101
|
Groff AF, Barutcu AR, Lewandowski JP, Rinn JL. Enhancers in the Peril lincRNA locus regulate distant but not local genes. Genome Biol 2018; 19:219. [PMID: 30537984 PMCID: PMC6290506 DOI: 10.1186/s13059-018-1589-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Recently, it has become clear that some promoters function as long-range regulators of gene expression. However, direct and quantitative assessment of enhancer activity at long intergenic noncoding RNA (lincRNA) or mRNA gene bodies has not been performed. To unbiasedly assess the enhancer capacity across lincRNA and mRNA loci, we performed a massively parallel reporter assay (MPRA) on six lincRNA loci and their closest protein-coding neighbors. RESULTS For both gene classes, we find significantly more MPRA activity in promoter regions than in gene bodies. However, three lincRNA loci, Lincp21, LincEnc1, and Peril, and one mRNA locus, Morc2a, display significant enhancer activity within their gene bodies. We hypothesize that such peaks may mark long-range enhancers, and test this in vivo using RNA sequencing from a knockout mouse model and high-throughput chromosome conformation capture (Hi-C). We find that ablation of a high-activity MPRA peak in the Peril gene body leads to consistent dysregulation of Mccc1 and Exosc9 in the neighboring topologically associated domain (TAD). This occurs irrespective of Peril lincRNA expression, demonstrating this regulation is DNA-dependent. Hi-C confirms long-range contacts with the neighboring TAD, and these interactions are altered upon Peril knockout. Surprisingly, we do not observe consistent regulation of genes within the local TAD. Together, these data suggest a long-range enhancer-like function for the Peril gene body. CONCLUSIONS A multi-faceted approach combining high-throughput enhancer discovery with genetic models can connect enhancers to their gene targets and provides evidence of inter-TAD gene regulation.
Collapse
Affiliation(s)
- Abigail F Groff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Biochemistry, BioFrontiers, University of Colorado Boulder, Boulder, CO, 80301, USA.
| |
Collapse
|
102
|
Jiao J, Jin Y, Zheng M, Zhang H, Yuan M, Lv Z, Odhiambo W, Yu X, Zhang P, Li C, Ma Y, Ji Y. AID and TET2 co-operation modulates FANCA expression by active demethylation in diffuse large B cell lymphoma. Clin Exp Immunol 2018; 195:190-201. [PMID: 30357811 DOI: 10.1111/cei.13227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2018] [Indexed: 01/06/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is traced to a mature B malignance carrying abnormal activation-induced cytidine deaminase (AID) expression. AID activity initially focuses on deamination of cytidine to uracil to generate somatic hypermutation and class-switch recombination of the immunoglobulin (Ig), but recently it has been implicated in DNA demethylation of genes required for B cell development and proliferation in the germinal centre (GC). However, whether AID activity on mutation or demethylation of genes involves oncogenesis of DLBCL has not been well characterized. Our data demonstrate that the proto-oncogene Fanconi anaemia complementation group A (FANCA) is highly expressed in DLBCL patients and cell lines, respectively. AID recruits demethylation enzyme ten eleven translocation family member (TET2) to bind the FANCA promoter. As a result, FANCA is demethylated and its expression increases in DLBCL. On the basis of our findings, we have developed a new therapeutic strategy to significantly inhibit DLBCL cell growth by combination of the proteasome inhibitor bortezomib with AID and TET2 depletion. These findings support a novel mechanism that AID has a crucial role in active demethylation for oncogene activation in DLBCL.
Collapse
Affiliation(s)
- J Jiao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Y Jin
- Department of Pathology, the 2nd Affiliated hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - M Zheng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - H Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - M Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Z Lv
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - W Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - X Yu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - P Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - C Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Y Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Y Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| |
Collapse
|
103
|
Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat Commun 2018; 9:4001. [PMID: 30275490 PMCID: PMC6167379 DOI: 10.1038/s41467-018-06354-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3′ UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics. The driver mutations for the two main molecular subgroups of diffuse large B-cell lymphoma (DLBCL) are poorly defined. Here, an integrative genomics analysis identifies 3′ UTR NFKBIZ mutations within the activated B-cell DLBCL subgroup and small FCGR2B amplifications in the germinal centre B-cell DLBCL subgroup.
Collapse
|
104
|
Guiding a mutator in antibody diversification. Cell Res 2018; 28:963-964. [PMID: 30171189 DOI: 10.1038/s41422-018-0085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
105
|
Lin SG, Ba Z, Alt FW, Zhang Y. RAG Chromatin Scanning During V(D)J Recombination and Chromatin Loop Extrusion are Related Processes. Adv Immunol 2018; 139:93-135. [PMID: 30249335 DOI: 10.1016/bs.ai.2018.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An effective adaptive immune system depends on the ability of developing B and T cells to generate diverse immunoglobulin (Ig) and T cell receptor repertoires, respectively. Such diversity is achieved through a programmed somatic recombination process whereby germline V, D, and J segments of antigen receptor loci are assembled to form the variable region V(D)J exons of Ig and TCRs. Studies of this process, termed V(D)J recombination, have provided key insights into our understanding of a variety of general gene regulatory and DNA repair processes over the last several decades. V(D)J recombination is initiated by the RAG endonuclease which generates DNA double-stranded breaks at the borders of V, D, and J segments. In this review, we cover recent work that has elucidated RAG structure and work that revealed that RAG has a novel chromatin scanning activity, likely mediated by chromatin loop extrusion, that contributes to its ability to locate V, D, J gene segment substrates within large chromosomal loop domains bounded by CTCF-binding elements (CBEs). This latter function, coupled with the role CBE-based chromatin loop domains and subdomains within them play in focusing V(D)J recombination activity within antigen receptor loci, provide mechanistic explanations for long-standing questions regarding V(D)J segment usage diversification and in limiting potentially deleterious off-target RAG-initiated recombination events genome-wide. This review will focus mainly on studies of the mouse Ig heavy chain locus, but the principles described also apply to other Ig loci and to TCR loci in mice and humans.
Collapse
Affiliation(s)
- Sherry G Lin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States.
| | - Yu Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
106
|
Chen J, Cai Z, Bai M, Yu X, Zhang C, Cao C, Hu X, Wang L, Su R, Wang D, Wang L, Yao Y, Ye R, Hou B, Yu Y, Yu S, Li J, Xue Y. The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Res 2018; 28:981-995. [PMID: 30143796 PMCID: PMC6170407 DOI: 10.1038/s41422-018-0076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) mediates class switching by binding to a small fraction of single-stranded DNA (ssDNA) to diversify the antibody repertoire. The precise mechanism for highly selective AID targeting in the genome has remained elusive. Here, we report an RNA-binding protein, ROD1 (also known as PTBP3), that is both required and sufficient to define AID-binding sites genome-wide in activated B cells. ROD1 interacts with AID via an ultraconserved loop, which proves to be critical for the recruitment of AID to ssDNA using bi-directionally transcribed nascent RNAs as stepping stones. Strikingly, AID-specific mutations identified in human patients with hyper-IgM syndrome type 2 (HIGM2) completely disrupt the AID interacting surface with ROD1, thereby abolishing the recruitment of AID to immunoglobulin (Ig) loci. Together, our results suggest that bi-directionally transcribed RNA traps the RNA-binding protein ROD1, which serves as a guiding system for AID to load onto specific genomic loci to induce DNA rearrangement during immune responses.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Meizhu Bai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China
| | - Xiaohua Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chao Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xihao Hu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, 464000, Xinyang, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Di Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Rong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
107
|
Alt FW, Schwer B. DNA double-strand breaks as drivers of neural genomic change, function, and disease. DNA Repair (Amst) 2018; 71:158-163. [PMID: 30195640 DOI: 10.1016/j.dnarep.2018.08.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early work from about two decades ago implicated DNA double-strand break (DSB) formation and repair in neuronal development. Findings emerging from recent studies of DSBs in proliferating neural progenitors and in mature, non-dividing neurons suggest important roles of DSBs in brain physiology, aging, cancer, psychiatric and neurodegenerative disorders. We provide an overview of some findings and speculate on what may lie ahead.
Collapse
Affiliation(s)
- Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States.
| | - Bjoern Schwer
- Department of Neurological Surgery and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
108
|
Zhao YT, Kwon DY, Johnson BS, Fasolino M, Lamonica JM, Kim YJ, Zhao BS, He C, Vahedi G, Kim TH, Zhou Z. Long genes linked to autism spectrum disorders harbor broad enhancer-like chromatin domains. Genome Res 2018; 28:933-942. [PMID: 29848492 PMCID: PMC6028126 DOI: 10.1101/gr.233775.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Genetic variants associated with autism spectrum disorders (ASDs) are enriched in genes encoding synaptic proteins and chromatin regulators. Although the role of synaptic proteins in ASDs is widely studied, the mechanism by which chromatin regulators contribute to ASD risk remains poorly understood. Upon profiling and analyzing the transcriptional and epigenomic features of genes expressed in the cortex, we uncovered a unique set of long genes that contain broad enhancer-like chromatin domains (BELDs) spanning across their entire gene bodies. Analyses of these BELD genes show that they are highly transcribed with frequent RNA polymerase II (Pol II) initiation and low Pol II pausing, and they exhibit frequent chromatin-chromatin interactions within their gene bodies. These BELD features are conserved from rodents to humans, are enriched in genes involved in synaptic function, and appear post-natally concomitant with synapse development. Importantly, we find that BELD genes are highly implicated in neurodevelopmental disorders, particularly ASDs, and that their expression is preferentially down-regulated in individuals with idiopathic autism. Finally, we find that the transcription of BELD genes is particularly sensitive to alternations in ASD-associated chromatin regulators. These findings suggest that the epigenomic regulation of BELD genes is important for post-natal cortical development and lend support to a model by which mutations in chromatin regulators causally contribute to ASDs by preferentially impairing BELD gene transcription.
Collapse
Affiliation(s)
- Ying-Tao Zhao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Deborah Y Kwon
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Brian S Johnson
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Maria Fasolino
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Janine M Lamonica
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Yoon Jung Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
109
|
Cuartero S, Merkenschlager M. Three-dimensional genome organization in normal and malignant haematopoiesis. Curr Opin Hematol 2018; 25:323-328. [PMID: 29702522 DOI: 10.1097/moh.0000000000000436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The three-dimensional organization of the genome inside the nucleus impacts on key aspects of genome function, including transcription, DNA replication and repair. The chromosome maintenance complex cohesin and the DNA binding protein CTCF cooperate to drive the formation of self-interacting topological domains. This facilitates transcriptional regulation via enhancer-promoter interactions, controls the distribution and release of torsional strain, and affects the frequency with which particular translocations arise, based on the spatial proximity of translocation partners. Here we discuss recent insights into the mechanisms of three-dimensional genome organization, their relationship to haematopoietic differentiation and malignant transformation. RECENT FINDINGS Cohesin mutations are frequently found in myeloid malignancies. Significantly, cohesin mutations can drive increased self-renewal of haematopoietic stem and progenitor cells, which may facilitate the accumulation of genetic lesions and leukaemic transformation. It is therefore important to elucidate the mechanisms that link cohesin to pathways that regulate the balance between self-renewal and differentiation. Chromosomal translocations are key to lymphoid malignancies, and recent findings link three-dimensional genome organization to the frequency and the genomic position of DNA double strand breaks. SUMMARY Three-dimensional genome organization can help explain genome function in normal and malignant haematopoiesis.
Collapse
Affiliation(s)
- Sergi Cuartero
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
110
|
Pasqualucci L, Dalla-Favera R. Genetics of diffuse large B-cell lymphoma. Blood 2018; 131:2307-2319. [PMID: 29666115 PMCID: PMC5969374 DOI: 10.1182/blood-2017-11-764332] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/15/2018] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most frequent subtype of lymphoid malignancy, remains a significant clinical challenge, as ∼30% of patients are not cured. Over the past decade, remarkable progress has been made in the understanding of the pathogenesis of this disease, spurred by the implementation of powerful genomic technologies that enabled the definition of its genetic and epigenetic landscape. These studies have uncovered a multitude of genomic alterations that contribute to the initiation and maintenance of the tumor clone by disrupting biological functions known to be critical for the normal biology of its cells of origin, germinal center B cells. The identified alterations involve epigenetic remodeling, block of differentiation, escape from immune surveillance, and the constitutive activation of several signal transduction pathways. This wealth of new information offers unique opportunities for the development of improved diagnostic and prognostic tools that could help guide the clinical management of DLBCL patients. Furthermore, a number of the mutated genes identified are potentially actionable targets that are currently being explored for the development of novel therapeutic strategies. This review summarizes current knowledge of the most common genetic alterations associated with DLBCL in relation to their functional impact on the malignant transformation process, and discusses their clinical implications for mechanism-based therapeutics.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics
- Department of Pathology and Cell Biology
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics
- Department of Pathology and Cell Biology
- Department of Genetics, and
- Department of Microbiology and Immunology, Columbia University, New York, NY
| |
Collapse
|
111
|
Ribeiro de Almeida C, Dhir S, Dhir A, Moghaddam AE, Sattentau Q, Meinhart A, Proudfoot NJ. RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Mol Cell 2018; 70:650-662.e8. [PMID: 29731414 PMCID: PMC5971202 DOI: 10.1016/j.molcel.2018.04.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Class switch recombination (CSR) at the immunoglobulin heavy-chain (IgH) locus is associated with the formation of R-loop structures over switch (S) regions. While these often occur co-transcriptionally between nascent RNA and template DNA, we now show that they also form as part of a post-transcriptional mechanism targeting AID to IgH S-regions. This depends on the RNA helicase DDX1 that is also required for CSR in vivo. DDX1 binds to G-quadruplex (G4) structures present in intronic switch transcripts and converts them into S-region R-loops. This in turn targets the cytidine deaminase enzyme AID to S-regions so promoting CSR. Notably R-loop levels over S-regions are diminished by chemical stabilization of G4 RNA or by the expression of a DDX1 ATPase-deficient mutant that acts as a dominant-negative protein to reduce CSR efficiency. In effect, we provide evidence for how S-region transcripts interconvert between G4 and R-loop structures to promote CSR in the IgH locus.
Collapse
Affiliation(s)
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Amin E Moghaddam
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Quentin Sattentau
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK.
| |
Collapse
|
112
|
Castiblanco DP, Norton DD, Maul RW, Gearhart PJ. J H6 downstream intronic sequence is dispensable for RNA polymerase II accumulation and somatic hypermutation of the variable gene in Ramos cells. Mol Immunol 2018; 97:101-108. [PMID: 29625296 DOI: 10.1016/j.molimm.2018.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/30/2018] [Indexed: 02/03/2023]
Abstract
Activation-induced deaminase (AID) introduces nucleotide substitutions within the variable region of immunoglobulin genes to promote antibody diversity. This activity, which is limited to 1.5 kb downstream of the variable gene promoter, mutates both the coding exon and downstream intronic sequences. We recently reported that RNA polymerase II accumulates in these regions during transcription in mice. This build-up directly correlates with the area that is accessible to AID, and manipulation of RNA polymerase II levels alters the mutation frequency. To address whether the intronic DNA sequence by itself can regulate RNA polymerase II accumulation and promote mutagenesis, we deleted 613 bp of DNA downstream of the JH6 intron in the human Ramos B cell line. The loss of this sequence did not alter polymerase abundance or mutagenesis in the variable gene, suggesting that most of the intronic sequence is dispensable for somatic hypermutation.
Collapse
Affiliation(s)
- Diana P Castiblanco
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Darrell D Norton
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
113
|
A licensing step links AID to transcription elongation for mutagenesis in B cells. Nat Commun 2018; 9:1248. [PMID: 29593215 PMCID: PMC5871760 DOI: 10.1038/s41467-018-03387-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/08/2018] [Indexed: 01/01/2023] Open
Abstract
Activation-induced deaminase (AID) mutates the immunoglobulin (Ig) genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR) in B cells, thus underpinning antibody responses. AID mutates a few hundred other loci, but most AID-occupied genes are spared. The mechanisms underlying productive deamination versus non-productive AID targeting are unclear. Here we show that three clustered arginine residues define a functional AID domain required for SHM, CSR, and off-target activity in B cells without affecting AID deaminase activity or Escherichia coli mutagenesis. Both wt AID and mutants with single amino acid replacements in this domain broadly associate with Spt5 and chromatin and occupy the promoter of AID target genes. However, mutant AID fails to occupy the corresponding gene bodies and loses association with transcription elongation factors. Thus AID mutagenic activity is determined not by locus occupancy but by a licensing mechanism, which couples AID to transcription elongation. Activation-induced deaminase (AID) is important for inducing desirable mutations at the B cell receptor genes for effective antibody responses. Here the authors show that three key arginine residues of AID link AID-chromatin association with transcription elongation to license AID for specific mutagenesis in B cells.
Collapse
|
114
|
Control of translational activation by PIM kinase in activated B-cell diffuse large B-cell lymphoma confers sensitivity to inhibition by PIM447. Oncotarget 2018; 7:63362-63373. [PMID: 27556513 PMCID: PMC5325370 DOI: 10.18632/oncotarget.11457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/05/2016] [Indexed: 12/12/2022] Open
Abstract
The PIM family kinases promote growth and survival of tumor cells and are expressed in a wide variety of human cancers. Their potential as therapeutic targets, however, is complicated by overlapping activities with multiple other pathways and remains poorly defined in most clinical scenarios. Here we explore activity of the new pan-PIM inhibitor PIM447 in a variety of lymphoid-derived tumors. We find strong activity in cell lines derived from the activated B-cell subtype of diffuse large B-cell lymphoma (ABC-DLBCL). Sensitive lines show lost activation of the mTORC1 signaling complex and subsequent lost activation of cap-dependent protein translation. In addition, we characterize recurrent PIM1 protein-coding mutations found in DLBCL clinical samples and find most preserve the wild-type protein's ability to protect cells from apoptosis but do not bypass activity of PIM447. Pan-PIM inhibition therefore may have an important role to play in the therapy of selected ABC-DLBCL cases.
Collapse
|
115
|
Álvarez-Prado ÁF, Pérez-Durán P, Pérez-García A, Benguria A, Torroja C, de Yébenes VG, Ramiro AR. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med 2018; 215:761-771. [PMID: 29374026 PMCID: PMC5839764 DOI: 10.1084/jem.20171738] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022] Open
Abstract
Activation-induced deaminase (AID) initiates antibody diversification in germinal center (GC) B cells through the deamination of cytosines on immunoglobulin genes. AID can also target other regions in the genome, triggering mutations or chromosome translocations, with major implications for oncogenic transformation. However, understanding the specificity of AID has proved extremely challenging. We have sequenced at very high depth >1,500 genomic regions from GC B cells and identified 275 genes targeted by AID, including 30 of the previously known 35 AID targets. We have also identified the most highly mutated hotspot for AID activity described to date. Furthermore, integrative analysis of the molecular features of mutated genes coupled to machine learning has produced a powerful predictive tool for AID targets. We also have found that base excision repair and mismatch repair back up each other to faithfully repair AID-induced lesions. Finally, our data establish a novel link between AID mutagenic activity and lymphomagenesis.
Collapse
Affiliation(s)
- Ángel F Álvarez-Prado
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Pablo Pérez-Durán
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Arantxa Pérez-García
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Virginia G de Yébenes
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
116
|
Liu X, Meng FL. Generation of Genomic Alteration from Cytidine Deamination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:49-64. [DOI: 10.1007/978-981-13-0593-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
117
|
Histone methyltransferase MMSET promotes AID-mediated DNA breaks at the donor switch region during class switch recombination. Proc Natl Acad Sci U S A 2017; 114:E10560-E10567. [PMID: 29158395 DOI: 10.1073/pnas.1701366114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In B cells, Ig class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID), the activity of which leads to DNA double-strand breaks (DSBs) within IgH switch (S) regions. Preferential targeting of AID-mediated DSBs to S sequences is critical for allowing diversification of antibody functions, while minimizing potential off-target oncogenic events. Here, we used gene targeted inactivation of histone methyltransferase (HMT) multiple myeloma SET domain (MMSET) in mouse B cells and the CH12F3 cell line to explore its role in CSR. We find that deletion of MMSET-II, the isoform containing the catalytic SET domain, inhibits CSR without affecting either IgH germline transcription or joining of DSBs within S regions by classical nonhomologous end joining (C-NHEJ). Instead, we find that MMSET-II inactivation leads to decreased AID recruitment and DSBs at the upstream donor Sμ region. Our findings suggest a role for the HMT MMSET in promoting AID-mediated DNA breaks during CSR.
Collapse
|
118
|
Abdouni HS, King JJ, Ghorbani A, Fifield H, Berghuis L, Larijani M. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID. Mol Immunol 2017; 93:94-106. [PMID: 29161581 DOI: 10.1016/j.molimm.2017.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 11/28/2022]
Abstract
Activation-induced cytidine deaminase (AID) converts cytidine to uridine at Immunoglobulin (Ig) loci, initiating somatic hypermutation and class switching of antibodies. In vitro, AID acts on single stranded DNA (ssDNA), but neither double-stranded DNA (dsDNA) oligonucleotides nor RNA, and it is believed that transcription is the in vivo generator of ssDNA targeted by AID. It is also known that the Ig loci, particularly the switch (S) regions targeted by AID are rich in transcription-generated DNA/RNA hybrids. Here, we examined the binding and catalytic behavior of purified AID on DNA/RNA hybrid substrates bearing either random sequences or GC-rich sequences simulating Ig S regions. If substrates were made up of a random sequence, AID preferred substrates composed entirely of DNA over DNA/RNA hybrids. In contrast, if substrates were composed of S region sequences, AID preferred to mutate DNA/RNA hybrids over substrates composed entirely of DNA. Accordingly, AID exhibited a significantly higher affinity for binding DNA/RNA hybrid substrates composed specifically of S region sequences, than any other substrates composed of DNA. Thus, in the absence of any other cellular processes or factors, AID itself favors binding and mutating DNA/RNA hybrids composed of S region sequences. AID:DNA/RNA complex formation and supporting mutational analyses suggest that recognition of DNA/RNA hybrids is an inherent structural property of AID.
Collapse
Affiliation(s)
- Hala S Abdouni
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Justin J King
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Atefeh Ghorbani
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Heather Fifield
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Lesley Berghuis
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Mani Larijani
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada.
| |
Collapse
|
119
|
Amin AD, Peters TL, Li L, Rajan SS, Choudhari R, Puvvada SD, Schatz JH. Diffuse large B-cell lymphoma: can genomics improve treatment options for a curable cancer? Cold Spring Harb Mol Case Stud 2017; 3:a001719. [PMID: 28487884 PMCID: PMC5411687 DOI: 10.1101/mcs.a001719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene-expression profiling and next-generation sequencing have defined diffuse large B-cell lymphoma (DLBCL), the most common lymphoma diagnosis, as a heterogeneous group of subentities. Despite ongoing explosions of data illuminating disparate pathogenic mechanisms, however, the five-drug chemoimmunotherapy combination R-CHOP remains the frontline standard treatment. This has not changed in 15 years, since the anti-CD20 monoclonal antibody rituximab was added to the CHOP backbone, which first entered use in the 1970s. At least a third of patients are not cured by R-CHOP, and relapsed or refractory DLBCL is fatal in ∼90%. Targeted small-molecule inhibitors against distinct molecular pathways activated in different subgroups of DLBCL have so far translated poorly into the clinic, justifying the ongoing reliance on R-CHOP and other long-established chemotherapy-driven combinations. New drugs and improved identification of biomarkers in real time, however, show potential to change the situation eventually, despite some recent setbacks. Here, we review established and putative molecular drivers of DLBCL identified through large-scale genomics, highlighting among other things the care that must be taken when differentiating drivers from passengers, which is influenced by the promiscuity of activation-induced cytidine deaminase. Furthermore, we discuss why, despite having so much genomic data available, it has been difficult to move toward personalized medicine for this umbrella disorder and some steps that may be taken to hasten the process.
Collapse
Affiliation(s)
- Amit Dipak Amin
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Tara L Peters
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Lingxiao Li
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Soumya Sundara Rajan
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ramesh Choudhari
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Soham D Puvvada
- Department of Medicine, Division of Hematology-Oncology, University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85719, USA
| | - Jonathan H Schatz
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
120
|
Boulianne B, Feldhahn N. Transcribing malignancy: transcription-associated genomic instability in cancer. Oncogene 2017; 37:971-981. [DOI: 10.1038/onc.2017.402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
|
121
|
Abstract
PURPOSE OF REVIEW The success of targeted therapies fostered the development of increasingly specific and effective therapeutics for B-cell malignancies. However, cancer plasticity facilitates disease relapse, whereby intratumoral heterogeneity fuels tumor evolution into a more aggressive and resistant form. Understanding cancer heterogeneity and the evolutionary processes underlying disease relapse is key for overcoming this limitation of current treatment strategies. In the present review, we delineate the current understanding of cancer evolution and the advances in both genetic and epigenetic fields, with a focus on non-Hodgkin B-cell lymphomas. RECENT FINDINGS The use of massively parallel sequencing has provided insights into tumor heterogeneity, allowing determination of intratumoral genetic and epigenetic variability and identification of cancer driver mutations and (epi-)mutations. Increased heterogeneity prior to treatment results in faster disease relapse, and in many cases studying pretreatment clonal admixtures predicts the future evolutionary trajectory of relapsed disease. SUMMARY Understanding the mechanisms underlying tumor heterogeneity and evolution provides valuable tools for the design of therapy within an evolutionary framework. This framework will ultimately aid in accurately predicting the evolutionary paths of B-cell malignancies, thereby guiding therapeutic strategies geared at directly anticipating and addressing cancer evolution.
Collapse
|
122
|
Vitelli V, Galbiati A, Iannelli F, Pessina F, Sharma S, d'Adda di Fagagna F. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks. Annu Rev Genomics Hum Genet 2017; 18:87-113. [PMID: 28859573 DOI: 10.1146/annurev-genom-091416-035314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.
Collapse
Affiliation(s)
- Valerio Vitelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | | | - Fabio Iannelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabio Pessina
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Sheetal Sharma
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabrizio d'Adda di Fagagna
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy; .,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Pavia 27100, Italy
| |
Collapse
|
123
|
Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit Rev Oncol Hematol 2017; 120:77-85. [PMID: 29198340 DOI: 10.1016/j.critrevonc.2017.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs have emerged as essential mediators of cellular biology, differentiation and malignant transformation. LncRNAs have a broad range of possible functions at the transcriptional, posttranscriptional and protein level and their aberrant expression significantly contributes to the hallmarks of cancer cell biology. In addition, their high tissue- and cell-type specificity makes lncRNAs especially interesting as biomarkers, prognostic factors or specific therapeutic targets. Here, we review current knowledge on lncRNA expression changes during normal B-cell development, indicating essential functions in the differentiation process. In addition we address lncRNA deregulation in B-cell malignancies, the putative prognostic value of this as well as the molecular functions of multiple deregulated lncRNAs. Altogether, the discussed work indicates major roles for lncRNAs in normal and malignant B cells affecting oncogenic pathways as well as the response to common therapeutics.
Collapse
|
124
|
Le Noir S, Laffleur B, Carrion C, Garot A, Lecardeur S, Pinaud E, Denizot Y, Skok J, Cogné M. The IgH locus 3' cis-regulatory super-enhancer co-opts AID for allelic transvection. Oncotarget 2017; 8:12929-12940. [PMID: 28088785 PMCID: PMC5355067 DOI: 10.18632/oncotarget.14585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/01/2017] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin heavy chain (IgH) alleles have ambivalent relationships: they feature both allelic exclusion, ensuring monoallelic expression of a single immunoglobulin (Ig) allele, and frequent inter-allelic class-switch recombination (CSR) reassembling genes from both alleles. The IgH locus 3' regulatory region (3'RR) includes several transcriptional cis-enhancers promoting activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM) and CSR, and altogether behaves as a strong super-enhancer. It can also promote deregulated expression of translocated oncogenes during lymphomagenesis. Besides these rare, illegitimate and pathogenic interactions, we now show that under physiological conditions, the 3'RR super-enhancer supports not only legitimate cis- , but also trans-recruitment of AID, contributing to IgH inter-allelic proximity and enabling the super-enhancer on one allele to stimulate biallelic SHM and CSR. Such inter-allelic activating interactions define transvection, a phenomenon well-known in drosophila but rarely observed in mammalian cells, now appearing as a unique feature of the IgH 3'RR super-enhancer.
Collapse
Affiliation(s)
- Sandrine Le Noir
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Brice Laffleur
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Claire Carrion
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Armand Garot
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Sandrine Lecardeur
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Eric Pinaud
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Yves Denizot
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| | - Jane Skok
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michel Cogné
- UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, Limoges, France
| |
Collapse
|
125
|
Choudhary M, Tamrakar A, Singh AK, Jain M, Jaiswal A, Kodgire P. AID Biology: A pathological and clinical perspective. Int Rev Immunol 2017; 37:37-56. [PMID: 28933967 DOI: 10.1080/08830185.2017.1369980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation-induced cytidine deaminase (AID), primarily expressed in activated mature B lymphocytes in germinal centers, is the key factor in adaptive immune response against foreign antigens. AID is responsible for producing high-affinity and high-specificity antibodies against an infectious agent, through the physiological DNA alteration processes of antibody genes by somatic hypermutation (SHM) and class-switch recombination (CSR) and functions by deaminating deoxycytidines (dC) to deoxyuridines (dU), thereby introducing point mutations and double-stranded chromosomal breaks (DSBs). The beneficial physiological role of AID in antibody diversification is outweighed by its detrimental role in the genesis of several chronic immune diseases, under non-physiological conditions. This review offers a comprehensive and better understanding of AID biology and its pathological aspects, as well as addresses the challenges involved in AID-related cancer therapeutics, based on various recent advances and evidence available in the literature till date. In this article, we discuss ways through which our interpretation of AID biology may reflect upon novel clinical insights, which could be successfully translated into designing clinical trials and improving patient prognosis and disease management.
Collapse
Affiliation(s)
- Meenal Choudhary
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Anubhav Tamrakar
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Amit Kumar Singh
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Monika Jain
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Ankit Jaiswal
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Prashant Kodgire
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| |
Collapse
|
126
|
Activation-induced cytidine deaminase targets SUV4-20-mediated histone H4K20 trimethylation to class-switch recombination sites. Sci Rep 2017; 7:7594. [PMID: 28790320 PMCID: PMC5548798 DOI: 10.1038/s41598-017-07380-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 06/28/2017] [Indexed: 11/22/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) triggers antibody diversification in B cells by catalysing deamination and subsequently mutating immunoglobulin (Ig) genes. Association of AID with RNA Pol II and occurrence of epigenetic changes during Ig gene diversification suggest participation of AID in epigenetic regulation. AID is mutated in hyper-IgM type 2 (HIGM2) syndrome. Here, we investigated the potential role of AID in the acquisition of epigenetic changes. We discovered that AID binding to the IgH locus promotes an increase in H4K20me3. In 293F cells, we demonstrate interaction between co-transfected AID and the three SUV4-20 histone H4K20 methyltransferases, and that SUV4-20H1.2, bound to the IgH switch (S) mu site, is replaced by SUV4-20H2 upon AID binding. Analysis of HIGM2 mutants shows that the AID truncated form W68X is impaired to interact with SUV4-20H1.2 and SUV4-20H2 and is unable to bind and target H4K20me3 to the Smu site. We finally show in mouse primary B cells undergoing class-switch recombination (CSR) that AID deficiency associates with decreased H4K20me3 levels at the Smu site. Our results provide a novel link between SUV4-20 enzymes and CSR and offer a new aspect of the interplay between AID and histone modifications in setting the epigenetic status of CSR sites.
Collapse
|
127
|
Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H. AID Recognizes Structured DNA for Class Switch Recombination. Mol Cell 2017; 67:361-373.e4. [PMID: 28757211 PMCID: PMC5771415 DOI: 10.1016/j.molcel.2017.06.034] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates both class switch recombination (CSR) and somatic hypermutation (SHM) in antibody diversification. Mechanisms of AID targeting and catalysis remain elusive despite its critical immunological roles and off-target effects in tumorigenesis. Here, we produced active human AID and revealed its preferred recognition and deamination of structured substrates. G-quadruplex (G4)-containing substrates mimicking the mammalian immunoglobulin switch regions are particularly good AID substrates in vitro. By solving crystal structures of maltose binding protein (MBP)-fused AID alone and in complex with deoxycytidine monophosphate, we surprisingly identify a bifurcated substrate-binding surface that explains structured substrate recognition by capturing two adjacent single-stranded overhangs simultaneously. Moreover, G4 substrates induce cooperative AID oligomerization. Structure-based mutations that disrupt bifurcated substrate recognition or oligomerization both compromise CSR in splenic B cells. Collectively, our data implicate intrinsic preference of AID for structured substrates and uncover the importance of G4 recognition and oligomerization of AID in CSR.
Collapse
Affiliation(s)
- Qi Qiao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Li Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fei-Long Meng
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce K Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
128
|
RNA Polymerase Collision versus DNA Structural Distortion: Twists and Turns Can Cause Break Failure. Mol Cell 2017; 62:327-334. [PMID: 27153532 DOI: 10.1016/j.molcel.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The twisting of DNA due to the movement of RNA polymerases is the basis of numerous classic experiments in molecular biology. Recent mouse genetic models indicate that chromosomal breakage is common at sites of transcriptional turbulence. Two key studies on this point mapped breakpoints to sites of either convergent or divergent transcription but arrived at different conclusions as to which is more detrimental and why. The issue hinges on whether DNA strand separation is the basis for the chromosomal instability or collision of RNA polymerases.
Collapse
|
129
|
Lim J, Giri PK, Kazadi D, Laffleur B, Zhang W, Grinstein V, Pefanis E, Brown LM, Ladewig E, Martin O, Chen Y, Rabadan R, Boyer F, Rothschild G, Cogné M, Pinaud E, Deng H, Basu U. Nuclear Proximity of Mtr4 to RNA Exosome Restricts DNA Mutational Asymmetry. Cell 2017; 169:523-537.e15. [PMID: 28431250 DOI: 10.1016/j.cell.2017.03.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/19/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022]
Abstract
The distribution of sense and antisense strand DNA mutations on transcribed duplex DNA contributes to the development of immune and neural systems along with the progression of cancer. Because developmentally matured B cells undergo biologically programmed strand-specific DNA mutagenesis at focal DNA/RNA hybrid structures, they make a convenient system to investigate strand-specific mutagenesis mechanisms. We demonstrate that the sense and antisense strand DNA mutagenesis at the immunoglobulin heavy chain locus and some other regions of the B cell genome depends upon localized RNA processing protein complex formation in the nucleus. Both the physical proximity and coupled activities of RNA helicase Mtr4 (and senataxin) with the noncoding RNA processing function of RNA exosome determine the strand-specific distribution of DNA mutations. Our study suggests that strand-specific DNA mutagenesis-associated mechanisms will play major roles in other undiscovered aspects of organismic development.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pankaj Kumar Giri
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Veronika Grinstein
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Evangelos Pefanis
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lewis M Brown
- Department of Biological Sciences, Quantitative Proteomics Center, Columbia University, New York, NY 10027, USA
| | - Erik Ladewig
- Departments of Systems Biology and Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ophélie Martin
- Université de Limoges, Centre National de la Recherche Scientifique, CHU Limoges, CRIBL, UMR 7276, 87000 Limoges, France
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Raul Rabadan
- Departments of Systems Biology and Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - François Boyer
- Université de Limoges, Centre National de la Recherche Scientifique, CHU Limoges, CRIBL, UMR 7276, 87000 Limoges, France
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Michel Cogné
- Université de Limoges, Centre National de la Recherche Scientifique, CHU Limoges, CRIBL, UMR 7276, 87000 Limoges, France
| | - Eric Pinaud
- Université de Limoges, Centre National de la Recherche Scientifique, CHU Limoges, CRIBL, UMR 7276, 87000 Limoges, France
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
130
|
Gole B, Mian E, Rall M, Wiesmüller L. Base excision repair proteins couple activation-induced cytidine deaminase and endonuclease G during replication stress-induced MLL destabilization. Leukemia 2017. [PMID: 28626219 DOI: 10.1038/leu.2017.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The breakpoint cluster region of the MLL gene (MLLbcr) is frequently rearranged in therapy-related and infant acute leukaemia, but the destabilizing mechanism is poorly understood. We recently proposed that DNA replication stress results in MLLbcr cleavage via endonuclease G (EndoG) and represents the common denominator of genotoxic therapy-induced MLL destabilization. Here we performed a siRNA screen for new factors involved in replication stress-induced MLL rearrangements employing an enhanced green fluorescent protein-based reporter system. We identified 10 factors acting in line with EndoG in MLLbcr breakage or further downstream in the repair of the MLLbcr breaks, including activation-induced cytidine deaminase (AID), previously proposed to initiate MLLbcr rearrangements in an RNA transcription-dependent mechanism. Further analysis connected AID and EndoG in MLLbcr destabilization via base excision repair (BER) components. We show that replication stress-induced recruitment of EndoG to the MLLbcr and cleavage are AID/BER dependent. Notably, inhibition of the core BER factor Apurinic-apyrimidinic endonuclease 1 protects against MLLbcr cleavage in tumour and human cord blood-derived haematopoietic stem/progenitor cells, harbouring the cells of origin of leukaemia. We propose that off-target binding of AID to the MLLbcr initiates BER-mediated single-stranded DNA cleavage, which causes derailed EndoG activity ultimately resulting in leukaemogenic MLLbcr rearrangements.
Collapse
Affiliation(s)
- B Gole
- Gynaecological Oncology, Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - E Mian
- Gynaecological Oncology, Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - M Rall
- Gynaecological Oncology, Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - L Wiesmüller
- Gynaecological Oncology, Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| |
Collapse
|
131
|
Tubbs A, Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell 2017; 168:644-656. [PMID: 28187286 DOI: 10.1016/j.cell.2017.01.002] [Citation(s) in RCA: 886] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/22/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
Genome instability, defined as higher than normal rates of mutation, is a double-edged sword. As a source of genetic diversity and natural selection, mutations are beneficial for evolution. On the other hand, genomic instability can have catastrophic consequences for age-related diseases such as cancer. Mutations arise either from inactivation of DNA repair pathways or in a repair-competent background due to genotoxic stress from celluar processes such as transcription and replication that overwhelm high-fidelity DNA repair. Here, we review recent studies that shed light on endogenous sources of mutation and epigenomic features that promote genomic instability during cancer evolution.
Collapse
Affiliation(s)
- Anthony Tubbs
- Laboratory of Genome Integrity, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
132
|
Enhancers and chromatin structures: regulatory hubs in gene expression and diseases. Biosci Rep 2017; 37:BSR20160183. [PMID: 28351896 PMCID: PMC5408663 DOI: 10.1042/bsr20160183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/23/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Gene expression requires successful communication between enhancer and promoter regions, whose activities are regulated by a variety of factors and associated with distinct chromatin structures; in addition, functionally related genes and their regulatory repertoire tend to be arranged in the same subchromosomal regulatory domains. In this review, we discuss the importance of enhancers, especially clusters of enhancers (such as super-enhancers), as key regulatory hubs to integrate environmental cues and encode spatiotemporal instructions for genome expression, which are critical for a variety of biological processes governing mammalian development. Furthermore, we emphasize that the enhancer–promoter interaction landscape provides a critical context to understand the aetiologies and mechanisms behind numerous complex human diseases and provides new avenues for effective transcription-based interventions.
Collapse
|
133
|
Abstract
Methodological advances that allow deeper characterization of non-coding elements in the genome have started to reveal the full spectrum of deregulation in cancer. We generated an inducible cell model to track transcriptional changes after induction of a well-known leukemia-inducing fusion gene, ETV6-RUNX1. Our data revealed widespread transcriptional alterations outside coding elements in the genome. This adds to the growing list of various alterations in the non-coding genome in cancer and pinpoints their role in diseased cellular state.
Collapse
Affiliation(s)
- Susanna Teppo
- a Tampere Center for Child Health Research, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , Tampere , Finland
| | - Merja Heinäniemi
- b Institute of Biomedicine, School of Medicine , University of Eastern Finland , Kuopio , Finland
| | - Olli Lohi
- a Tampere Center for Child Health Research, Faculty of Medicine and Life Sciences , University of Tampere and Tampere University Hospital , Tampere , Finland
| |
Collapse
|
134
|
King JJ, Larijani M. A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrödinger's CATalytic Pocket. Front Immunol 2017; 8:351. [PMID: 28439266 PMCID: PMC5382155 DOI: 10.3389/fimmu.2017.00351] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) and its relative APOBEC3 cytidine deaminases boost immune response by mutating immune or viral genes. Because of their genome-mutating activities, AID/APOBECs are also drivers of tumorigenesis. Due to highly charged surfaces, extensive non-specific protein-protein/nucleic acid interactions, formation of polydisperse oligomers, and general insolubility, structure elucidation of these proteins by X-ray crystallography and NMR has been challenging. Hence, almost all available AID/APOBEC structures are of mutated and/or truncated versions. In 2015, we reported a functional structure for AID using a combined computational-biochemical approach. In so doing, we described a new regulatory mechanism that is a first for human DNA/RNA-editing enzymes. This mechanism involves dynamic closure of the catalytic pocket. Subsequent X-ray and NMR studies confirmed our discovery by showing that other APOBEC3s also close their catalytic pockets. Here, we highlight catalytic pocket closure as an emerging and important regulatory mechanism of AID/APOBEC3s. We focus on three sub-topics: first, we propose that variable pocket closure rates across AID/APOBEC3s underlie differential activity in immunity and cancer and review supporting evidence. Second, we discuss dynamic pocket closure as an ever-present internal regulator, in contrast to other proposed regulatory mechanisms that involve extrinsic binding partners. Third, we compare the merits of classical approaches of X-ray and NMR, with that of emerging computational-biochemical approaches, for structural elucidation specifically for AID/APOBEC3s.
Collapse
Affiliation(s)
- Justin J. King
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
135
|
Yang B, Liu F, Ren C, Ouyang Z, Xie Z, Bo X, Shu W. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics 2017; 33:1930-1936. [DOI: 10.1093/bioinformatics/btx105] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/16/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Bite Yang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Feng Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Information, The 188th Hospital of Chaozhou, Chaozhou, China
| | - Chao Ren
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhangyi Ouyang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ziwei Xie
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenjie Shu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
136
|
Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature 2017; 542:489-493. [PMID: 28199309 PMCID: PMC5382874 DOI: 10.1038/nature21406] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients.
Collapse
|
137
|
Cohen AJ, Saiakhova A, Corradin O, Luppino JM, Lovrenert K, Bartels CF, Morrow JJ, Mack SC, Dhillon G, Beard L, Myeroff L, Kalady MF, Willis J, Bradner JE, Keri RA, Berger NA, Pruett-Miller SM, Markowitz SD, Scacheri PC. Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome. Nat Commun 2017; 8:14400. [PMID: 28169291 PMCID: PMC5309719 DOI: 10.1038/ncomms14400] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
In addition to mutations in genes, aberrant enhancer element activity at non-coding regions of the genome is a key driver of tumorigenesis. Here, we perform epigenomic enhancer profiling of a cohort of more than forty genetically diverse human colorectal cancer (CRC) specimens. Using normal colonic crypt epithelium as a comparator, we identify enhancers with recurrently gained or lost activity across CRC specimens. Of the enhancers highly recurrently activated in CRC, most are constituents of super enhancers, are occupied by AP-1 and cohesin complex members, and originate from primed chromatin. Many activate known oncogenes, and CRC growth can be mitigated through pharmacologic inhibition or genome editing of these loci. Nearly half of all GWAS CRC risk loci co-localize to recurrently activated enhancers. These findings indicate that the CRC epigenome is defined by highly recurrent epigenetic alterations at enhancers which activate a common, aberrant transcriptional programme critical for CRC growth and survival.
Collapse
Affiliation(s)
- Andrea J. Cohen
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Alina Saiakhova
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Olivia Corradin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Jennifer M. Luppino
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Katreya Lovrenert
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Cynthia F. Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - James J. Morrow
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Stephen C. Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, Ohio 44195, USA
| | - Gursimran Dhillon
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Lydia Beard
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Lois Myeroff
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Matthew F. Kalady
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, Ohio 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Department of Colorectal Surgery, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, Ohio 44195, USA
| | - Joseph Willis
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA
| | - Ruth A. Keri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Nathan A. Berger
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Shondra M. Pruett-Miller
- Genome Engineering and iPSC Center, Department of Genetics, Washington University, 4515 McKinley Building, St. Louis, Missouri 63110, USA
| | - Sanford D. Markowitz
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, Ohio 44106, USA
| | - Peter C. Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, Ohio 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| |
Collapse
|
138
|
Bose DA, Donahue G, Reinberg D, Shiekhattar R, Bonasio R, Berger SL. RNA Binding to CBP Stimulates Histone Acetylation and Transcription. Cell 2017; 168:135-149.e22. [PMID: 28086087 DOI: 10.1016/j.cell.2016.12.020] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 10/10/2016] [Accepted: 12/14/2016] [Indexed: 12/29/2022]
Abstract
CBP/p300 are transcription co-activators whose binding is a signature of enhancers, cis-regulatory elements that control patterns of gene expression in multicellular organisms. Active enhancers produce bi-directional enhancer RNAs (eRNAs) and display CBP/p300-dependent histone acetylation. Here, we demonstrate that CBP binds directly to RNAs in vivo and in vitro. RNAs bound to CBP in vivo include a large number of eRNAs. Using steady-state histone acetyltransferase (HAT) assays, we show that an RNA binding region in the HAT domain of CBP-a regulatory motif unique to CBP/p300-allows RNA to stimulate CBP's HAT activity. At enhancers where CBP interacts with eRNAs, stimulation manifests in RNA-dependent changes in the histone acetylation mediated by CBP, such as H3K27ac, and by corresponding changes in gene expression. By interacting directly with CBP, eRNAs contribute to the unique chromatin structure at active enhancers, which, in turn, is required for regulation of target genes.
Collapse
Affiliation(s)
- Daniel A Bose
- Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danny Reinberg
- Department of Molecular Pharmacology and Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building, Room 719, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Roberto Bonasio
- Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
139
|
Lingering Questions about Enhancer RNA and Enhancer Transcription-Coupled Genomic Instability. Trends Genet 2017; 33:143-154. [PMID: 28087167 DOI: 10.1016/j.tig.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/22/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Intergenic and intragenic enhancers found inside topologically associated regulatory domains (TADs) express noncoding RNAs, known as enhancer RNAs (eRNAs). Recent studies have indicated these eRNAs play a role in gene regulatory networks by controlling promoter and enhancer interactions and topology of higher-order chromatin structure. Misregulation of enhancer and promoter associated noncoding RNAs (ncRNAs) could stabilize deleterious secondary DNA structures, noncoding RNA associated DNA/RNA hybrid formation, and promote collisions of transcription complexes with replisomes. It is revealing that many chromosomal aberrations, some associated with malignancies, are present inside enhancer and/or promoter sequences. Here, we expand on current concepts to discuss enhancer RNAs and enhancer transcription, and how enhancer transcription influences genomic organization and integrity.
Collapse
|
140
|
Laffleur B, Basu U, Lim J. RNA Exosome and Non-coding RNA-Coupled Mechanisms in AID-Mediated Genomic Alterations. J Mol Biol 2017; 429:3230-3241. [PMID: 28069372 DOI: 10.1016/j.jmb.2016.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022]
Abstract
The eukaryotic RNA exosome is a well-conserved protein complex with ribonuclease activity implicated in RNA metabolism. Various families of non-coding RNAs have been identified as substrates of the complex, underscoring its role as a non-coding RNA processing/degradation unit. However, the role of RNA exosome and its RNA processing activity on DNA mutagenesis/alteration events have not been investigated until recently. B lymphocytes use two DNA alteration mechanisms, class switch recombination (CSR) and somatic hypermutation (SHM), to re-engineer their antibody gene expressing loci until a tailored antibody gene for a specific antigen is satisfactorily generated. CSR and SHM require the essential activity of the DNA activation-induced cytidine deaminase (AID). Causing collateral damage to the B-cell genome during CSR and SHM, AID induces unwanted (and sometimes oncogenic) mutations at numerous non-immunoglobulin gene sequences. Recent studies have revealed that AID's DNA mutator activity is regulated by the RNA exosome complex, thus providing an example of a mechanism that relates DNA mutagenesis to RNA processing. Here, we review the emergent functions of RNA exosome during CSR, SHM, and other chromosomal alterations in B cells, and discuss implications relevant to mechanisms that maintain B-cell genomic integrity.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
141
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
142
|
Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
143
|
Wang Q, Kieffer-Kwon KR, Oliveira TY, Mayer CT, Yao K, Pai J, Cao Z, Dose M, Casellas R, Jankovic M, Nussenzweig MC, Robbiani DF. The cell cycle restricts activation-induced cytidine deaminase activity to early G1. J Exp Med 2016; 214:49-58. [PMID: 27998928 PMCID: PMC5206505 DOI: 10.1084/jem.20161649] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023] Open
Abstract
Wang et al. show that antibody gene deamination by activation-induced cytidine deaminase (AID) is restricted to a short time window in early G1 as a result of AID’s transient nuclear localization and accessibility of the target sites. Activation-induced cytidine deaminase (AID) converts cytosine into uracil to initiate somatic hypermutation (SHM) and class switch recombination (CSR) of antibody genes. In addition, this enzyme produces DNA lesions at off-target sites that lead to mutations and chromosome translocations. However, AID is mostly cytoplasmic, and how and exactly when it accesses nuclear DNA remains enigmatic. Here, we show that AID is transiently in spatial contact with genomic DNA from the time the nuclear membrane breaks down in prometaphase until early G1, when it is actively exported into the cytoplasm. Consistent with this observation, the immunoglobulin (Igh) gene deamination as measured by uracil accumulation occurs primarily in early G1 after chromosomes decondense. Altering the timing of cell cycle–regulated AID nuclear residence increases DNA damage at off-target sites. Thus, the cell cycle–controlled breakdown and reassembly of the nuclear membrane and the restoration of transcription after mitosis constitute an essential time window for AID-induced deamination, and provide a novel DNA damage mechanism restricted to early G1.
Collapse
Affiliation(s)
- Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Kaihui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Joy Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Zhen Cao
- Weill Cornell Medical College and Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Marei Dose
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
144
|
Sapoznik S, Bahar-Shany K, Brand H, Pinto Y, Gabay O, Glick-Saar E, Dor C, Zadok O, Barshack I, Zundelevich A, Gal-Yam EN, Yung Y, Hourvitz A, Korach J, Beiner M, Jacob J, Levanon EY, Barak M, Aviel-Ronen S, Levanon K. Activation-Induced Cytidine Deaminase Links Ovulation-Induced Inflammation and Serous Carcinogenesis. Neoplasia 2016; 18:90-9. [PMID: 26936395 PMCID: PMC5005261 DOI: 10.1016/j.neo.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
In recent years, the notion that ovarian carcinoma results from ovulation-induced inflammation of the fallopian tube epithelial cells (FTECs) has gained evidence. However, the mechanistic pathway for this process has not been revealed yet. In the current study, we propose the mutator protein activation-induced cytidine deaminase (AID) as a link between ovulation-induced inflammation in FTECs and genotoxic damage leading to ovarian carcinogenesis. We show that AID, previously shown to be functional only in B lymphocytes, is expressed in FTECs under physiological conditions, and is induced in vitro upon ovulatory-like stimulation and in vivo in carcinoma-associated FTECs. We also report that AID activity results in epigenetic, genetic and genomic damage in FTECs. Overall, our data provides new insights into the etiology of ovarian carcinogenesis and may set the ground for innovative approaches aimed at prevention and early detection.
Collapse
Affiliation(s)
- Stav Sapoznik
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Keren Bahar-Shany
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Hadar Brand
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Yishay Pinto
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Orshay Gabay
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Efrat Glick-Saar
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Chen Dor
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Oranit Zadok
- Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Iris Barshack
- Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Adi Zundelevich
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Einav Nili Gal-Yam
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel; The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Yuval Yung
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Ariel Hourvitz
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Jacob Korach
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Mario Beiner
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Jasmine Jacob
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Michal Barak
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Sarit Aviel-Ronen
- Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan 52621, Israel; The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Keren Levanon
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel; The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel.
| |
Collapse
|
145
|
van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite Infection, Carcinogenesis and Human Malignancy. EBioMedicine 2016; 15:12-23. [PMID: 27956028 PMCID: PMC5233816 DOI: 10.1016/j.ebiom.2016.11.034] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic. Trypanosoma cruzi has a dual role in cancer development including both carcinogenic and anticancer properties. Initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by EBV. Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas.
We searched MEDLINE database and PubMed for articles from 1970 through June 30, 2016. Search terms used in various combinations were “parasite infection”, “carcinogenesis”, “cancer”, “human malignancy”, “parasite and cancer”, “infection-associated cancer”, “parasite-associated cancer” “schistosomiasis”, “opisthorchiasis”, “malaria”, “Chagas disease”, and “strongyloidiasis”. Articles resulting from these searches and relevant references cited in those articles were selected based on their related topics and were reviewed. Abstracts and reports from meetings were also included. Articles published in English were included.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam.
| | - Paul J Brindley
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, D.C., USA
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Health Focus GmbH, Potsdam, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam.
| |
Collapse
|
146
|
Cortizas EM, Zahn A, Safavi S, Reed JA, Vega F, Di Noia JM, Verdun RE. UNG protects B cells from AID-induced telomere loss. J Exp Med 2016; 213:2459-2472. [PMID: 27697833 PMCID: PMC5068241 DOI: 10.1084/jem.20160635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023] Open
Abstract
Verdun and colleagues find that the uracil-DNA glycosylase UNG, which promotes DNA breaks in the immunoglobulin genes during class switch recombination and is required for AID-induced chromosomal translocations, protects telomeres from AID-induced DNA damage and subsequent dysfunction. Activation-induced deaminase (AID) initiates antibody gene diversification by creating G:U mismatches in the immunoglobulin loci. However, AID also deaminates nonimmunoglobulin genes, and failure to faithfully repair these off-target lesions can cause B cell lymphoma. In this study, we identify a mechanism by which processing of G:U produced by AID at the telomeres can eliminate B cells at risk of genomic instability. We show that telomeres are off-target substrates of AID and that B cell proliferation depends on protective repair by uracil-DNA glycosylase (UNG). In contrast, in the absence of UNG activity, deleterious processing by mismatch repair leads to telomere loss and defective cell proliferation. Indeed, we show that UNG deficiency reduces B cell clonal expansion in the germinal center in mice and blocks the proliferation of tumor B cells expressing AID. We propose that AID-induced damage at telomeres acts as a fail-safe mechanism to limit the tumor promoting activity of AID when it overwhelms uracil excision repair.
Collapse
Affiliation(s)
- Elena M Cortizas
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Shiva Safavi
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Joseph A Reed
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Francisco Vega
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada .,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 0G4, Canada.,Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ramiro E Verdun
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 .,Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, FL 33125
| |
Collapse
|
147
|
Ntziachristos P, Abdel-Wahab O, Aifantis I. Emerging concepts of epigenetic dysregulation in hematological malignancies. Nat Immunol 2016; 17:1016-24. [PMID: 27478938 PMCID: PMC5134743 DOI: 10.1038/ni.3517] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
The past decade brought a revolution in understanding of the structure, topology and disease-inducing lesions of RNA and DNA, fueled by unprecedented progress in next-generation sequencing. This technological revolution has also affected understanding of the epigenome and has provided unique opportunities for the analysis of DNA and histone modifications, as well as the first map of the non-protein-coding genome and three-dimensional (3D) chromosomal interactions. Overall, these advances have facilitated studies that combine genetic, transcriptomics and epigenomics data to address a wide range of issues ranging from understanding the role of the epigenome in development to targeting the transcription of noncoding genes in human cancer. Here we describe recent insights into epigenetic dysregulation characteristic of the malignant differentiation of blood stem cells based on studies of alterations that affect epigenetic complexes, enhancers, chromatin, long noncoding RNAs (lncRNAs), RNA splicing, nuclear topology and the 3D conformation of chromatin.
Collapse
Affiliation(s)
- Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Iannis Aifantis
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
148
|
Heinäniemi M, Vuorenmaa T, Teppo S, Kaikkonen MU, Bouvy-Liivrand M, Mehtonen J, Niskanen H, Zachariadis V, Laukkanen S, Liuksiala T, Teittinen K, Lohi O. Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots. eLife 2016; 5. [PMID: 27431763 PMCID: PMC4951197 DOI: 10.7554/elife.13087] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
Progression of malignancy to overt disease requires multiple genetic hits. Activation-induced deaminase (AID) can drive lymphomagenesis by generating off-target DNA breaks at loci that harbor highly active enhancers and display convergent transcription. The first active transcriptional profiles from acute lymphoblastic leukemia (ALL) patients acquired here reveal striking similarity at structural variation (SV) sites. Specific transcriptional features, namely convergent transcription and Pol2 stalling, were detected at breakpoints. The overlap was most prominent at SV with recognition motifs for the recombination activating genes (RAG). We present signal feature analysis to detect vulnerable regions and quantified from human cells how convergent transcription contributes to R-loop generation and RNA polymerase stalling. Wide stalling regions were characterized by high DNAse hypersensitivity and unusually broad H3K4me3 signal. Based on 1382 pre-B-ALL patients, the ETV6-RUNX1 fusion positive patients had over ten-fold elevation in RAG1 while high expression of AID marked pre-B-ALL lacking common cytogenetic changes.
Collapse
Affiliation(s)
- Merja Heinäniemi
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tapio Vuorenmaa
- School of Medicine, University of Eastern Finland, Kuopio, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- School of Medicine, University of Tampere, Tampere, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Juha Mehtonen
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Olli Lohi
- School of Medicine, University of Tampere, Tampere, Finland.,Tampere University Hospital, Tampere, Finland
| |
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW Aggressive transformation, a frequent event in the natural history of follicular lymphoma, is associated with increased lymphoma-related mortality and yet the underlying biology remains poorly defined. This review outlines recent advances in our understanding of the genetic basis and evolutionary process leading to transformation. RECENT FINDINGS Both the antecedent indolent and transformed follicular lymphoma (tFL) arise through branched divergent evolution with tumors emerging from a founder precursor population, the common progenitor cell. Although the majority of tFLs maintain a germinal center B-cell gene expression signature, an activated B-cell-type (ABC-type) profile appears to predominate in BCL2-translocation negative cases. It does not appear that a single unifying genetic or epigenetic event promotes a fitter and more aggressive clone. SUMMARY Transformed follicular tumors are genetically heterogeneous perhaps reflecting the varying clinical behavior and outcomes of this disease event. Follicular lymphoma and tFL remain incurable tumors highlighted by our inability to eradicate the founder common progenitor cell population with current therapies. Progress has now been made in defining the genetic events and evolutionary pathways responsible for transformation. Although more research is required in predicting and understanding the biology of transformation, there are opportunities to improve outcomes by preferentially directing targeted therapies toward 'actionable' early and transformation-specific aberrations.
Collapse
Affiliation(s)
- Jessica Okosun
- aCentre for Haemato-Oncology, Barts Cancer Institute bDepartment of Haemato-oncology, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | | |
Collapse
|
150
|
C Quaresma AJ, Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res 2016; 44:7527-39. [PMID: 27369380 PMCID: PMC5027500 DOI: 10.1093/nar/gkw585] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023] Open
Abstract
Release of RNA polymerase II (Pol II) from promoter-proximal pausing has emerged as a critical step regulating gene expression in multicellular organisms. The transition of Pol II into productive elongation requires the kinase activity of positive transcription elongation factor b (P-TEFb), which is itself under a stringent control by the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP) complex. Here, we provide an overview on stimulating Pol II pause release by P-TEFb and on sequestering P-TEFb into 7SK snRNP. Furthermore, we highlight mechanisms that govern anchoring of 7SK snRNP to chromatin as well as means that release P-TEFb from the inhibitory complex, and propose a unifying model of P-TEFb activation on chromatin. Collectively, these studies shine a spotlight on the central role of RNA binding proteins (RBPs) in directing the inhibition and activation of P-TEFb, providing a compelling paradigm for controlling Pol II transcription with a non-coding RNA.
Collapse
Affiliation(s)
- Alexandre J C Quaresma
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Andrii Bugai
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Matjaz Barboric
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|