101
|
Salk JJ, Kennedy SR. Next-Generation Genotoxicology: Using Modern Sequencing Technologies to Assess Somatic Mutagenesis and Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:135-151. [PMID: 31595553 PMCID: PMC7003768 DOI: 10.1002/em.22342] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 05/09/2023]
Abstract
Mutations have a profound effect on human health, particularly through an increased risk of carcinogenesis and genetic disease. The strong correlation between mutagenesis and carcinogenesis has been a driving force behind genotoxicity research for more than 50 years. The stochastic and infrequent nature of mutagenesis makes it challenging to observe and to study. Indeed, decades have been spent developing increasingly sophisticated assays and methods to study these low-frequency genetic errors, in hopes of better predicting which chemicals may be carcinogens, understanding their mode of action, and informing guidelines to prevent undue human exposure. While effective, widely used genetic selection-based technologies have a number of limitations that have hampered major advancements in the field of genotoxicity. Emerging new tools, in the form of enhanced next-generation sequencing platforms and methods, are changing this paradigm. In this review, we discuss rapidly evolving sequencing tools and technologies, such as error-corrected sequencing and single cell analysis, which we anticipate will fundamentally reshape the field. In addition, we consider a variety emerging applications for these new technologies, including the detection of DNA adducts, inference of mutational processes based on genomic site and local sequence contexts, and evaluation of genome engineering fidelity, as well as other cutting-edge challenges for the next 50 years of environmental and molecular mutagenesis research. Environ. Mol. Mutagen. 61:135-151, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Jesse J. Salk
- Department of Medicine, Division of Medical OncologyUniversity of Washington School of MedicineSeattleWashington
- TwinStrand BiosciencesSeattleWashington
| | - Scott R. Kennedy
- Department of PathologyUniversity of WashingtonSeattleWashington
| |
Collapse
|
102
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
103
|
Li C, Wang X, Xu J, Ma B. One-step liquid molding based modular microfluidic circuits. Analyst 2020; 145:6813-6820. [DOI: 10.1039/d0an01134g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an easy-to-follow modular method that combines liquid molding with standard SU-8 lithography to create customized integrated microfluidic devices for the changing needs of users.
Collapse
Affiliation(s)
- Chunyu Li
- Single-Cell center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Xixian Wang
- Single-Cell center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Jian Xu
- Single-Cell center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Bo Ma
- Single-Cell center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| |
Collapse
|
104
|
Konstantinidis M, Ravichandran K, Gunes Z, Prates R, Goodall NN, Roman B, Ribustello L, Shanmugam A, Colls P, Munné S, Wells D. Aneuploidy and recombination in the human preimplantation embryo. Copy number variation analysis and genome-wide polymorphism genotyping. Reprod Biomed Online 2019; 40:479-493. [PMID: 32147385 DOI: 10.1016/j.rbmo.2019.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 11/24/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
Abstract
RESEARCH QUESTION What are the incidence and patterns of meiotic trisomies and recombination separately and in relation to each other at the blastocyst stage via single nucleotide polymorphism genotyping combined with array comparative genomic hybridization. DESIGN Single nucleotide polymorphism microarrays were carried out on a total of 1442 blastocyst stage embryos derived from 268 fertile couples undergoing preimplantation genetic diagnosis for the purposes of avoiding transmittance of known single gene disorders to their offspring; 24-chromosome aneuploidy screening via array comparative genomic hybridization was carried out in parallel. RESULTS One hundred per cent of meiotic trisomies identified in these embryos were of maternal origin and their incidence increased significantly with advancing maternal age (P < 0.0001). A total of 55.8% of meiotic trisomies were meiosis I-type and 44.2% were meiosis II-type. Certain chromosomes were affected more by meiosis I-type errors, whereas others experienced more meiosis II-type errors. A detailed recombination analysis was carried out for 11,476 chromosomes and 17,763 recombination events were recorded. The average number of recombination sites was 24.0 ± 0.3 for male meiosis and 41.2 ± 0.6 for female meiosis (autosomes only). Sex-specific differences were observed in the locations of recombination sites. Comparative analysis conducted between 190 euploid embryos and 69 embryos presenting maternal meiotic trisomies showed similar recombination rates (P = 0.425) and non-recombinant chromatid rates (P = 0.435) between the two categories; differences, however, were observed when analysing embryos affected with specific maternal meiotic trisomies. CONCLUSIONS This study yielded unique data concerning recombination and the origin of aneuploidies observed during the first few days of life and provides a novel insight into these important biological processes.
Collapse
Affiliation(s)
| | | | - Zeynep Gunes
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | | | | | - Bo Roman
- CooperGenomics, Livingston New Jersey, USA
| | | | | | - Pere Colls
- CooperGenomics, Livingston New Jersey, USA
| | - Santiago Munné
- CooperGenomics, Livingston New Jersey, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven Connecticut, USA
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK; Juno Genetics, Oxford Science Park, Oxford, UK
| |
Collapse
|
105
|
Caballero M, Seidman DN, Qiao Y, Sannerud J, Dyer TD, Lehman DM, Curran JE, Duggirala R, Blangero J, Carmi S, Williams AL. Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives. PLoS Genet 2019; 15:e1007979. [PMID: 31860654 PMCID: PMC6944377 DOI: 10.1371/journal.pgen.1007979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/06/2020] [Accepted: 12/05/2019] [Indexed: 11/19/2022] Open
Abstract
Simulations of close relatives and identical by descent (IBD) segments are common in genetic studies, yet most past efforts have utilized sex averaged genetic maps and ignored crossover interference, thus omitting features known to affect the breakpoints of IBD segments. We developed Ped-sim, a method for simulating relatives that can utilize either sex-specific or sex averaged genetic maps and also either a model of crossover interference or the traditional Poisson model for inter-crossover distances. To characterize the impact of previously ignored mechanisms, we simulated data for all four combinations of these factors. We found that modeling crossover interference decreases the standard deviation of pairwise IBD proportions by 10.4% on average in full siblings through second cousins. By contrast, sex-specific maps increase this standard deviation by 4.2% on average, and also impact the number of segments relatives share. Most notably, using sex-specific maps, the number of segments half-siblings share is bimodal; and when combined with interference modeling, the probability that sixth cousins have non-zero IBD sharing ranges from 9.0 to 13.1%, depending on the sexes of the individuals through which they are related. We present new analytical results for the distributions of IBD segments under these models and show they match results from simulations. Finally, we compared IBD sharing rates between simulated and real relatives and find that the combination of sex-specific maps and interference modeling most accurately captures IBD rates in real data. Ped-sim is open source and available from https://github.com/williamslab/ped-sim.
Collapse
Affiliation(s)
- Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel N. Seidman
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Ying Qiao
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Jens Sannerud
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Thomas D. Dyer
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Donna M. Lehman
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - John Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amy L. Williams
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
106
|
Oseguera-López I, Ruiz-Díaz S, Ramos-Ibeas P, Pérez-Cerezales S. Novel Techniques of Sperm Selection for Improving IVF and ICSI Outcomes. Front Cell Dev Biol 2019; 7:298. [PMID: 31850340 PMCID: PMC6896825 DOI: 10.3389/fcell.2019.00298] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Almost 50% of the infertility cases are due to male factors. Assisted reproductive technologies (ARTs) allow to overcome the incapacity of these patients' spermatozoa to fertilize the oocyte and produce a viable and healthy offspring, but the efficiency of the different techniques has still the potential to improve. According to the latest reports of the European Society of Human Reproduction and Embryology (ESHRE) and the Centers for Disease Control and Prevention of the United States (CDC), the percentages of deliveries per ART cycle in 2014 and 2016 were 21 and 22%, respectively. Among the reasons for this relatively low efficiency, the quality of the spermatozoa has been pointed out as critical, and the presence of high percentages of DNA-damaged spermatozoa in patients' ejaculates is possibly one of the main factors reducing the ARTs outcomes. Thus, one of the main challenges in reproductive medicine is to ensure the highest quality of the spermatozoa used in ARTs, and specifically, in terms of genetic integrity. The latest techniques for the preparation and selection of human spermatozoa are herein discussed focusing on those proven to improve one or several of the following parameters: sperm genetic integrity, fertilization capacity, embryo production, and in vitro survival, as well as pregnancy and delivery rates following in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). In addition, we discuss the potential of techniques developed in non-human mammals that could be further transferred to the clinic.
Collapse
Affiliation(s)
| | - Sara Ruiz-Díaz
- Mistral Fertility Clinics S.L., Clínica Tambre, Madrid, Spain
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Priscila Ramos-Ibeas
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Serafín Pérez-Cerezales
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
107
|
Chaves TF, Baretto N, Oliveira LFD, Ocampos M, Barbato IT, Anselmi M, De Luca GR, Barbato Filho JH, Pinto LLDC, Bernardi P, Maris AF. Copy Number Variations in a Cohort of 420 Individuals with Neurodevelopmental Disorders From the South of Brazil. Sci Rep 2019; 9:17776. [PMID: 31780800 PMCID: PMC6882836 DOI: 10.1038/s41598-019-54347-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023] Open
Abstract
Chromosomal microarray (CMA) is now recommended as first tier for the evaluation in individuals with unexplained neurodevelopmental disorders (ND). However, in developing countries such as Brazil, classical cytogenetic tests are still the most used in clinical practice, as reflected by the scarcity of publications of microarray investigation in larger cohorts. This is a retrospective study which analyses the reading files of CMA and available clinical data from 420 patients from the south of Brazil, mostly children, with neurodevelopmental disorders requested by medical geneticists and neurologists for diagnostic purpose. Previous karyotyping was reported for 138 and includes 17 with abnormal results. The platforms used for CMA were CYTOSCAN 750K (75%) and CYTOSCAN HD (25%). The sex ratio of the patients was 1.625 males :1 female and the mean age was 9.5 years. A total of 96 pathogenic copy number variations (CNVs), 58 deletions and 38 duplications, were found in 18% of the patients and in all chromosomes, except chromosome 11. For 12% of the patients only variants of uncertain clinical significance were found. No clinically relevant CNV was found in 70%. The main referrals for chromosomal microarrays (CMA) were developmental delay (DD), intellectual disability (ID), facial dysmorphism and autism spectrum disorder (ASD). DD/ID were present in 80%, facial dysmorphism in 52% and ASD in 32%. Some phenotypes in this population could be predictive of a higher probability to carry a pathogenic CNV, as follows: dysmorphic facial features (p-value = < 0.0001, OR = 0.32), obesity (p-value = 0.006, OR = 0.20), short stature (p-value = 0.032, OR = 0.44), genitourinary anomalies (p-value = 0.032, OR = 0.63) and ASD (p-value = 0.039, OR = 1.94). The diagnostic rate for CMA in this study was 18%. We present the largest report of CMA data in a cohort with ND in Brazil. We characterize the rare CNVs found together with the main phenotypes presented by each patient, list phenotypes which could predict a higher diagnostic probability by CMA in patients with a neurodevelopmental disorder and show how CMA and classical karyotyping results are complementary.
Collapse
Affiliation(s)
| | - Nathacha Baretto
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | - Mayara Anselmi
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | - Pricila Bernardi
- University Hospital Professor Polydoro Ernani de São Thiago, Florianópolis, SC, Brazil
| | | |
Collapse
|
108
|
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Philip D. Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| |
Collapse
|
109
|
Li S, Kendall J, Park S, Wang Z, Alexander J, Moffitt A, Ranade N, Danyko C, Gegenhuber B, Fischer S, Robinson BD, Lepor H, Tollkuhn J, Gillis J, Brouzes E, Krasnitz A, Levy D, Wigler M. Copolymerization of single-cell nucleic acids into balls of acrylamide gel. Genome Res 2019; 30:49-61. [PMID: 31727682 PMCID: PMC6961581 DOI: 10.1101/gr.253047.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023]
Abstract
We show the use of 5′-Acrydite oligonucleotides to copolymerize single-cell DNA or RNA into balls of acrylamide gel (BAGs). Combining this step with split-and-pool techniques for creating barcodes yields a method with advantages in cost and scalability, depth of coverage, ease of operation, minimal cross-contamination, and efficient use of samples. We perform DNA copy number profiling on mixtures of cell lines, nuclei from frozen prostate tumors, and biopsy washes. As applied to RNA, the method has high capture efficiency of transcripts and sufficient consistency to clearly distinguish the expression patterns of cell lines and individual nuclei from neurons dissected from the mouse brain. By using varietal tags (UMIs) to achieve sequence error correction, we show extremely low levels of cross-contamination by tracking source-specific SNVs. The method is readily modifiable, and we will discuss its adaptability and diverse applications.
Collapse
Affiliation(s)
- Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sarah Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joan Alexander
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Andrea Moffitt
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nissim Ranade
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Cassidy Danyko
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Stephan Fischer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Herbert Lepor
- Department of Urology, New York University Langone Medical Center, New York, New York 10017, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Alex Krasnitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Dan Levy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
110
|
Abstract
Evolutionary rates and strength of selection differ markedly between haploid and diploid genomes. Any genes expressed in a haploid state will be directly exposed to selection, whereas alleles in a diploid state may be partially or fully masked by a homologous allele. This difference may shape key evolutionary processes, including rates of adaptation and inbreeding depression, but also the evolution of sex chromosomes, heterochiasmy, and stable sex ratio biases. All diploid organisms carry haploid genomes, most notably the haploid genomes in gametes produced by every sexually reproducing eukaryote. Furthermore, haploid expression occurs in genes with monoallelic expression, in sex chromosomes, and in organelles, such as mitochondria and plastids. A comparison of evolutionary rates among these haploid genomes reveals striking parallels. Evidence suggests that haploid selection has the potential to shape evolution in predominantly diploid organisms, and taking advantage of the rapidly developing technologies, we are now in the position to quantify the importance of such selection on haploid genomes.
Collapse
Affiliation(s)
- Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
111
|
Hartshorn CM, Russell LM, Grodzinski P. National Cancer Institute Alliance for nanotechnology in cancer-Catalyzing research and translation toward novel cancer diagnostics and therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1570. [PMID: 31257722 PMCID: PMC6788937 DOI: 10.1002/wnan.1570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Nanotechnology has been a burgeoning research field, which is finding compelling applications in several practical areas of everyday life. It has provided novel, paradigm shifting solutions to medical problems and particularly to cancer. In order to accelerate integration of nanotechnology into cancer research and oncology, the National Cancer Institute (NCI) of the National Institutes of Health (NIH) established the NCI Alliance for Nanotechnology in Cancer program in 2005. This effort brought together scientists representing physical sciences, chemistry, and engineering working at the nanoscale with biologists and clinicians working on cancer to form a uniquely multidisciplinary cancer nanotechnology research community. The last 14 years of the program have produced a remarkable body of scientific discovery and demonstrated its utility to the development of practical cancer interventions. This paper takes stock of how the Alliance program influenced melding of disparate research disciplines into the field of nanomedicine and cancer nanotechnology, has been highly productive in the scientific arena, and produced a mechanism of seamless transfer of novel technologies developed in academia to the clinical and commercial space. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Christopher M. Hartshorn
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Luisa M. Russell
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
112
|
Goldmann JM, Veltman JA, Gilissen C. De Novo Mutations Reflect Development and Aging of the Human Germline. Trends Genet 2019; 35:828-839. [PMID: 31610893 DOI: 10.1016/j.tig.2019.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023]
Abstract
Human germline de novo mutations (DNMs) are both a driver of evolution and an important cause of genetic diseases. In the past few years, whole-genome sequencing (WGS) of parent-offspring trios has facilitated the large-scale detection and study of human DNMs, which has led to exciting discoveries. The overarching theme of all of these studies is that the DNMs of an individual are a complex mixture of mutations that arise through different biological processes acting at different times during human development and life.
Collapse
Affiliation(s)
- J M Goldmann
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - J A Veltman
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, UK; Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - C Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
113
|
Netherton J, Ogle R, Hetherington L, Velkov T, Rose R, Baker M. DNA variants are an unlikely explanation for the changing quality of spermatozoa within the same individual. HUM FERTIL 2019; 24:376-388. [PMID: 31642381 DOI: 10.1080/14647273.2019.1679397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It has recently been suggested that the human sperm genome is highly unstable, which may be a reasonable explanation as to why men, even fertile men, produce defective spermatozoa. Furthermore, an unstable genome may also explain why the semen profile of the same man changes from one ejaculate to the next. As such, we took multiple ejaculates (between 3 and 6) from 7 individuals over a 6-month period and isolated sperm through density gradients. We then compared the DNA of: (i) good and poor-quality spermatozoa within the same ejaculate; and (ii) from multiple ejaculates from the same individual. Our results suggest that on a global level, DNA present within spermatozoa is actually quite stable and similar between both good and poor sperm. This is important information for the assisted reproductive community when it comes to sperm selection.
Collapse
Affiliation(s)
- Jacob Netherton
- Department of Environmental and Life Sciences, University of Newcastle , Callaghan , New South Wales , Australia
| | - Rachel Ogle
- Department of Environmental and Life Sciences, University of Newcastle , Callaghan , New South Wales , Australia
| | - Louise Hetherington
- Department of Environmental and Life Sciences, University of Newcastle , Callaghan , New South Wales , Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne , Victoria , Australia
| | - Ryan Rose
- Fertility SA, St. Andrews Hospital , Adelaide , South Australia , Australia.,Adelaide Health and Medical Sciences, Robinson Research Institute, The University of Adelaide , Adelaide , South Australia , Australia
| | - Mark Baker
- Department of Environmental and Life Sciences, University of Newcastle , Callaghan , New South Wales , Australia
| |
Collapse
|
114
|
Liu X, Tang D, Zheng F, Xu Y, Guo H, Zhou J, Lin L, Xie J, Ou M, Dai Y. Single-Cell Sequencing Reveals the Relationship between Phenotypes and Genotypes of Klinefelter Syndrome. Cytogenet Genome Res 2019; 159:55-65. [PMID: 31630146 DOI: 10.1159/000503737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Klinefelter syndrome (KS) is one of the most common congenital disorders of male infertility. Given its high heterogeneity in clinical and genetic presentation, the relationship between transcriptome, clinical phenotype, and associated co-morbidities seen in KS has not been fully clarified. Here, we report a 47,XXY Chinese male with infertility and analyzed the differences in gene expression patterns of peripheral blood mononuclear cells (PBMCs) with regard to a Chinese male and a female control with normal karyotype by single-cell sequencing. A total of 24,439 cells were analyzed and divided into 5 immune cell types (including B cells, T cells, macrophage cells, dendritic cells, and natural killer cells) according to marker genes. Using unsupervised dimensionality reduction and clustering algorithms, we identified molecularly distinct subpopulations of cells between the KS patient and both controls. Gene ontology enrichment analyses yielded terms associated with well-known comorbidities seen in KS as well as an affected immune system and type I diabetes mellitus. Based on our data, we identified several candidate genes which may be implicated in regulating the phenotype of KS. Overall, this analysis provides a comprehensive map of the cell types of PBMCs in a KS patient at the single-cell level, which will contribute to the prevention of comorbidity and improvement of the life quality of KS patients.
Collapse
|
115
|
Quantification of Recombination Rate and Segregation Distortion by Genotyping and Sequencing of Single Pollen Nuclei. Methods Mol Biol 2019. [PMID: 31583667 DOI: 10.1007/978-1-4939-9818-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Meiosis is a specialized cell division during which homologous chromosomes can exchange genetic material through recombination. This mechanism generates novel allelic combinations, which can be exploited by plant breeders to achieve crop improvement. Pollen grains are the haploid products of meiosis required in fertilization. Here, we describe two approaches to measure meiotic recombination in single haploid pollen nuclei. Pollen nuclei are first separated by fluorescence-activated cell-sorting. Afterwards, the DNA of single pollen nuclei can be amplified by multiple-displacement-amplification using Phi29 DNA polymerase and meiotic recombination events can be measured using KASP markers. Alternatively, the PicoPLEX DNA-seq kit can be used to amplify the DNA of single pollen nuclei followed by library preparation for whole-genome sequencing and subsequent bioinformatic analysis.
Collapse
|
116
|
Li X, Zhang D, Ruan W, Liu W, Yin K, Tian T, Bi Y, Ruan Q, Zhao Y, Zhu Z, Yang C. Centrifugal-Driven Droplet Generation Method with Minimal Waste for Single-Cell Whole Genome Amplification. Anal Chem 2019; 91:13611-13619. [DOI: 10.1021/acs.analchem.9b02786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingrui Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Dongfeng Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Weidong Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Weizhi Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Kun Yin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Tian Tian
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Yunpeng Bi
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Qingyu Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Yuan Zhao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| |
Collapse
|
117
|
Genome-wide recombination map construction from single individuals using linked-read sequencing. Nat Commun 2019; 10:4309. [PMID: 31541091 PMCID: PMC6754380 DOI: 10.1038/s41467-019-12210-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Meiotic recombination rates vary across the genome, often involving localized crossover hotspots and coldspots. Studying the molecular basis and mechanisms underlying this variation has been challenging due to the high cost and effort required to construct individualized genome-wide maps of recombination crossovers. Here we introduce a new method, called ReMIX, to detect crossovers from gamete DNA of a single individual using Illumina sequencing of 10X Genomics linked-read libraries. ReMIX reconstructs haplotypes and identifies the valuable rare molecules spanning crossover breakpoints, allowing quantification of the genomic location and intensity of meiotic recombination. Using a single mouse and stickleback fish, we demonstrate how ReMIX faithfully recovers recombination hotspots and landscapes that have previously been built using hundreds of offspring. ReMIX provides a high-resolution, high-throughput, and low-cost approach to quantify recombination variation across the genome, providing an exciting opportunity to study recombination among multiple individuals in diverse organisms. Variation of recombination rates within genomes has important implications in genetics and evolution. Here, the authors develop a method for building genome-wide recombination maps from single individuals using linked-read sequencing data, and report its application in mouse and stickleback fish.
Collapse
|
118
|
High-Throughput Single-Cell Sequencing with Linear Amplification. Mol Cell 2019; 76:676-690.e10. [PMID: 31495564 DOI: 10.1016/j.molcel.2019.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 05/22/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022]
Abstract
Conventional methods for single-cell genome sequencing are limited with respect to uniformity and throughput. Here, we describe sci-L3, a single-cell sequencing method that combines combinatorial indexing (sci-) and linear (L) amplification. The sci-L3 method adopts a 3-level (3) indexing scheme that minimizes amplification biases while enabling exponential gains in throughput. We demonstrate the generalizability of sci-L3 with proof-of-concept demonstrations of single-cell whole-genome sequencing (sci-L3-WGS), targeted sequencing (sci-L3-target-seq), and a co-assay of the genome and transcriptome (sci-L3-RNA/DNA). We apply sci-L3-WGS to profile the genomes of >10,000 sperm and sperm precursors from F1 hybrid mice, mapping 86,786 crossovers and characterizing rare chromosome mis-segregation events in meiosis, including instances of whole-genome equational chromosome segregation. We anticipate that sci-L3 assays can be applied to fully characterize recombination landscapes, to couple CRISPR perturbations and measurements of genome stability, and to other goals requiring high-throughput, high-coverage single-cell sequencing.
Collapse
|
119
|
Qi R, Ma A, Ma Q, Zou Q. Clustering and classification methods for single-cell RNA-sequencing data. Brief Bioinform 2019; 21:1196-1208. [PMID: 31271412 DOI: 10.1093/bib/bbz062] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
Appropriate ways to measure the similarity between single-cell RNA-sequencing (scRNA-seq) data are ubiquitous in bioinformatics, but using single clustering or classification methods to process scRNA-seq data is generally difficult. This has led to the emergence of integrated methods and tools that aim to automatically process specific problems associated with scRNA-seq data. These approaches have attracted a lot of interest in bioinformatics and related fields. In this paper, we systematically review the integrated methods and tools, highlighting the pros and cons of each approach. We not only pay particular attention to clustering and classification methods but also discuss methods that have emerged recently as powerful alternatives, including nonlinear and linear methods and descending dimension methods. Finally, we focus on clustering and classification methods for scRNA-seq data, in particular, integrated methods, and provide a comprehensive description of scRNA-seq data and download URLs.
Collapse
Affiliation(s)
- Ren Qi
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, USA
| | - Qin Ma
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
120
|
Liu J, François JM, Capp JP. Gene Expression Noise Produces Cell-to-Cell Heterogeneity in Eukaryotic Homologous Recombination Rate. Front Genet 2019; 10:475. [PMID: 31164905 PMCID: PMC6536703 DOI: 10.3389/fgene.2019.00475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/03/2019] [Indexed: 11/13/2022] Open
Abstract
Variation in gene expression among genetically identical individual cells (called gene expression noise) directly contributes to phenotypic diversity. Whether such variation can impact genome stability and lead to variation in genotype remains poorly explored. We addressed this question by investigating whether noise in the expression of genes affecting homologous recombination (HR) activity either directly (RAD52) or indirectly (RAD27) confers cell-to-cell heterogeneity in HR rate in Saccharomyces cerevisiae. Using cell sorting to isolate subpopulations with various expression levels, we show that spontaneous HR rate is highly heterogeneous from cell-to-cell in clonal populations depending on the cellular amount of proteins affecting HR activity. Phleomycin-induced HR is even more heterogeneous, showing that RAD27 expression variation strongly affects the rate of recombination from cell-to-cell. Strong variations in HR rate between subpopulations are not correlated to strong changes in cell cycle stage. Moreover, this heterogeneity occurs even when simultaneously sorting cells at equal expression level of another gene involved in DNA damage response (BMH1) that is upregulated by DNA damage, showing that the initiating DNA damage is not responsible for the observed heterogeneity in HR rate. Thus gene expression noise seems mainly responsible for this phenomenon. Finally, HR rate non-linearly scales with Rad27 levels showing that total amount of HR cannot be explained solely by the time- or population-averaged Rad27 expression. Altogether, our data reveal interplay between heterogeneity at the gene expression and genetic levels in the production of phenotypic diversity with evolutionary consequences from microbial to cancer cell populations.
Collapse
Affiliation(s)
- Jian Liu
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées de Toulouse, UMR CNRS 5504, UMR INRA 792, Université de Toulouse, Toulouse, France
| | - Jean-Marie François
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées de Toulouse, UMR CNRS 5504, UMR INRA 792, Université de Toulouse, Toulouse, France
| | - Jean-Pascal Capp
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées de Toulouse, UMR CNRS 5504, UMR INRA 792, Université de Toulouse, Toulouse, France
| |
Collapse
|
121
|
Uspenskaya NY, Akopov SB, Snezhkov EV, Sverdlov ED. The Rate of Human Germline Mutations—Variable Factor of Evolution and Diseases. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
122
|
Wang S, Veller C, Sun F, Ruiz-Herrera A, Shang Y, Liu H, Zickler D, Chen Z, Kleckner N, Zhang L. Per-Nucleus Crossover Covariation and Implications for Evolution. Cell 2019; 177:326-338.e16. [PMID: 30879787 PMCID: PMC6472931 DOI: 10.1016/j.cell.2019.02.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
Abstract
Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.
Collapse
Affiliation(s)
- Shunxin Wang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China.
| | - Carl Veller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu, China
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Yongliang Shang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91198, France
| | - Zijiang Chen
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Liangran Zhang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
123
|
Hinch AG, Zhang G, Becker PW, Moralli D, Hinch R, Davies B, Bowden R, Donnelly P. Factors influencing meiotic recombination revealed by whole-genome sequencing of single sperm. Science 2019; 363:eaau8861. [PMID: 30898902 PMCID: PMC6445350 DOI: 10.1126/science.aau8861] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023]
Abstract
Recombination is critical to meiosis and evolution, yet many aspects of the physical exchange of DNA via crossovers remain poorly understood. We report an approach for single-cell whole-genome DNA sequencing by which we sequenced 217 individual hybrid mouse sperm, providing a kilobase-resolution genome-wide map of crossovers. Combining this map with molecular assays measuring stages of recombination, we identified factors that affect crossover probability, including PRDM9 binding on the non-initiating template homolog and telomere proximity. These factors also influence the time for sites of recombination-initiating DNA double-strand breaks to find and engage their homologs, with rapidly engaging sites more likely to form crossovers. We show that chromatin environment on the template homolog affects positioning of crossover breakpoints. Our results also offer insights into recombination in the pseudoautosomal region.
Collapse
Affiliation(s)
| | - Gang Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Philipp W Becker
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Robert Hinch
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
124
|
You JB, Wang Y, McCallum C, Tarlan F, Hannam T, Lagunov A, Jarvi K, Sinton D. Live sperm trap microarray for high throughput imaging and analysis. LAB ON A CHIP 2019; 19:815-824. [PMID: 30693362 DOI: 10.1039/c8lc01204k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is a growing appreciation and understanding of cell-to-cell variability in biological samples. However, research and clinical practice in male fertility has relied on population, or sample-based characteristics. Single-cell resolution is particularly important given the winner-takes-all nature of both natural and in vitro fertilization: it is the properties of a single cell, not the population, that are passed to the next generation. While there are a range of methods for single cell analysis, arraying a larger number of live sperm has not been possible due to the strong locomotion of the cells. Here we present a 103-trap microarray that traps, aligns and arrays individual live sperm. The method enables high-resolution imaging of the aligned cell head, the application of dye-based DNA and mitochondrial analyses, and the quantification of motility characteristics, such as tail beat. In testing, a 2400-post array trapped ∼400 sperm for individual analyses of tail beating frequency and amplitude, DNA integrity via acridine orange staining, and mitochondrial activity via staining. While literature results are mixed regarding a possible correlation between motility and DNA integrity of sperm at sample-level, results here find no statistical correlation between tail beat characteristics and DNA integrity at the cell-level. The trap array uniquely enables the high-throughput study of individual live sperm in semen samples - assessing the inherently single-cell selection process of fertilization, with single-cell resolution.
Collapse
Affiliation(s)
- Jae Bem You
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Alavioon G, Cabrera Garcia A, LeChatelier M, Maklakov AA, Immler S. Selection for longer lived sperm within ejaculate reduces reproductive ageing in offspring. Evol Lett 2019; 3:198-206. [PMID: 31289692 PMCID: PMC6591544 DOI: 10.1002/evl3.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
Males produce numerous sperm in a single ejaculate that greatly outnumber their potential egg targets. Recent studies found that phenotypic and genotypic variation among sperm in a single ejaculate of a male affects the fitness and performance of the resulting offspring. Specifically, within-ejaculate sperm selection for sperm longevity increased the performance of the resulting offspring in several key life-history traits in early life. Because increased early-life reproductive performance often correlates with rapid ageing, it is possible that within-ejaculate sperm selection increases early-life fitness at the cost of accelerated senescence. Alternatively, within-ejaculate sperm selection could improve offspring quality throughout the life cycle, including reduced age-specific deterioration. We tested the two alternative hypotheses in an experimental setup using zebrafish Danio rerio. We found that within-ejaculate sperm selection for sperm longevity reduced age-specific deterioration of fecundity and offspring survival but had no effect on fertilization success in males. Remarkably, we found an opposing effect of within-ejaculate sperm selection on female fecundity, where selection for sperm longevity resulted in increased early-life performance followed by a slow decline, while females sired by unselected sperm started low but increased their fecundity with age. Intriguingly, within-ejaculate sperm selection also reduced the age-specific decline in fertilization success in females, suggesting that selection for sperm longevity improves at least some aspects of female reproductive ageing. These results demonstrate that within-ejaculate variation in sperm phenotype contributes to individual variation in animal life histories in the two sexes and may have important implications for assisted fertilization programs in livestock and humans.
Collapse
Affiliation(s)
- Ghazal Alavioon
- Department of Ecology and Genetics, Evolutionary Biology Centre Uppsala University Norbyvägen 18D 75 236 Uppsala Sweden
| | - Andrea Cabrera Garcia
- Department of Ecology and Genetics, Evolutionary Biology Centre Uppsala University Norbyvägen 18D 75 236 Uppsala Sweden
| | - Magali LeChatelier
- Department of Ecology and Genetics, Evolutionary Biology Centre Uppsala University Norbyvägen 18D 75 236 Uppsala Sweden
| | - Alexei A Maklakov
- Department of Ecology and Genetics, Evolutionary Biology Centre Uppsala University Norbyvägen 18D 75 236 Uppsala Sweden.,School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ United Kingdom
| | - Simone Immler
- Department of Ecology and Genetics, Evolutionary Biology Centre Uppsala University Norbyvägen 18D 75 236 Uppsala Sweden.,School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ United Kingdom
| |
Collapse
|
126
|
Veller C, Kleckner N, Nowak MA. A rigorous measure of genome-wide genetic shuffling that takes into account crossover positions and Mendel's second law. Proc Natl Acad Sci U S A 2019; 116:1659-1668. [PMID: 30635424 PMCID: PMC6358705 DOI: 10.1073/pnas.1817482116] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative studies in evolutionary genetics rely critically on evaluation of the total amount of genetic shuffling that occurs during gamete production. Such studies have been hampered by the absence of a direct measure of this quantity. Existing measures consider crossing-over by simply counting the average number of crossovers per meiosis. This is qualitatively inadequate, because the positions of crossovers along a chromosome are also critical: a crossover toward the middle of a chromosome causes more shuffling than a crossover toward the tip. Moreover, traditional measures fail to consider shuffling from independent assortment of homologous chromosomes (Mendel's second law). Here, we present a rigorous measure of genome-wide shuffling that does not suffer from these limitations. We define the parameter [Formula: see text] as the probability that the alleles at two randomly chosen loci are shuffled during gamete production. This measure can be decomposed into separate contributions from crossover number and position and from independent assortment. Intrinsic implications of this metric include the fact that [Formula: see text] is larger when crossovers are more evenly spaced, which suggests a selective advantage of crossover interference. Utilization of [Formula: see text] is enabled by powerful emergent methods for determining crossover positions either cytologically or by DNA sequencing. Application of our analysis to such data from human male and female reveals that (i) [Formula: see text] in humans is close to its maximum possible value of 1/2 and that (ii) this high level of shuffling is due almost entirely to independent assortment, the contribution of which is ∼30 times greater than that of crossovers.
Collapse
Affiliation(s)
- Carl Veller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138;
| | - Martin A Nowak
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
- Department of Mathematics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
127
|
Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin SH, Yuan GC, Chen M, Guo G. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 2019; 172:1091-1107.e17. [PMID: 29474909 DOI: 10.1016/j.cell.2018.02.001] [Citation(s) in RCA: 847] [Impact Index Per Article: 169.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/15/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies are poised to reshape the current cell-type classification system. However, a transcriptome-based single-cell atlas has not been achieved for complex mammalian systems. Here, we developed Microwell-seq, a high-throughput and low-cost scRNA-seq platform using simple, inexpensive devices. Using Microwell-seq, we analyzed more than 400,000 single cells covering all of the major mouse organs and constructed a basic scheme for a mouse cell atlas (MCA). We reveal a single-cell hierarchy for many tissues that have not been well characterized previously. We built a web-based "single-cell MCA analysis" pipeline that accurately defines cell types based on single-cell digital expression. Our study demonstrates the wide applicability of the Microwell-seq technology and MCA resource.
Collapse
Affiliation(s)
- Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China.
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Yincong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310003, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Assieh Saadatpour
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Daosheng Huang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yang Xu
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wentao Huang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengmeng Jiang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Jiang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Jie Mao
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yao Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenyu Lu
- Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yibin Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tiefeng Li
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - He Huang
- Institute of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Stuart H Orkin
- Division of Pediatric Hematology/Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310003, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Stem Cell Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
128
|
Alam MK, Koomson E, Zou H, Yi C, Li CW, Xu T, Yang M. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Anal Chim Acta 2018; 1044:29-65. [DOI: 10.1016/j.aca.2018.06.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022]
|
129
|
Chromosomal scan of single sperm cells by combining fluorescence-activated cell sorting and next-generation sequencing. J Assist Reprod Genet 2018; 36:91-97. [PMID: 30411275 DOI: 10.1007/s10815-018-1340-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The purpose of this study was to develop a feasible approach for single sperm isolation and chromosome analysis by next-generation sequencing (NGS). METHODS Single sperm cells were isolated from semen samples of normozoospermic male and an infertile reciprocal translocation (RcT) carrier with the 46,XY,t(7;13)(p12;q12.1) karyotype using the optimized fluorescence-activated cell sorting (FACS) technique. Genome profiling was performed using NGS. RESULTS Following whole-genome amplification, NGS, and quality control, the final chromosome analysis was performed on 31 and 6 single cell samples derived from the RcT carrier and normozoospermic male, respectively. All sperm cells from normozoospermic male showed a normal haploid 23-chromosome profile. For the RcT carrier, the sequencing data revealed that 64.5% of sperm cells harbored different variants of chromosome aberrations, involving deletion of 7p or 7q, duplication of 7p, and duplication of 13q, which is concordant with the expected chromosome segregation patterns observed in balanced translocation carriers. In one sample, a duplication of 9q was also detected. CONCLUSIONS We optimized FACS protocol for simple and efficient isolation of single human sperm cells that subsequently enabled a successful genome-wide chromosome profiling and identification of segmental aneuploidies from these individual cells, following NGS analysis. This approach may be useful for analyzing semen samples of infertile men or chromosomal aberration carriers to facilitate the reproductive risk assessment.
Collapse
|
130
|
Hwang YS, Seo M, Kim SK, Bang S, Kim H, Han JY. Zygotic gene activation in the chicken occurs in two waves, the first involving only maternally derived genes. eLife 2018; 7:39381. [PMID: 30375976 PMCID: PMC6242549 DOI: 10.7554/elife.39381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
The first wave of transcriptional activation occurs after fertilisation in a species-specific pattern. Despite its importance to initial embryonic development, the characteristics of transcription following fertilisation are poorly understood in Aves. Here, we report detailed insights into the onset of genome activation in chickens. We established that two waves of transcriptional activation occurred, one shortly after fertilisation and another at Eyal-Giladi and Kochav Stage V. We found 1544 single nucleotide polymorphisms across 424 transcripts derived from parents that were expressed in offspring during the early embryonic stages. Surprisingly, only the maternal genome was activated in the zygote, and the paternal genome remained silent until the second-wave, regardless of the presence of a paternal pronucleus or supernumerary sperm in the egg. The identified maternal genes involved in cleavage that were replaced by bi-allelic expression. The results demonstrate that only maternal alleles are activated in the chicken zygote upon fertilisation, which could be essential for early embryogenesis and evolutionary outcomes in birds. The early stages of animal development involve a handover of genetic control. Initially, the egg cell is maintained by genetic information inherited from the mother, but soon after fertilization it starts to depend on its own genes instead. Activating genes inside the fertilized egg cell (zygote) so that they can take control of development is known as zygotic genome activation. Despite the fact that birds are often used to study how embryos develop, zygotic genome activation in birds is not well understood. Fertilization in birds, including chickens, is different to mammals in that it requires multiple sperm to fertilize an egg cell. As such, zygotic genome activation in birds is likely to differ from that in mammals. By examining gene expression in embryos from mixed-breed chickens, Hwang, Seo et al. showed that there are two stages of zygotic genome activation in chickens. The genes derived from the mother become active in the first stage, while genes from the father become active in the second stage. Genome activation in birds is therefore very different to the same process in mammals, which involves genome activation of both parents from the first stage. This extra level of control may help to prevent genetic complications resulting from the presence of multiple sperm, each of which carries a different set of genes from the father.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minseok Seo
- C&K Genomics, Seoul, Republic of Korea.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Sang Kyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,C&K Genomics, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
131
|
Usui H, Nakabayashi K, Kaku H, Maehara K, Hata K, Shozu M. Elucidation of the developmental mechanism of ovarian mature cystic teratomas using B allele-frequency plots of single nucleotide polymorphism array data. Genes Chromosomes Cancer 2018; 57:409-419. [PMID: 29700881 DOI: 10.1002/gcc.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/21/2018] [Accepted: 04/22/2018] [Indexed: 12/15/2022] Open
Abstract
Ovarian mature cystic teratomas (MCTs) originate from post-meiotic germ cells. Conventional methods such as karyotyping or short tandem repeat-polymorphism analysis may be used to better classify MCTs, although such data would be insufficient. The aim of this study was to elucidate the origin of ovarian MCTs using B allele-frequency (BAF) plots of single nucleotide polymorphism array data. MCTs can be classified in terms of the zygosity of the centromeres and distal chromosome regions. We evaluated the zygosity of all chromosomes from 38 MCT specimens using BAF plot data. BAF plots were used to determine the homozygous and heterozygous regions over the whole genome. Theoretically, MCTs originated from the fusion of two ova (previously referred to as type V MCTs) should have a mixed pattern of centromeric zygosity, that is, a combination of heterozygous and homozygous regions in the centromeric regions. However, no MCTs in this study met this criterion. We identified 13 type I MCTs, 14 type II MCTs, and 11 type III MCTs. In addition, BAF plots facilitated the construction of recombination maps at the whole-genome level for type I and II MCTs. No crossover, especially in the short arms, contributed to the failure of meiosis I, resulting in type I MCTs. Crossover in all arms might assure the normal progress of meiosis in human oocytes. In conclusion, our findings indicate that BAF plots can elucidate the developmental mechanism of MCTs, and further serve as useful analytical tools for analyzing human oocyte meiosis, and related aberrations.
Collapse
Affiliation(s)
- Hirokazu Usui
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Hiroshi Kaku
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Kayoko Maehara
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
132
|
|
133
|
Abstract
DNA mutations as a consequence of errors during DNA damage repair, replication, or mitosis are the substrate for evolution. In multicellular organisms, mutations can occur in the germline and also in somatic tissues, where they are associated with cancer and other chronic diseases and possibly with aging. Recent advances in high-throughput sequencing have made it relatively easy to study germline de novo mutations, but in somatic cells, the vast majority of mutations are low-abundant and can be detected only in clonal lineages, such as tumors, or single cells. Here we review recent results on somatic mutations in normal human and animal tissues with a focus on their possible functional consequences.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| |
Collapse
|
134
|
Chakraborty P, Pankajam AV, Dutta A, Nishant KT. Genome wide analysis of meiotic recombination in yeast: For a few SNPs more. IUBMB Life 2018; 70:743-752. [PMID: 29934971 PMCID: PMC6120447 DOI: 10.1002/iub.1877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Diploid organisms undergo meiosis to produce haploid germ cells. Crossover events during meiosis promote genetic diversity and facilitate accurate chromosome segregation. The baker's yeast Saccharomyces cerevisiae is extensively used as a model for analysis of meiotic recombination. Conventional methods for measuring recombination events in S. cerevisiae have been limited by the number and density of genetic markers. Next generation sequencing (NGS)-based analysis of hybrid yeast genomes bearing thousands of heterozygous single nucleotide polymorphism (SNP) markers has revolutionized analysis of meiotic recombination. By facilitating analysis of marker segregation in the whole genome with unprecedented resolution, this method has resulted in the generation of high-resolution recombination maps in wild-type and meiotic mutants. These studies have provided novel insights into the mechanism of meiotic recombination. In this review, we discuss the methodology, challenges, insights and future prospects of using NGS-based methods for whole genome analysis of meiotic recombination. The objective is to facilitate the use of these high through-put sequencing methods for the analysis of meiotic recombination given their power to provide significant new insights into the process. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(8):743-752, 2018.
Collapse
Affiliation(s)
- Parijat Chakraborty
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
| | - Ajith V. Pankajam
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
| | - Abhishek Dutta
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
| | - Koodali T. Nishant
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
- Centre for Computation Modelling and SimulationIndian Institute of Science Education and ResearchThiruvananthapuramTrivandrumIndia
| |
Collapse
|
135
|
Khan M, Mao S, Li W, Lin J. Microfluidic Devices in the Fast‐Growing Domain of Single‐Cell Analysis. Chemistry 2018; 24:15398-15420. [DOI: 10.1002/chem.201800305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
136
|
Yatsenko AN, Turek PJ. Reproductive genetics and the aging male. J Assist Reprod Genet 2018; 35:933-941. [PMID: 29524155 PMCID: PMC6030011 DOI: 10.1007/s10815-018-1148-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/25/2018] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To examine current evidence of the known effects of advanced paternal age on sperm genetic and epigenetic changes and associated birth defects and diseases in offspring. METHODS Review of published PubMed literature. RESULTS Advanced paternal age (> 40 years) is associated with accumulated damage to sperm DNA and mitotic and meiotic quality control mechanisms (mismatch repair) during spermatogenesis. This in turn causes well-delineated abnormalities in sperm chromosomes, both numerical and structural, and increased sperm DNA fragmentation (3%/year of age) and single gene mutations (relative risk, RR 10). An increase in related abnormalities in offspring has also been described, including miscarriage (RR 2) and fetal loss (RR 2). There is also a significant increase in rare, single gene disorders (RR 1.3 to 12) and congenital anomalies (RR 1.2) in offspring. Current research also suggests that autism, schizophrenia, and other forms of "psychiatric morbidity" are more likely in offspring (RR 1.5 to 5.7) with advanced paternal age. Genetic defects related to faulty sperm quality control leading to single gene mutations and epigenetic alterations in several genetic pathways have been implicated as root causes. CONCLUSIONS Advanced paternal age is associated with increased genetic and epigenetic risk to offspring. However, the precise age at which risk develops and the magnitude of the risk are poorly understood or may have gradual effects. Currently, there are no clinical screenings or diagnostic panels that target disorders associated with advanced paternal age. Concerned couples and care providers should pursue or recommend genetic counseling and prenatal testing regarding specific disorders.
Collapse
Affiliation(s)
- Alexander N. Yatsenko
- Department of OB/GYN and Reproductive Sciences, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Room A206, Pittsburgh, PA 15213 USA
| | - Paul J. Turek
- The Turek Clinics, 55 Francisco St., Suite 300, San Francisco, CA 94133 USA
| |
Collapse
|
137
|
Wu H, Shen X, Huang L, Zeng Y, Gao Y, Shao L, Lu B, Zhong Y, Miao B, Xu Y, Wang Y, Li Y, Xiong L, Lu S, Xie XS, Zhou C. Genotyping single-sperm cells by universal MARSALA enables the acquisition of linkage information for combined pre-implantation genetic diagnosis and genome screening. J Assist Reprod Genet 2018; 35:1071-1078. [PMID: 29790070 DOI: 10.1007/s10815-018-1158-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE This paper aims to investigate the feasibility of performing pre-implantation genetic diagnosis (PGD) and pre-implantation genetic screening (PGS) simultaneously by a universal strategy without the requirement of genotyping relevant affected family members or lengthy preliminary work on linkage analysis. METHODS By utilizing a universal Mutated Allele Revealed by Sequencing with Aneuploidy and Linkage Analyses (MARSALA) strategy based on low depth whole genome sequencing (~3x), not involving specific primers' design nor the enrichment of SNP markers for haplotype construction. Single-sperm cells and trephectoderm cells from in vitro fertilized embryos from a couple carrying HBB mutations were genotyped. Haplotypes of paternal alleles were constructed and investigated in embryos, and the chromosome copy number profiles were simultaneously analyzed. RESULTS The universal MARSALA strategy allows the selection of a euploid embryo free of disease mutations for in uterus transfer and successful pregnancy. A follow-up amniocentesis was performed at 17 weeks of gestation to confirm the PGD/PGS results. CONCLUSION We present the first successful PGD procedure based on genotyping multiple single-sperm cells to obtain SNP linkage information. Our improved PGD/PGS procedure does not require genotyping the proband or relevant family members and therefore can be applicable to a wider population of patients when conducting PGD for monogenic disorders.
Collapse
Affiliation(s)
- Haitao Wu
- Reproductive Medicine Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, 529030, China.,Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Xiaoting Shen
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lei Huang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 01238, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Yanhong Zeng
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yumei Gao
- Yikon Genomics Co., Ltd., 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - Lin Shao
- Yikon Genomics Co., Ltd., 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - Baomin Lu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yiping Zhong
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Benyu Miao
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yanwen Xu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yali Wang
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yubin Li
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Luoxing Xiong
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Sijia Lu
- Yikon Genomics Co., Ltd., 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 01238, USA.,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Canquan Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
138
|
Huang AY, Yang X, Wang S, Zheng X, Wu Q, Ye AY, Wei L. Distinctive types of postzygotic single-nucleotide mosaicisms in healthy individuals revealed by genome-wide profiling of multiple organs. PLoS Genet 2018; 14:e1007395. [PMID: 29763432 PMCID: PMC5969758 DOI: 10.1371/journal.pgen.1007395] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/25/2018] [Accepted: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
Postzygotic single-nucleotide mosaicisms (pSNMs) have been extensively studied in tumors and are known to play critical roles in tumorigenesis. However, the patterns and origin of pSNMs in normal organs of healthy humans remain largely unknown. Using whole-genome sequencing and ultra-deep amplicon re-sequencing, we identified and validated 164 pSNMs from 27 postmortem organ samples obtained from five healthy donors. The mutant allele fractions ranged from 1.0% to 29.7%. Inter- and intra-organ comparison revealed two distinctive types of pSNMs, with about half originating during early embryogenesis (embryonic pSNMs) and the remaining more likely to result from clonal expansion events that had occurred more recently (clonal expansion pSNMs). Compared to clonal expansion pSNMs, embryonic pSNMs had higher proportion of C>T mutations with elevated mutation rate at CpG sites. We observed differences in replication timing between these two types of pSNMs, with embryonic and clonal expansion pSNMs enriched in early- and late-replicating regions, respectively. An increased number of embryonic pSNMs were located in open chromatin states and topologically associating domains that transcribed embryonically. Our findings provide new insights into the origin and spatial distribution of postzygotic mosaicism during normal human development. Genomic mosaicism led by postzygotic mutation is the major cause of cancers and many non-cancer developmental disorders. Theoretically, postzygotic mutations should be accumulated during the developmental process of healthy individuals, but the genome-wide characterization of postzygotic mosaicisms across many organ types of the same individual remained limited. In this study, we identified and validated two types of postzygotic mosaicism from the whole-genomes of 27 organs obtained from five healthy donors. We further found that the postzygotic mosaicisms arising during early embryogenesis and later clonal expansion events show distinct genomic patterns in mutation spectrum, replication timing, and chromatin status.
Collapse
Affiliation(s)
- August Yue Huang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- * E-mail: (LW); (AYH)
| | - Xiaoxu Yang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Wang
- National Institute of Biological Sciences, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianing Zheng
- National Institute of Biological Sciences, Beijing, China
| | - Qixi Wu
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Human Genetics Resources Core Facility, School of Life Sciences, Peking University, Beijing, China
| | - Adam Yongxin Ye
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liping Wei
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- * E-mail: (LW); (AYH)
| |
Collapse
|
139
|
Gray TA, Derbyshire KM. Blending genomes: distributive conjugal transfer in mycobacteria, a sexier form of HGT. Mol Microbiol 2018; 108:601-613. [PMID: 29669186 DOI: 10.1111/mmi.13971] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2018] [Indexed: 12/16/2022]
Abstract
This review discusses a novel form of horizontal gene transfer (HGT) found in mycobacteria called Distributive Conjugal Transfer (DCT). While satisfying the criteria for conjugation, DCT occurs by a mechanism so distinct from oriT-mediated conjugation that it could be considered a fourth category of HGT. DCT involves the transfer of chromosomal DNA between mycobacteria and, most significantly, generates transconjugants with mosaic genomes of the parental strains. Multiple segments of donor chromosomal DNA can be co-transferred regardless of their location or the genetic selection and, as a result, the transconjugant genome contains many donor-derived segments; hence the name DCT. This distinguishing feature of DCT separates it from the other known mechanisms of HGT, which generally result in the introduction of a single, defined segment of DNA into the recipient chromosome (Fig. ). Moreover, these mosaic progeny are generated from a single conjugal event, which provides enormous capacity for rapid adaptation and evolution, again distinguishing it from the three classical modes of HGT. Unsurprisingly, the unusual mosaic products of DCT are generated by a conjugal mechanism that is also unusual. Here, we will describe the unique features of DCT and contrast those to other mechanisms of HGT, both from a mechanistic and an evolutionary perspective. Our focus will be on transfer of chromosomal DNA, as opposed to plasmid mobilization, because DCT mediates transfer of chromosomal DNA and is a chromosomally encoded process.
Collapse
Affiliation(s)
- Todd A Gray
- New York State Department of Health, Wadsworth Center, Albany, NY 12201, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Keith M Derbyshire
- New York State Department of Health, Wadsworth Center, Albany, NY 12201, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| |
Collapse
|
140
|
Blanshard RC, Chen C, Xie XS, Hoffmann ER. Single cell genomics to study DNA and chromosome changes in human gametes and embryos. Methods Cell Biol 2018; 144:441-457. [PMID: 29804682 DOI: 10.1016/bs.mcb.2018.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Genomic and chromosomal changes occur with a high rate in the germline and preimplantation embryos. To study such changes directly in the germline of mammals requires access to material as well as single cell genomics. Recent improvements in embryology and single-cell DNA amplification make it possible to study the genomic changes directly in human oocytes, sperm, and preimplantation embryos. This is particularly important for the study of chromosome segregation directly in human oocytes and preimplantation embryos. Here, we present a practical approach how to obtain high quality DNA sequences and genotypes from single cells, using manual handling of the material that makes it possible to detect genomic changes in meiosis and mitosis spanning the entire range from single nucleotide changes to whole chromosome aneuploidies.
Collapse
Affiliation(s)
- Robert C Blanshard
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom; Clinical Genomics Group, Illumina Inc., Fulbourn, United Kingdom
| | - Chongyi Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Xiaoliang Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States; Beijing Advanced Innovation Center for Genomics, Beijing, China.
| | - Eva R Hoffmann
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom; Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
141
|
Discovery of Lineage-Specific Genome Change in Rice Through Analysis of Resequencing Data. Genetics 2018; 209:617-626. [PMID: 29674519 PMCID: PMC5972431 DOI: 10.1534/genetics.118.300848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 11/18/2022] Open
Abstract
New mutations are rare, which makes their discovery laborious and time-consuming. Arthur and Bennetzen describe an approach for enriching recent mutations that relies only on a reference genome sequence and resequencing data for other... Genome comparisons provide information on the nature of genetic change, but such comparisons are challenged to differentiate the importance of the actual sequence change processes relative to the role of selection. This problem can be overcome by identifying changes that have not yet had the time to undergo millions of years of natural selection. We describe a strategy to discover accession-specific changes in the rice genome using an abundant resource routinely provided for many genome analyses, resequencing data. The sequence of the fully sequenced rice genome from variety Nipponbare was compared to the pooled (∼114×) resequencing data from 126 japonica rice accessions to discover “Nipponbare-specific” sequences. Analyzing nonrepetitive sequences, 8504 “candidate” Nipponbare-specific changes were detected, of which around two-thirds are true novel sequence changes and the rest are predicted genome sequencing errors. Base substitutions outnumbered indels in this data set by > 28:1, with ∼8:5 bias toward transversions over transitions, and no transposable element insertions or excisions were observed. These results indicate that the strategy employed is effective for finding recent sequence changes, sequencing errors, and rare alleles in any organism that has both a reference genome sequence and a wealth of resequencing data.
Collapse
|
142
|
Weigand H, Leese F. Detecting signatures of positive selection in non-model species using genomic data. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Hannah Weigand
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße, Essen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße, Essen, Germany
| |
Collapse
|
143
|
Zhou Y, Shen B, Jiang J, Padhi A, Park KE, Oswalt A, Sattler CG, Telugu BP, Chen H, Cole JB, Liu GE, Ma L. Construction of PRDM9 allele-specific recombination maps in cattle using large-scale pedigree analysis and genome-wide single sperm genomics. DNA Res 2018; 25:183-194. [PMID: 29186399 PMCID: PMC5909443 DOI: 10.1093/dnares/dsx048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/09/2017] [Indexed: 11/23/2022] Open
Abstract
PRDM9 contributes to hybrid sterility and species evolution. However, its role is to be confirmed in cattle, a major domesticated livestock species. We previously found an association near PRDM9 with cattle recombination features, but the causative variants are still unknown. Using millions of genotyped cattle with pedigree information, we characterized five PRDM9 alleles and generated allele-specific recombination maps. By examining allele-specific recombination patterns, we observed the impact of PRDM9 on global distribution of recombination, especially in the two ends of chromosomes. We also showed strong associations between recombination hotspot regions and functional mutations within PRDM9 zinc finger domain. More importantly, we found one allele of PRDM9 to be very different from others in both protein composition and recombination landscape, indicating the causative role of this allele on the association between PRDM9 and cattle recombination. When comparing recombination maps from sperm and pedigree data, we observed similar genome-wide recombination patterns, validating the quality of pedigree-based results. Collectively, these evidence supported PRDM9 alleles as causal variants for the reported association with cattle recombination. Our study comprehensively surveyed the bovine PRDM9 alleles, generated allele-specific recombination maps, and expanded our understanding of the role of PRDM9 on genome distribution of recombination.
Collapse
Affiliation(s)
- Yang Zhou
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD 20705, USA
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Botong Shen
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Jicai Jiang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Abinash Padhi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ki-Eun Park
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Adam Oswalt
- Select Sires Inc. 11740 U.S. 42 North, Plain City, Ohio 43064, USA
| | | | - Bhanu P Telugu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Hong Chen
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - John B Cole
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
144
|
Churbanov A, Abrahamyan L. Preventing Common Hereditary Disorders through Time-Separated Twinning. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-017-0488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
145
|
Zimny P, Juncker D, Reisner W. Hydrogel droplet single-cell processing: DNA purification, handling, release, and on-chip linearization. BIOMICROFLUIDICS 2018; 12:024107. [PMID: 30867855 PMCID: PMC6404942 DOI: 10.1063/1.5020571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/20/2018] [Indexed: 05/04/2023]
Abstract
The preparation and handling of mammalian single-cell genomic DNA is limited by the complexity bottleneck inherent to performing multi-step, multi-reagent operations in a microfluidic environment. We have developed a method for benchtop preparation of high-molecular weight, intact, single-cell genomes and demonstrate the extraction of long nucleic acid molecules in a microfluidic system. Lymphoblasts are encapsulated inside of alginate microparticles using a droplet microfluidics, and cells are lysed in bulk. The purified genomes are then delivered to and imaged on a dedicated microfluidic device. High-molecular weight DNA is protected from shear and retains its original cellular identity. Using this encapsulation protocol, we were able to extract individual nucleic acid strands on the millimeter scale inside of a microfluidic channel.
Collapse
Affiliation(s)
| | - David Juncker
- Authors to whom correspondence should be addressed: ,
| | - Walter Reisner
- Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
146
|
Pérez-Cerezales S, Laguna-Barraza R, de Castro AC, Sánchez-Calabuig MJ, Cano-Oliva E, de Castro-Pita FJ, Montoro-Buils L, Pericuesta E, Fernández-González R, Gutiérrez-Adán A. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep 2018; 8:2902. [PMID: 29440764 PMCID: PMC5811574 DOI: 10.1038/s41598-018-21335-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The ejaculate is a heterogeneous pool of spermatozoa containing only a small physiologically adequate subpopulation for fertilization. As there is no method to isolate this subpopulation, its specific characteristics are unknown. This is one of the main reasons why we lack effective tools to identify male infertility and for the low efficiency of assisted reproductive technologies. The aim of this study was to improve ICSI outcome by sperm selection through thermotaxis. Here we show that a specific subpopulation of mouse and human spermatozoa can be selected in vitro by thermotaxis and that this subpopulation is the one that enters the fallopian tube in mice. Further, we confirm that these selected spermatozoa in mice and humans show a much higher DNA integrity and lower chromatin compaction than unselected sperm, and in mice, they give rise to more and better embryos through intracytoplasmic sperm injection, doubling the number of successful pregnancies. Collectively, our results indicate that a high quality sperm subpopulation is selected in vitro by thermotaxis and that this subpopulation is also selected in vivo within the fallopian tube possibly by thermotaxis.
Collapse
Affiliation(s)
| | | | | | | | - Esther Cano-Oliva
- Unit of Reproduction, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | | | - Luis Montoro-Buils
- Unit of Reproduction, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | - Eva Pericuesta
- Department of Animal Reproduction, INIA, Avda. Puerta de Hierro, Madrid, Spain
| | | | | |
Collapse
|
147
|
Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M, Sherman MA, Vitzthum CM, Luquette LJ, Yandava CN, Yang P, Chittenden TW, Hatem NE, Ryu SC, Woodworth MB, Park PJ, Walsh CA. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 2018; 359:555-559. [PMID: 29217584 PMCID: PMC5831169 DOI: 10.1126/science.aao4426] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022]
Abstract
It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions.
Collapse
Affiliation(s)
- Michael A Lodato
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rachel E Rodin
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Neuroscience and Harvard/MIT MD-PHD Program, Harvard Medical School, Boston, MA, USA
| | - Craig L Bohrson
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Michael E Coulter
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Neuroscience and Harvard/MIT MD-PHD Program, Harvard Medical School, Boston, MA, USA
| | - Alison R Barton
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Minseok Kwon
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A Sherman
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Carl M Vitzthum
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lovelace J Luquette
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chandri N Yandava
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXi NextCODE, Cambridge, MA, USA
| | - Pengwei Yang
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXi NextCODE, Cambridge, MA, USA
| | - Thomas W Chittenden
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXi NextCODE, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole E Hatem
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven C Ryu
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mollie B Woodworth
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
148
|
|
149
|
|
150
|
Yuan Y, Lee H, Hu H, Scheben A, Edwards D. Single-Cell Genomic Analysis in Plants. Genes (Basel) 2018; 9:genes9010050. [PMID: 29361790 PMCID: PMC5793201 DOI: 10.3390/genes9010050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis.
Collapse
Affiliation(s)
- Yuxuan Yuan
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - HueyTyng Lee
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - Armin Scheben
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|