signaling pathways were established. Our results indicate a total of 9657 lncRNAs in ESCs, PGCs and SSCs, with 3549 defined as significantly different. We screened 20 candidate lncRNAs, each demonstrating a greater than eight-fold difference in |logFC| value between groups (ESCs vs. PGCs, ESCs vs. SSCs and PGCs vs. SSCs) or specifically expressed in an individual cell type. qRT-PCR results indicated that expression tendencies of candidate lncRNAs were consistent with RNA-Seq. Fifteen cis and four trans target genes were forecasted. Based on wego and string analyses, we found lnc-SSC1, lnc-SSC5, lnc-SSC2 and lnc-ESC2 negatively regulated target genes SUFU, EPHA3, KLF3, ARL3 and TRIM8, whereas SHH, NOTCH, TGF-β, cAMP/cGMP and JAK/STAT signaling pathways were promoted, causing differentiation of ESCs into SSCs. Our findings represent a preliminary unveiling of lncRNA-associated regulatory mechanisms during differentiation of chicken ESCs into SSCs, filling a research void in male germ cell differentiation related to lncRNA. Our results also provide basic information for improving in vitro induction systems for differentiation of chicken ESCs into SSCs.
Collapse
Affiliation(s)
- D Li
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y Ji
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - F Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - M Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - C Zhang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - W Zhang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Z Lu
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - C Sun
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - M F Ahmed
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - N He
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - K Jin
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - S Cheng
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y He
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - J Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Y Zhang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - B Li
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
114
|
Alcantara Llaguno SR, Xie X, Parada LF. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:31-36. [PMID: 27815542 PMCID: PMC6353557 DOI: 10.1101/sqb.2016.81.030973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM.
Collapse
Affiliation(s)
- Sheila R Alcantara Llaguno
- Brain Tumor Center and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Xuanhua Xie
- Brain Tumor Center and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Luis F Parada
- Brain Tumor Center and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
115
|
EphA2 is a biomarker of hMSCs derived from human placenta and umbilical cord. Taiwan J Obstet Gynecol 2016; 54:749-56. [PMID: 26700997 DOI: 10.1016/j.tjog.2015.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE The heterogeneous nature of mesenchymal stem cells (MSCs) and the absence of known MSC-specific biomarkers make it challenging to define MSC phenotypes and characteristics. In this study, we compared the phenotypic and functional features of human placenta-derived MSCs with those of human dermal fibroblasts in vitro in order to identify a biomarker that can be used to increase the purity of MSCs in a primary culture of placenta-derived cells. MATERIALS AND METHODS Liquid chromatography-tandem mass spectrometry analysis was used to analyze and compare the proteome of human placenta-derived MSCs with that of fibroblasts. Quantitative real-time polymerase chain reaction, immunofluorescence, and flow cytometry were used to determine expression levels of EphA2 in placenta-derived MSCs. EphA2-positive cells were enriched by magnetic-activated cell sorting or with a cell sorter. An shRNA-mediated EphA2 knockdown was used to assess the role of EphA2 in MSC response to Tumor necrosis factor (TNF)-α stimulation. RESULTS Analysis of proteomics data from MSCs and fibroblasts resulted in the identification of the EphA2 surface protein biomarker, which could reliably distinguish MSCs from fibroblasts. EphA2 was significantly upregulated in placenta-derived MSCs when compared to fibroblasts. EphA2 played an important role in MSC migration in response to inflammatory stimuli, such as TNF-α. EphA2-enriched MSCs were also more responsive to inflammatory stimuli in vitro when compared to unsorted MSCs, indicating a role for EphA2 in the immunomodulatory functionality of MSCs. CONCLUSION EphA2 can be used to distinguish and isolate MSCs from a primary culture of placenta-derived cells. EphA2-sorted MSCs exhibited superior responsiveness to TNF-α signaling in an inflammatory environment compared with unsorted MSCs or MSC-like cells.
Collapse
|
116
|
Ferluga S, Tomé CML, Herpai DM, D'Agostino R, Debinski W. Simultaneous targeting of Eph receptors in glioblastoma. Oncotarget 2016; 7:59860-59876. [PMID: 27494882 PMCID: PMC5312354 DOI: 10.18632/oncotarget.10978] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/16/2016] [Indexed: 12/20/2022] Open
Abstract
Eph tyrosine kinase receptors are frequently overexpressed and functional in many cancers, and they are attractive candidates for targeted therapy. Here, we analyzed the expression of Eph receptor A3, one of the most up-regulated factors in glioblastoma cells cultured under tumorsphere-forming conditions, together with EphA2 and EphB2 receptors. EphA3 was overexpressed in up to 60% of glioblastoma tumors tested, but not in normal brain. EphA3 was localized in scattered areas of the tumor, the invasive ring, and niches near tumor vessels. EphA3 co-localized with macrophage/leukocyte markers, suggesting EphA3 expression on tumor-infiltrating cells of bone marrow origin. We took advantage of the fact that ephrinA5 (eA5) is a ligand that binds EphA3, EphA2 and EphB2 receptors, and used it to construct a novel targeted anti-glioblastoma cytotoxin. The eA5-based cytotoxin potently and specifically killed glioblastoma cells with an IC50 of at least 10-11 M. This and similar cytotoxins will simultaneously target different compartments of glioblastoma tumors while mitigating tumor heterogeneity.
Collapse
Affiliation(s)
- Sara Ferluga
- Department of Cancer Biology, Radiation Oncology and Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Carla Maria Lema Tomé
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Denise Mazess Herpai
- Department of Cancer Biology, Radiation Oncology and Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Ralph D'Agostino
- Department of Biostatistical Sciences, Section on Biostatistics, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Radiation Oncology and Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
117
|
Wang X, Xu H, Cao G, Wu Z, Wang J. Loss of EphA3 Protein Expression Is Associated With Advanced TNM Stage in Clear-Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2016; 15:e169-e173. [PMID: 27591824 DOI: 10.1016/j.clgc.2016.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Erythropoietin-producing hepatocellular carcinoma (Eph) receptors constitute the largest family of receptor tyrosine kinases. Ephs and their ligands ephrins play an important role in development and carcinogenesis. The expression of EphA3, an Eph family member, has been investigated in a variety of human cancers, with mixed results. High levels of EphA3 protein expression have been reported in colorectal, prostate, and gastric cancers, whereas loss of protein expression has been reported in lung and hematopoietic cancers. EphA3 expression in clear-cell renal cell carcinoma (ccRCC) and its association with clinicopathological parameters has not previously been examined. The aim of this study was to determine the cancerous value of EphA3 protein expression in patients with ccRCC. MATERIALS AND METHODS This study included 68 patients with ccRCC. EphA3 protein expression was examined in ccRCC tissue samples using immunohistochemistry and a specific polyclonal antibody, and the correlation between EphA3 expression and clinicopathological parameters was subsequently evaluated. RESULTS High EphA3 protein expression was observed in all normal renal tubules. In the 68 ccRCC patient samples examined, EphA3 protein expression was detected in 19 cases (27.9%) and undetectable in 49 cases (72.1%). EphA3 protein expression was significantly associated with tumor diameter (P = .016) and tumor, node metastases stage (P = .029). No significant association between protein expression and sex (P = .387), age (P = .727), or nuclear grade (P = .243) was found. CONCLUSION Ourdata indicate that EphA3 protein expression is reduced in ccRCC, suggesting the possibility that this receptor functions as a tumor suppressor in this disease.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Guangxin Cao
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Zhijun Wu
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing, China.
| |
Collapse
|
118
|
Li Y, Chen J, Zhang J, Wang Z, Shao T, Jiang C, Xu J, Li X. Construction and analysis of lncRNA-lncRNA synergistic networks to reveal clinically relevant lncRNAs in cancer. Oncotarget 2016; 6:25003-16. [PMID: 26305674 PMCID: PMC4694810 DOI: 10.18632/oncotarget.4660] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/15/2015] [Indexed: 02/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in diverse biological processes. Moreover, the development and progression of cancer often involves the combined actions of several lncRNAs. Here we propose a multi-step method for constructing lncRNA-lncRNA functional synergistic networks (LFSNs) through co-regulation of functional modules having three features: common coexpressed genes of lncRNA pairs, enrichment in the same functional category and close proximity within protein interaction networks. Applied to three cancers, we constructed cancer-specific LFSNs and found that they exhibit a scale free and modular architecture. In addition, cancer-associated lncRNAs tend to be hubs and are enriched within modules. Although there is little synergistic pairing of lncRNAs across cancers, lncRNA pairs involved in the same cancer hallmarks by regulating same or different biological processes. Finally, we identify prognostic biomarkers within cancer lncRNA expression datasets using modules derived from LFSNs. In summary, this proof-of-principle study indicates synergistic lncRNA pairs can be identified through integrative analysis of genome-wide expression data sets and functional information.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Juan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jinwen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zishan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tingting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chunjie Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
119
|
Sa JK, Yoon Y, Kim M, Kim Y, Cho HJ, Lee JK, Kim GS, Han S, Kim WJ, Shin YJ, Joo KM, Paddison PJ, Ishitani T, Lee J, Nam DH. In vivo RNAi screen identifies NLK as a negative regulator of mesenchymal activity in glioblastoma. Oncotarget 2016; 6:20145-59. [PMID: 26023737 PMCID: PMC4652994 DOI: 10.18632/oncotarget.3980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal brain cancer with profound genomic alterations. While the bona fide tumor suppressor genes such as PTEN, NF1, and TP53 have high frequency of inactivating mutations, there may be the genes with GBM-suppressive roles for which genomic mutation is not a primary cause for inactivation. To identify such genes, we employed in vivo RNAi screening approach using the patient-derived GBM xenograft models. We found that Nemo-Like Kinase (NLK) negatively regulates mesenchymal activities, a characteristic of aggressive GBM, in part via inhibition of WNT/β-catenin signaling. Consistent with this, we found that NLK expression is especially low in a subset of GBMs that harbors high WNT/mesenchymal activities. Restoration of NLK inhibited WNT and mesenchymal activities, decreased clonogenic growth and survival, and impeded tumor growth in vivo. These data unravel a tumor suppressive role of NLK and support the feasibility of combining oncogenomics with in vivo RNAi screen.
Collapse
Affiliation(s)
- Jason K Sa
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Yeup Yoon
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Misuk Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Yeonghwan Kim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hee Jin Cho
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Jin-Ku Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Gi-Soo Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Suji Han
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Woon Jin Kim
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Yong Jae Shin
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Kyeung Min Joo
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tohru Ishitani
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Do-Hyun Nam
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
120
|
Krusche B, Ottone C, Clements MP, Johnstone ER, Goetsch K, Lieven H, Mota SG, Singh P, Khadayate S, Ashraf A, Davies T, Pollard SM, De Paola V, Roncaroli F, Martinez-Torrecuadrada J, Bertone P, Parrinello S. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. eLife 2016; 5:e14845. [PMID: 27350048 PMCID: PMC4924994 DOI: 10.7554/elife.14845] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear. Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-B2 ligand in GSC enabled perivascular migration through homotypic forward signalling. Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and proliferation in GBM.
Collapse
Affiliation(s)
- Benjamin Krusche
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre (CSC), London, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Cristina Ottone
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre (CSC), London, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Melanie P Clements
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre (CSC), London, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ewan R Johnstone
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Katrin Goetsch
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre (CSC), London, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Huang Lieven
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuroplasticity and Diseases Group, MRC Clinical Sciences, London, United Kingdom
| | - Silvia G Mota
- Proteomics Unit, Centro Nacional de Investigaciones Oncologicas, Madrid, Spain
| | - Poonam Singh
- Department of Histopathology, Imperial College Healthcare Trust, London, United Kingdom
| | - Sanjay Khadayate
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Azhaar Ashraf
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre (CSC), London, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Timothy Davies
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre (CSC), London, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Vincenzo De Paola
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
- Neuroplasticity and Diseases Group, MRC Clinical Sciences, London, United Kingdom
| | - Federico Roncaroli
- Department of Histopathology, Imperial College Healthcare Trust, London, United Kingdom
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | | | - Paul Bertone
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Simona Parrinello
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre (CSC), London, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
121
|
Stringer BW, Bunt J, Day BW, Barry G, Jamieson PR, Ensbey KS, Bruce ZC, Goasdoué K, Vidal H, Charmsaz S, Smith FM, Cooper LT, Piper M, Boyd AW, Richards LJ. Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget 2016; 7:29306-20. [PMID: 27083054 PMCID: PMC5045397 DOI: 10.18632/oncotarget.8720] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects.
Collapse
Affiliation(s)
- Brett W. Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Bryan W. Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Guy Barry
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Paul R. Jamieson
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Kathleen S. Ensbey
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Zara C. Bruce
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Kate Goasdoué
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Hélène Vidal
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Sara Charmsaz
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Fiona M. Smith
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Leanne T. Cooper
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Michael Piper
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Andrew W. Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Department of Medicine, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Linda J. Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
122
|
CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells. Cell Death Dis 2016; 7:e2209. [PMID: 27124583 PMCID: PMC4855647 DOI: 10.1038/cddis.2016.102] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Glioblastoma (GBM) is one of the most aggressive types of cancer with limited therapeutic options and unfavorable prognosis. Stemness and non-classical epithelial-to-mesenchymal transition (ncEMT) features underlie the switch from normal to neoplastic states as well as resistance of tumor clones to current therapies. Therefore, identification of ligand/receptor systems maintaining this privileged state is needed to devise efficient cancer therapies. In this study, we show that the expression of CD95 associates with stemness and EMT features in GBM tumors and cells and serves as a prognostic biomarker. CD95 expression increases in tumors and with tumor relapse as compared with non-tumor tissue. Recruitment of the activating PI3K subunit, p85, to CD95 death domain is required for maintenance of EMT-related transcripts. A combination of the current GBM therapy, temozolomide, with a CD95 inhibitor dramatically abrogates tumor sphere formation. This study molecularly dissects the role of CD95 in GBM cells and contributes the rational for CD95 inhibition as a GBM therapy.
Collapse
|
123
|
EPHA3 regulates the multidrug resistance of small cell lung cancer via the PI3K/BMX/STAT3 signaling pathway. Tumour Biol 2016; 37:11959-11971. [PMID: 27101199 PMCID: PMC5080350 DOI: 10.1007/s13277-016-5048-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to the treatment of small cell lung cancer (SCLC). EPHA3 has been revealed to be the most frequently mutated Eph receptor gene in lung cancer with abnormal expression. Growing evidence indicates that the signaling proteins of EPHA3 downstream, including PI3K, BMX and STAT3, play crucial roles in tumorigenesis and cancer progression. To explore the possible role of EPHA3 in MDR, we assessed the influence of EPHA3 on chemoresistance, cell cycle, apoptosis, and tumor growth, as well as the relationship between EPHA3 and the expression of PI3K, BMX, and STAT3 in SCLC. We observed that overexpression of EPHA3 in SCLC cells decreased chemoresistance by increasing apoptosis and inducing G0/G1 arrest, accompanied by reduced phosphorylation of PI3K/BMX/STAT3 signaling pathway. Knockdown of EPHA3 expression generated a resistant phenotype of SCLC, as a result of decreased apoptosis and induced G2/M phase arrest. And re-expression of EPHA3 in these cells reversed the resistant phenotype. Meanwhile, increased phosphorylation of PI3K/BMX/STAT3 signaling pathway was observed in these cells with EPHA3 deficiency. Notably, both PI3K inhibitor (LY294002) and BMX inhibitor (LFM-A13) impaired the chemoresistance enhanced by EPHA3 deficiency in SCLC cell lines. Furthermore, EPHA3 inhibited growth of SCLC cells in vivo and was correlated with longer overall survival of SCLC patients. Thus, we first provide the evidences that EPHA3 is involved in regulating the MDR of SCLC via PI3K/BMX/STAT3 signaling and may be a new therapeutic target in SCLC.
Collapse
|
124
|
Schulten HJ, Hussein D, Al-Adwani F, Karim S, Al-Maghrabi J, Al-Sharif M, Jamal A, Al-Ghamdi F, Baeesa SS, Bangash M, Chaudhary A, Al-Qahtani M. Microarray Expression Data Identify DCC as a Candidate Gene for Early Meningioma Progression. PLoS One 2016; 11:e0153681. [PMID: 27096627 PMCID: PMC4838307 DOI: 10.1371/journal.pone.0153681] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/01/2016] [Indexed: 12/23/2022] Open
Abstract
Meningiomas are the most common primary brain tumors bearing in a minority of cases an aggressive phenotype. Although meningiomas are stratified according to their histology and clinical behavior, the underlying molecular genetics predicting aggressiveness are not thoroughly understood. We performed whole transcript expression profiling in 10 grade I and four grade II meningiomas, three of which invaded the brain. Microarray expression analysis identified deleted in colorectal cancer (DCC) as a differentially expressed gene (DEG) enabling us to cluster meningiomas into DCC low expression (3 grade I and 3 grade II tumors), DCC medium expression (2 grade I and 1 grade II tumors), and DCC high expression (5 grade I tumors) groups. Comparison between the DCC low expression and DCC high expression groups resulted in 416 DEGs (p-value < 0.05; fold change > 2). The most significantly downregulated genes in the DCC low expression group comprised DCC, phosphodiesterase 1C (PDE1C), calmodulin-dependent 70kDa olfactomedin 2 (OLFM2), glutathione S-transferase mu 5 (GSTM5), phosphotyrosine interaction domain containing 1 (PID1), sema domain, transmembrane domain (TM) and cytoplasmic domain, (semaphorin) 6D (SEMA6D), and indolethylamine N-methyltransferase (INMT). The most significantly upregulated genes comprised chromosome 5 open reading frame 63 (C5orf63), homeodomain interacting protein kinase 2 (HIPK2), and basic helix-loop-helix family, member e40 (BHLHE40). Biofunctional analysis identified as predicted top upstream regulators beta-estradiol, TGFB1, Tgf beta complex, LY294002, and dexamethasone and as predicted top regulator effectors NFkB, PIK3R1, and CREBBP. The microarray expression data served also for a comparison between meningiomas from female and male patients and for a comparison between brain invasive and non-invasive meningiomas resulting in a number of significant DEGs and related biofunctions. In conclusion, based on its expression levels, DCC may constitute a valid biomarker to identify those benign meningiomas at risk for progression.
Collapse
Affiliation(s)
- Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| | - Deema Hussein
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatima Al-Adwani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mona Al-Sharif
- Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awatif Jamal
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Fahad Al-Ghamdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Saleh S. Baeesa
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Adeel Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
125
|
Differential response of patient-derived primary glioblastoma cells to environmental stiffness. Sci Rep 2016; 6:23353. [PMID: 26996336 PMCID: PMC4800394 DOI: 10.1038/srep23353] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
The ability of cancer cells to sense external mechanical forces has emerged as a significant factor in the promotion of cancer invasion. Currently there are conflicting reports in the literature with regard to whether glioblastoma (GBM) brain cancer cell migration and invasion is rigidity-sensitive. In order to address this question we have compared the rigidity-response of primary patient-derived GBM lines. Cells were plated on polyacrylamide gels of defined rigidity that reflect the diversity of the brain tissue mechanical environment, and cell morphology and migration were analysed by time-lapse microscopy. Invasiveness was assessed in multicellular spheroids embedded in 3D matrigel cultures. Our data reveal a range of rigidity-dependent responses between the patient-derived cell lines, from reduced migration on the most compliant tissue stiffness to those that are insensitive to substrate rigidity and are equally migratory irrespective of the underlying substrate stiffness. Notably, the rigidity-insensitive GBM cells show the greatest invasive capacity in soft 3D matrigel cultures. Collectively our data confirm both rigidity-dependent and independent behaviour in primary GBM patient-derived cells.
Collapse
|
126
|
Ulasov IV, Shah N, Kaverina NV, Lee H, Lin B, Lieber A, Kadagidze ZG, Yoon JG, Schroeder B, Hothi P, Ghosh D, Baryshnikov AY, Cobbs CS. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget 2016; 6:3977-87. [PMID: 25738357 PMCID: PMC4414167 DOI: 10.18632/oncotarget.2897] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
Oncolytic gene therapy using viral vectors may provide an attractive therapeutic option for malignant gliomas. These viral vectors are designed in a way to selectively target tumor cells and spare healthy cells. To determine the translational impact, it is imperative to assess the factors that interfere with the anti-glioma effects of the oncolytic adenoviral vectors. In the current study, we evaluated the efficacy of survivin-driven oncolytic adenoviruses pseudotyping with adenoviral fiber knob belonging to the adenoviral serotype 3, 11 and 35 in their ability to kill glioblastoma (GBM) cells selectively without affecting normal cells. Our results indicate that all recombinant vectors used in the study can effectively target GBM in vitro with high specificity, especially the 3 knob-modified vector. Using intracranial U87 and U251 GBM xenograft models we have also demonstrated that treatment with Conditionally Replicative Adenovirus (CRAd-S-5/3) vectors can effectively regress tumor. However, in several patient-derived GBM cell lines, cells exhibited resistance to the CRAd infection as evident from the diminishing effects of autophagy. To improve therapeutic response, tumor cells were pretreated with tamoxifen. Our preliminary data suggest that tamoxifen sensitizes glioblastoma cells towards oncolytic treatment with CRAd-S-5/3, which may prove useful for GBM in future experimental therapy.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA.,Institute of Experimental Diagnostic and Biotherapy, NN. Blokhin Cancer Research Center, RAMN, Moscow, Russia, 115478
| | - Nameeta Shah
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Natalya V Kaverina
- NN. Blokhin Cancer Research Center, RAMN, Moscow, Russia, 115478.,Current address: Division of Nephrology, University of Washington, Seattle, 98109, USA
| | - Hwahyang Lee
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Biaoyang Lin
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Andre Lieber
- University of Washington, Seattle, WA, 98122, USA
| | | | - Jae-Guen Yoon
- Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | | | | | | | | | | |
Collapse
|
127
|
Hood G, Laufer-Amorim R, Fonseca-Alves CE, Palmieri C. Overexpression of Ephrin A3 Receptor in Canine Prostatic Carcinoma. J Comp Pathol 2016; 154:180-5. [PMID: 26895888 DOI: 10.1016/j.jcpa.2016.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
Abstract
Ephrin A3 (EphA3), a member of the ephrin receptor tyrosine kinase family, is involved in a variety of functions in normal cells, especially during embryonic development, and alterations in its expression profile have been observed in several human cancers. However, there are no reports of the expression of EphA3 in normal, hyperplastic or neoplastic canine prostate tissue or in other types of canine tumours. Six normal, 15 hyperplastic and 21 neoplastic canine prostates were examined immunohistochemically with a polyclonal antibody specific for human EphA3. The percentage of positive cells in all prostatic carcinomas was increased, with a mean of 89.28 ± 5.18% compared with normal (9.17 ± 6.72%) and hyperplastic prostates (20.00 ± 8.28%). EphA3 expression was not correlated with the histological subtypes of prostate cancer or with the Gleason score. The increase in EphA3 expression in canine prostatic carcinomas suggests the involvement of this receptor in prostatic carcinogenesis and its potential use as a target for new therapeutic strategies.
Collapse
Affiliation(s)
- G Hood
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, Queensland, Australia
| | - R Laufer-Amorim
- School of Veterinary Medicine and Animal Science, University Estadual Paulista, Botucatu, São Paulo, Brazil
| | - C E Fonseca-Alves
- School of Veterinary Medicine and Animal Science, University Estadual Paulista, Botucatu, São Paulo, Brazil
| | - C Palmieri
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, Queensland, Australia.
| |
Collapse
|
128
|
Glioma Stem Cells. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
129
|
Zakaria Z, Tivnan A, Flanagan L, Murray DW, Salvucci M, Stringer BW, Day BW, Boyd AW, Kögel D, Rehm M, O'Brien DF, Byrne AT, Prehn JHM. Patient-derived glioblastoma cells show significant heterogeneity in treatment responses to the inhibitor-of-apoptosis-protein antagonist birinapant. Br J Cancer 2015; 114:188-98. [PMID: 26657652 PMCID: PMC4815807 DOI: 10.1038/bjc.2015.420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
Background: Resistance to temozolomide (TMZ) greatly limits chemotherapeutic effectiveness in glioblastoma (GBM). Here we analysed the ability of the Inhibitor-of-apoptosis-protein (IAP) antagonist birinapant to enhance treatment responses to TMZ in both commercially available and patient-derived GBM cells. Methods: Responses to TMZ and birinapant were analysed in a panel of commercial and patient-derived GBM cell lines using colorimetric viability assays, flow cytometry, morphological analysis and protein expression profiling of pro- and antiapoptotic proteins. Responses in vivo were analysed in an orthotopic xenograft GBM model. Results: Single-agent treatment experiments categorised GBM cells into TMZ-sensitive cells, birinapant-sensitive cells, and cells that were insensitive to either treatment. Combination treatment allowed sensitisation to therapy in only a subset of resistant GBM cells. Cell death analysis identified three principal response patterns: Type A cells that readily activated caspase-8 and cell death in response to TMZ while addition of birinapant further sensitised the cells to TMZ-induced cell death; Type B cells that readily activated caspase-8 and cell death in response to birinapant but did not show further sensitisation with TMZ; and Type C cells that showed no significant cell death or moderately enhanced cell death in the combined treatment paradigm. Furthermore, in vivo, a Type C patient-derived cell line that was TMZ-insensitive in vitro and showed a strong sensitivity to TMZ and TMZ plus birinapant treatments. Conclusions: Our results demonstrate remarkable differences in responses of patient-derived GBM cells to birinapant single and combination treatments, and suggest that therapeutic responses in vivo may be greatly affected by the tumour microenvironment.
Collapse
Affiliation(s)
- Z Zakaria
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,National Centre for Neurosurgery, Beaumont Hospital, Dublin 9, Ireland
| | - A Tivnan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - L Flanagan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - D W Murray
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - M Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - B W Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - B W Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - A W Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - D Kögel
- Experimental Neurosurgery, Neuroscience Center, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - M Rehm
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - D F O'Brien
- National Centre for Neurosurgery, Beaumont Hospital, Dublin 9, Ireland
| | - A T Byrne
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - J H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
130
|
Dietrich PY, Dutoit V, Walker PR. Immunotherapy for glioma: from illusion to realistic prospects? Am Soc Clin Oncol Educ Book 2015:51-9. [PMID: 24857060 DOI: 10.14694/edbook_am.2014.34.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is now evidence that the rules established for tumor immunology and immunotherapy in general are relevant for brain tumors. Treatment strategies explored have mainly involved vaccines using either tumor cells or components, and vaccines with defined synthetic peptides. This latter approach offers the advantage to select well-characterized antigens with selective or preferential expression on glioma. This is a prerequisite because collateral damage to the brain is not allowed. A second strategy which is reaching clinical trials is T cell therapy using the patients' own lymphocytes engineered to become tumor reactive. Tumor specificity can be conferred by forced expression of either a high-avidity T cell receptor or an antitumor antibody (the latter cells are called chimeric antigen receptors). An advantage of T cell engineering is the possibility to modify the cells to augment cellular activation, in vivo persistence and resistance to the tumor immunosuppressive milieu. A direct targeting of the hostile glioma microenvironment will additionally be required for achieving potent immunotherapy and various trials are assessing this issue. Finally, combining immunotherapy with immune checkpoint inhibitors and chemotherapy must be explored within rigorous clinical trials that favor constant interactions between the bench and bedside. Regarding immunotherapy for glioma patients, what was an unrealistic dream a decade ago is today a credible prospect.
Collapse
Affiliation(s)
| | - Valérie Dutoit
- From the Center of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Paul R Walker
- From the Center of Oncology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
131
|
Phoa AF, Browne S, Gurgis FMS, Åkerfeldt MC, Döbber A, Renn C, Peifer C, Stringer BW, Day BW, Wong C, Chircop M, Johns TG, Kassiou M, Munoz L. Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling. Biochem Pharmacol 2015; 98:587-601. [PMID: 26519552 DOI: 10.1016/j.bcp.2015.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/20/2015] [Indexed: 01/19/2023]
Abstract
We recently reported that CMPD1, originally developed as an inhibitor of MK2 activation, primarily inhibits tubulin polymerisation and induces apoptosis in glioblastoma cells. In the present study we provide detailed pharmacological investigation of CMPD1 analogues with improved molecular properties. We determined their anti-cancer efficacy in glioblastoma cells with enhanced EGFR signalling, as deregulated EGFR often leads to chemoresistance. Eight analogues of CMPD1 with varying lipophilicity and basicity were synthesised and tested for efficacy in the cell viability assay using established glioblastoma cell lines and patient-derived primary glioblastoma cells. The mechanism of action for the most potent analogue 15 was determined using MK2 activation and tubulin polymerisation assays, together with the immunofluorescence analysis of the mitotic spindle formation. Apoptosis was analysed by Annexin V staining, immunoblotting analysis of bcl-2 proteins and PARP cleavage. The apoptotic activity of CMPD1 and analogue 15 was comparable across glioblastoma cell lines regardless of the EGFR status. Primary glioblastoma cells of the classical subtype that are characterized by enhanced EGFR activity were most sensitive to the treatment with CMPD1 and 15. In summary, we present mechanism of action for a novel small molecule tubulin inhibitor, compound 15 that inhibits tubulin polymerisation and mitotic spindle formation, induces degradation of anti-apoptotic bcl-2 proteins and leads to apoptosis of glioblastoma cells. We also demonstrate that the enhanced EGFR activity does not decrease the efficacy of tubulin inhibitors developed in this study.
Collapse
Affiliation(s)
- Athena F Phoa
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Stephen Browne
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Fadi M S Gurgis
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Mia C Åkerfeldt
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Alexander Döbber
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia; Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Christian Renn
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia; Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Christian Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Brett W Stringer
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Chin Wong
- Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW 2154, Australia
| | - Megan Chircop
- Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW 2154, Australia
| | - Terrance G Johns
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia; Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Kassiou
- School of Chemistry and Faculty of Health Sciences, The University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
132
|
Singh DR, Cao Q, King C, Salotto M, Ahmed F, Zhou XY, Pasquale EB, Hristova K. Unliganded EphA3 dimerization promoted by the SAM domain. Biochem J 2015; 471:101-9. [PMID: 26232493 PMCID: PMC4692061 DOI: 10.1042/bj20150433] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023]
Abstract
The erythropoietin-producing hepatocellular carcinoma A3 (EphA3) receptor tyrosine kinase (RTK) regulates morphogenesis during development and is overexpressed and mutated in a variety of cancers. EphA3 activation is believed to follow a 'seeding mechanism' model, in which ligand binding to the monomeric receptor acts as a trigger for signal-productive receptor clustering. We study EphA3 lateral interactions on the surface of live cells and we demonstrate that EphA3 forms dimers in the absence of ligand binding. We further show that these dimers are stabilized by interactions involving the EphA3 sterile α-motif (SAM) domain. The discovery of unliganded EphA3 dimers challenges the current understanding of the chain of EphA3 activation events and suggests that EphA3 may follow the 'pre-formed dimer' model of activation known to be relevant for other receptor tyrosine kinases. The present work also establishes a new role for the SAM domain in promoting Eph receptor lateral interactions and signalling on the cell surface.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - QingQing Cao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Matt Salotto
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Xiang Yang Zhou
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A. Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A.
| |
Collapse
|
133
|
Abstract
Glioblastoma is the most prevalent and malignant primary brain tumor, containing self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. In this review, Lathia et al. discuss how the integration of genetics, epigenetics, and metabolism has shaped our understanding of how CSCs function to drive GBM growth. Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial.
Collapse
Affiliation(s)
- Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; Department of Molecular Medicine, Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Erin E Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Claudia L L Valentim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jeremy N Rich
- Department of Molecular Medicine, Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA; Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
134
|
Qiu H, Fang X, Luo Q, Ouyang G. Cancer stem cells: a potential target for cancer therapy. Cell Mol Life Sci 2015; 72:3411-24. [PMID: 25967289 PMCID: PMC11113644 DOI: 10.1007/s00018-015-1920-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/08/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023]
Abstract
Current evidence indicates that a subpopulation of cancer cells, named cancer stem cells (CSCs) or tumor-initiating cells, are responsible for the initiation, growth, metastasis, therapy resistance and recurrence of cancers. CSCs share core regulatory pathways with normal stem cells; however, CSCs rely on distinct reprogrammed pathways to maintain stemness and to contribute to the progression of cancers. The specific targeting of CSCs, together with conventional chemotherapy or radiotherapy, may achieve stable remission or cure cancer. Therefore, the identification of CSCs and a better understanding of the complex characteristics of CSCs will provide invaluable diagnostic, therapeutic and prognostic targets for clinical application. In this review, we will introduce the dysregulated properties of CSCs in cancers and discuss the possible challenges in targeting CSCs for cancer treatment.
Collapse
Affiliation(s)
- Hong Qiu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| | - Xiaoguang Fang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
135
|
Esposito F, De Martino M, Petti MG, Forzati F, Tornincasa M, Federico A, Arra C, Pierantoni GM, Fusco A. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget 2015; 5:8341-54. [PMID: 25268743 PMCID: PMC4226687 DOI: 10.18632/oncotarget.2202] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The High Mobility Group A (HMGA) are nuclear proteins that participate in the organization of nucleoprotein complexes involved in chromatin structure, replication and gene transcription. HMGA overexpression is a feature of human cancer and plays a causal role in cell transformation. Since non-coding RNAs and pseudogenes are now recognized to be important in physiology and disease, we investigated HMGA1 pseudogenes in cancer settings using bioinformatics analysis. Here we report the identification and characterization of two HMGA1 non-coding pseudogenes, HMGA1P6 and HMGA1P7. We show that their overexpression increases the levels of HMGA1 and other cancer-related proteins by inhibiting the suppression of their synthesis mediated by microRNAs. Consistently, embryonic fibroblasts from HMGA1P7-overexpressing transgenic mice displayed a higher growth rate and reduced susceptibility to senescence. Moreover, HMGA1P6 and HMGA1P7 were overexpressed in human anaplastic thyroid carcinomas, which are highly aggressive, but not in differentiated papillary carcinomas, which are less aggressive. Lastly, the expression of the HMGA1 pseudogenes was significantly correlated with HMGA1 protein levels thereby implicating HMGA1P overexpression in cancer progression. In conclusion, HMGA1P6 and HMGA1P7 are potential proto-oncogenic competitive endogenous RNAs.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Maria Grazia Petti
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mara Tornincasa
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Giovanna Maria Pierantoni
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
136
|
Lahtela J, Pradhan B, Närhi K, Hemmes A, Särkioja M, Kovanen PE, Brown A, Verschuren EW. The putative tumor suppressor gene EphA3 fails to demonstrate a crucial role in murine lung tumorigenesis or morphogenesis. Dis Model Mech 2015; 8:393-401. [PMID: 25713296 PMCID: PMC4381338 DOI: 10.1242/dmm.019257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/12/2015] [Indexed: 01/04/2023] Open
Abstract
Treatment of non-small cell lung cancer (NSCLC) is based on histological analysis and molecular profiling of targetable driver oncogenes. Therapeutic responses are further defined by the landscape of passenger mutations, or loss of tumor suppressor genes. We report here a thorough study to address the physiological role of the putative lung cancer tumor suppressor EPH receptor A3 (EPHA3), a gene that is frequently mutated in human lung adenocarcinomas. Our data shows that homozygous or heterozygous loss of EphA3 does not alter the progression of murine adenocarcinomas that result from Kras mutation or loss of Trp53, and we detected negligible postnatal expression of EphA3 in adult wild-type lungs. Yet, EphA3 was expressed in the distal mesenchyme of developing mouse lungs, neighboring the epithelial expression of its Efna1 ligand; this is consistent with the known roles of EPH receptors in embryonic development. However, the partial loss of EphA3 leads only to subtle changes in epithelial Nkx2-1, endothelial Cd31 and mesenchymal Fgf10 RNA expression levels, and no macroscopic phenotypic effects on lung epithelial branching, mesenchymal cell proliferation, or abundance and localization of CD31-positive endothelia. The lack of a discernible lung phenotype in EphA3-null mice might indicate lack of an overt role for EPHA3 in the murine lung, or imply functional redundancy between EPHA receptors. Our study shows how biological complexity can challenge in vivo functional validation of mutations identified in sequencing efforts, and provides an incentive for the design of knock-in or conditional models to assign the role of EPHA3 mutation during lung tumorigenesis.
Collapse
Affiliation(s)
- Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Barun Pradhan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Katja Närhi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Merja Särkioja
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Panu E Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki FI-00014, Finland
| | - Arthur Brown
- Spinal Cord Injury Team, Robarts Research Institute, University of Western Ontario, London, ON N6A 5K8, Canada
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
137
|
Hosein AN, Lim YC, Day B, Stringer B, Rose S, Head R, Cosgrove L, Sminia P, Fay M, Martin JH. The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells. J Neurooncol 2015; 122:263-71. [DOI: 10.1007/s11060-014-1713-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/28/2014] [Indexed: 12/11/2022]
|
138
|
Miao H, Gale NW, Guo H, Qian J, Petty A, Kaspar J, Murphy AJ, Valenzuela DM, Yancopoulos G, Hambardzumyan D, Lathia JD, Rich JN, Lee J, Wang B. EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene 2015; 34:558-67. [PMID: 24488013 PMCID: PMC4119862 DOI: 10.1038/onc.2013.590] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 01/24/2023]
Abstract
Diffuse infiltrative invasion is a major cause for the dismal prognosis of glioblastoma multiforme (GBM), but the underlying mechanisms remain incompletely understood. Using human glioma stem cells (GSCs) that recapitulate the invasive propensity of primary GBM, we find that EphA2 critically regulates GBM invasion in vivo. EphA2 was expressed in all seven GSC lines examined, and overexpression of EphA2 enhanced intracranial invasion. The effects required Akt-mediated phosphorylation of EphA2 on serine 897. In vitro the Akt-EphA2 signaling axis is maintained in the absence of ephrin-A ligands and is disrupted upon ligand stimulation. To test whether ephrin-As in tumor microenvironment can regulate GSC invasion, the newly established Efna1;Efna3;Efna4 triple knockout mice (TKO) were used in an ex vivo brain slice invasion assay. We observed significantly increased GSC invasion through the brain slices of TKO mice relative to wild-type (WT) littermates. Mechanistically EphA2 knockdown suppressed stem cell properties of GSCs, causing diminished self-renewal, reduced stem marker expression and decreased tumorigenicity. In a subset of GSCs, the reduced stem cell properties were associated with lower Sox2 expression. Overexpression of EphA2 promoted stem cell properties in a kinase-independent manner and increased Sox2 expression. Disruption of Akt-EphA2 cross-talk attenuated stem cell marker expression and neurosphere formation while having minimal effects on tumorigenesis. Taken together, the results show that EphA2 endows invasiveness of GSCs in vivo in cooperation with Akt and regulates glioma stem cell properties.
Collapse
Affiliation(s)
- Hui Miao
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Hong Guo
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Juan Qian
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aaron Petty
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - James Kaspar
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Dolores Hambardzumyan
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 9500 Euclid Ave, Cleveland, Ohio, 44195, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| | - Justin D. Lathia
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 9500 Euclid Ave, Cleveland, Ohio, 44195, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 9500 Euclid Ave, Cleveland, Ohio, 44195, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 9500 Euclid Ave, Cleveland, Ohio, 44195, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| | - Bingcheng Wang
- Rammelkamp Center for Research, MetroHealth Campus, and Department of Pharmacology and Oncology, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
- VelociGene Division, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 11100 Euclid Ave, Cleveland Ohio, 44106, USA
| |
Collapse
|
139
|
Li N, Maly DJ, Chanthery YH, Sirkis DW, Nakamura JL, Berger MS, James CD, Shokat KM, Weiss WA, Persson AI. Radiotherapy followed by aurora kinase inhibition targets tumor-propagating cells in human glioblastoma. Mol Cancer Ther 2014; 14:419-28. [PMID: 25522764 DOI: 10.1158/1535-7163.mct-14-0526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor. Radiotherapy fails to eliminate subpopulations of stem-like tumor-propagating cells (TPC), resulting in tumor regrowth. To identify kinases that promote TPC self-renewal rather than increasing proliferation in human GBM cultures, we screened a library of 54 nonselective tool compounds and determined their kinase inhibitor profiles in vitro. Most compounds inhibited aurora kinase (AURK) activity and blocked TPC self-renewal, while inducing GBM cell polynucleation and apoptosis. To prevent regrowth by TPCs, we used a priming dose of radiation followed by incubation with the pan-AURK inhibitor VX680 to block self-renewal and induce apoptosis in GBM cultures. In mice xenografted with human GBM cells, radiotherapy followed by VX680 treatment resulted in reduced tumor growth and increased survival relative to either monotherapy alone or VX680 treatment before radiation. Our results indicate that AURK inhibition, subsequent to radiation, may enhance the efficacy of radiotherapy by targeting radioresistant TPCs in human GBMs.
Collapse
Affiliation(s)
- Nan Li
- Department of Neurology, University of California, San Francisco, California. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California. Sandler Neurosciences Center, University of California, San Francisco, California
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Yvan H Chanthery
- Department of Neurology, University of California, San Francisco, California. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Daniel W Sirkis
- Department of Neurology, University of California, San Francisco, California. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jean L Nakamura
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California. Department of Radiation Oncology, University of California, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - C David James
- Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Kevan M Shokat
- Chemistry and Chemical Biology Graduate Program, Howard Hughes Medical Institute, University of California, San Francisco, California
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, California. Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California. Sandler Neurosciences Center, University of California, San Francisco, California.
| |
Collapse
|
140
|
Vail ME, Murone C, Tan A, Hii L, Abebe D, Janes PW, Lee FT, Baer M, Palath V, Bebbington C, Yarranton G, Llerena C, Garic S, Abramson D, Cartwright G, Scott AM, Lackmann M. Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment. Cancer Res 2014; 74:4470-81. [PMID: 25125683 DOI: 10.1158/0008-5472.can-14-0218] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eph receptor tyrosine kinases are critical for cell-cell communication during normal and oncogenic tissue patterning and tumor growth. Somatic mutation profiles of several cancer genomes suggest EphA3 as a tumor suppressor, but its oncogenic expression pattern and role in tumorigenesis remain largely undefined. Here, we report unexpected EphA3 overexpression within the microenvironment of a range of human cancers and mouse tumor xenografts where its activation inhibits tumor growth. EphA3 is found on mouse bone marrow-derived cells with mesenchymal and myeloid phenotypes, and activation of EphA3(+)/CD90(+)/Sca1(+) mesenchymal/stromal cells with an EphA3 agonist leads to cell contraction, cell-cell segregation, and apoptosis. Treatment of mice with an agonistic α-EphA3 antibody inhibits tumor growth by severely disrupting the integrity and function of newly formed tumor stroma and microvasculature. Our data define EphA3 as a novel target for selective ablation of the tumor microenvironment and demonstrate the potential of EphA3 agonists for anticancer therapy.
Collapse
Affiliation(s)
- Mary E Vail
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.
| | - Carmel Murone
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | - April Tan
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Linda Hii
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Degu Abebe
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Fook-Thean Lee
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | - Mark Baer
- KaloBios Pharmaceuticals, Inc., South San Francisco, California
| | - Varghese Palath
- KaloBios Pharmaceuticals, Inc., South San Francisco, California
| | | | | | - Carmen Llerena
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Slavisa Garic
- Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - David Abramson
- Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Glenn Cartwright
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | - Andrew M Scott
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia. Faculty of Medicine, University of Melbourne, Victoria, Australia.
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.
| |
Collapse
|
141
|
Scott AM, Tiganis T. Pioneer of Eph biology and therapeutics: Martin Lackmann (1956-2014). Growth Factors 2014; 32:171-3. [PMID: 25401411 DOI: 10.3109/08977194.2014.983226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Andrew M Scott
- Ludwig Institute for Cancer Research , Melbourne, VIC , Australia
| | | |
Collapse
|
142
|
Tomasevic N, Luehrsen K, Baer M, Palath V, Martinez D, Williams J, Yi C, Sujatha-Bhaskar S, Lanke R, Leung J, Ching W, Lee A, Bai L, Yarranton G, Bebbington C. A high affinity recombinant antibody to the human EphA3 receptor with enhanced ADCC activity. Growth Factors 2014; 32:223-35. [PMID: 25413948 DOI: 10.3109/08977194.2014.984808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
EphA3 is expressed in solid tumors and leukemias and is an attractive target for the therapy. We have generated a panel of Humaneered® antibodies to the ligand-binding domain using a Fab epitope-focused library that has the same specificity as monoclonal antibody mIIIA4. A high-affinity antibody was selected that competes with the mIIIA4 antibody for binding to EphA3 and has an improved affinity of ∼1 nM. In order to generate an antibody with potent cell-killing activity the variable regions were assembled with human IgG1k constant regions and expressed in a Chinese hamster ovary (CHO) cell line deficient in fucosyl transferase. Non-fucosylated antibodies have been reported to have enhanced binding affinity for the IgG receptor CD16a (FcγRIIIa). The affinity of the antibody for recombinant CD16a was enhanced approximately 10-fold. This resulted in enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity against EphA3-expressing leukemic cells, providing a potent antibody for the evaluation as a therapeutic agent.
Collapse
|
143
|
Al-Ejeh F, Offenhäuser C, Lim YC, Stringer BW, Day BW, Boyd AW. Eph family co-expression patterns define unique clusters predictive of cancer phenotype. Growth Factors 2014; 32:254-64. [PMID: 25410964 DOI: 10.3109/08977194.2014.984807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Eph genes are the largest sub-family of receptor tyrosine kinases; however, it is most likely the least understood and the arena for many conflicting reports. In this tribute to Prof. Martin Lackmann and Prof. Tony Pawson, we utilized The Cancer Genome Atlas resources to shed new light on the understanding of this family. We found that mutation and expression analysis define two clusters of co-expressed Eph family genes that relate to aggressive phenotypes across multiple cancer types. Analysis of signal transduction pathways using reverse-phase protein arrays revealed a network of interactions, which associates cluster-specific Eph genes with epithelial-mesenchymal transition, metabolism, DNA-damage repair and apoptosis. Our findings support the role of the Eph family in modulating cancer progression and reveal distinct patterns of Eph expression, which correlate with disease outcome. These observations provide further rationale for seeking cancer therapies, which target the Eph/ephrin system.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Brain Cancer Research Unit & Leukaemia Foundation Research Unit, QIMR Berghofer Medical Research Institute , Brisbane, Queensland , Australia
| | | | | | | | | | | |
Collapse
|
144
|
Abstract
Eph receptor tyrosine kinases control cell-cell interactions during normal and oncogenic development, and are implicated in a range of processes including angiogenesis, stem cell maintenance and metastasis. They are thus of great interest as targets for cancer therapy. EphA3, originally isolated from leukemic and melanoma cells, is presently one of the most promising therapeutic targets, with multiple tumor-promoting roles in a variety of cancer types. This review focuses on EphA3, its functions in controlling cellular behavior, both in normal and pathological development, and most particularly in cancer.
Collapse
Affiliation(s)
- Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University , Victoria , Australia and
| | | | | | | | | | | |
Collapse
|
145
|
Herington AC, Mertens-Walker I, Lisle JE, Maharaj M, Stephenson SA. Inhibiting Eph kinase activity may not be "Eph"ective for cancer treatment. Growth Factors 2014; 32:207-13. [PMID: 25413947 DOI: 10.3109/08977194.2014.985293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several Eph receptor tyrosine kinases (RTKs) are commonly over-expressed in epithelial and mesenchymal cancers and are recognized as promising therapeutic targets. Although normal interaction between Eph receptors and their ephrin ligands stimulates kinase activity and is generally tumor suppressive, significant Eph over-expression allows activation of ligand- and/or kinase-independent signaling pathways that promote oncogenesis. Single-agent kinase inhibitors are widely used to target RTK-driven tumors but acquired and de novo resistance to such agents is a major limitation to effective clinical use. Accumulating evidence suggests that Ephs can be inhibited by "leaky" or low-specificity kinase inhibitors targeted at other RTKs. Such off-target effects may therefore inadvertently promote ligand- and/or kinase-independent oncogenic Eph signaling, thereby providing a new mechanism by which resistance to the RTK inhibitors can emerge. We propose that combining specific, non-leaky kinase inhibitors with tumor-suppressive stimulators of Eph signaling may provide more effective treatment options for overcoming treatment-induced resistance and clinical failure.
Collapse
Affiliation(s)
- A C Herington
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Queensland , Australia and
| | | | | | | | | |
Collapse
|
146
|
Abstract
Eph receptor tyrosine kinases and the corresponding ephrin ligands play a pivotal role in the glioma development and progression. Aberrant protein expression levels of the Eph receptors and ephrins are often associated with higher tumor grade and poor prognosis. Their function in tumorigenesis is complex due to the intricate network of possible co-occurring interactions between neighboring tumor cells and tumor microenvironment. Both Ephs and ephrins localize on the surface of tumor cells, tumor vasculature, glioma stem cells, tumor cells infiltrating brain, and immune cells infiltrating tumors. They can both promote and inhibit tumorigenicity depending on the downstream forward and reverse signalling generated. All the above-mentioned features make the Ephs/ephrins system an intriguing candidate for the development of new therapeutic strategies in glioma treatment. This review will give a general overview on the structure and the function of Ephs and ephrins, with a particular emphasis on the state of the knowledge of their role in malignant gliomas.
Collapse
Affiliation(s)
- Sara Ferluga
- Department of Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Department of Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- To whom correspondence should be addressed: Waldemar Debinski, M.D., Ph.D., Director of Brain Tumor Center of Excellence, Thomas K. Hearn Jr. Brain Tumor Research Center, Professor of Neurosurgery, Radiation Oncology, and Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157, Phone: (336) 716-9712, Fax: (336) 713-7639,
| |
Collapse
|
147
|
Nevo I, Woolard K, Cam M, Li A, Webster JD, Kotliarov Y, Kim HS, Ahn S, Walling J, Kotliarova S, Belova G, Song H, Bailey R, Zhang W, Fine HA. Identification of molecular pathways facilitating glioma cell invasion in situ. PLoS One 2014; 9:e111783. [PMID: 25365423 PMCID: PMC4218815 DOI: 10.1371/journal.pone.0111783] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022] Open
Abstract
Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC) xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs) compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT) processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.
Collapse
Affiliation(s)
- Ido Nevo
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin Woolard
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maggie Cam
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aiguo Li
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua D. Webster
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuri Kotliarov
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hong Sug Kim
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Susie Ahn
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jennifer Walling
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Svetlana Kotliarova
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Galina Belova
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hua Song
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rolanda Bailey
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wei Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Howard A. Fine
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
148
|
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptor tyrosine kinase family plays important roles in developmental processes, adult tissue homeostasis, and various diseases. Interaction with Eph receptor-interacting protein (ephrin) ligands on the surface of neighboring cells triggers Eph receptor kinase-dependent signaling. The ephrins can also transmit signals, leading to bidirectional cell contact-dependent communication. Moreover, Eph receptors and ephrins can function independently of each other through interplay with other signaling systems. Given their involvement in many pathological conditions ranging from neurological disorders to cancer and viral infections, Eph receptors and ephrins are increasingly recognized as attractive therapeutic targets, and various strategies are being explored to modulate their expression and function. Eph receptor/ephrin upregulation in cancer cells, the angiogenic vasculature, and injured or diseased tissues also offer opportunities for Eph/ephrin-based targeted drug delivery and imaging. Thus, despite the challenges presented by the complex biology of the Eph receptor/ephrin system, exciting possibilities exist for therapies exploiting these molecules.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037; ,
| | | |
Collapse
|
149
|
Gucciardo E, Sugiyama N, Lehti K. Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cell Mol Life Sci 2014; 71:3685-710. [PMID: 24794629 PMCID: PMC11113620 DOI: 10.1007/s00018-014-1633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell-microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor-host communication and stem cell niche are the main focus of this review.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| |
Collapse
|
150
|
Bleeker FE, Lamba S, Zanon C, Molenaar RJ, Hulsebos TJM, Troost D, van Tilborg AA, Vandertop WP, Leenstra S, van Noorden CJF, Bardelli A. Mutational profiling of kinases in glioblastoma. BMC Cancer 2014; 14:718. [PMID: 25256166 PMCID: PMC4192443 DOI: 10.1186/1471-2407-14-718] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/17/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioblastoma is a highly malignant brain tumor for which no cure is available. To identify new therapeutic targets, we performed a mutation analysis of kinase genes in glioblastoma. METHODS Database mining and a literature search identified 76 kinases that have been found to be mutated at least twice in multiple cancer types before. Among those we selected 34 kinase genes for mutation analysis. We also included IDH1, IDH2, PTEN, TP53 and NRAS, genes that are known to be mutated at considerable frequencies in glioblastoma. In total, 174 exons of 39 genes in 113 glioblastoma samples from 109 patients and 16 high-grade glioma (HGG) cell lines were sequenced. RESULTS Our mutation analysis led to the identification of 148 non-synonymous somatic mutations, of which 25 have not been reported before in glioblastoma. Somatic mutations were found in TP53, PTEN, IDH1, PIK3CA, EGFR, BRAF, EPHA3, NRAS, TGFBR2, FLT3 and RPS6KC1. Mapping the mutated genes into known signaling pathways revealed that the large majority of them plays a central role in the PI3K-AKT pathway. CONCLUSIONS The knowledge that at least 50% of glioblastoma tumors display mutational activation of the PI3K-AKT pathway should offer new opportunities for the rational development of therapeutic approaches for glioblastomas. However, due to the development of resistance mechanisms, kinase inhibition studies targeting the PI3K-AKT pathway for relapsing glioblastoma have mostly failed thus far. Other therapies should be investigated, targeting early events in gliomagenesis that involve both kinases and non-kinases.
Collapse
Affiliation(s)
- Fonnet E Bleeker
- />Department of Oncology, University of Torino, SP 142, Km 3.95, Candiolo, Torino, 10060, Italy, Candiolo Cancer Institute – FPO, IRCCS, Candiolo, Torino, Italy
- />Neurosurgical Center Amsterdam, Location Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- />Department of Clinical Genetics, Academic Medical Center and University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Simona Lamba
- />Department of Oncology, University of Torino, SP 142, Km 3.95, Candiolo, Torino, 10060, Italy, Candiolo Cancer Institute – FPO, IRCCS, Candiolo, Torino, Italy
| | - Carlo Zanon
- />Department of Oncology, University of Torino, SP 142, Km 3.95, Candiolo, Torino, 10060, Italy, Candiolo Cancer Institute – FPO, IRCCS, Candiolo, Torino, Italy
- />Neuroblastoma Laboratory, Pediatric Research Institute, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127 Padua, Italy
| | - Remco J Molenaar
- />Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Theo JM Hulsebos
- />Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Dirk Troost
- />Department of Neuropathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Angela A van Tilborg
- />Department of Neuropathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- />Department of Pathology, UMC St. Radboud, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - W Peter Vandertop
- />Neurosurgical Center Amsterdam, Location Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- />Neurosurgical Center Amsterdam, Location Vrije Universiteit Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| | - Sieger Leenstra
- />Department of Neurosurgery, St. Elisabeth Ziekenhuis, Hilvarenbeekse Weg 60, 5022 GC Tilburg, The Netherlands
- />Department of Neurosurgery, Erasmus Medical Center, ’s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Cornelis JF van Noorden
- />Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Alberto Bardelli
- />Department of Oncology, University of Torino, SP 142, Km 3.95, Candiolo, Torino, 10060, Italy, Candiolo Cancer Institute – FPO, IRCCS, Candiolo, Torino, Italy
- />FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|