101
|
Burdova K, Storchova R, Palek M, Macurek L. WIP1 Promotes Homologous Recombination and Modulates Sensitivity to PARP Inhibitors. Cells 2019; 8:cells8101258. [PMID: 31619012 PMCID: PMC6830099 DOI: 10.3390/cells8101258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022] Open
Abstract
Genotoxic stress triggers a combined action of DNA repair and cell cycle checkpoint pathways. Protein phosphatase 2C delta (referred to as WIP1) is involved in timely inactivation of DNA damage response by suppressing function of p53 and other targets at chromatin. Here we show that WIP1 promotes DNA repair through homologous recombination. Loss or inhibition of WIP1 delayed disappearance of the ionizing radiation-induced 53BP1 foci in S/G2 cells and promoted cell death. We identify breast cancer associated protein 1 (BRCA1) as interactor and substrate of WIP1 and demonstrate that WIP1 activity is needed for correct dynamics of BRCA1 recruitment to chromatin flanking the DNA lesion. In addition, WIP1 dephosphorylates 53BP1 at Threonine 543 that was previously implicated in mediating interaction with RIF1. Finally, we report that inhibition of WIP1 allowed accumulation of DNA damage in S/G2 cells and increased sensitivity of cancer cells to a poly-(ADP-ribose) polymerase inhibitor olaparib. We propose that inhibition of WIP1 may increase sensitivity of BRCA1-proficient cancer cells to olaparib.
Collapse
Affiliation(s)
- Kamila Burdova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| | - Radka Storchova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| | - Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ14220 Prague, Czech Republic.
| |
Collapse
|
102
|
Ochs F, Karemore G, Miron E, Brown J, Sedlackova H, Rask MB, Lampe M, Buckle V, Schermelleh L, Lukas J, Lukas C. Stabilization of chromatin topology safeguards genome integrity. Nature 2019; 574:571-574. [PMID: 31645724 DOI: 10.1038/s41586-019-1659-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/10/2019] [Indexed: 11/10/2022]
Abstract
To safeguard genome integrity in response to DNA double-strand breaks (DSBs), mammalian cells mobilize the neighbouring chromatin to shield DNA ends against excessive resection that could undermine repair fidelity and cause damage to healthy chromosomes1. This form of genome surveillance is orchestrated by 53BP1, whose accumulation at DSBs triggers sequential recruitment of RIF1 and the shieldin-CST-POLα complex2. How this pathway reflects and influences the three-dimensional nuclear architecture is not known. Here we use super-resolution microscopy to show that 53BP1 and RIF1 form an autonomous functional module that stabilizes three-dimensional chromatin topology at sites of DNA breakage. This process is initiated by accumulation of 53BP1 at regions of compact chromatin that colocalize with topologically associating domain (TAD) sequences, followed by recruitment of RIF1 to the boundaries between such domains. The alternating distribution of 53BP1 and RIF1 stabilizes several neighbouring TAD-sized structures at a single DBS site into an ordered, circular arrangement. Depletion of 53BP1 or RIF1 (but not shieldin) disrupts this arrangement and leads to decompaction of DSB-flanking chromatin, reduction in interchromatin space, aberrant spreading of DNA repair proteins, and hyper-resection of DNA ends. Similar topological distortions are triggered by depletion of cohesin, which suggests that the maintenance of chromatin structure after DNA breakage involves basic mechanisms that shape three-dimensional nuclear organization. As topological stabilization of DSB-flanking chromatin is independent of DNA repair, we propose that, besides providing a structural scaffold to protect DNA ends against aberrant processing, 53BP1 and RIF1 safeguard epigenetic integrity at loci that are disrupted by DNA breakage.
Collapse
Affiliation(s)
- Fena Ochs
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gopal Karemore
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Modeling and Predictive Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Ezequiel Miron
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jill Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hana Sedlackova
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maj-Britt Rask
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marko Lampe
- European Molecular Biology Laboratory, Advanced Light Microscopy Core Facility, Heidelberg, Germany
| | - Veronica Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lothar Schermelleh
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
103
|
βarrestin-1 regulates DNA repair by acting as an E3-ubiquitin ligase adaptor for 53BP1. Cell Death Differ 2019; 27:1200-1213. [PMID: 31506606 PMCID: PMC7206116 DOI: 10.1038/s41418-019-0406-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023] Open
Abstract
Cellular DNA is constantly under threat from internal and external insults, consequently multiple pathways have evolved to maintain chromosomal fidelity. Our previous studies revealed that chronic stress, mediated by continuous stimulation of the β2-adrenergic-βarrestin-1 signaling axis suppresses activity of the tumor suppressor p53 and impairs genomic integrity. In this pathway, βarrestin-1 (βarr1) acts as a molecular scaffold to promote the binding and degradation of p53 by the E3-ubiquitin ligase, MDM2. We sought to determine whether βarr1 plays additional roles in the repair of DNA damage. Here we demonstrate that in mice βarr1 interacts with p53-binding protein 1 (53BP1) with major consequences for the repair of DNA double-strand breaks. 53BP1 is a principle component of the DNA damage response, and when recruited to the site of double-strand breaks in DNA, 53BP1 plays an important role coordinating repair of these toxic lesions. Here, we report that βarr1 directs 53BP1 degradation by acting as a scaffold for the E3-ubiquitin ligase Rad18. Consequently, knockdown of βarr1 stabilizes 53BP1 augmenting the number of 53BP1 DNA damage repair foci following exposure to ionizing radiation. Accordingly, βarr1 loss leads to a marked increase in irradiation resistance both in cells and in vivo. Thus, βarr1 is an important regulator of double strand break repair, and disruption of the βarr1/53BP1 interaction offers an attractive strategy to protect cells against high levels of exposure to ionizing radiation.
Collapse
|
104
|
Canela A, Maman Y, Huang SYN, Wutz G, Tang W, Zagnoli-Vieira G, Callen E, Wong N, Day A, Peters JM, Caldecott KW, Pommier Y, Nussenzweig A. Topoisomerase II-Induced Chromosome Breakage and Translocation Is Determined by Chromosome Architecture and Transcriptional Activity. Mol Cell 2019; 75:252-266.e8. [PMID: 31202577 PMCID: PMC8170508 DOI: 10.1016/j.molcel.2019.04.030] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/22/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
Abstract
Topoisomerase II (TOP2) relieves torsional stress by forming transient cleavage complex intermediates (TOP2ccs) that contain TOP2-linked DNA breaks (DSBs). While TOP2ccs are normally reversible, they can be "trapped" by chemotherapeutic drugs such as etoposide and subsequently converted into irreversible TOP2-linked DSBs. Here, we have quantified etoposide-induced trapping of TOP2ccs, their conversion into irreversible TOP2-linked DSBs, and their processing during DNA repair genome-wide, as a function of time. We find that while TOP2 chromatin localization and trapping is independent of transcription, it requires pre-existing binding of cohesin to DNA. In contrast, the conversion of trapped TOP2ccs to irreversible DSBs during DNA repair is accelerated 2-fold at transcribed loci relative to non-transcribed loci. This conversion is dependent on proteasomal degradation and TDP2 phosphodiesterase activity. Quantitative modeling shows that only two features of pre-existing chromatin structure-namely, cohesin binding and transcriptional activity-can be used to predict the kinetics of TOP2-induced DSBs.
Collapse
Affiliation(s)
- Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA; The Hakubi Center for Advanced Research and Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Guido Zagnoli-Vieira
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, 4, Czech Republic
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
105
|
RIF1 promotes replication fork protection and efficient restart to maintain genome stability. Nat Commun 2019; 10:3287. [PMID: 31337767 PMCID: PMC6650494 DOI: 10.1038/s41467-019-11246-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination (HR) and Fanconi Anemia (FA) pathway proteins in addition to their DNA repair functions, limit nuclease-mediated processing of stalled replication forks. However, the mechanism by which replication fork degradation results in genome instability is poorly understood. Here, we identify RIF1, a non-homologous end joining (NHEJ) factor, to be enriched at stalled replication forks. Rif1 knockout cells are proficient for recombination, but displayed degradation of reversed forks, which depends on DNA2 nuclease activity. Notably, RIF1-mediated protection of replication forks is independent of its function in NHEJ, but depends on its interaction with Protein Phosphatase 1. RIF1 deficiency delays fork restart and results in exposure of under-replicated DNA, which is the precursor of subsequent genomic instability. Our data implicate RIF1 to be an essential factor for replication fork protection, and uncover the mechanisms by which unprotected DNA replication forks can lead to genome instability in recombination-proficient conditions. Replication fork degradation can result in genome instability. Here authors reveal a role for Rif1 protein in protecting stalled replication forks from undergoing extensive, DNA2-dependent, degradation.
Collapse
|
106
|
Guo X, Bai Y, Zhao M, Zhou M, Shen Q, Yun CH, Zhang H, Zhu WG, Wang J. Acetylation of 53BP1 dictates the DNA double strand break repair pathway. Nucleic Acids Res 2019; 46:689-703. [PMID: 29190394 PMCID: PMC5778472 DOI: 10.1093/nar/gkx1208] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
P53-binding protein 1 (53BP1) plays critical roles in DNA double strand break (DSB) repair by promoting non-homologous end joining (NHEJ), and loss of 53BP1 abolishes PARPi sensitivity in BRCA1-deficient cells by restoring homologous recombination (HR). 53BP1 is one of the proteins initially recruited to sites of DSBs via recognition of H4K20me2 through the Tudor-UDR domain and H2AK15ub through the UDR motif. Although extensive studies have been conducted, it remains unclear how the post-translational modification of 53BP1 affects DSB repair pathway choice. Here, we identified 53BP1 as an acetylated protein and determined that acetylation of 53BP1 inhibit NHEJ and promote HR by negatively regulating 53BP1 recruitment to DSBs. Mechanistically, CBP-mediated acetylation of K1626/1628 in the UDR motif disrupted the interaction between 53BP1 and nucleosomes, subsequently blocking the recruitment of 53BP1 and its downstream factors PTIP and RIF1 to DSBs. Hyperacetylation of 53BP1, similar to depletion of 53BP1, restored PARPi resistance in BRCA1-deficient cells. Interestingly, 53BP1 acetylation was tightly regulated by HDAC2 to maintain balance between the HR and NHEJ pathways. Together, our results demonstrate that the acetylation status of 53BP1 plays a key role in its recruitment to DSBs and reveal how specific 53BP1 modification modulates the choice of DNA repair pathway.
Collapse
Affiliation(s)
- Xiang Guo
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongtai Bai
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Meimei Zhao
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mei Zhou
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qinjian Shen
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Cai-Hong Yun
- Department of Biophysics, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
107
|
Schwarz B, Friedl AA, Girst S, Dollinger G, Reindl J. Nanoscopic analysis of 53BP1, BRCA1 and Rad51 reveals new insights in temporal progression of DNA-repair and pathway choice. Mutat Res 2019; 816-818:111675. [PMID: 31302572 DOI: 10.1016/j.mrfmmm.2019.111675] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
The accumulation and spatial distribution of 53BP1, BRCA1 and Rad51, key proteins in DNA double-strand break (DSB) repair, was investigated with high temporal resolution over a time span of 24 h, using STED nanoscopy. DNA lesions were induced by irradiation with high-LET (linear energy transfer) α-particles. We show that 53BP1 IRIF formation occurs quickly in almost all cells and after about 6 h the fraction of 53BP1 IRIF positive cells slowly declines. Against the expectations BRCA1 and Rad51 IRIF formation is only shortly delayed but with the maximum of cells showing foci after 6 and 8 h after irradiation. At this stage, almost all IRIF in a given Rad51-positive cell show Rad51 accumulation, suggesting that repair via homologous recombination is attempted at almost all residual DSB sites. The frequency of BRCA1 IRIF positive cells increases much earlier and remains high after Rad51 positive cells start to decline, supporting models claiming that functional roles of BRCA1 change over time. Correlation analysis showed a high degree of correlation of Rad51 with BRCA1, while the exclusion of 53BP1 from the actual resection-zone is demonstrated by anti-correlation of Rad51 and 53BP1. Interestingly, these correlation and anti-correlation patterns exhibit complementary temporal variation.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.
| | - Anna A Friedl
- Department of Radiation Oncology, Ludwig-Maximilians-Universitaet Muenchen, 80336 Munich, Germany
| | - Stefanie Girst
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Günther Dollinger
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Judith Reindl
- Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| |
Collapse
|
108
|
|
109
|
Setiaputra D, Durocher D. Shieldin - the protector of DNA ends. EMBO Rep 2019; 20:embr.201847560. [PMID: 30948458 DOI: 10.15252/embr.201847560] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand breaks are a threat to genome integrity and cell viability. The nucleolytic processing of broken DNA ends plays a central role in dictating the repair processes that will mend these lesions. Usually, DNA end resection promotes repair by homologous recombination, whereas minimally processed ends are repaired by non-homologous end joining. Important in this process is the chromatin-binding protein 53BP1, which inhibits DNA end resection. How 53BP1 shields DNA ends from nucleases has been an enduring mystery. The recent discovery of shieldin, a four-subunit protein complex with single-stranded DNA-binding activity, illuminated a strong candidate for the ultimate effector of 53BP1-dependent end protection. Shieldin consists of REV7, a known 53BP1-pathway component, and three hitherto uncharacterized proteins: C20orf196 (SHLD1), FAM35A (SHLD2), and CTC-534A2.2 (SHLD3). Shieldin promotes many 53BP1-associated activities, such as the protection of DNA ends, non-homologous end joining, and immunoglobulin class switching. This review summarizes the identification of shieldin and the various models of shieldin action and highlights some outstanding questions requiring answers to gain a full molecular understanding of shieldin function.
Collapse
Affiliation(s)
- Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
110
|
Zong D, Adam S, Wang Y, Sasanuma H, Callén E, Murga M, Day A, Kruhlak MJ, Wong N, Munro M, Chaudhuri AR, Karim B, Xia B, Takeda S, Johnson N, Durocher D, Nussenzweig A. BRCA1 Haploinsufficiency Is Masked by RNF168-Mediated Chromatin Ubiquitylation. Mol Cell 2019; 73:1267-1281.e7. [PMID: 30704900 PMCID: PMC6430682 DOI: 10.1016/j.molcel.2018.12.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
BRCA1 functions at two distinct steps during homologous recombination (HR). Initially, it promotes DNA end resection, and subsequently it recruits the PALB2 and BRCA2 mediator complex, which stabilizes RAD51-DNA nucleoprotein filaments. Loss of 53BP1 rescues the HR defect in BRCA1-deficient cells by increasing resection, suggesting that BRCA1's downstream role in RAD51 loading is dispensable when 53BP1 is absent. Here we show that the E3 ubiquitin ligase RNF168, in addition to its canonical role in inhibiting end resection, acts in a redundant manner with BRCA1 to load PALB2 onto damaged DNA. Loss of RNF168 negates the synthetic rescue of BRCA1 deficiency by 53BP1 deletion, and it predisposes BRCA1 heterozygous mice to cancer. BRCA1+/-RNF168-/- cells lack RAD51 foci and are hypersensitive to PARP inhibitor, whereas forced targeting of PALB2 to DNA breaks in mutant cells circumvents BRCA1 haploinsufficiency. Inhibiting the chromatin ubiquitin pathway may, therefore, be a synthetic lethality strategy for BRCA1-deficient cancers.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Salomé Adam
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Elsa Callén
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Meagan Munro
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Arnab Ray Chaudhuri
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Baktiar Karim
- Pathology/Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bing Xia
- Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
111
|
Gogola E, Rottenberg S, Jonkers J. Resistance to PARP Inhibitors: Lessons from Preclinical Models of BRCA-Associated Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:235-254. [DOI: 10.1146/annurev-cancerbio-030617-050232] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARP) have recently entered the clinic for the treatment of homologous recombination–deficient cancers. Despite the success of this approach, resistance to PARP inhibitors (PARPis) is a clinical hurdle, and it is poorly understood how cancer cells escape the deadly effects of PARPis without restoring BRCA1/2 function. By synergizing the advantages of next-generation sequencing with functional genetic screens in tractable model systems, novel mechanisms providing useful insights into DNA damage response (DDR) have been identified. BRCA1/2 models not only are tools to explore therapy escape mechanisms but also yield basic knowledge about DDR pathways and PARPis’ mechanism of action. Moreover, alterations that render cells resistant to targeted therapies may cause new synthetic dependencies that can be exploited to combat resistant disease.
Collapse
Affiliation(s)
- Ewa Gogola
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Cancer Genomics Centre Netherlands, 3584 CG Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Cancer Genomics Centre Netherlands, 3584 CG Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
112
|
Byrum AK, Carvajal-Maldonado D, Mudge MC, Valle-Garcia D, Majid MC, Patel R, Sowa ME, Gygi SP, Harper JW, Shi Y, Vindigni A, Mosammaparast N. Mitotic regulators TPX2 and Aurora A protect DNA forks during replication stress by counteracting 53BP1 function. J Cell Biol 2019; 218:422-432. [PMID: 30602538 PMCID: PMC6363440 DOI: 10.1083/jcb.201803003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/13/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023] Open
Abstract
The TPX2/Aurora A heterodimeric kinase canonically orchestrates mitotic events. Byrum et al. identify two new roles for this complex in regulating DNA double-stranded break repair and the protection of DNA forks during replication stress. 53BP1 is a chromatin-associated protein that regulates the DNA damage response. In this study, we identify the TPX2/Aurora A heterodimer, nominally considered a mitotic kinase complex, as a novel binding partner of 53BP1. We find that TPX2/Aurora A plays a previously unrecognized role in DNA damage repair and replication fork stability by counteracting 53BP1 function. Loss of TPX2 or Aurora A compromises DNA end resection, BRCA1 and Rad51 recruitment, and homologous recombination. Furthermore, loss of TPX2 or Aurora A causes deprotection of stalled replication forks upon replication stress induction. This fork protection pathway counteracts MRE11 nuclease activity but functions in parallel to BRCA1. Strikingly, concurrent loss of 53BP1 rescues not only BRCA1/Rad51 recruitment but also the fork instability induced upon TPX2 loss. Our work suggests the presence of a feedback mechanism by which 53BP1 is regulated by a novel binding partner and uncovers a unique role for 53BP1 in replication fork stability.
Collapse
Affiliation(s)
- Andrea K Byrum
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Denisse Carvajal-Maldonado
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO
| | - Miranda C Mudge
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - David Valle-Garcia
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Department of Medicine, Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Boston, MA
| | - Mona C Majid
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Romil Patel
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Mathew E Sowa
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Yang Shi
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Department of Medicine, Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Boston, MA
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
113
|
Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination. Genes Dev 2018; 33:75-89. [PMID: 30567999 PMCID: PMC6317314 DOI: 10.1101/gad.315978.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Here, Moquin et al. show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites and identify ZPET/ZNF280C as a potential DNA damage response protein. Their findings show that ZPET is an HR repressor and also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins. Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.
Collapse
|
114
|
Smirnikhina SA, Anuchina AA, Lavrov AV. Ways of improving precise knock-in by genome-editing technologies. Hum Genet 2018; 138:1-19. [DOI: 10.1007/s00439-018-1953-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
|
115
|
Popp HD, Flach J, Brendel S, Ruppenthal S, Kleiner H, Seifarth W, Schneider S, Schulze TJ, Weiss C, Wenz F, Hofmann WK, Fabarius A. Accumulation of DNA damage and alteration of the DNA damage response in monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. Leuk Lymphoma 2018; 60:795-804. [DOI: 10.1080/10428194.2018.1498494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Henning D. Popp
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Susanne Brendel
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Sabrina Ruppenthal
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Helga Kleiner
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Sven Schneider
- Institute for Clinical Chemistry, Heidelberg University, Mannheim, Germany
| | - Torsten J. Schulze
- Institute of Transfusion Medicine and Immunology, Heidelberg University, German Red-Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Heidelberg University, Mannheim, Germany
| | | | - Alice Fabarius
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| |
Collapse
|
116
|
DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature 2018; 563:522-526. [PMID: 30464262 DOI: 10.1038/s41586-018-0670-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
Abstract
Limited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase. Low BRCA1 expression correlates with increased chromosomal aberrations in primary ovarian carcinomas, and the junction sequences of somatic structural variants indicate diminished homologous recombination. Concurrent decreases in DYNLL1 expression in carcinomas with low BRCA1 expression reduced genomic alterations and increased homology at lesions. In cells, DYNLL1 limits nucleolytic degradation of DNA ends by associating with the DNA end-resection machinery (MRN complex, BLM helicase and DNA2 endonuclease). In vitro, DYNLL1 binds directly to MRE11 to limit its end-resection activity. Therefore, we infer that DYNLL1 is an important anti-resection factor that influences genomic stability and responses to DNA-damaging chemotherapy.
Collapse
|
117
|
Das P, Veazey KJ, Van HT, Kaushik S, Lin K, Lu Y, Ishii M, Kikuta J, Ge K, Nussenzweig A, Santos MA. Histone methylation regulator PTIP is required to maintain normal and leukemic bone marrow niches. Proc Natl Acad Sci U S A 2018; 115:E10137-E10146. [PMID: 30297393 PMCID: PMC6205459 DOI: 10.1073/pnas.1806019115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The bone is essential for locomotion, calcium storage, and harboring the hematopoietic stem cells (HSCs) that supply the body with mature blood cells throughout life. HSCs reside at the interface of the bone and bone marrow (BM), where active bone remodeling takes place. Although the cellular components of the BM niche have been characterized, little is known about its epigenetic regulation. Here we find that the histone methylation regulator PTIP (Pax interaction with transcription-activation domain protein-1) is required to maintain the integrity of the BM niche by promoting osteoclast differentiation. PTIP directly promotes chromatin changes required for the expression of Pparγ (peroxisome proliferator-activated receptor-γ), a transcription factor essential for osteoclastogenesis. PTIP deletion leads to a drastic reduction of HSCs in the BM and induces extramedullary hematopoiesis. Furthermore, exposure of acute myeloid leukemia cells to a PTIP-deficient BM microenvironment leads to a reduction in leukemia-initiating cells and increased survival upon transplantation. Taken together, our data identify PTIP as an epigenetic regulator of osteoclastogenesis that is required for the integrity of the BM niche to sustain both normal hematopoiesis and leukemia.
Collapse
Affiliation(s)
- Prosun Das
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kylee J Veazey
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Hieu T Van
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Saakshi Kaushik
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030;
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
118
|
BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. Proc Natl Acad Sci U S A 2018; 115:E10642-E10651. [PMID: 30352856 DOI: 10.1073/pnas.1803177115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Women having BRCA1 germ-line mutations develop cancer in breast and ovary, estrogen-regulated tissues, with high penetrance. Binding of estrogens to the estrogen receptor (ER) transiently induces DNA double-strand breaks (DSBs) by topoisomerase II (TOP2) and controls gene transcription. TOP2 resolves catenated DNA by transiently generating DSBs, TOP2-cleavage complexes (TOP2ccs), where TOP2 covalently binds to 5' ends of DSBs. TOP2 frequently fails to complete its catalysis, leading to formation of pathological TOP2ccs. We have previously shown that the endonucleolytic activity of MRE11 plays a key role in removing 5' TOP2 adducts in G1 phase. We show here that BRCA1 promotes MRE11-mediated removal of TOP2 adducts in G1 phase. We disrupted the BRCA1 gene in 53BP1-deficient ER-positive breast cancer and B cells. The loss of BRCA1 caused marked increases of pathological TOP2ccs in G1 phase following exposure to etoposide, which generates pathological TOP2ccs. We conclude that BRCA1 promotes the removal of TOP2 adducts from DSB ends for subsequent nonhomologous end joining. BRCA1-deficient cells showed a decrease in etoposide-induced MRE11 foci in G1 phase, suggesting that BRCA1 repairs pathological TOP2ccs by promoting the recruitment of MRE11 to TOP2cc sites. BRCA1 depletion also leads to the increase of unrepaired DSBs upon estrogen treatment both in vitro in G1-arrested breast cancer cells and in vivo in epithelial cells of mouse mammary glands. BRCA1 thus plays a critical role in removing pathological TOP2ccs induced by estrogens as well as etoposide. We propose that BRCA1 suppresses tumorigenesis by removing estrogen-induced pathological TOP2ccs throughout the cell cycle.
Collapse
|
119
|
An OB-fold complex controls the repair pathways for DNA double-strand breaks. Nat Commun 2018; 9:3925. [PMID: 30254264 PMCID: PMC6156606 DOI: 10.1038/s41467-018-06407-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022] Open
Abstract
53BP1 with its downstream proteins, RIF1, PTIP and REV7, antagonizes BRCA1-dependent homologous recombination (HR) and promotes non-homologous end joining (NHEJ) in an unclear manner. Here we show that REV7 forms a complex with two proteins, FAM35A and C20ORF196. We demonstrate that FAM35A preferentially binds single-strand DNA (ssDNA) in vitro, and is recruited to DSBs as a complex with C20ORF196 and REV7 downstream of RIF1 in vivo. Epistasis analysis shows that both proteins act in the same pathway as RIF1 in NHEJ. The defects in HR pathway to repair DSBs and the reduction in resection of broken DNA ends in BRCA1-mutant cells can be largely suppressed by inactivating FAM35A or C20ORF196, indicating that FAM35A and C20ORF196 prevent end resection in these cells. Together, our data identified a REV7-FAM35A-C20ORF196 complex that binds and protects broken DNA ends to promote the NHEJ pathway for DSB repair.
Collapse
|
120
|
Hiraga SI, Monerawela C, Katou Y, Shaw S, Clark KR, Shirahige K, Donaldson AD. Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks. EMBO Rep 2018; 19:e46222. [PMID: 30104203 PMCID: PMC6123642 DOI: 10.15252/embr.201846222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome-wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild-type Rif1 and truncated Rif1 lacking the Rap1-interaction domain, we identify hundreds of Rap1-dependent and Rap1-independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1-independent manner, associating with both early and late-initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks.
Collapse
Affiliation(s)
| | | | - Yuki Katou
- Institute for Quantitative Biosciences, University of Tokyo, Tokyo, Japan
| | - Sophie Shaw
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK
| | - Kate Rm Clark
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
121
|
Findlay S, Heath J, Luo VM, Malina A, Morin T, Coulombe Y, Djerir B, Li Z, Samiei A, Simo-Cheyou E, Karam M, Bagci H, Rahat D, Grapton D, Lavoie EG, Dove C, Khaled H, Kuasne H, Mann KK, Klein KO, Greenwood CM, Tabach Y, Park M, Côté JF, Masson JY, Maréchal A, Orthwein A. SHLD2/FAM35A co-operates with REV7 to coordinate DNA double-strand break repair pathway choice. EMBO J 2018; 37:embj.2018100158. [PMID: 30154076 PMCID: PMC6138439 DOI: 10.15252/embj.2018100158] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.
Collapse
Affiliation(s)
- Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - John Heath
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Vincent M Luo
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abba Malina
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Théo Morin
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, Quebec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Billel Djerir
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Zhigang Li
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Arash Samiei
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Estelle Simo-Cheyou
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Martin Karam
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Halil Bagci
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Dolev Rahat
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Damien Grapton
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Elise G Lavoie
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Christian Dove
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Husam Khaled
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Celia M Greenwood
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, MGill University, Montreal, QC, Canada
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Jean-Francois Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada.,Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montreal, QC, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Quebec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada .,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
122
|
Abstract
53BP1 restrains DNA end resection, and its dosage imbalance upsets DNA double-strand break (DSB) repair pathway choice. Here, by monitoring 53BP1 distribution on DSB-flanking chromatin, we have established a dose-dependent role of the RING finger protein RNF169 in limiting 53BP1 DSB deposition. Moreover, we found that forced expression of RNF169 overcomes 53BP1 activity and stimulates mutagenic DSB repair via the single-strand annealing pathway. Our findings suggest that aberrant expression of RNF169 may represent a deleterious factor in DSB repair control and in maintenance of genome stability. Unrestrained 53BP1 activity at DNA double-strand breaks (DSBs) hampers DNA end resection and upsets DSB repair pathway choice. RNF169 acts as a molecular rheostat to limit 53BP1 deposition at DSBs, but how this fine balance translates to DSB repair control remains undefined. In striking contrast to 53BP1, ChIP analyses of AsiSI-induced DSBs unveiled that RNF169 exhibits robust accumulation at DNA end-proximal regions and preferentially targets resected, RPA-bound DSBs. Accordingly, we found that RNF169 promotes CtIP-dependent DSB resection and favors homology-mediated DSB repair, and further showed that RNF169 dose-dependently stimulates single-strand annealing repair, in part, by alleviating the 53BP1-imposed barrier to DSB end resection. Our results highlight the interplay of RNF169 with 53BP1 in fine-tuning choice of DSB repair pathways.
Collapse
|
123
|
Dual Roles of Poly(dA:dT) Tracts in Replication Initiation and Fork Collapse. Cell 2018; 174:1127-1142.e19. [PMID: 30078706 DOI: 10.1016/j.cell.2018.07.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
Abstract
Replication origins, fragile sites, and rDNA have been implicated as sources of chromosomal instability. However, the defining genomic features of replication origins and fragile sites are among the least understood elements of eukaryote genomes. Here, we map sites of replication initiation and breakage in primary cells at high resolution. We find that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, long (>20 bp) (dA:dT) tracts are also preferential sites of polar replication fork stalling and collapse within early-replicating fragile sites (ERFSs) and late-replicating common fragile sites (CFSs) and at the rDNA replication fork barrier. Poly(dA:dT) sequences are fragile because long single-strand poly(dA) stretches at the replication fork are unprotected by the replication protein A (RPA). We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes promotes replication initiation, but at the cost of chromosome fragility.
Collapse
|
124
|
Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling AK, Olivieri M, Álvarez-Quilón A, Moatti N, Zimmermann M, Annunziato S, Krastev DB, Song F, Brandsma I, Frankum J, Brough R, Sherker A, Landry S, Szilard RK, Munro MM, McEwan A, Goullet de Rugy T, Lin ZY, Hart T, Moffat J, Gingras AC, Martin A, van Attikum H, Jonkers J, Lord CJ, Rottenberg S, Durocher D. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 2018; 560:117-121. [PMID: 30022168 PMCID: PMC6141009 DOI: 10.1038/s41586-018-0340-7] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Abstract
53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.
Collapse
Affiliation(s)
- Sylvie M Noordermeer
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Marco Barazas
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Alexanda K Ling
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Michele Olivieri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Nathalie Moatti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Michal Zimmermann
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stefano Annunziato
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dragomir B Krastev
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Feifei Song
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Inger Brandsma
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Jessica Frankum
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Alana Sherker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sébastien Landry
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Meagan M Munro
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrea McEwan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Théo Goullet de Rugy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Sven Rottenberg
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
125
|
Yamaguchi M, Hirouchi T, Yokoyama K, Nishiyama A, Murakami S, Kashiwakura I. The thrombopoietin mimetic romiplostim leads to the complete rescue of mice exposed to lethal ionizing radiation. Sci Rep 2018; 8:10659. [PMID: 30006622 PMCID: PMC6045643 DOI: 10.1038/s41598-018-29013-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
For the primary treatment of emergency exposure to high-dose radiation, such as in the event of a radiation accident, the top priority is the reconstitution and restoration of haematopoiesis. In most radiation accidents, drug therapy is chosen as the most suitable treatment; the chosen drug should already be approved domestically, stably supplied and regularly stockpiled. In the present study, a single administration of romiplostim (RP), an approved thrombopoietin receptor agonist, produced a 100% survival rate in C57BL/6 J mice exposed to a lethal dose (7 Gy) of 137Cs γ-rays, and all irradiated mice survived for more than 30 days with both 3- and 5-day consecutive administrations. By day 30, the peripheral blood cells, bone marrow cells and haematopoietic progenitor cells of the RP-administered irradiated mice had all recovered to a level that was not significantly different from that in non-irradiated mice. In contrast to myelosuppression, which did not fully recover until day 30, the expression of several bone marrow cell surface antigens recovered sooner, and DNA repair concurrently increased in haematopoietic cells, speeding the resolution of double strand breaks and reducing the rates of apoptosis. These findings suggest that RP may be a clinic-ready countermeasure to treat victims of radiation accidents.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Tokuhisa Hirouchi
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa, Takahoko, Rokkasho-vil. Kamikita-gun, Aomori, 039-3213, Japan
| | - Koki Yokoyama
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Ayaka Nishiyama
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Sho Murakami
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| |
Collapse
|
126
|
Botuyan MV, Cui G, Drané P, Oliveira C, Detappe A, Brault ME, Parnandi N, Chaubey S, Thompson JR, Bragantini B, Zhao D, Chapman JR, Chowdhury D, Mer G. Mechanism of 53BP1 activity regulation by RNA-binding TIRR and a designer protein. Nat Struct Mol Biol 2018; 25:591-600. [PMID: 29967538 PMCID: PMC6045459 DOI: 10.1038/s41594-018-0083-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
Dynamic protein interaction networks such as DNA double-strand break (DSB) signaling are modulated by post-translational modifications. The DNA repair factor 53BP1 is a rare example of a protein whose post-translational modification-binding function can be switched on and off. 53BP1 is recruited to DSBs by recognizing histone lysine methylation within chromatin, an activity directly inhibited by the 53BP1-binding protein TIRR. X-ray crystal structures of TIRR and a designer protein bound to 53BP1 now reveal a unique regulatory mechanism in which an intricate binding area centered on an essential TIRR arginine residue blocks the methylated-chromatin-binding surface of 53BP1. A 53BP1 separation-of-function mutation that abolishes TIRR-mediated regulation in cells renders 53BP1 hyperactive in response to DSBs, highlighting the key inhibitory function of TIRR. This 53BP1 inhibition is relieved by TIRR-interacting RNA molecules, providing proof-of-principle of RNA-triggered 53BP1 recruitment to DSBs.
Collapse
Affiliation(s)
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catarina Oliveira
- Genome Integrity Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexandre Detappe
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marie Eve Brault
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nishita Parnandi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shweta Chaubey
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James R Thompson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Benoît Bragantini
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Debiao Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - J Ross Chapman
- Genome Integrity Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
127
|
Fontana GA, Reinert JK, Thomä NH, Rass U. Shepherding DNA ends: Rif1 protects telomeres and chromosome breaks. MICROBIAL CELL 2018; 5:327-343. [PMID: 29992129 PMCID: PMC6035837 DOI: 10.15698/mic2018.07.639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells have evolved conserved mechanisms to protect DNA ends, such as those at the termini of linear chromosomes, or those at DNA double-strand breaks (DSBs). In eukaryotes, DNA ends at chromosomal termini are packaged into proteinaceous structures called telomeres. Telomeres protect chromosome ends from erosion, inadvertent activation of the cellular DNA damage response (DDR), and telomere fusion. In contrast, cells must respond to damage-induced DNA ends at DSBs by harnessing the DDR to restore chromosome integrity, avoiding genome instability and disease. Intriguingly, Rif1 (Rap1-interacting factor 1) has been implicated in telomere homeostasis as well as DSB repair. The protein was first identified in Saccharomyces cerevisiae as being part of the proteinaceous telosome. In mammals, RIF1 is not associated with intact telomeres, but was found at chromosome breaks, where RIF1 has emerged as a key mediator of pathway choice between the two evolutionary conserved DSB repair pathways of non-homologous end-joining (NHEJ) and homologous recombination (HR). While this functional dichotomy has long been a puzzle, recent findings link yeast Rif1 not only to telomeres, but also to DSB repair, and mechanistic parallels likely exist. In this review, we will provide an overview of the actions of Rif1 at DNA ends and explore how exclusion of end-processing factors might be the underlying principle allowing Rif1 to fulfill diverse biological roles at telomeres and chromosome breaks.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Julia K Reinert
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.,University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
128
|
Misenko SM, Patel DS, Her J, Bunting SF. DNA repair and cell cycle checkpoint defects in a mouse model of 'BRCAness' are partially rescued by 53BP1 deletion. Cell Cycle 2018; 17:881-891. [PMID: 29620483 PMCID: PMC6056228 DOI: 10.1080/15384101.2018.1456295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/13/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022] Open
Abstract
'BRCAness' is a term used to describe cancer cells that behave similarly to tumors with BRCA1 or BRCA2 mutations. The BRCAness phenotype is associated with hypersensitivity to chemotherapy agents including PARP inhibitors, which are a promising class of recently-licensed anti-cancer treatments. This hypersensitivity arises because of a deficiency in the homologous recombination (HR) pathway for DNA double-strand break repair. To gain further insight into how genetic modifiers of HR contribute to the BRCAness phenotype, we created a new mouse model of BRCAness by generating mice that are deficient in BLM helicase and the Exo1 exonuclease, which are involved in the early stages of HR. We find that cells lacking BLM and Exo1 exhibit a BRCAness phenotype, with diminished HR, and hypersensitivity to PARP inhibitors. We further tested how 53BP1, an important regulator of HR, affects repair efficiency in our BRCAness model. We find that deletion of 53BP1 can relieve several of the repair deficiencies observed in cells lacking BLM and Exo1, just as it does in cells lacking BRCA1. These results substantiate the importance of BRCAness as a concept for classification of cancer cases, and further clarify the role of 53BP1 in regulation of DNA repair pathway choice in mammalian cells.
Collapse
Affiliation(s)
- Sarah M. Misenko
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Dharm S. Patel
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Joonyoung Her
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Samuel F. Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
129
|
von Morgen P, Lidak T, Horejsi Z, Macurek L. Nuclear localisation of 53BP1 is regulated by phosphorylation of the nuclear localisation signal. Biol Cell 2018; 110:137-146. [DOI: 10.1111/boc.201700067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/10/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Patrick von Morgen
- Department of Cancer Cell Biology; Institute of Molecular Genetics of the ASCR; Prague Czech Republic
| | - Tomas Lidak
- Department of Cancer Cell Biology; Institute of Molecular Genetics of the ASCR; Prague Czech Republic
| | - Zuzana Horejsi
- Department of Cancer Cell Biology; Institute of Molecular Genetics of the ASCR; Prague Czech Republic
- Barts Cancer Institute; Queen Mary University of London; John Vane Science Centre; Charterhouse Square London EC1M 6BQ UK
| | - Libor Macurek
- Department of Cancer Cell Biology; Institute of Molecular Genetics of the ASCR; Prague Czech Republic
| |
Collapse
|
130
|
Wilson MD, Durocher D. Reading chromatin signatures after DNA double-strand breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0280. [PMID: 28847817 DOI: 10.1098/rstb.2016.0280] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are DNA lesions that must be accurately repaired in order to preserve genomic integrity and cellular viability. The response to DSBs reshapes the local chromatin environment and is largely orchestrated by the deposition, removal and detection of a complex set of chromatin-associated post-translational modifications. In particular, the nucleosome acts as a central signalling hub and landing platform in this process by organizing the recruitment of repair and signalling factors, while at the same time coordinating repair with other DNA-based cellular processes. While current research has provided a descriptive overview of which histone marks affect DSB repair, we are only beginning to understand how these marks are interpreted to foster an efficient DSB response. Here we review how the modified chromatin surrounding DSBs is read, with a focus on the insights gleaned from structural and biochemical studies.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Marcus D Wilson
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
131
|
Isobe SY, Nagao K, Nozaki N, Kimura H, Obuse C. Inhibition of RIF1 by SCAI Allows BRCA1-Mediated Repair. Cell Rep 2018; 20:297-307. [PMID: 28700933 DOI: 10.1016/j.celrep.2017.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/24/2017] [Accepted: 06/21/2017] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by either the homology-directed repair (HDR) or the non-homologous end-joining (NHEJ) pathway. RIF1 (RAP1-interacting factor homolog) was recently shown to stimulate NHEJ through an interaction with 53BP1 (p53-binding protein 1) phosphorylated at S/TQ sites, but the molecular mechanism underlying pathway choice remains unclear. Here, we show that SCAI (suppressor of cancer cell invasion) binds to 53BP1 phosphorylated at S/TP sites and facilitates HDR. Upon DNA damage, RIF1 immediately accumulates at damage sites and then gradually dissociates from 53BP1 and is subsequently replaced with SCAI. Depletion of SCAI reduces both the accumulation of HDR factors, including BRCA1 (breast cancer susceptibility gene 1), at damage sites and the efficiency of HDR, as detected by a reporter assay system. These data suggest that SCAI inhibits RIF1 function to allow BRCA1-mediated repair, which possibly includes alt-NHEJ and resection-dependent NHEJ in G1, as well as HDR in S/G2.
Collapse
Affiliation(s)
- Shin-Ya Isobe
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Koji Nagao
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Naohito Nozaki
- MAB Institute, Inc., 2070-11 Oosegi, Iida, Nagano 395-0157, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
132
|
53BP1 Mediates ATR-Chk1 Signaling and Protects Replication Forks under Conditions of Replication Stress. Mol Cell Biol 2018; 38:MCB.00472-17. [PMID: 29378830 DOI: 10.1128/mcb.00472-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Complete replication of the genome is an essential prerequisite for normal cell division, but a variety of factors can block the replisome, triggering replication stress and potentially causing mutation or cell death. The cellular response to replication stress involves recruitment of proteins to stabilize the replication fork and transmit a stress signal to pause the cell cycle and allow fork restart. We find that the ubiquitously expressed DNA damage response factor 53BP1 is required for the normal response to replication stress. Using primary, ex vivo B cells, we showed that a population of 53BP1-/- cells in early S phase is hypersensitive to short-term exposure to three different agents that induce replication stress. 53BP1 localizes to a subset of replication forks following induced replication stress, and an absence of 53BP1 leads to defective ATR-Chk1-p53 signaling and caspase 3-mediated cell death. Nascent replicated DNA additionally undergoes degradation in 53BP1-/- cells. These results show that 53BP1 plays an important role in protecting replication forks during the cellular response to replication stress, in addition to the previously characterized role of 53BP1 in DNA double-strand break repair.
Collapse
|
133
|
Nikitakis NG, Rassidakis GZ, Tasoulas J, Gkouveris I, Kamperos G, Daskalopoulos A, Sklavounou A. Alterations in the expression of DNA damage response-related molecules in potentially preneoplastic oral epithelial lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:637-649. [PMID: 29705090 DOI: 10.1016/j.oooo.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the expression levels of DNA damage response (DDR) markers in potentially preneoplastic oral epithelial lesions (PPOELs). STUDY DESIGN Immunohistochemical expression of DDR markers (γΗ2 ΑΧ, pChk2, 53 BP1, p53, and phosphorylated at Ser 15 p53) was assessed in 41 oral leukoplakias, ranging from hyperplasia (H) to dysplasia (D) and in comparison with oral squamous cell carcinoma (OSCC) and normal mucosa (NM). Statistical and receiver operating characteristic curve analysis were performed. RESULTS γH2 AX immunoexpression demonstrated a gradual increase and upper layer extension from NM to H to higher D degrees to OSCC. pChk2 expression was minimal in NM, relatively low in PPOELs, with an increasing tendency from H to D, and higher in OSCC. 53 BP1 demonstrated higher levels in OSCC than in NM, whereas its expression in PPOELs was heterogeneous, gradually increasing according to D. p53 demonstrated progressively higher levels and upper layer extension from H to D to OSCC. Phosphorylated p53 was absent in NM and relatively low in PPOELs and OSCC. CONCLUSIONS DDR markers' expression is variable in PPOELs, showing a tendency to increase along with dysplasia. Activated DDR mechanisms may play an important protective role at early stages of oral carcinogenesis, but probably suffer progressive deregulation, eventually failing to suppress malignant transformation.
Collapse
Affiliation(s)
- Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Greece.
| | | | - Jason Tasoulas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Ioannis Gkouveris
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Greece; Division of Diagnostics and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Georgios Kamperos
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Greece
| | - Argyrios Daskalopoulos
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Greece
| | - Alexandra Sklavounou
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
134
|
Chen CC, Feng W, Lim PX, Kass EM, Jasin M. Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2018; 2:313-336. [PMID: 30345412 PMCID: PMC6193498 DOI: 10.1146/annurev-cancerbio-030617-050502] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Germ-line and somatic mutations in genes that promote homology-directed repair (HDR), especially BRCA1 and BRCA2, are frequently observed in several cancers, in particular, breast and ovary but also prostate and other cancers. HDR is critical for the error-free repair of DNA double-strand breaks and other lesions, and HDR factors also protect stalled replication forks. As a result, loss of BRCA1 or BRCA2 poses significant risks to genome integrity, leading not only to cancer predisposition but also to sensitivity to DNA-damaging agents, affecting therapeutic approaches. Here we review recent advances in our understanding of BRCA1 and BRCA2, including how they genetically interact with other repair factors, how they protect stalled replication forks, how they affect the response to aldehydes, and how loss of their functions links to mutation signatures. Importantly, given the recent advances with poly(ADP-ribose) polymerase inhibitors (PARPi) for the treatment of HDR-deficient tumors, we discuss mechanisms by which BRCA-deficient tumors acquire resistance to PARPi and other agents.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Pei Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
135
|
Sheppard EC, Morrish RB, Dillon MJ, Leyland R, Chahwan R. Epigenomic Modifications Mediating Antibody Maturation. Front Immunol 2018. [PMID: 29535729 PMCID: PMC5834911 DOI: 10.3389/fimmu.2018.00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone modifications, DNA methylation status, and non-coding RNAs (ncRNA), all contribute to antibody maturation during somatic hypermutation (SHM) and class-switch recombination (CSR). Histone modifications alter the chromatin landscape and, together with DNA primary and tertiary structures, they help recruit Activation-Induced Cytidine Deaminase (AID) to the immunoglobulin (Ig) locus. AID is a potent DNA mutator, which catalyzes cytosine-to-uracil deamination on single-stranded DNA to create U:G mismatches. It has been shown that alternate chromatin modifications, in concert with ncRNAs and potentially DNA methylation, regulate AID recruitment and stabilize DNA repair factors. We, hereby, assess the combination of these distinct modifications and discuss how they contribute to initiating differential DNA repair pathways at the Ig locus, which ultimately leads to enhanced antibody–antigen binding affinity (SHM) or antibody isotype switching (CSR). We will also highlight how misregulation of epigenomic regulation during DNA repair can compromise antibody development and lead to a number of immunological syndromes and cancer.
Collapse
Affiliation(s)
- Emily C Sheppard
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Michael J Dillon
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Richard Chahwan
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
136
|
Bakr A, Köcher S, Volquardsen J, Petersen C, Borgmann K, Dikomey E, Rothkamm K, Mansour WY. Impaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1. Oncotarget 2018; 7:57679-57693. [PMID: 27494840 PMCID: PMC5295381 DOI: 10.18632/oncotarget.11023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/23/2016] [Indexed: 01/30/2023] Open
Abstract
End processing at DNA double strand breaks (DSB) is a decisive step in repair pathway selection. Here, we investigated the role of 53BP1/RIF1 in limiting BRCA1/CtIP-mediated end resection to control DSB repair pathway choice. ATM orchestrates this process through 53BP1 phosphorylation to promote RIF1 recruitment. As cells enter S/G2-phase, end resection is activated, which displaces pATM from DSB sites and diminishes 53BP1 phosphorylation and RIF1 recruitment. Consistently, the kinetics of ATM and 53BP1 phosphorylation in S/G2-phase concur. We show that defective 53BP1/RIF1-mediated DSB end-protection in G1-phase stimulates CtIP/MRE11-dependent end-resection, which requires Polo-like kinase 3. This end resection activity in G1 was shown to produce only short tracks of ssDNA overhangs, as evidenced by the findings that in 53BP1 depleted cells, (i) RPA focus intensity was significantly lower in G1 compared to that in S/G2 phase, and (ii) EXO1 knockdown did not alter either number or intensity of RPA foci in G1 but significantly decreased the RPA focus intensity in S/G2 phase. Importantly, we report that the observed DSB end resection in G1 phase inhibits DNA-PK-dependent nonhomologous end joining but is not sufficient to stimulate HR. Instead, it switches the repair to the alternative PARP1-dependent end joining pathway.
Collapse
Affiliation(s)
- Ali Bakr
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Köcher
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Volquardsen
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ekkehard Dikomey
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wael Y Mansour
- Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Tumor Biology Department, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
137
|
Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem 2018; 293:10502-10511. [PMID: 29414795 DOI: 10.1074/jbc.tm118.000371] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) arise regularly in cells and when left unrepaired cause senescence or cell death. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are the two major DNA-repair pathways. Whereas HR allows faithful DSB repair and healthy cell growth, NHEJ has higher potential to contribute to mutations and malignancy. Many regulatory mechanisms influence which of these two pathways is used in DSB repair. These mechanisms depend on the cell cycle, post-translational modifications, and chromatin effects. Here, we summarize current research into these mechanisms, with a focus on mammalian cells, and also discuss repair by "alternative end-joining" and single-strand annealing.
Collapse
Affiliation(s)
- Joonyoung Her
- From the Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway, New Jersey 08540
| | - Samuel F Bunting
- From the Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway, New Jersey 08540
| |
Collapse
|
138
|
Moriyama K, Yoshizawa-Sugata N, Masai H. Oligomer formation and G-quadruplex binding by purified murine Rif1 protein, a key organizer of higher-order chromatin architecture. J Biol Chem 2018; 293:3607-3624. [PMID: 29348174 DOI: 10.1074/jbc.ra117.000446] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/21/2017] [Indexed: 11/06/2022] Open
Abstract
Rap1-interacting protein 1 (Rif1) regulates telomere length in budding yeast. We previously reported that, in metazoans and fission yeast, Rif1 also plays pivotal roles in controlling genome-wide DNA replication timing. We proposed that Rif1 may assemble chromatin compartments that contain specific replication-timing domains by promoting chromatin loop formation. Rif1 also is involved in DNA lesion repair, restart after replication fork collapse, anti-apoptosis activities, replicative senescence, and transcriptional regulation. Although multiple physiological functions of Rif1 have been characterized, biochemical and structural information on mammalian Rif1 is limited, mainly because of difficulties in purifying the full-length protein. Here, we expressed and purified the 2418-amino-acid-long, full-length murine Rif1 as well as its partially truncated variants in human 293T cells. Hydrodynamic analyses indicated that Rif1 forms elongated or extended homo-oligomers in solution, consistent with the presence of a HEAT-type helical repeat segment known to adopt an elongated shape. We also observed that the purified murine Rif1 bound G-quadruplex (G4) DNA with high specificity and affinity, as was previously shown for Rif1 from fission yeast. Both the N-terminal (HEAT-repeat) and C-terminal segments were involved in oligomer formation and specifically bound G4 DNA, and the central intrinsically disordered polypeptide segment increased the affinity for G4. Of note, pulldown assays revealed that Rif1 simultaneously binds multiple G4 molecules. Our findings support a model in which Rif1 modulates chromatin loop structures through binding to multiple G4 assemblies and by holding chromatin fibers together.
Collapse
Affiliation(s)
- Kenji Moriyama
- From the Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Naoko Yoshizawa-Sugata
- From the Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- From the Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
139
|
Simonetta M, de Krijger I, Serrat J, Moatti N, Fortunato D, Hoekman L, Bleijerveld OB, Altelaar AFM, Jacobs JJL. H4K20me2 distinguishes pre-replicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2. Cell Cycle 2018; 17:124-136. [PMID: 29160738 DOI: 10.1080/15384101.2017.1404210] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The main pathways for the repair of DNA double strand breaks (DSBs) are non-homologous end-joining (NHEJ) and homologous recombination directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. As HDR can only succeed in the presence of an intact copy of replicated DNA, cells employ several mechanisms to inactivate HDR in the G1 phase of cell cycle. As cells enter S-phase, these inhibitory mechanisms are released and HDR becomes active. However, during DNA replication, NHEJ and HDR pathways are both functional and non-replicated and replicated DNA regions co-exist, with the risk of aberrant HDR activity at DSBs in non-replicated DNA. It has become clear that DNA repair pathway choice depends on inhibition of DNA end-resection by 53BP1 and its downstream factors RIF1 and MAD2L2. However, it is unknown how MAD2L2 accumulates at DSBs to participate in DNA repair pathway control and how the NHEJ and HDR repair pathways are appropriately activated at DSBs with respect to the replication status of the DNA, such that NHEJ acts at DSBs in pre-replicative DNA and HDR acts on DSBs in post-replicative DNA. Here we show that MAD2L2 is recruited to DSBs in H4K20 dimethylated chromatin by forming a protein complex with 53BP1 and RIF1 and that MAD2L2, similar to 53BP1 and RIF1, suppresses DSB accumulation of BRCA1. Furthermore, we show that the replication status of the DNA locally ensures the engagement of the correct DNA repair pathway, through epigenetics. In non-replicated DNA, saturating levels of the 53BP1 binding site, di-methylated lysine 20 of histone 4 (H4K20me2), lead to robust 53BP1-RIF1-MAD2L2 recruitment at DSBs, with consequent exclusion of BRCA1. Conversely, replication-associated 2-fold dilution of H4K20me2 promotes the release of the 53BP1-RIF1-MAD2L2 complex and favours the access of BRCA1. Thus, the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA DSBs, to engage the correct DNA repair pathway.
Collapse
Affiliation(s)
- Marco Simonetta
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Inge de Krijger
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Judit Serrat
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Nathalie Moatti
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Diogo Fortunato
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Liesbeth Hoekman
- b Proteomics Facility , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - Onno B Bleijerveld
- b Proteomics Facility , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| | - A F Maarten Altelaar
- b Proteomics Facility , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands.,c Biomolecular Mass Spectrometry and Proteomics , Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8, 3584 CH Utrecht , The Netherlands
| | - Jacqueline J L Jacobs
- a Division of Oncogenomics , The Netherlands Cancer Institute , Plesmanlaan 121, 1066 CX Amsterdam , The Netherlands
| |
Collapse
|
140
|
Dynamics of RIF1 SUMOylation is regulated by PIAS4 in the maintenance of Genomic Stability. Sci Rep 2017; 7:17367. [PMID: 29234018 PMCID: PMC5727183 DOI: 10.1038/s41598-017-16934-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/20/2017] [Indexed: 01/29/2023] Open
Abstract
RIF1 plays a key role in inhibiting DNA end resection and promoting NHEJ mediated DNA double stand break repair in G1. However, whether SUMOlyation may regulate RIF1 functions is still largely unknown. Here, we report that RIF1 is SUMOlyated in response to DNA damage. We identified PIAS4 as the primary SUMO E3 ligase required for the SUMOylation of RIF1 protein. Mammalian cells compromised of PIAS4 expression, show impaired RIF1 SUMOylation and defective for the disassembly of DNA damage responsive RIF1 foci. Mechanistically, we show that PIAS4 knockdown abrogates UHRF1-dependent ubiquitination of RIF1, compromising RIF1 protein turnover. We detected intense RPA foci that colocalize with RIF1 foci in PIAS4 knockdown cells. These data highlight an important role of PIAS4-dependent regulation of RIF1, likely mediated by SUMOylation, in the disassembly of RIF1 DNA damage response (DDR) foci. We propose that unresolved RIF1 protein at sites of DNA damage in PIAS4-depleted cells largely accumulates in S phase, and subsequently leads to DNA double strand breaks. Therefore, PIAS4 promotes genomic stability by regulating the timely removal of RIF1 from sites of DNA damage.
Collapse
|
141
|
ATM and CDK2 control chromatin remodeler CSB to inhibit RIF1 in DSB repair pathway choice. Nat Commun 2017; 8:1921. [PMID: 29203878 PMCID: PMC5715124 DOI: 10.1038/s41467-017-02114-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
CSB, a member of the SWI2/SNF2 superfamily, is implicated in DNA double-strand break (DSB) repair. However, how it regulates this repair process is poorly understood. Here we uncover that CSB interacts via its newly identified winged helix domain with RIF1, an effector of 53BP1, and that this interaction mediates CSB recruitment to DSBs in S phase. At DSBs, CSB remodels chromatin by evicting histones, which limits RIF1 and its effector MAD2L2 but promotes BRCA1 accumulation. The chromatin remodeling activity of CSB requires not only damage-induced phosphorylation on S10 by ATM but also cell cycle-dependent phosphorylation on S158 by cyclin A-CDK2. Both modifications modulate the interaction of the CSB N-terminal region with its ATPase domain, the activity of which has been previously reported to be autorepressed by the N-terminal region. These results suggest that ATM and CDK2 control the chromatin remodeling activity of CSB in the regulation of DSB repair pathway choice. Cockayne syndrome group B protein (CSB) is a multifunctional chromatin remodeler involved in double-strand break repair. Here the authors investigate the molecular post-translational signals regulating CSB activity.
Collapse
|
142
|
Sidorova J. A game of substrates: replication fork remodeling and its roles in genome stability and chemo-resistance. Cell Stress 2017; 1:115-133. [PMID: 29355244 PMCID: PMC5771654 DOI: 10.15698/cst2017.12.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023] Open
Abstract
During the hours that human cells spend in the DNA synthesis (S) phase of the cell cycle, they may encounter adversities such as DNA damage or shortage of nucleotides. Under these stresses, replication forks in DNA may experience slowing, stalling, and breakage. Fork remodeling mechanisms, which stabilize slow or stalled replication forks and ensure their ability to continue or resume replication, protect cells from genomic instability and carcinogenesis. Fork remodeling includes DNA strand exchanges that result in annealing of newly synthesized strands (fork reversal), controlled DNA resection, and cleavage of DNA strands. Defects in major tumor suppressor genes BRCA1 and BRCA2, and a subset of the Fanconi Anemia genes have been shown to result in deregulation in fork remodeling, and most prominently, loss of kilobases of nascent DNA from stalled replication forks. This phenomenon has recently gained spotlight as a potential marker and mediator of chemo-sensitivity in cancer cells and, conversely, its suppression - as a hallmark of acquired chemo-resistance. Moreover, nascent strand degradation at forks is now known to also trigger innate immune response to self-DNA. An increasingly sophisticated molecular description of these events now points at a combination of unbalanced fork reversal and end-resection as a root cause, yet also reveals the multi-layered complexity and heterogeneity of the underlying processes in normal and cancer cells.
Collapse
Affiliation(s)
- Julia Sidorova
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
143
|
Lian S, Meng L, Yang Y, Ma T, Xing X, Feng Q, Song Q, Liu C, Tian Z, Qu L, Shou C. PRL-3 promotes telomere deprotection and chromosomal instability. Nucleic Acids Res 2017; 45:6546-6571. [PMID: 28482095 PMCID: PMC5499835 DOI: 10.1093/nar/gkx392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 04/26/2017] [Indexed: 12/24/2022] Open
Abstract
Phosphatase of regenerating liver (PRL-3) promotes cell invasiveness, but its role in genomic integrity remains unknown. We report here that shelterin component RAP1 mediates association between PRL-3 and TRF2. In addition, TRF2 and RAP1 assist recruitment of PRL-3 to telomeric DNA. Silencing of PRL-3 in colon cancer cells does not affect telomere integrity or chromosomal stability, but induces reactive oxygen species-dependent DNA damage response and senescence. However, overexpression of PRL-3 in colon cancer cells and primary fibroblasts promotes structural abnormalities of telomeres, telomere deprotection, DNA damage response, chromosomal instability and senescence. Furthermore, PRL-3 dissociates RAP1 and TRF2 from telomeric DNA in vitro and in cells. PRL-3-promoted telomere deprotection, DNA damage response and senescence are counteracted by disruption of PRL-3–RAP1 complex or expression of ectopic TRF2. Examination of clinical samples showed that PRL-3 status positively correlates with telomere deprotection and senescence. PRL-3 transgenic mice exhibit hallmarks of telomere deprotection and senescence and are susceptible to dextran sodium sulfate-induced colon malignancy. Our results uncover a novel role of PRL-3 in tumor development through its adverse impact on telomere homeostasis.
Collapse
Affiliation(s)
- Shenyi Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yongyong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ting Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qin Feng
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Caiyun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihua Tian
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
144
|
Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, Yoshimoto Y, Held KD, Suzuki Y, Kono K, Miyagawa K, Nakano T, Shibata A. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 2017; 8:1751. [PMID: 29170499 PMCID: PMC5701012 DOI: 10.1038/s41467-017-01883-9] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that exogenous cellular stress induces PD-L1 upregulation in cancer. A DNA double-strand break (DSB) is the most critical type of genotoxic stress, but the involvement of DSB repair in PD-L1 expression has not been investigated. Here we show that PD-L1 expression in cancer cells is upregulated in response to DSBs. This upregulation requires ATM/ATR/Chk1 kinases. Using an siRNA library targeting DSB repair genes, we discover that BRCA2 depletion enhances Chk1-dependent PD-L1 upregulation after X-rays or PARP inhibition. In addition, we show that Ku70/80 depletion substantially enhances PD-L1 upregulation after X-rays. The upregulation by Ku80 depletion requires Chk1 activation following DNA end-resection by Exonuclease 1. DSBs activate STAT1 and STAT3 signalling, and IRF1 is required for DSB-dependent PD-L1 upregulation. Thus, our findings reveal the involvement of DSB repair in PD-L1 expression and provide mechanistic insight into how PD-L1 expression is regulated after DSBs.
Collapse
Affiliation(s)
- Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Atsuko Niimi
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, 371-8511, Japan
| | - Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Yoshihiko Hagiwara
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Mayu Isono
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Endang Nuryadi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Ryota Sekine
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Sangeeta Kakoti
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02114, USA
- International Open Laboratory, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, 371-8511, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, 371-8511, Japan
| | - Atsushi Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, 371-8511, Japan.
- Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
145
|
Muraki K, Murnane JP. The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks. Genes Genet Syst 2017; 92:135-152. [PMID: 29162774 DOI: 10.1266/ggs.17-00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In mammals, DNA double-strand breaks (DSBs) are primarily repaired by classical non-homologous end joining (C-NHEJ), although homologous recombination repair and alternative NHEJ (A-NHEJ), which involve DSB processing, can also occur. These pathways are tightly regulated to maintain chromosome integrity. The ends of chromosomes, called telomeres, contain telomeric DNA that forms a cap structure in cooperation with telomeric proteins to prevent the activation of the DNA damage response and chromosome fusion at chromosome termini. Telomeres and subtelomeric regions are poor substrates for DNA replication; therefore, regions near telomeres are prone to replication fork stalling and chromosome breakage. Moreover, DSBs near telomeres are poorly repaired. As a result, when DSBs occur near telomeres in normal cells, the cells stop proliferating, while in cancer cells, subtelomeric DSBs induce rearrangements due to the absence of cell cycle checkpoints. The sensitivity of subtelomeric regions to DSBs is due to the improper regulation of processing, because although C-NHEJ is functional at subtelomeric DSBs, excessive processing results in an increased frequency of large deletions and chromosome rearrangements involving A-NHEJ.
Collapse
Affiliation(s)
- Keiko Muraki
- Institute for Protein Research, Osaka University.,Department of Radiation Oncology, University of California, San Francisco
| | - John P Murnane
- Department of Radiation Oncology, University of California, San Francisco
| |
Collapse
|
146
|
RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells. Stem Cell Reports 2017; 8:125-139. [PMID: 28076755 PMCID: PMC5233453 DOI: 10.1016/j.stemcr.2016.12.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 11/27/2022] Open
Abstract
Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. RAD51 is overexpressed in glioma stem cells RAD51 expression levels fall when GSCs are differentiated RAD51 inhibitors abrogate DNA repair leading to radiosensitization in GSCs RAD51 inhibition + XR removes SOX2-expressing cells and abolishes clonogenicity
Collapse
|
147
|
Isono M, Niimi A, Oike T, Hagiwara Y, Sato H, Sekine R, Yoshida Y, Isobe SY, Obuse C, Nishi R, Petricci E, Nakada S, Nakano T, Shibata A. BRCA1 Directs the Repair Pathway to Homologous Recombination by Promoting 53BP1 Dephosphorylation. Cell Rep 2017; 18:520-532. [PMID: 28076794 DOI: 10.1016/j.celrep.2016.12.042] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 10/03/2016] [Accepted: 12/13/2016] [Indexed: 11/16/2022] Open
Abstract
BRCA1 promotes homologous recombination (HR) by activating DNA-end resection. By contrast, 53BP1 forms a barrier that inhibits DNA-end resection. Here, we show that BRCA1 promotes DNA-end resection by relieving the 53BP1-dependent barrier. We show that 53BP1 is phosphorylated by ATM in S/G2 phase, promoting RIF1 recruitment, which inhibits resection. 53BP1 is promptly dephosphorylated and RIF1 released, despite remaining unrepaired DNA double-strand breaks (DSBs). When resection is impaired by CtIP/MRE11 endonuclease inhibition, 53BP1 phosphorylation and RIF1 are sustained due to ongoing ATM signaling. BRCA1 depletion also sustains 53BP1 phosphorylation and RIF1 recruitment. We identify the phosphatase PP4C as having a major role in 53BP1 dephosphorylation and RIF1 release. BRCA1 or PP4C depletion impairs 53BP1 repositioning, EXO1 recruitment, and HR progression. 53BP1 or RIF1 depletion restores resection, RAD51 loading, and HR in PP4C-depleted cells. Our findings suggest that BRCA1 promotes PP4C-dependent 53BP1 dephosphorylation and RIF1 release, directing repair toward HR.
Collapse
Affiliation(s)
- Mayu Isono
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan; Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Atsuko Niimi
- Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yoshihiko Hagiwara
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan; Department of Radiation Oncology, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Ryota Sekine
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Shin-Ya Isobe
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ryotaro Nishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Elena Petricci
- Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena, 53100 Siena, Italy
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Nakano
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Gunma 371-8511, Japan; Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan; Department of Radiation Oncology, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
148
|
Han J, Ruan C, Huen MSY, Wang J, Xie A, Fu C, Liu T, Huang J. BRCA2 antagonizes classical and alternative nonhomologous end-joining to prevent gross genomic instability. Nat Commun 2017; 8:1470. [PMID: 29133916 PMCID: PMC5684403 DOI: 10.1038/s41467-017-01759-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
BRCA2-deficient cells exhibit gross genomic instability, but the underlying mechanisms are not fully understood. Here we report that inactivation of BRCA2 but not RAD51 destabilizes RPA-coated single-stranded DNA (ssDNA) structures at resected DNA double-strand breaks (DSBs) and greatly enhances the frequency of nuclear fragmentation following cell exposure to DNA damage. Importantly, these BRCA2-associated deficits are fueled by the aberrant activation of classical (c)- and alternative (alt)- nonhomologous end-joining (NHEJ), and rely on the well-defined DNA damage signaling pathway involving the pro-c-NHEJ factor 53BP1 and its downstream effector RIF1. We further show that the 53BP1–RIF1 axis promotes toxic end-joining events via the retention of Artemis at DNA damage sites. Accordingly, loss of 53BP1, RIF1, or Artemis prolongs the stability of RPA-coated DSB intermediates in BRCA2-deficient cells and restores nuclear integrity. We propose that BRCA2 antagonizes 53BP1, RIF1, and Artemis-dependent c-NHEJ and alt-NHEJ to prevent gross genomic instability in a RAD51-independent manner. The genomic instability phenotype characteristic of BRCA2-deficient cells is not fully mechanistically understood. Here the authors show BRCA2 inactivation destabilizes RPA-coated single-stranded DNA and leads to toxic non homologous end-joining events.
Collapse
Affiliation(s)
- Jinhua Han
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chunyan Ruan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Anyong Xie
- Institute of Translational Medicine, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ting Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
149
|
Xu Y, Ning S, Wei Z, Xu R, Xu X, Xing M, Guo R, Xu D. 53BP1 and BRCA1 control pathway choice for stalled replication restart. eLife 2017; 6:30523. [PMID: 29106372 PMCID: PMC5683755 DOI: 10.7554/elife.30523] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/04/2017] [Indexed: 12/29/2022] Open
Abstract
The cellular pathways that restart stalled replication forks are essential for genome stability and tumor prevention. However, how many of these pathways exist in cells and how these pathways are selectively activated remain unclear. Here, we describe two major fork restart pathways, and demonstrate that their selection is governed by 53BP1 and BRCA1, which are known to control the pathway choice to repair double-strand DNA breaks (DSBs). Specifically, 53BP1 promotes a fork cleavage-free pathway, whereas BRCA1 facilitates a break-induced replication (BIR) pathway coupled with SLX-MUS complex-mediated fork cleavage. The defect in the first pathway, but not DSB repair, in a 53BP1 mutant is largely corrected by disrupting BRCA1, and vice versa. Moreover, PLK1 temporally regulates the switch of these two pathways through enhancing the assembly of the SLX-MUS complex. Our results reveal two distinct fork restart pathways, which are antagonistically controlled by 53BP1 and BRCA1 in a DSB repair-independent manner.
Collapse
Affiliation(s)
- Yixi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Shaokai Ning
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zheng Wei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ran Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xinlin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Mengtan Xing
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
150
|
PTIP chromatin regulator controls development and activation of B cell subsets to license humoral immunity in mice. Proc Natl Acad Sci U S A 2017; 114:E9328-E9337. [PMID: 29078319 PMCID: PMC5676899 DOI: 10.1073/pnas.1707938114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To provide optimal host defense, the full spectrum of antibody-based immunity requires natural antibodies and immunization-induced antigen-specific antibodies. Here we show that the PTIP (Pax transactivation domain-interacting protein) chromatin regulator is induced by B cell activation to potentiate the establishment of steady-state and postimmune serum antibody levels. It does so by promoting activation-associated proliferation and differentiation of all the major B cell subsets, at least in part, through regulating the NF-κB pathway. With the genetic basis still unknown for a majority of patients with common variable immunodeficiency, further work investigating how PTIP controls cell signaling may generate valuable new insight for human health and disease. B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.
Collapse
|