101
|
Koga T, Li B, Figueroa JM, Ren B, Chen CC, Carter BS, Furnari FB. Mapping of genomic EGFRvIII deletions in glioblastoma: insight into rearrangement mechanisms and biomarker development. Neuro Oncol 2019; 20:1310-1320. [PMID: 29660021 DOI: 10.1093/neuonc/noy058] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) variant III (vIII) is the most common oncogenic rearrangement in glioblastoma (GBM), generated by deletion of exons 2 to 7 of EGFR. The proximal breakpoints occur in variable positions within the 123-kb intron 1, presenting significant challenges in terms of polymerase chain reaction (PCR)-based mapping. Molecular mechanisms underlying these deletions remain unclear. Methods We determined the presence of EGFRvIII and its breakpoints for 29 GBM samples using quantitative PCR, arrayed PCR mapping, Sanger sequencing, and whole genome sequencing (WGS). Patient-specific breakpoint PCR was performed on tumors, plasma, and cerebrospinal fluid (CSF) samples. The breakpoint sequences and single nucleotide polymorphisms (SNPs) were analyzed to elucidate the underlying biogenic mechanism. Results PCR mapping and WGS independently unveiled 8 EGFRvIII breakpoints in 6 tumors. Patient-specific primers yielded EGFRvIII PCR amplicons in matched tumors and in cell-free DNA (cfDNA) from a CSF sample, but not in cfDNA or extracellular-vesicle DNA from plasma. The breakpoint analysis revealed nucleotide insertions in 4 samples, an insertion of a region outside of the EGFR locus in 1, microhomologies in 3, as well as a duplication or an inversion accompanied by microhomologies in 2, suggestive of distinct DNA repair mechanisms. In the GBM samples that harbored distinct breakpoints, the SNP compositions of EGFRvIII and amplified non-vIII EGFR were identical, suggesting that these rearrangements arose from amplified non-vIII EGFR. Conclusion Our approach efficiently "fingerprints" each sample's EGFRvIII breakpoints. Breakpoint sequence analyses suggest that independent breakpoints arose from precursor amplified non-vIII EGFR through different DNA repair mechanisms.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Ludwig Cancer Research, University of California San Diego, La Jolla, California
| | - Bin Li
- Ludwig Cancer Research, University of California San Diego, La Jolla, California
| | - Javier M Figueroa
- Department of Neurosurgery, University of California San Diego, La Jolla, California
| | - Bing Ren
- Ludwig Cancer Research, University of California San Diego, La Jolla, California
| | - Clark C Chen
- Department of Neurosurgery, University of California San Diego, La Jolla, California.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Bob S Carter
- Department of Neurosurgery, University of California San Diego, La Jolla, California.,Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| | - Frank B Furnari
- Ludwig Cancer Research, University of California San Diego, La Jolla, California
| |
Collapse
|
102
|
Ader F, Heide S, Marzin P, Afenjar A, Diguet F, Chantot Bastaraud S, Rollat-Farnier PA, Sanlaville D, Portnoï MF, Siffroi JP, Schluth-Bolard C. A 14q distal chromoanagenesis elucidated by whole genome sequencing. Eur J Med Genet 2019; 63:103776. [PMID: 31562959 DOI: 10.1016/j.ejmg.2019.103776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/07/2019] [Accepted: 09/22/2019] [Indexed: 11/19/2022]
Abstract
Chromoanagenesis represents an extreme form of genomic rearrangements involving multiple breaks occurring on a single or multiple chromosomes. It has been recently described in both acquired and rare constitutional genetic disorders. Constitutional chromoanagenesis events could lead to abnormal phenotypes including developmental delay and congenital anomalies, and have also been implicated in some specific syndromic disorders. We report the case of a girl presenting with growth retardation, hypotonia, microcephaly, dysmorphic features, coloboma, and hypoplastic corpus callosum. Karyotype showed a de novo structurally abnormal chromosome 14q31qter region. Molecular characterization using SNP-array revealed a complex unbalanced rearrangement in 14q31.1-q32.2, on the paternal chromosome 14, including thirteen interstitial deletions ranging from 33 kb to 1.56 Mb in size, with a total of 4.1 Mb in size, thus suggesting that a single event like chromoanagenesis occurred. To our knowledge, this is one of the first case of 14q distal deletion due to a germline chromoanagenesis. Genome sequencing allowed the characterization of 50 breakpoints, leading to interruption of 10 genes including YY1 which fit with the patient's phenotype. This precise genotyping of breaking junction allowed better definition of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Flavie Ader
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France.
| | - Solveig Heide
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Pauline Marzin
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Alexandra Afenjar
- Unité de neuropédiatrie et pathologie du développement, GHU Paris Est - Hôpital d'Enfants Armand-Trousseau, France
| | - Flavie Diguet
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Hospices Civils de Lyon, Bron, France; GENDEV Team, Neurosciences Research Center of Lyon, INSERM U1028, CNRS UMR5292, UCBL1, 69677, Bron, France
| | - Sandra Chantot Bastaraud
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Pierre-Antoine Rollat-Farnier
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Hospices Civils de Lyon, Bron, France; Cellule bioinformatique de la plateforme NGS, Hospices Civils de Lyon, Bron, France
| | - Damien Sanlaville
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Hospices Civils de Lyon, Bron, France; GENDEV Team, Neurosciences Research Center of Lyon, INSERM U1028, CNRS UMR5292, UCBL1, 69677, Bron, France
| | - Marie-France Portnoï
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Jean-Pierre Siffroi
- Sorbonne Université, Physiopathologie des Maladies Génétiques d'Expression Pédiatrique, F-75012, Paris, France
| | - Caroline Schluth-Bolard
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Hospices Civils de Lyon, Bron, France; GENDEV Team, Neurosciences Research Center of Lyon, INSERM U1028, CNRS UMR5292, UCBL1, 69677, Bron, France
| |
Collapse
|
103
|
Meier MJ, Beal MA, Schoenrock A, Yauk CL, Marchetti F. Whole Genome Sequencing of the Mutamouse Model Reveals Strain- and Colony-Level Variation, and Genomic Features of the Transgene Integration Site. Sci Rep 2019; 9:13775. [PMID: 31551502 PMCID: PMC6760142 DOI: 10.1038/s41598-019-50302-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
The MutaMouse transgenic rodent model is widely used for assessing in vivo mutagenicity. Here, we report the characterization of MutaMouse's whole genome sequence and its genetic variants compared to the C57BL/6 reference genome. High coverage (>50X) next-generation sequencing (NGS) of whole genomes from multiple MutaMouse animals from the Health Canada (HC) colony showed ~5 million SNVs per genome, ~20% of which are putatively novel. Sequencing of two animals from a geographically separated colony at Covance indicated that, over the course of 23 years, each colony accumulated 47,847 (HC) and 17,677 (Covance) non-parental homozygous single nucleotide variants. We found no novel nonsense or missense mutations that impair the MutaMouse response to genotoxic agents. Pairing sequencing data with array comparative genomic hybridization (aCGH) improved the accuracy and resolution of copy number variants (CNVs) calls and identified 300 genomic regions with CNVs. We also used long-read sequence technology (PacBio) to show that the transgene integration site involved a large deletion event with multiple inversions and rearrangements near a retrotransposon. The MutaMouse genome gives important genetic context to studies using this model, offers insight on the mechanisms of structural variant formation, and contributes a framework to analyze aCGH results alongside NGS data.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Marc A Beal
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
104
|
Schimmel J, van Schendel R, den Dunnen JT, Tijsterman M. Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining. Trends Genet 2019; 35:632-644. [PMID: 31296341 DOI: 10.1016/j.tig.2019.06.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023]
Abstract
A recognized source of disease-causing genome alterations is erroneous repair of broken chromosomes, which can be executed by two distinct mechanisms: non-homologous end joining (NHEJ) and the recently discovered polymerase theta-mediated end joining (TMEJ) pathway. While TMEJ has previously been considered to act as an alternative mechanism backing up NHEJ, recent work points to a role for TMEJ in the repair of replication-associated DNA breaks that are excluded from repair through homologous recombination. Because of its mode of action, TMEJ is intrinsically mutagenic and sometimes leaves behind a recognizable genomic scar when joining chromosome break ends (i.e., 'templated insertions'). This review article focuses on the intriguing observation that this polymerase theta signature is frequently observed in disease alleles, arguing for a prominent role of this double-strand break repair pathway in genome diversification and disease-causing spontaneous mutagenesis in humans.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Johan T den Dunnen
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
105
|
White MA, Azeroglu B, Lopez-Vernaza MA, Hasan AMM, Leach DRF. RecBCD coordinates repair of two ends at a DNA double-strand break, preventing aberrant chromosome amplification. Nucleic Acids Res 2019; 46:6670-6682. [PMID: 29901759 PMCID: PMC6061781 DOI: 10.1093/nar/gky463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/08/2018] [Indexed: 12/23/2022] Open
Abstract
DNA double-strand break (DSB) repair is critical for cell survival. A diverse range of organisms from bacteria to humans rely on homologous recombination for accurate DSB repair. This requires both coordinate action of the two ends of a DSB and stringent control of the resultant DNA replication to prevent unwarranted DNA amplification and aneuploidy. In Escherichia coli, RecBCD enzyme is responsible for the initial steps of homologous recombination. Previous work has revealed recD mutants to be nuclease defective but recombination proficient. Despite this proficiency, we show here that a recD null mutant is defective for the repair of a two-ended DSB and that this defect is associated with unregulated chromosome amplification and defective chromosome segregation. Our results demonstrate that RecBCD plays an important role in avoiding this amplification by coordinating the two recombining ends in a manner that prevents divergent replication forks progressing away from the DSB site.
Collapse
Affiliation(s)
- Martin A White
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3FF, UK
| | - Benura Azeroglu
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3FF, UK
| | - Manuel A Lopez-Vernaza
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3FF, UK
| | - A M Mahedi Hasan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3FF, UK
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3FF, UK
| |
Collapse
|
106
|
Baltus C, Toffoli S, London F, Delrée P, Gilliard C, Gustin T. Chromothripsis in an Early Recurrent Chordoid Meningioma. World Neurosurg 2019; 130:380-385. [PMID: 31295612 DOI: 10.1016/j.wneu.2019.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chromothripsis is characterized by a multitude of chromosomal rearrangements during a unique cataclysmic event in a cell life. Disintegration of one or several chromosomes is followed by a chaotic rearrangement of generated fragments. It might play a role in oncogenesis and tumor progression. It is observed in 2%-3% of cancers and is rarely reported in benign tumors. We report a case of massive chromothripsis in a fast growing chordoid meningioma. CASE DESCRIPTION A 55-year-old woman was admitted for a meningeal mass developing in the right parietal parasagittal area. She underwent subtotal resection of the tumor. Histologic analysis revealed a chordoid meningioma (World Health Organization grade II). Six months later, magnetic resonance imaging showed a large bilateral tumor recurrence. After a second surgery, the patient received radiotherapy. Thereafter, the clinical course was uneventful. Comparative genomic hybridization showed only a monosomy X in the primary tumor. In the recurrent meningioma, this anomaly was associated with a massive chromothripsis including more than 370 chromosomal abnormalities affecting chromosomes 1-22. CONCLUSIONS Chromothripsis is rarely described in benign tumors and especially in meningiomas. In the presented case, the high number of chromosomal rearrangements and the onset of this phenomenon at a later stage of tumor progression are very unusual. The role of surgical stress on the emergence of chromothripsis and its relation with tumor aggressiveness are discussed.
Collapse
Affiliation(s)
- Cédric Baltus
- Department of Neurosurgery, CHU UcL Namur, Yvoir, Belgium.
| | | | | | - Paul Delrée
- Pathology and Genetics Institute, Gosselies, Belgium
| | | | - Thierry Gustin
- Department of Neurosurgery, CHU UcL Namur, Yvoir, Belgium
| |
Collapse
|
107
|
Nicklas JA, Vacek PM, Carter EW, McDiarmid M, Albertini RJ. Molecular analysis of glycosylphosphatidylinositol anchor deficient aerolysin resistant isolates in gulf war i veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:470-493. [PMID: 30848503 DOI: 10.1002/em.22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
During the First Gulf War (1991) over 100 servicemen sustained depleted uranium (DU) exposure through wound contamination, inhalation, and shrapnel. The Department of Veterans Affairs has a surveillance program for these Veterans which has included genotoxicity assays. The frequencies of glycosylphosphatidylinositol anchor (GPIa) negative (aerolysin resistant) cells determined by cloning assays for these Veterans are reported in Albertini RJ et al. (2019: Environ Mol Mutagen). Molecular analyses of the GPIa biosynthesis class A (PIGA) gene was performed on 862 aerolysin-resistant T-lymphocyte recovered isolates. The frequencies of different types of PIGA mutations were compared between high and low DU exposure groups. Additional molecular studies were performed on mutants that produced no PIGA mRNA or with deletions of all or part of the PIGA gene to determine deletion size and breakpoint sequence. One mutant appeared to be the result of a chromothriptic event. A significant percentage (>30%) of the aerolysin resistant isolates, which varied by sample year and Veteran, had wild-type PIGA cDNA (no mutation). As described in Albertini RJ et al. (2019: Environ Mol Mutagen), TCR gene rearrangement analysis of these isolates indicated most arose from multiple T-cell progenitors (hence the inability to find a mutation). It is likely that these isolates were the result of failure of complete selection against nonmutant cells in the cloning assays. Real-time studies of GPIa resistant isolates with no PIGA mutation but with a single TCR gene rearrangement found one clone with a PIGV deletion and several others with decreased levels of GPIa pathway gene mRNAs implying mutation in other GPIa pathway genes. Environ. Mol. Mutagen. 60:470-493, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Elizabeth W Carter
- Jeffords Institute for Quality, University of Vermont Medical Center, Burlington, Vermont
| | - Melissa McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- U.S. Department of Veterans Affairs, Washington, District of Columbia
| | - Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
108
|
Hattori A, Okamura K, Terada Y, Tanaka R, Katoh-Fukui Y, Matsubara Y, Matsubara K, Kagami M, Horikawa R, Fukami M. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells. BMC Med Genomics 2019; 12:77. [PMID: 31138192 PMCID: PMC6540402 DOI: 10.1186/s12920-019-0526-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Background The co-occurrence of multiple de novo copy number variations (CNVs) is a rare phenomenon in the human genome. Recently, an “organismal CNV mutator phenotype” has been reported to result in transient genomic instability introducing multiple de novo CNVs in primary oocytes and early-stage zygotes. These findings opened a new area of human genome research. Methods We performed genome-wide copy number analysis for ~ 2100 individuals with various congenital defects. Furthermore, extensive molecular analyses, including synthetic long-read whole-genome sequencing and haplotype-phasing, were carried out for an individual with multiple de novo CNVs. Results A boy was found to have de novo rearrangements on five chromosomes. The rearrangements comprised simple duplication and inversion as well as chaotic changes, all of which affected paternally derived chromosomes. Postzygotic genomic instability was ruled out. The duplicated regions on 6q and 13q contained both diallelic and triallelic loci, indicating that the genomic rearrangements were initially created during premeiotic mitosis and subsequently modified by physiological cross-over during meiosis I. Breakpoints of the rearrangements were indicative of non-homologous end joining, replication-based errors, and/or chromothripsis. The mutagenic event was independent of specific local DNA motifs or de novo point mutations, but may be driven by spermatogenesis-specific factors. Conclusions These results indicate that during spermatogenesis, a transient multifocal genomic crisis can introduce several chromothriptic and non-chromothriptic changes into the genome. These findings broaden the concept of the “organismal CNV mutator phenotype”. This study provides insights into mechanisms for altering the global chromosomal architecture of human embryos. Electronic supplementary material The online version of this article (10.1186/s12920-019-0526-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.,Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, 157-8535, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yumiko Terada
- Division of Endocrinology and Metabolism, National Medical Center for Children and Mothers, Tokyo, 157-8535, Japan
| | - Rika Tanaka
- Department of Neonatology, Aiiku Hospital, Tokyo, 105-8321, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yoichi Matsubara
- National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Medical Center for Children and Mothers, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.
| |
Collapse
|
109
|
Cleal K, Jones RE, Grimstead JW, Hendrickson EA, Baird DM. Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin. Genome Res 2019; 29:737-749. [PMID: 30872351 PMCID: PMC6499312 DOI: 10.1101/gr.240705.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/11/2019] [Indexed: 01/02/2023]
Abstract
Telomere erosion, dysfunction, and fusion can lead to a state of cellular crisis characterized by large-scale genome instability. We investigated the impact of a telomere-driven crisis on the structural integrity of the genome by undertaking whole-genome sequence analyses of clonal populations of cells that had escaped crisis. Quantification of large-scale structural variants revealed patterns of rearrangement consistent with chromothripsis but formed in the absence of functional nonhomologous end-joining pathways. Rearrangements frequently consisted of short fragments with complex mutational patterns, with a repair topology that deviated from randomness showing preferential repair to local regions or exchange between specific loci. We find evidence of telomere involvement with an enrichment of fold-back inversions demarcating clusters of rearrangements. Our data suggest that chromothriptic rearrangements caused by a telomere crisis arise via a replicative repair process involving template switching.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Rhiannon E Jones
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Julia W Grimstead
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
110
|
Pellestor F, Gatinois V. Chromoanasynthesis: another way for the formation of complex chromosomal abnormalities in human reproduction. Hum Reprod 2019; 33:1381-1387. [PMID: 30325427 DOI: 10.1093/humrep/dey231] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
Chromoanasynthesis has been described as a novel cause of massive constitutional chromosomal rearrangements. Based on DNA replication machinery defects, chromoanasynthesis is characterized by the presence of chromosomal duplications and triplications locally clustered on one single chromosome, or a few chromosomes, associated with various other types of structural rearrangements. Two distinct mechanisms have been described for the formation of these chaotic genomic disorders, i.e. the fork stalling and template switching and the microhomology-mediated break-induced replication. Micronucleus-based processes have been evidenced as a causative mechanism, thus, highlighting the close connection between segregation errors and structural rearrangements. Accumulating data indicate that chromoanasynthesis is operating in human germline cells and during early embryonic development. The development of new tools for quantifying chromoanasynthesis events should provide further insight into the impact of this catastrophic cellular phenomenon in human reproduction.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, Montpellier, France
| | - Vincent Gatinois
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, Montpellier, France
| |
Collapse
|
111
|
Koltsova AS, Pendina AA, Efimova OA, Chiryaeva OG, Kuznetzova TV, Baranov VS. On the Complexity of Mechanisms and Consequences of Chromothripsis: An Update. Front Genet 2019; 10:393. [PMID: 31114609 PMCID: PMC6503150 DOI: 10.3389/fgene.2019.00393] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
In the present review, we focus on the phenomenon of chromothripsis, a new type of complex chromosomal rearrangements. We discuss the challenges of chromothripsis detection and its distinction from other chromoanagenesis events. Along with already known causes and mechanisms, we introduce aberrant epigenetic regulation as a possible pathway to chromothripsis. We address the issue of chromothripsis characteristics in cancers and benign tumours, as well as chromothripsis inheritance in cases of its occurrence in germ cells, zygotes and early embryos. Summarising the presented data on different phenotypic effect of chromothripsis, we assume that its consequences are most likely determined not by the chromosome shattering and reassembly themselves, but by the genome regions involved in the rearrangement.
Collapse
Affiliation(s)
- Alla S Koltsova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga G Chiryaeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Tatyana V Kuznetzova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
112
|
Zepeda-Mendoza CJ, Morton CC. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders. Am J Hum Genet 2019; 104:565-577. [PMID: 30951674 DOI: 10.1016/j.ajhg.2019.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/25/2019] [Indexed: 01/16/2023] Open
Abstract
Structural variation, composed of balanced and unbalanced genomic rearrangements, is an important contributor to human genetic diversity with prominent roles in somatic and congenital disease. At the nucleotide level, structural variants (SVs) have been shown to frequently harbor additional breakpoints and copy-number imbalances, a complexity predicted to emerge wholly as a single-cell division event. Chromothripsis, chromoplexy, and chromoanasynthesis, collectively referred to as chromoanagenesis, are three major mechanisms that explain the occurrence of complex germline and somatic SVs. While chromothripsis and chromoplexy have been shown to be key signatures of cancer, chromoanagenesis has been detected in numerous cases of developmental disease and phenotypically normal individuals. Such observations advocate for a deeper study of the polymorphic and pathogenic properties of complex germline SVs, many of which go undetected by traditional clinical molecular and cytogenetic methods. This review focuses on congenital chromoanagenesis, mechanisms leading to occurrence of these complex rearrangements, and their impact on chromosome organization and genome function. We highlight future applications of routine screening of complex and balanced SVs in the clinic, as these represent a potential and often neglected genetic disease source, a true "iceberg under water."
Collapse
Affiliation(s)
- Cinthya J Zepeda-Mendoza
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Manchester Center for Audiology and Deafness, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
113
|
Deng L, Wu RA, Sonneville R, Kochenova OV, Labib K, Pellman D, Walter JC. Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements. Mol Cell 2019; 73:915-929.e6. [PMID: 30849395 PMCID: PMC6410736 DOI: 10.1016/j.molcel.2018.12.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
114
|
Beck CR, Carvalho CMB, Akdemir ZC, Sedlazeck FJ, Song X, Meng Q, Hu J, Doddapaneni H, Chong Z, Chen ES, Thornton PC, Liu P, Yuan B, Withers M, Jhangiani SN, Kalra D, Walker K, English AC, Han Y, Chen K, Muzny DM, Ira G, Shaw CA, Gibbs RA, Hastings PJ, Lupski JR. Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2. Cell 2019; 176:1310-1324.e10. [PMID: 30827684 PMCID: PMC6438178 DOI: 10.1016/j.cell.2019.01.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/06/2018] [Accepted: 01/25/2019] [Indexed: 01/16/2023]
Abstract
DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Xiaofei Song
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | | | - Zechen Chong
- Department of Genetics and the Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edward S Chen
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Philip C Thornton
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Marjorie Withers
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | | | - Divya Kalra
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | | | - Adam C English
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, BCM, Houston, TX 77030, USA.
| | - James R Lupski
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Human Genome Sequencing Center, BCM, Houston, TX 77030, USA; Department of Pediatrics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, BCM, Houston, TX 77030, USA.
| |
Collapse
|
115
|
Lupski JR. 2018 Victor A. McKusick Leadership Award: Molecular Mechanisms for Genomic and Chromosomal Rearrangements. Am J Hum Genet 2019; 104:391-406. [PMID: 30849326 PMCID: PMC6407437 DOI: 10.1016/j.ajhg.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
116
|
Yang J, Liu B, Cai H. Chromothripsis Detection and Characterization Using the CTLPScanner Web Server. Methods Mol Biol 2019; 1769:265-278. [PMID: 29564830 DOI: 10.1007/978-1-4939-7780-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Accurate detection of chromothripsis event is important to study the mechanisms underlying this phenomenon. CTLPScanner ( http://cgma.scu.edu.cn/CTLPScanner/ ) is a web-based tool for identification and annotation of chromothripsis-like pattern (CTLP) in genomic array data. In this chapter, we illustrate the utility of CTLPScanner for screening chromosome pulverization regions and give interpretation of the results. The web interface offers a set of parameters and thresholds for customized screening. We also provide practical recommendations for effective chromothripsis detection. In addition to the user data processing module, CTLPScanner contains more than 50,000 preprocessed oncogenomic arrays, which allow users to explore the presence of chromothripsis signatures from public data resources.
Collapse
Affiliation(s)
- Jian Yang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Bo Liu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
117
|
Pellestor F. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements. Mol Cytogenet 2019; 12:6. [PMID: 30805029 PMCID: PMC6371609 DOI: 10.1186/s13039-019-0415-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background During the last decade, genome sequencing projects in cancer genomes as well as in patients with congenital diseases and healthy individuals have led to the identification of new types of massive chromosomal rearrangements arising during single chaotic cellular events. These unanticipated catastrophic phenomenon are termed chromothripsis, chromoanasynthesis and chromoplexis., and are grouped under the name of “chromoanagenesis”. Results For each process, several specific features have been described, allowing each phenomenon to be distinguished from each other and to understand its mechanism of formation and to better understand its aetiology. Thus, chromothripsis derives from chromosome shattering followed by the random restitching of chromosomal fragments with low copy-number change whereas chromoanasynthesis results from erroneous DNA replication of a chromosome through serial fork stalling and template switching with variable copy-number gains, and chromoplexy refers to the occurrence of multiple inter-and intra-chromosomal translocations and deletions with little or no copy-number alterations in prostate cancer. Cumulating data and experimental models have shown that chromothripsis and chromoanasynthesis may essentially result from lagging chromosome encapsulated in micronuclei or telomere attrition and end-to-end telomere fusion. Conclusion The concept of chromanagenesis has provided new insight into the aetiology of complex structural rearrangements, the connection between defective cell cycle progression and genomic instability, and the complexity of cancer evolution. Increasing reported chromoanagenesis events suggest that these chaotic mechanisms are probably much more frequent than anticipated.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371, avenue du Doyen Gaston Giraud, 34295 Montpellier cedex 5, France.,INSERM 1183 Unit «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
118
|
Piazza A, Heyer WD. Homologous Recombination and the Formation of Complex Genomic Rearrangements. Trends Cell Biol 2019; 29:135-149. [PMID: 30497856 PMCID: PMC6402879 DOI: 10.1016/j.tcb.2018.10.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of genome integrity involves multiple independent DNA damage avoidance and repair mechanisms. However, the origin and pathways of the focal chromosomal reshuffling phenomena collectively referred to as chromothripsis remain mechanistically obscure. We discuss here the role, mechanisms, and regulation of homologous recombination (HR) in the formation of simple and complex chromosomal rearrangements. We emphasize features of the recently characterized multi-invasion (MI)-induced rearrangement (MIR) pathway which uniquely amplifies the initial DNA damage. HR intermediates and cellular contexts that endanger genomic stability are discussed as well as the emerging roles of various classes of nucleases in the formation of genome rearrangements. Long-read sequencing and improved mapping of repeats should enable better appreciation of the significance of recombination in generating genomic rearrangements.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Spatial Regulation of Genomes, Department of Genomes and Genetics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 3525, Institut Pasteur, 75015 Paris, France
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
119
|
Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med 2018; 10:95. [PMID: 30526634 PMCID: PMC6286558 DOI: 10.1186/s13073-018-0606-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
Background Studies have shown that complex structural variants (cxSVs) contribute to human genomic variation and can cause Mendelian disease. We aimed to identify cxSVs relevant to Mendelian disease using short-read whole-genome sequencing (WGS), resolve the precise variant configuration and investigate possible mechanisms of cxSV formation. Methods We performed short-read WGS and analysis of breakpoint junctions to identify cxSVs in a cohort of 1324 undiagnosed rare disease patients. Long-read WGS and gene expression analysis were used to resolve one case. Results We identified three pathogenic cxSVs: a de novo duplication-inversion-inversion-deletion affecting ARID1B, a de novo deletion-inversion-duplication affecting HNRNPU and a homozygous deletion-inversion-deletion affecting CEP78. Additionally, a de novo duplication-inversion-duplication overlapping CDKL5 was resolved by long-read WGS demonstrating the presence of both a disrupted and an intact copy of CDKL5 on the same allele, and gene expression analysis showed both parental alleles of CDKL5 were expressed. Breakpoint analysis in all the cxSVs revealed both microhomology and longer repetitive elements. Conclusions Our results corroborate that cxSVs cause Mendelian disease, and we recommend their consideration during clinical investigations. We show that resolution of breakpoints can be critical to interpret pathogenicity and present evidence of replication-based mechanisms in cxSV formation. Electronic supplementary material The online version of this article (10.1186/s13073-018-0606-6) contains supplementary material, which is available to authorized users.
Collapse
|
120
|
Guo X, Ni J, Liang Z, Xue J, Fenech MF, Wang X. The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 779:1-35. [PMID: 31097147 DOI: 10.1016/j.mrrev.2018.11.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Micronuclei (MN), the small nucleus-like bodies separated from the primary nucleus, can exist in cells with numerical and/or structural chromosomal aberrations in apparently normal tissues and more so in tumors in humans. While MN have been observed for over 100 years, they were merely and constantly considered as passive indicators of chromosome instability (CIN) for a long time. Relatively little is known about the molecular origins and biological consequences of MN. Rapid technological advances are helping to close these gaps. Very recent studies provide exciting evidence that MN act as key platform for chromothripsis and a trigger of innate immune response, suggesting that MN could affect cellular functions by both genetic and nongenetic means. These previously unappreciated findings have reawakened widespread interests in MN. In this review, the diverse mechanisms leading to MN generation and the complex fate profiles of MN are discussed, together with the evidence for their contribution to CIN, inflammation, senescence and cell death. Moreover, we put this knowledge together into a speculative perspective on how MN may be responsible for cancer development and how their presence may influence the choice of treatment. We suggest that the heterogeneous responses to MN may function physiological to ensure the arrestment, elimination and immune clearance of damaged cells, but pathologically, may enable the survival and oncogenic transformation of cells bearing CIN. These insights not only underscore the complexity of MN biology, but also raise a host of new questions and provide fertile ground for future research.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Ziqing Liang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Michael F Fenech
- University of South Australia, Adelaide, SA, 5000, Australia; Genome Health Foundation, North Brighton, SA, 5048, Australia.
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
121
|
Nazaryan-Petersen L, Eisfeldt J, Pettersson M, Lundin J, Nilsson D, Wincent J, Lieden A, Lovmar L, Ottosson J, Gacic J, Mäkitie O, Nordgren A, Vezzi F, Wirta V, Käller M, Hjortshøj TD, Jespersgaard C, Houssari R, Pignata L, Bak M, Tommerup N, Lundberg ES, Tümer Z, Lindstrand A. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization. PLoS Genet 2018; 14:e1007780. [PMID: 30419018 PMCID: PMC6258378 DOI: 10.1371/journal.pgen.1007780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/26/2018] [Accepted: 10/23/2018] [Indexed: 01/25/2023] Open
Abstract
Clustered copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) are often reported as germline chromothripsis. However, such cases might need further investigations by massive parallel whole genome sequencing (WGS) in order to accurately define the underlying complex rearrangement, predict the occurrence mechanisms and identify additional complexities. Here, we utilized WGS to delineate the rearrangement structure of 21 clustered CNV carriers first investigated by CMA and identified a total of 83 breakpoint junctions (BPJs). The rearrangements were further sub-classified depending on the patterns observed: I) Cases with only deletions (n = 8) often had additional structural rearrangements, such as insertions and inversions typical to chromothripsis; II) cases with only duplications (n = 7) or III) combinations of deletions and duplications (n = 6) demonstrated mostly interspersed duplications and BPJs enriched with microhomology. In two cases the rearrangement mutational signatures indicated both a breakage-fusion-bridge cycle process and haltered formation of a ring chromosome. Finally, we observed two cases with Alu- and LINE-mediated rearrangements as well as two unrelated individuals with seemingly identical clustered CNVs on 2p25.3, possibly a rare European founder rearrangement. In conclusion, through detailed characterization of the derivative chromosomes we show that multiple mechanisms are likely involved in the formation of clustered CNVs and add further evidence for chromoanagenesis mechanisms in both “simple” and highly complex chromosomal rearrangements. Finally, WGS characterization adds positional information, important for a correct clinical interpretation and deciphering mechanisms involved in the formation of these rearrangements. Clustered copy number variants (CNVs) as detected by chromosomal microarray are often reported as germline chromoanagenesis. However, such cases might need further investigation by whole genome sequencing (WGS) to accurately resolve the complexity of the structural rearrangement and predict underlying mutational mechanisms. Here, we used WGS to characterize 83 breakpoint-junctions (BPJs) from 21 clustered CNVs, and outlined the rearrangement connectivity pictures. Cases with only deletions often had additional structural rearrangements, such as insertions and inversions, which could be a result of multiple double-strand DNA breaks followed by non-homologous repair, typical to chromothripsis. In contrast, cases with only duplications or combinations of deletions and duplications, demonstrated mostly interspersed duplications and BPJs enriched with microhomology, consistent with serial template switching during DNA replication (chromoanasynthesis). Only two rearrangements were repeat mediated. In aggregate, our results suggest that multiple CNVs clustered on a single chromosome may arise through either chromothripsis or chromoanasynthesis.
Collapse
Affiliation(s)
- Lusine Nazaryan-Petersen
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agne Lieden
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jesper Ottosson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jelena Gacic
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Valtteri Wirta
- SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- SciLifeLab, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Max Käller
- SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- SciLifeLab, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Tina Duelund Hjortshøj
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Cathrine Jespersgaard
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Rayan Houssari
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Laura Pignata
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Mads Bak
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- * E-mail: (AL); (ZT)
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (AL); (ZT)
| |
Collapse
|
122
|
Pettersson M, Eisfeldt J, Syk Lundberg E, Lundin J, Lindstrand A. Flanking complex copy number variants in the same family formed through unequal crossing-over during meiosis. Mutat Res 2018; 812:1-4. [PMID: 30384002 DOI: 10.1016/j.mrfmmm.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/08/2018] [Indexed: 05/22/2023]
Abstract
Two phenomena that have been described in germline complex genomic rearrangements (CGRs) formation are chromothripsis and chromoanasynthesis, characterized by distinct features such as the orientation and copy number of the involved fragments. Herein we present different CGRs on chromosome 5p in a mother and her daughter that through unequal crossing-over during meiosis has evolved from a chromothriptic rearrangement in the mother into another complex rearrangement in her daughter involving both deletions and duplications. Initially, both rearrangements were classified as simple copy number variants, but follow-up studies using whole-genome sequencing revealed a much more complex nature of both rearrangements and enabled us to decipher the biological process involved in the formation of the rearrangement found in the daughter. In conclusion, these two cases highlight the need of analyzing the inheritance patterns of CGRs, and provide an example of a disease-causing CGR formed through multiple genetic events.
Collapse
Affiliation(s)
- Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
123
|
Sabatini PJB, Ejaz R, Stavropoulos DJ, Mendoza-Londono R, Joseph-George AM. Stable transmission of an unbalanced chromosome 21 derived from chromoanasynthesis in a patient with a SYNGAP1 likely pathogenic variant. Mol Cytogenet 2018; 11:50. [PMID: 30181777 PMCID: PMC6114485 DOI: 10.1186/s13039-018-0394-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background Complex genomic structural variations, involving chromoanagenesis, have been implicated in multiple congenital anomalies and abnormal neurodevelopment. Familial inheritance of complex chromosomal structural alteration resulting from germline chromoanagenesis-type mechanisms are limited. Case presentation We report a two-year eleven-month old male presenting with epilepsy, ataxia and dysmorphic features of unknown etiology. Chromosomal microarray identified a complex unbalanced rearrangement involving chromosome 21. G-banding and FISH for targeted regions of chromosome 21 revealed that the copy number imbalances were limited to gains dispersed throughout the long arm of chromosome 21, characteristic of a chromosome derived from chromoanagenesis. Family studies showed that the unbalanced chromosome had been stably inherited, as it was present in both his healthy mother and maternal grandfather. Further molecular testing for non-syndromic intellectual disability genes found a likely pathogenic mutation in SYNGAP1 (NM_006772.2:c.3722_3723del). Conclusions This study indicates that complex rearrangements involving an unbalanced chromosome derived from chromoanasynthesis can be familial and should be not be presumed pathogenic.
Collapse
Affiliation(s)
- Peter J B Sabatini
- 1Laboratory Medicine Program, Department of Pathology, University Health Network, 200 Elizabeth St, Toronto, ON M5G 2C4 Canada.,2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Resham Ejaz
- 3Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
| | - Dimitri J Stavropoulos
- 2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.,4Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
| | - Roberto Mendoza-Londono
- 3Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
| | - Ann M Joseph-George
- 2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.,4Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
| |
Collapse
|
124
|
Szafranski P, Kośmider E, Liu Q, Karolak JA, Currie L, Parkash S, Kahler SG, Roeder E, Littlejohn RO, DeNapoli TS, Shardonofsky FR, Henderson C, Powers G, Poisson V, Bérubé D, Oligny L, Michaud JL, Janssens S, De Coen K, Van Dorpe J, Dheedene A, Harting MT, Weaver MD, Khan AM, Tatevian N, Wambach J, Gibbs KA, Popek E, Gambin A, Stankiewicz P. LINE- and Alu-containing genomic instability hotspot at 16q24.1 associated with recurrent and nonrecurrent CNV deletions causative for ACDMPV. Hum Mutat 2018; 39:1916-1925. [PMID: 30084155 DOI: 10.1002/humu.23608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/20/2023]
Abstract
Transposable elements modify human genome by inserting into new loci or by mediating homology-, microhomology-, or homeology-driven DNA recombination or repair, resulting in genomic structural variation. Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal neonatal developmental lung disorder caused by point mutations or copy-number variant (CNV) deletions of FOXF1 or its distant tissue-specific enhancer. Eighty-five percent of 45 ACDMPV-causative CNV deletions, of which junctions have been sequenced, had at least one of their two breakpoints located in a retrotransposon, with more than half of them being Alu elements. We describe a novel ∼35 kb-large genomic instability hotspot at 16q24.1, involving two evolutionarily young LINE-1 (L1) elements, L1PA2 and L1PA3, flanking AluY, two AluSx, AluSx1, and AluJr elements. The occurrence of L1s at this location coincided with the branching out of the Homo-Pan-Gorilla clade, and was preceded by the insertion of AluSx, AluSx1, and AluJr. Our data show that, in addition to mediating recurrent CNVs, L1 and Alu retrotransposons can predispose the human genome to formation of variably sized CNVs, both of clinical and evolutionary relevance. Nonetheless, epigenetic or other genomic features of this locus might also contribute to its increased instability.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ewelina Kośmider
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Lauren Currie
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Canada
| | - Sandhya Parkash
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Canada
| | - Stephen G Kahler
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Elizabeth Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | | | - Thomas S DeNapoli
- Department of Pathology, Children's Hospital of San Antonio, San Antonio, Texas
| | - Felix R Shardonofsky
- Pediatric Pulmonary Center, Children's Hospital of San Antonio, San Antonio, Texas
| | - Cody Henderson
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas.,Neonatal-Perinatal Medicine, Children's Hospital of San Antonio, San Antonio, Texas
| | - George Powers
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas.,Neonatal-Perinatal Medicine, Children's Hospital of San Antonio, San Antonio, Texas
| | | | | | | | | | - Sandra Janssens
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Kris De Coen
- Department of Neonatal Intensive Care, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent, Belgium
| | | | | | | | - Amir M Khan
- McGovern Medical School at UTHealth, Houston, Texas
| | | | - Jennifer Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Kathleen A Gibbs
- Children's Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Anna Gambin
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
125
|
Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med 2018; 50:1-11. [PMID: 30089796 PMCID: PMC6082854 DOI: 10.1038/s12276-018-0112-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
Next-generation sequencing technology has enabled the comprehensive detection of genomic alterations in human somatic cells, including point mutations, chromosomal rearrangements, and structural variations (SVs). Using sophisticated bioinformatics algorithms, unbiased catalogs of SVs are emerging from thousands of human cancer genomes for the first time. Via careful examination of SV breakpoints at single-nucleotide resolution as well as local DNA copy number changes, diverse patterns of genomic rearrangements are being revealed. These "SV signatures" provide deep insight into the mutational processes that have shaped genome changes in human somatic cells. This review summarizes the characteristics of recently identified complex SVs, including chromothripsis, chromoplexy, microhomology-mediated breakage-induced replication (MMBIR), and others, to provide a holistic snapshot of the current knowledge on genomic rearrangements in somatic cells.
Collapse
Affiliation(s)
- Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
126
|
Watanabe T, Marotta M, Suzuki R, Diede SJ, Tapscott SJ, Niida A, Chen X, Mouakkad L, Kondratova A, Giuliano AE, Orsulic S, Tanaka H. Impediment of Replication Forks by Long Non-coding RNA Provokes Chromosomal Rearrangements by Error-Prone Restart. Cell Rep 2018; 21:2223-2235. [PMID: 29166612 DOI: 10.1016/j.celrep.2017.10.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/05/2017] [Accepted: 10/25/2017] [Indexed: 01/12/2023] Open
Abstract
Naturally stalled replication forks are considered to cause structurally abnormal chromosomes in tumor cells. However, underlying mechanisms remain speculative, as capturing naturally stalled forks has been a challenge. Here, we captured naturally stalled forks in tumor cells and delineated molecular processes underlying the structural evolution of circular mini-chromosomes (double-minute chromosomes; DMs). Replication forks stalled on the DM by the co-directional collision with the transcription machinery for long non-coding RNA. RPA, BRCA2, and DNA polymerase eta (Polη) were recruited to the stalled forks. The recruitment of Polη was critical for replication to continue, as Polη knockdown resulted in DM loss. Rescued stalled forks were error-prone and switched replication templates repeatedly to create complex fusions of multiple short genomic segments. In mice, such complex fusions circularized the genomic region surrounding MYC to create a DM during tumorigenesis. Our results define a molecular path that guides stalled replication forks to complex chromosomal rearrangements.
Collapse
Affiliation(s)
- Takaaki Watanabe
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Michael Marotta
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ryusuke Suzuki
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Scott J Diede
- Division of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stephen J Tapscott
- Division of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Atsushi Niida
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Xiongfong Chen
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD 21701, USA
| | - Lila Mouakkad
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Anna Kondratova
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | | | - Sandra Orsulic
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Hisashi Tanaka
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.
| |
Collapse
|
127
|
Grochowski CM, Gu S, Yuan B, Tcw J, Brennand KJ, Sebat J, Malhotra D, McCarthy S, Rudolph U, Lindstrand A, Chong Z, Levy DL, Lupski JR, Carvalho CMB. Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes. Hum Mutat 2018; 39:939-946. [PMID: 29696747 PMCID: PMC5995661 DOI: 10.1002/humu.23537] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Small supernumerary marker chromosomes (sSMC) are chromosomal fragments difficult to characterize genomically. Here, we detail a proband with schizoaffective disorder and a mother with bipolar disorder with psychotic features who present with a marker chromosome that segregates with disease. We explored the architecture of this marker and investigated its temporal origin. Array comparative genomic hybridization (aCGH) analysis revealed three duplications and three triplications that spanned the short arm of chromosome 9, suggestive of a chromoanasynthesis-like event. Segregation of marker genotypes, phased using sSMC mosaicism in the mother, provided evidence that it was generated during a germline-level event in the proband's maternal grandmother. Whole-genome sequencing (WGS) was performed to resolve the structure and junctions of the chromosomal fragments, revealing further complexities. While structural variations have been previously associated with neuropsychiatric disorders and marker chromosomes, here we detail the precise architecture, human life-cycle genesis, and propose a DNA replicative/repair mechanism underlying formation.
Collapse
Affiliation(s)
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Julia Tcw
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristen J Brennand
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan Sebat
- Beyster Center for Psychiatric Genomics, Department of Psychiatry, University of California at San Diego, San Diego, California
| | | | - Shane McCarthy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Zechen Chong
- Department of Genetics and the Informatics Institute, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Deborah L Levy
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Psychology Research Laboratory, McLean Hospital, Belmont, Massachusetts
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
128
|
Luijten MNH, Lee JXT, Crasta KC. Mutational game changer: Chromothripsis and its emerging relevance to cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:29-51. [PMID: 30115429 DOI: 10.1016/j.mrrev.2018.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
In recent years, the paradigm that genomic abnormalities in cancer cells arise through progressive accumulation of mutational events has been challenged by the discovery of single catastrophic events. One such phenomenon termed chromothripsis, involving massive chromosomal rearrangements arising all at once, has emerged as a major mutational game changer. The strong interest in this process stems from its widespread association with a range of cancer types and its potential as a mutational driver. In this review, we first describe chromothripsis detection and incidence in cancers. We then explore recently proposed underlying mechanistic origins, which explain the curious observations of the highly localised nature of the rearrangements on chromothriptic chromosomes. Detection of chromothriptic patterns following incorporation of single chromosomes into micronuclei or following telomere attrition have greatly contributed to our understanding of the reasons behind this chromosomal restriction. These underlying cellular events have been found to be participants in the tumourigenic process, strongly suggesting a potential role for chromothripsis in cancer development. Thus, we discuss potential implications of chromothripsis for cancer progression and therapy.
Collapse
Affiliation(s)
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore.
| | - Karen Carmelina Crasta
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, 61 Biopolis Drive, 138673, Singapore; Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
129
|
Abbas HHK, Alhamoudi KMH, Evans MD, Jones GDD, Foster SS. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good? BMC Cancer 2018; 18:423. [PMID: 29661172 PMCID: PMC5903006 DOI: 10.1186/s12885-018-4332-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Background Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Methods Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. Results MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. Conclusions MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall our cell viability data indicates that targeting MTH1 will likely not be an across-the-board effective NSCLC therapeutic strategy; rather it induces non-cytotoxic DNA damage that could promote cancer heterogeneity and evolution. Electronic supplementary material The online version of this article (10.1186/s12885-018-4332-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hussein H K Abbas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.,Department of Pathology and Forensic Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Kheloud M H Alhamoudi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK
| | - Mark D Evans
- Faculty of Health and Life Sciences, De Montfort University, Leicester, Leicestershire, LE1 9BH, UK
| | - George D D Jones
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.
| | - Steven S Foster
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.
| |
Collapse
|
130
|
Identification of Chromothripsis in Biopsy Using SNP-Based Microarray. Methods Mol Biol 2018. [PMID: 29564820 DOI: 10.1007/978-1-4939-7780-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
One of the well-known hallmarks of cancer is genomic instability. Although gradualism is a well-established process of cancer evolution, recent studies have shown that chromothripsis or chromoanasynthesis can result in complex genomic rearrangements by a single catastrophic event rather than several incremental steps. These two novel phenomena suggest an evolutionary modality for cancer cells to circumvent individual mutational events with one simultaneous shattering of chromosomes or chromosome regions resulting in the random reassembling of shattered genetic material to form complex derivative chromosomes. Although sequencing methods are ideal for the detection of chromothripsis, single-nucleotide polymorphism (SNP)-based microarray methods are also useful in detecting chromothripsis in biopsy samples. Issues related to sample collection, storage, and transport, especially with tumor biopsies, may limit the options for sequencing studies, and in such cases, SNP-based microarray may be a viable alternative for detecting chromothripsis.
Collapse
|
131
|
Wala JA, Bandopadhayay P, Greenwald NF, O'Rourke R, Sharpe T, Stewart C, Schumacher S, Li Y, Weischenfeldt J, Yao X, Nusbaum C, Campbell P, Getz G, Meyerson M, Zhang CZ, Imielinski M, Beroukhim R. SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res 2018. [PMID: 29535149 PMCID: PMC5880247 DOI: 10.1101/gr.221028.117] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA's performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20–300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50–300 bp) SVs.
Collapse
Affiliation(s)
- Jeremiah A Wala
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics, Harvard University, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pratiti Bandopadhayay
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Noah F Greenwald
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Ryan O'Rourke
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Ted Sharpe
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Chip Stewart
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Steve Schumacher
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Yilong Li
- Seven Bridges Genomics, Cambridge, Massachusetts 02142, USA.,Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Joachim Weischenfeldt
- The Finsen Laboratory, Rigshospitalet, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Xiaotong Yao
- Tri-Institutional PhD Program in Computational Biology and Medicine, New York, New York 10065, USA.,New York Genome Center, New York, New York 10013, USA
| | - Chad Nusbaum
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Peter Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Gad Getz
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Bioinformatics and Integrative Genomics, Harvard University, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Matthew Meyerson
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics, Harvard University, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Cheng-Zhong Zhang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marcin Imielinski
- New York Genome Center, New York, New York 10013, USA.,Department of Pathology and Laboratory Medicine, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
| | - Rameen Beroukhim
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics, Harvard University, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
132
|
Chromothripsis in acute myeloid leukemia: biological features and impact on survival. Leukemia 2018; 32:1609-1620. [PMID: 29472722 PMCID: PMC6035145 DOI: 10.1038/s41375-018-0035-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Chromothripsis is a one-step genome-shattering catastrophe resulting from disruption of one or few chromosomes in multiple fragments and consequent random rejoining and repair. This study defines incidence of chromothripsis in 395 newly diagnosed adult acute myeloid leukemia (AML) patients from three institutions, its impact on survival and its genomic background. SNP 6.0 or CytoscanHD Array (Affymetrix®) were performed on all samples. We detected chromothripsis with a custom algorithm in 26/395 patients. Patients harboring chromothripsis had higher age (p = 0.002), ELN high risk (HR) (p < 0.001), lower white blood cell (WBC) count (p = 0.040), TP53 loss, and/or mutations (p < 0.001) while FLT3 (p = 0.025), and NPM1 (p = 0.032) mutations were mutually exclusive with chromothripsis. Chromothripsis-positive patients showed a worse overall survival (OS) (p < 0.001) compared with HR patients (p = 0.011) and a poor prognosis in a COX-HR optimal regression model. Chromothripsis presented the hallmarks of chromosome instability [i.e., TP53 alteration, 5q deletion, higher mean of copy number alteration (CNA), complex karyotype, alterations in DNA repair, and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, and 17. CBA. FISH showed that chromothripsis is associated with marker, derivative, and ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%) and influences patient prognosis and disease biology.
Collapse
|
133
|
Slamova Z, Nazaryan-Petersen L, Mehrjouy MM, Drabova J, Hancarova M, Marikova T, Novotna D, Vlckova M, Vlckova Z, Bak M, Zemanova Z, Tommerup N, Sedlacek Z. Very short DNA segments can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly. Hum Mutat 2018; 39:709-716. [DOI: 10.1002/humu.23408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Zuzana Slamova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Lusine Nazaryan-Petersen
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen Denmark
| | - Mana M. Mehrjouy
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen Denmark
| | - Jana Drabova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Tatana Marikova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Drahuse Novotna
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Marketa Vlckova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | | | - Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen Denmark
| | - Zuzana Zemanova
- Institute of Medical Biochemistry and Laboratory Diagnostics; General University Hospital and Charles University 1st Faculty of Medicine; Prague Czech Republic
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen Denmark
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| |
Collapse
|
134
|
Zhao N, Wang Y, Hua J. The Roles of Mitochondrion in Intergenomic Gene Transfer in Plants: A Source and a Pool. Int J Mol Sci 2018; 19:ijms19020547. [PMID: 29439501 PMCID: PMC5855769 DOI: 10.3390/ijms19020547] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 11/30/2022] Open
Abstract
Intergenomic gene transfer (IGT) is continuous in the evolutionary history of plants. In this field, most studies concentrate on a few related species. Here, we look at IGT from a broader evolutionary perspective, using 24 plants. We discover many IGT events by assessing the data from nuclear, mitochondrial and chloroplast genomes. Thus, we summarize the two roles of the mitochondrion: a source and a pool. That is, the mitochondrion gives massive sequences and integrates nuclear transposons and chloroplast tRNA genes. Though the directions are opposite, lots of likenesses emerge. First, mitochondrial gene transfer is pervasive in all 24 plants. Second, gene transfer is a single event of certain shared ancestors during evolutionary divergence. Third, sequence features of homologies vary for different purposes in the donor and recipient genomes. Finally, small repeats (or micro-homologies) contribute to gene transfer by mediating recombination in the recipient genome.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University, Beijing 100193, China.
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University, Beijing 100193, China.
| |
Collapse
|
135
|
Cleal K, Norris K, Baird D. Telomere Length Dynamics and the Evolution of Cancer Genome Architecture. Int J Mol Sci 2018; 19:E482. [PMID: 29415479 PMCID: PMC5855704 DOI: 10.3390/ijms19020482] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Telomeres are progressively eroded during repeated rounds of cell division due to the end replication problem but also undergo additional more substantial stochastic shortening events. In most cases, shortened telomeres induce a cell-cycle arrest or trigger apoptosis, although for those cells that bypass such signals during tumour progression, a critical length threshold is reached at which telomere dysfunction may ensue. Dysfunction of the telomere nucleoprotein complex can expose free chromosome ends to the DNA double-strand break (DSB) repair machinery, leading to telomere fusion with both telomeric and non-telomeric loci. The consequences of telomere fusions in promoting genome instability have long been appreciated through the breakage-fusion-bridge (BFB) cycle mechanism, although recent studies using high-throughput sequencing technologies have uncovered evidence of involvement in a wider spectrum of genomic rearrangements including chromothripsis. A critical step in cancer progression is the transition of a clone to immortality, through the stabilisation of the telomere repeat array. This can be achieved via the reactivation of telomerase, or the induction of the alternative lengthening of telomeres (ALT) pathway. Whilst telomere dysfunction may promote genome instability and tumour progression, by limiting the replicative potential of a cell and enforcing senescence, telomere shortening can act as a tumour suppressor mechanism. However, the burden of senescent cells has also been implicated as a driver of ageing and age-related pathology, and in the promotion of cancer through inflammatory signalling. Considering the critical role of telomere length in governing cancer biology, we review questions related to the prognostic value of studying the dynamics of telomere shortening and fusion, and discuss mechanisms and consequences of telomere-induced genome rearrangements.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| | - Kevin Norris
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| | - Duncan Baird
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| |
Collapse
|
136
|
Oesper L, Dantas S, Raphael BJ. Identifying simultaneous rearrangements in cancer genomes. Bioinformatics 2018; 34:346-352. [PMID: 29186385 PMCID: PMC5860217 DOI: 10.1093/bioinformatics/btx745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/17/2017] [Accepted: 11/24/2017] [Indexed: 11/15/2022] Open
Abstract
Motivation The traditional view of cancer evolution states that a cancer genome accumulates a sequential ordering of mutations over a long period of time. However, in recent years it has been suggested that a cancer genome may instead undergo a one-time catastrophic event, such as chromothripsis, where a large number of mutations instead occur simultaneously. A number of potential signatures of chromothripsis have been proposed. In this work, we provide a rigorous formulation and analysis of the ‘ability to walk the derivative chromosome’ signature originally proposed by Korbel and Campbell. In particular, we show that this signature, as originally envisioned, may not always be present in a chromothripsis genome and we provide a precise quantification of under what circumstances it would be present. We also propose a variation on this signature, the H/T alternating fraction, which allows us to overcome some of the limitations of the original signature. Results We apply our measure to both simulated data and a previously analyzed real cancer dataset and find that the H/T alternating fraction may provide useful signal for distinguishing genomes having acquired mutations simultaneously from those acquired in a sequential fashion. Availability and implementation An implementation of the H/T alternating fraction is available at https://bitbucket.org/oesperlab/ht-altfrac. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Layla Oesper
- Department of Computer Science, Carleton College, Northfield, MN, USA
| | - Simone Dantas
- Institute of Mathematics and Statistics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| |
Collapse
|
137
|
Abstract
Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
138
|
Abstract
The highly complex structural genome variations chromothripsis, chromoanasynthesis, and chromoplexy are subsumed under the term chromoanagenesis, which means chromosome rebirth. Precipitated by numerous DNA double-strand breaks, they differ in number of and distances between breakpoints, associated copy number variations, order and orientation of segments, and flanking sequences at joining points. Results from patients with the autosomal dominant cancer susceptibility disorder Li-Fraumeni syndrome implicated somatic TP53 mutations in chromothripsis. TP53 participates in the G2/M phase checkpoint, halting cell cycling after premature chromosome compaction during the second half of the S phase, thus preventing chromosome shattering. By experimental TP53 ablation and micronucleus induction, one or a few isolated chromosomes underwent desynchronized replication and chromothripsis. Secondly, chromothripsis occurred after experimental induction of telomere crisis after which dicentric chromosomes sustained TREX1-mediated resolution of chromosome bridges and kataegis. Third, DNA polymerase Polθ-dependent chromothripsis has been documented. Finally, a family with chromothripsis after L1 element-dependent retrotransposition and Alu/Alu homologous recombination has been reported. Human chromosomal instability syndromes share defects in responses to DNA double-strand breaks, characteristic cell cycle perturbations, elevated rates of micronucleus formation, premature chromosome compaction, and apoptosis. They are also associated with elevated susceptibility to malignant disease, such as medulloblastomas and gliomas in ataxia-telangiectasia, leukemia and lymphoma in Bloom syndrome, and osteosarcoma and soft tissue sarcoma in Werner syndrome. The latter syndrome is characterized by a premature aging-like progressive decline of mesenchymal tissues. In all thus far studied cases, constitutional chromothripsis occurred in the male germline and male patients with defects in the double-strand break response genes ATM, MRE11, BLM, LIG4, WRN, and Ku70 show impaired fertility. Conceivably, chromothripsis may, in a stochastic rather than deterministic way, be implicated in germline structural variation, malignant disease, premature aging, genome mosaicism in somatic tissues, and male infertility.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
139
|
Abstract
Chromothripsis, or chromosome shattering, occurs after chromosomes missegregate, are pulverized and subsequently repaired erroneously, leading to highly complex structural rearrangements. In plants, chromothripsis has been observed as a result of mitotic malfunction connected with the incomplete loss of haploid inducer chromosomes during uniparental genome elimination. Uniparental genome elimination, a process that results in haploid induction, is a phenomenon that typically results in the loss of an entire parental chromosome set in early embryos, resulting in haploid plants. In Arabidopsis thaliana, genome elimination can be achieved via the manipulation of the centromere-specific histone H3 variant, CENH3. Genomic characterization of F1 progeny resulting from CENH3-mediated genome elimination crosses in Arabidopsis revealed haploids (~39%), diploids (~25%), and aneuploids (~37%). Within the aneuploid class, ~11% show evidence for chromothripsis. Here, we present a protocol to identify Arabidopsis aneuploids that have inherited chromothriptic chromosomes during genome elimination crosses and describe in detail how to perform in silico reconstructions for individuals with chromothripsis using the somatic mutation finder (SMuFin) tool.
Collapse
Affiliation(s)
- Isabelle M Henry
- Genome Center & Department of Plant Biology, University of California, Davis, CA, USA
| | - Luca Comai
- Genome Center & Department of Plant Biology, University of California, Davis, CA, USA.
| | - Ek Han Tan
- School of Biology and Ecology, University of Maine, Orono, ME, USA.
| |
Collapse
|
140
|
Fukami M, Kurahashi H. Clinical Consequences of Chromothripsis and Other Catastrophic Cellular Events. Methods Mol Biol 2018; 1769:21-33. [PMID: 29564815 DOI: 10.1007/978-1-4939-7780-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chromothripsis was initially described as a novel cause of chromosomal rearrangements in cancer cells and was subsequently implicated in the development of gross chromosomal rearrangements in the germline. Other catastrophic cellular events such as chromoanasynthesis and chromoplexy have also been observed in human cells. Such events have been associated with various phenotypes including mental retardation and congenital malformations. Here, we introduce representative cases of human disorders arising from somatic or germline chromothripsis or similar catastrophic events. In this chapter, we use the term "chromoanagenesis" to indicate all catastrophic events including chromothripsis.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| |
Collapse
|
141
|
Marcozzi A, Pellestor F, Kloosterman WP. The Genomic Characteristics and Origin of Chromothripsis. Methods Mol Biol 2018; 1769:3-19. [PMID: 29564814 DOI: 10.1007/978-1-4939-7780-2_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In 2011 a phenomenon involving complex chromosomal rearrangements was discovered in cancer genomes. This phenomenon has been termed chromothripsis, on the basis of its chromosomal hallmarks, which point to an underlying process involving chromosome (chromo) shattering (thripsis). The prevailing hypothesis of cancer genome evolution as a gradual process of mutation and selection was challenged by the discovery of chromothripsis, because its patterns of chromosome rearrangement rather indicated an one-off catastrophic burst of genome rearrangement. The initial discovery of chromothripsis has led to many more examples of chromothripsis both in cancer genomes as well as in patients with congenital diseases and in the genomes of healthy individuals. Since then, a burning topic has been the study of the molecular mechanism that leads to chromothripsis. Cumulating evidence has shown that chromothripsis may result from lagging chromosomes encapsulated in micronuclei, as well as from telomere fusions followed by chromosome bridge formation. In this chapter, we will outline the genomic characteristics of chromothripsis, and we present genomic methodologies that enable the detection of chromothripsis. Furthermore, we will give an overview of recent insights into the mechanisms underlying chromothripsis.
Collapse
Affiliation(s)
- Alessio Marcozzi
- Division of Biomedical Genetics, Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Franck Pellestor
- Laboratory of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, Montpellier, France.,INSERM Unit Plasticity of the Genome and Aging, Institute of Functional Genomics, Montpellier, France
| | - Wigard P Kloosterman
- Division of Biomedical Genetics, Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
142
|
Daughtry BL, Chavez SL. Time-Lapse Imaging for the Detection of Chromosomal Abnormalities in Primate Preimplantation Embryos. Methods Mol Biol 2018; 1769:293-317. [PMID: 29564832 DOI: 10.1007/978-1-4939-7780-2_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of time-lapse microscopic imaging has proven to be a powerful tool for the study of mitotic divisions and other cellular processes across diverse species and cell types. Although time-lapse monitoring (TLM) of human preimplantation development was first introduced to the in vitro fertilization (IVF) community several decades ago, it was not until relatively recently that TLM systems were commercialized for clinical embryology purposes. Traditionally, human IVF embryos are assessed by successful progression and morphology under a stereomicroscope at distinct time points prior to selection for transfer. Due to the high frequency of aneuploidy, embryos may also be biopsied at the cleavage or blastocyst stage for preimplantation genetic screening (PGS) of whole and/or partial chromosomal abnormalities. However, embryo biopsy is invasive and can hinder subsequent development, and there are additional concerns over chromosomal mosaicism and resolution with PGS. Moreover, embryos are typically outside of the incubator in suboptimal culture conditions for extended periods of time during these procedures. With TLM systems, embryos remain in the stable microenvironment of an incubator and are simultaneously imaged for noninvasive embryo evaluation using a fraction of the light exposure as compared to a stereomicroscope. Each image is then compiled into a time-lapse movie, the information from which can be extrapolated to correlate morphological, spatial, and temporal parameters with embryo quality and copy number status. Here, we describe the various TLM systems available for clinical and/or research use in detail and provide step-by-step instructions on how the measurement of specific timing intervals and certain morphological criteria can be implemented into IVF protocols to enhance embryo assessment and avoid the selection of aneuploid embryos. We also discuss the biological significance of processes unique to mitotically dividing embryos and the likelihood that complex chromosomal events such as chromothripsis occur during preimplantation development in humans and other mammals, particularly nonhuman primates.
Collapse
Affiliation(s)
- Brittany L Daughtry
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University School of Medicine, Portland, OR, USA.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Shawn L Chavez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA. .,Department and Physiology and Pharmacology, Oregon Health and Science University School of Medicine, Portland, OR, USA. .,Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, Portland, OR, USA.
| |
Collapse
|
143
|
Fontana MC, Marconi G, Milosevic Feenstra JD, Fonzi E, Papayannidis C, Ghelli Luserna di Rorá A, Padella A, Solli V, Franchini E, Ottaviani E, Ferrari A, Baldazzi C, Testoni N, Iacobucci I, Soverini S, Haferlach T, Guadagnuolo V, Semerad L, Doubek M, Steurer M, Racil Z, Paolini S, Manfrini M, Cavo M, Simonetti G, Kralovics R, Martinelli G. Chromothripsis in Acute Myeloid Leukemia: biological features and
impact on survival. Leukemia 2017:10.1038/leu.2017.351. [PMCID: PMC5892717 DOI: 10.1038/leu.2017.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Chromothripsis is a one-step genome-shattering catastrophe resulting from
disruption of one or few chromosomes in multiple fragments and consequent random
rejoining and repair. This study define incidence of chromothripsis in 395
newly-diagnosed adult acute myeloid leukemia (AML) patients from three
institutions, its impact on survival and its genomic background. SNP 6.0 or
CytoscanHD Array (Affymetrix®) were performed on all samples. We detected
chromothripsis with a custom algorithm in 26/395 patients. Patients harboring
chromothripsis had higher age (p=.002), ELN high risk (HR) (p<.001),
lower white blood cell (WBC) count (p=.040), TP53 loss and/or
mutations (p<.001) while FLT3 (p=.025) and
NPM1 (p=.032) mutations were mutually exclusive with
chromothripsis. Chromothripsis-positive patients showed a worse overall survival
(OS) (p<.001) compared with HR patients (p=.011) and a poor prognosis in
a COX-HR optimal regression model. Chromothripsis presented the hallmarks of
chromosome instability [i.e. TP53 alteration, 5q deletion,
higher mean of copy number alteration (CNA), complex karyotype, alterations in
DNA repair and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, 17.
CBA. FISH showed that chromothripsis is associated with marker, derivative and
ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%)
and influences patient prognosis and disease biology.
Collapse
Affiliation(s)
| | - Giovanni Marconi
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | | | - Eugenio Fonzi
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | | | | | - Antonella Padella
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Vincenza Solli
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Eugenia Franchini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Emanuela Ottaviani
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Anna Ferrari
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Carmen Baldazzi
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Nicoletta Testoni
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Ilaria Iacobucci
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Simona Soverini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | | | | | - Lukas Semerad
- Department of Internal Medicine - Hematology and Oncology, Masaryk
University and Hospital, Brno, CR
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, Masaryk
University and Hospital, Brno, CR
| | - Michael Steurer
- Division of Hematology and Oncology, Medical University of
Innsbruck, Innsbruck, Austria
| | - Zdenek Racil
- Department of Internal Medicine - Hematology and Oncology, Masaryk
University and Hospital, Brno, CR
| | - Stefania Paolini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Marco Manfrini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Michele Cavo
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Giorgia Simonetti
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Wien, Austria
| | | |
Collapse
|
144
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
145
|
Harel T, Lupski JR. Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin Genet 2017; 93:439-449. [PMID: 28950406 DOI: 10.1111/cge.13146] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Genomic disorders result from copy-number variants (CNVs) or submicroscopic rearrangements of the genome rather than from single nucleotide variants (SNVs). Diverse technologies, including array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) microarrays, and more recently, whole genome sequencing and whole-exome sequencing, have enabled robust genome-wide unbiased detection of CNVs in affected individuals and in reportedly healthy controls. Sequencing of breakpoint junctions has allowed for elucidation of upstream mechanisms leading to genomic instability and resultant structural variation, whereas studies of the association between CNVs and specific diseases or susceptibility to morbid traits have enhanced our understanding of the downstream effects. In this review, we discuss the hallmarks of genomic disorders as they were defined during the first decade of the field, including genomic instability and the mechanism for rearrangement defined as nonallelic homologous recombination (NAHR); recurrent vs nonrecurrent rearrangements; and gene dosage sensitivity. Moreover, we highlight the exciting advances of the second decade of this field, including a deeper understanding of genomic instability and the mechanisms underlying complex rearrangements, mechanisms for constitutional and somatic chromosomal rearrangements, structural intra-species polymorphisms and susceptibility to NAHR, the role of CNVs in the context of genome-wide copy number and single nucleotide variation, and the contribution of noncoding CNVs to human disease.
Collapse
Affiliation(s)
- T Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - J R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
146
|
Kalsbeek D, Golsteyn RM. G2/M-Phase Checkpoint Adaptation and Micronuclei Formation as Mechanisms That Contribute to Genomic Instability in Human Cells. Int J Mol Sci 2017; 18:E2344. [PMID: 29113112 PMCID: PMC5713313 DOI: 10.3390/ijms18112344] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/30/2023] Open
Abstract
One of the most common characteristics of cancer cells is genomic instability. Recent research has revealed that G2/M-phase checkpoint adaptation-entering mitosis with damaged DNA-contributes to genomic changes in experimental models. When cancer cells are treated with pharmacological concentrations of genotoxic agents, they undergo checkpoint adaptation; however, a small number of cells are able to survive and accumulate micronuclei. These micronuclei harbour damaged DNA, and are able to replicate and reincorporate their DNA into the main nucleus. Micronuclei are susceptible to chromothripsis, which is a phenomenon characterised by extensively rearranged chromosomes that reassemble from pulverized chromosomes in one cellular event. These processes contribute to genomic instability in cancer cells that survive a genotoxic anti-cancer treatment. This review provides insight into checkpoint adaptation and its connection to micronuclei and possibly chromothripsis. Knowledge about these mechanisms is needed to improve the poor cancer treatment outcomes that result from genomic instability.
Collapse
Affiliation(s)
- Danî Kalsbeek
- Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Roy M Golsteyn
- Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
147
|
Ly P, Cleveland DW. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. Trends Cell Biol 2017; 27:917-930. [PMID: 28899600 DOI: 10.1016/j.tcb.2017.08.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Cancer genome sequencing has identified chromothripsis, a complex class of structural genomic rearrangements involving the apparent shattering of an individual chromosome into tens to hundreds of fragments. An initial error during mitosis, producing either chromosome mis-segregation into a micronucleus or chromatin bridge interconnecting two daughter cells, can trigger the catastrophic pulverization of the spatially isolated chromosome. The resultant chromosomal fragments are religated in random order by DNA double-strand break repair during the subsequent interphase. Chromothripsis scars the cancer genome with localized DNA rearrangements that frequently generate extensive copy number alterations, oncogenic gene fusion products, and/or tumor suppressor gene inactivation. Here we review emerging mechanisms underlying chromothripsis with a focus on the contribution of cell division errors caused by centromere dysfunction.
Collapse
Affiliation(s)
- Peter Ly
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
148
|
Piazza A, Wright WD, Heyer WD. Multi-invasions Are Recombination Byproducts that Induce Chromosomal Rearrangements. Cell 2017; 170:760-773.e15. [PMID: 28781165 PMCID: PMC5554464 DOI: 10.1016/j.cell.2017.06.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/02/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022]
Abstract
Inaccurate repair of broken chromosomes generates structural variants that can fuel evolution and inflict pathology. We describe a novel rearrangement mechanism in which translocation between intact chromosomes is induced by a lesion on a third chromosome. This multi-invasion-induced rearrangement (MIR) stems from a homologous recombination byproduct, where a broken DNA end simultaneously invades two intact donors. No homology is required between the donors, and the intervening sequence from the invading molecule is inserted at the translocation site. MIR is stimulated by increasing homology length and spatial proximity of the donors and depends on the overlapping activities of the structure-selective endonucleases Mus81-Mms4, Slx1-Slx4, and Yen1. Conversely, the 3'-flap nuclease Rad1-Rad10 and enzymes known to disrupt recombination intermediates (Sgs1-Top3-Rmi1, Srs2, and Mph1) inhibit MIR. Resolution of MIR intermediates propagates secondary chromosome breaks that frequently cause additional rearrangements. MIR features have implications for the formation of simple and complex rearrangements underlying human pathologies.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - William Douglass Wright
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
149
|
Abstract
The instability of microsatellite DNA repeats is responsible for at least 40 neurodegenerative diseases. Recently, Mirkin and co-workers presented a novel mechanism for microsatellite expansions based on break-induced replication (BIR) at sites of microsatellite-induced replication stalling and fork collapse. The BIR model aims to explain single-step, large expansions of CAG/CTG trinucleotide repeats in dividing cells. BIR has been characterized extensively in Saccharomyces cerevisiae as a mechanism to repair broken DNA replication forks (single-ended DSBs) and degraded telomeric DNA. However, the structural footprints of BIR-like DSB repair have been recognized in human genomic instability and tied to the etiology of diverse developmental diseases; thus, the implications of the paper by Kim et al. (Kim JC, Harris ST, Dinter T, Shah KA, et al., Nat Struct Mol Biol 24: 55-60) extend beyond trinucleotide repeat expansion in yeast and microsatellite instability in human neurological disorders. Significantly, insight into BIR-like repair can explain certain pathways of complex genome rearrangements (CGRs) initiated at non-B form microsatellite DNA in human cancers.
Collapse
Affiliation(s)
- Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
150
|
Liu P, Yuan B, Carvalho CMB, Wuster A, Walter K, Zhang L, Gambin T, Chong Z, Campbell IM, Coban Akdemir Z, Gelowani V, Writzl K, Bacino CA, Lindsay SJ, Withers M, Gonzaga-Jauregui C, Wiszniewska J, Scull J, Stankiewicz P, Jhangiani SN, Muzny DM, Zhang F, Chen K, Gibbs RA, Rautenstrauss B, Cheung SW, Smith J, Breman A, Shaw CA, Patel A, Hurles ME, Lupski JR. An Organismal CNV Mutator Phenotype Restricted to Early Human Development. Cell 2017; 168:830-842.e7. [PMID: 28235197 DOI: 10.1016/j.cell.2017.01.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 10/13/2016] [Accepted: 01/27/2017] [Indexed: 01/07/2023]
Abstract
De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA.
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arthur Wuster
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Ling Zhang
- Collaborative Innovation Center of Genetics and Development, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zechen Chong
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Violet Gelowani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karin Writzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Marjorie Withers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Joanna Wiszniewska
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer Scull
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Zhang
- Collaborative Innovation Center of Genetics and Development, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Janice Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Amy Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|