101
|
Huang Q, Song P, Chen Y, Liu Z, Lai L. Allosteric Type and Pathways Are Governed by the Forces of Protein-Ligand Binding. J Phys Chem Lett 2021; 12:5404-5412. [PMID: 34080881 DOI: 10.1021/acs.jpclett.1c01253] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Allostery is central to many cellular processes, by up- or down-regulating target function. However, what determines the allosteric type remains elusive and currently it is impossible to predict whether the allosteric compounds would activate or inhibit target function before experimental studies. We demonstrated that the allosteric type and allosteric pathways are governed by the forces imposed by ligand binding to target protein using the anisotropic network model and developed an allosteric type prediction method (AlloType). AlloType correctly predicted 13 of the 16 allosteric systems in the data set with experimentally determined protein and complex structures as well as verified allosteric types, which was also used to identify allosteric pathways. When applied to glutathione peroxidase 4, a protein with no complex structure information, AlloType could still be able to predict the allosteric type of the recently reported allosteric activators, demonstrating its potential application in designing specific allosteric drugs and uncovering allosteric mechanisms.
Collapse
Affiliation(s)
- Qiaojing Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Pengbo Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yixin Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
102
|
Biddle JW, Martinez-Corral R, Wong F, Gunawardena J. Allosteric conformational ensembles have unlimited capacity for integrating information. eLife 2021; 10:e65498. [PMID: 34106049 PMCID: PMC8189718 DOI: 10.7554/elife.65498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Integration of binding information by macromolecular entities is fundamental to cellular functionality. Recent work has shown that such integration cannot be explained by pairwise cooperativities, in which binding is modulated by binding at another site. Higher-order cooperativities (HOCs), in which binding is collectively modulated by multiple other binding events, appear to be necessary but an appropriate mechanism has been lacking. We show here that HOCs arise through allostery, in which effective cooperativity emerges indirectly from an ensemble of dynamically interchanging conformations. Conformational ensembles play important roles in many cellular processes but their integrative capabilities remain poorly understood. We show that sufficiently complex ensembles can implement any form of information integration achievable without energy expenditure, including all patterns of HOCs. Our results provide a rigorous biophysical foundation for analysing the integration of binding information through allostery. We discuss the implications for eukaryotic gene regulation, where complex conformational dynamics accompanies widespread information integration.
Collapse
Affiliation(s)
- John W Biddle
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | | | - Felix Wong
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
103
|
Thibado JK, Tano JY, Lee J, Salas-Estrada L, Provasi D, Strauss A, Marcelo Lamim Ribeiro J, Xiang G, Broichhagen J, Filizola M, Lohse MJ, Levitz J. Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. eLife 2021; 10:e67027. [PMID: 33880992 PMCID: PMC8102066 DOI: 10.7554/elife.67027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The metabotropic glutamate receptors (mGluRs) form a family of neuromodulatory G-protein-coupled receptors that contain both a seven-helix transmembrane domain (TMD) and a large extracellular ligand-binding domain (LBD) which enables stable dimerization. Although numerous studies have revealed variability across subtypes in the initial activation steps at the level of LBD dimers, an understanding of inter-TMD interaction and rearrangement remains limited. Here, we use a combination of single molecule fluorescence, molecular dynamics, functional assays, and conformational sensors to reveal that distinct TMD assembly properties drive differences between mGluR subtypes. We uncover a variable region within transmembrane helix 4 (TM4) that contributes to homo- and heterodimerization in a subtype-specific manner and tunes orthosteric, allosteric, and basal activation. We also confirm a critical role for a conserved inter-TM6 interface in stabilizing the active state during orthosteric or allosteric activation. Together this study shows that inter-TMD assembly and dynamic rearrangement drive mGluR function with distinct properties between subtypes.
Collapse
Affiliation(s)
- Jordana K Thibado
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Alexa Strauss
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| | | | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
| | | | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Martin J Lohse
- Max Delbrück Center for Molecular MedicineBerlinGermany
- ISAR Bioscience InstitutePlanegg-MunichGermany
| | - Joshua Levitz
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Department of Biochemistry, Weill Cornell MedicineNew YorkUnited States
- Tri-Institutional PhD Program in Chemical BiologyNew YorkUnited States
| |
Collapse
|
104
|
Tee WV, Tan ZW, Lee K, Guarnera E, Berezovsky IN. Exploring the Allosteric Territory of Protein Function. J Phys Chem B 2021; 125:3763-3780. [PMID: 33844527 DOI: 10.1021/acs.jpcb.1c00540] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
While the pervasiveness of allostery in proteins is commonly accepted, we further show the generic nature of allosteric mechanisms by analyzing here transmembrane ion-channel viroporin 3a and RNA-dependent RNA polymerase (RdRp) from SARS-CoV-2 along with metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and fumarate hydratase (FH) implicated in cancers. Using the previously developed structure-based statistical mechanical model of allostery (SBSMMA), we share our experience in analyzing the allosteric signaling, predicting latent allosteric sites, inducing and tuning targeted allosteric response, and exploring the allosteric effects of mutations. This, yet incomplete list of phenomenology, forms a complex and unique allosteric territory of protein function, which should be thoroughly explored. We propose a generic computational framework, which not only allows one to obtain a comprehensive allosteric control over proteins but also provides an opportunity to approach the fragment-based design of allosteric effectors and drug candidates. The advantages of allosteric drugs over traditional orthosteric compounds, complemented by the emerging role of the allosteric effects of mutations in the expansion of the cancer mutational landscape and in the increased mutability of viral proteins, leave no choice besides further extensive studies of allosteric mechanisms and their biomedical implications.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117597, Singapore
| | - Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Keene Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117597, Singapore
| |
Collapse
|
105
|
Ma N, Nivedha AK, Vaidehi N. Allosteric communication regulates ligand-specific GPCR activity. FEBS J 2021; 288:2502-2512. [PMID: 33738925 PMCID: PMC9805801 DOI: 10.1111/febs.15826] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptors (GPCRs) are membrane-bound proteins that are ubiquitously expressed in many cell types and take part in mediating multiple signaling pathways. GPCRs are dynamic proteins and exist in an equilibrium between an ensemble of conformational states such as inactive and fully active states. This dynamic nature of GPCRs is one of the factors that confers their basal activity even in the absence of any ligand-mediated activation. Ligands selectively bind and stabilize a subset of the conformations from the ensemble leading to a shift in the equilibrium toward the inactive or the active state depending on the nature of the ligand. This ligand-selective effect is achieved through allosteric communication between the ligand binding site and G protein or β-arrestin coupling site. Similarly, the G protein coupling to the receptor exerts the allosteric effect on the ligand binding region leading to increased binding affinity for agonists and decreased affinity for antagonists or inverse agonists. In this review, we enumerate the current state of our understanding of the mechanism of allosteric communication in GPCRs with a specific focus on the critical role of computational methods in delineating the residues involved in allosteric communication. Analyzing allosteric communication mechanism using molecular dynamics simulations has revealed (a) a structurally conserved mechanism of allosteric communication that regulates the G protein coupling, (b) a rational structure-based approach to designing selective ligands, and (c) an approach to designing allosteric GPCR mutants that are either ligand and G protein or β-arrestin selective.
Collapse
Affiliation(s)
- Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Anita K. Nivedha
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| |
Collapse
|
106
|
Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy. Biomedicines 2021; 9:biomedicines9040359. [PMID: 33807199 PMCID: PMC8065645 DOI: 10.3390/biomedicines9040359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which leads to changes in protein conformation and function. Pin1 is widely overexpressed in cancers and plays an important role in tumorigenesis. Mounting evidence has revealed that targeting Pin1 is a potential therapeutic approach for various cancers by inhibiting cell proliferation, reducing metastasis, and maintaining genome stability. In this review, we summarize the underlying mechanisms of Pin1-mediated upregulation of oncogenes and downregulation of tumor suppressors in cancer development. Furthermore, we also discuss the multiple roles of Pin1 in cancer hallmarks and examine Pin1 as a desirable pharmaceutical target for cancer therapy. We also summarize the recent progress of Pin1-targeted small-molecule compounds for anticancer activity.
Collapse
|
107
|
Barresi E, Martini C, Da Settimo F, Greco G, Taliani S, Giacomelli C, Trincavelli ML. Allosterism vs. Orthosterism: Recent Findings and Future Perspectives on A 2B AR Physio-Pathological Implications. Front Pharmacol 2021; 12:652121. [PMID: 33841166 PMCID: PMC8024542 DOI: 10.3389/fphar.2021.652121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
The development of GPCR (G-coupled protein receptor) allosteric modulators has attracted increasing interest in the last decades. The use of allosteric modulators in therapy offers several advantages with respect to orthosteric ones, as they can fine-tune the tissue responses to the endogenous agonist. Since the discovery of the first A1 adenosine receptor (AR) allosteric modulator in 1990, several efforts have been made to develop more potent molecules as well as allosteric modulators for all adenosine receptor subtypes. There are four subtypes of AR: A1, A2A, A2B, and A3. Positive allosteric modulators of the A1 AR have been proposed for the cure of pain. A3 positive allosteric modulators are thought to be beneficial during inflammatory processes. More recently, A2A and A2B AR allosteric modulators have also been disclosed. The A2B AR displays the lowest affinity for its endogenous ligand adenosine and is mainly activated as a consequence of tissue damage. The A2B AR activation has been found to play a crucial role in chronic obstructive pulmonary disease, in the protection of the heart from ischemic injury, and in the process of bone formation. In this context, allosteric modulators of the A2B AR may represent pharmacological tools useful to develop new therapeutic agents. Herein, we provide an up-to-date highlight of the recent findings and future perspectives in the field of orthosteric and allosteric A2B AR ligands. Furthermore, we compare the use of orthosteric ligands with positive and negative allosteric modulators for the management of different pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Giovanni Greco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | | | | |
Collapse
|
108
|
Yunn NO, Park M, Park S, Lee J, Noh J, Shin E, Ryu SH. A hotspot for enhancing insulin receptor activation revealed by a conformation-specific allosteric aptamer. Nucleic Acids Res 2021; 49:700-712. [PMID: 33410883 PMCID: PMC7826266 DOI: 10.1093/nar/gkaa1247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 01/20/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides that bind to a specific target with high affinity, and are widely applied in biomedical diagnostics and drug development. However, the use of aptamers has largely been limited to simple binders or inhibitors that interfere with the function of a target protein. Here, we show that an aptamer can also act as a positive allosteric modulator that enhances the activation of a receptor by stabilizing the binding of a ligand to that receptor. We developed an aptamer, named IR-A43, which binds to the insulin receptor, and confirmed that IR-A43 and insulin bind to the insulin receptor with mutual positive cooperativity. IR-A43 alone is inactive, but, in the presence of insulin, it potentiates autophosphorylation and downstream signaling of the insulin receptor. By using the species-specific activity of IR-A43 at the human insulin receptor, we demonstrate that residue Q272 in the cysteine-rich domain is directly involved in the insulin-enhancing activity of IR-A43. Therefore, we propose that the region containing residue Q272 is a hotspot that can be used to enhance insulin receptor activation. Moreover, our study implies that aptamers are promising reagents for the development of allosteric modulators that discriminate a specific conformation of a target receptor.
Collapse
Affiliation(s)
- Na-Oh Yunn
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mangeun Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seongeun Park
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jimin Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeongeun Noh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Euisu Shin
- Aptamer Sciences, Inc., Seongnam 13605, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
109
|
Phosphatidic Acid Stimulates Myoblast Proliferation through Interaction with LPA1 and LPA2 Receptors. Int J Mol Sci 2021; 22:ijms22031452. [PMID: 33535610 PMCID: PMC7867176 DOI: 10.3390/ijms22031452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Phosphatidic acid (PA) is a bioactive phospholipid capable of regulating key biological functions, including neutrophil respiratory burst, chemotaxis, or cell growth and differentiation. However, the mechanisms whereby PA exerts these actions are not completely understood. In this work, we show that PA stimulates myoblast proliferation, as determined by measuring the incorporation of [3H]thymidine into DNA and by staining the cells with crystal violet. PA induced the rapid phosphorylation of Akt and ERK1/2, and pretreatment of the cells with specific small interferin RNA (siRNA) to silence the genes encoding these kinases, or with selective pharmacologic inhibitors, blocked PA-stimulated myoblast proliferation. The mitogenic effects of PA were abolished by the preincubation of the myoblasts with pertussis toxin, a Gi protein inhibitor, suggesting the implication of Gi protein-coupled receptors in this action. Although some of the effects of PA have been associated with its possible conversion to lysoPA (LPA), treatment of the myoblasts with PA for up to 60 min did not produce any significant amount of LPA in these cells. Of interest, pharmacological blockade of the LPA receptors 1 and 2, or specific siRNA to silence the genes encoding these receptors, abolished PA-stimulated myoblast proliferation. Moreover, PA was able to compete with LPA for binding to LPA receptors, suggesting that PA can act as a ligand of LPA receptors. It can be concluded that PA stimulates myoblast proliferation through interaction with LPA1 and LPA2 receptors and the subsequent activation of the PI3K/Akt and MEK/ERK1-2 pathways, independently of LPA formation.
Collapse
|
110
|
Birgül Iyison N, Shahraki A, Kahveci K, Düzgün MB, Gün G. Are insect GPCRs ideal next‐generation pesticides: opportunities and challenges. FEBS J 2021; 288:2727-2745. [DOI: 10.1111/febs.15708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Aida Shahraki
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Kübra Kahveci
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Mustafa Barbaros Düzgün
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| | - Gökhan Gün
- Department of Molecular Biology and Genetics Institute of Graduate Studies in Science and Engineering Boğaziçi University Istanbul Turkey
| |
Collapse
|
111
|
Liauw BWH, Afsari HS, Vafabakhsh R. Conformational rearrangement during activation of a metabotropic glutamate receptor. Nat Chem Biol 2021; 17:291-297. [PMID: 33398167 PMCID: PMC7904630 DOI: 10.1038/s41589-020-00702-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) relay information across cell membranes through conformational coupling between the ligand-binding domain and cytoplasmic signaling domain. In dimeric class C GPCRs, the mechanism of this process, which involves propagation of local ligand-induced conformational changes over 12 nm through three distinct structural domains, is unknown. Here, we used single-molecule FRET (smFRET) and live-cell imaging and found that metabotropic glutamate receptor 2 (mGluR2) interconverts between four conformational states, two of which were previously unknown, and activation proceeds through the conformational selection mechanism. Furthermore, the conformation of the ligand-binding domains and downstream domains are weakly coupled. We show that the intermediate states act as conformational checkpoints for activation and control allosteric modulation of signaling. Our results demonstrate a mechanism for activation of mGluRs where ligand binding controls the proximity of signaling domains, analogous to some receptor kinases. This design principle may be generalizable to other biological allosteric sensors.
Collapse
Affiliation(s)
| | | | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
112
|
Cecon E, Lhomme T, Maurice T, Luka M, Chen M, Silva A, Wauman J, Zabeau L, Tavernier J, Prévot V, Dam J, Jockers R. Amyloid Beta Peptide Is an Endogenous Negative Allosteric Modulator of Leptin Receptor. Neuroendocrinology 2021; 111:370-387. [PMID: 32335558 DOI: 10.1159/000508105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Metabolic dysfunction is now recognized as a pivotal component of Alzheimer's disease (AD), the most common dementia worldwide. However, the precise molecular mechanisms linking metabolic dysfunction to AD remain elusive. OBJECTIVE Here, we investigated the direct impact of soluble oligomeric amyloid beta (Aβ) peptides, the main molecular hallmark of AD, on the leptin system, a major component of central energy metabolism regulation. METHODS We developed a new time-resolved fluorescence resonance energy transfer-based Aβ binding assay for the leptin receptor (LepR) and studied the effect of Aβ on LepR function in several in vitro assays. The in vivo effect of Aβ on LepR function was studied in an Aβ-specific AD mouse model and in pro-opiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus. RESULTS We revealed specific and high-affinity (Ki = 0.1 nM) binding of Aβ to LepR. Pharmacological characterization of this interaction showed that Aβ binds allosterically to the extracellular domain of LepR and negatively affects receptor function. Negative allosteric modulation of LepR by Aβ was detected at the level of signaling pathways (STAT-3, AKT, and ERK) in vitroand in vivo. Importantly, the leptin-induced response of POMC neurons, key players in the regulation of metabolic function, was completely abolished in the presence of Aβ. CONCLUSION Our data indicate that Aβ is a negative allosteric modulator of LepR, resulting in impaired leptin action, and qualify LepR as a new and direct target of Aβ oligomers. Preventing the interaction of Aβ with LepR might improve both the metabolic and cognitive dysfunctions in AD condition.
Collapse
Affiliation(s)
- Erika Cecon
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Tori Lhomme
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, EGID, DistAlz, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| | - Marine Luka
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Min Chen
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Anisia Silva
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Joris Wauman
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Lennart Zabeau
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, EGID, DistAlz, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Julie Dam
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Ralf Jockers
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France,
| |
Collapse
|
113
|
Zhang Y, Wang K, Yu Z. Drug Development in Channelopathies: Allosteric Modulation of Ligand-Gated and Voltage-Gated Ion Channels. J Med Chem 2020; 63:15258-15278. [PMID: 33253554 DOI: 10.1021/acs.jmedchem.0c01304] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ion channels have been characterized as promising drug targets for treatment of numerous human diseases. Functions of ion channels can be fine-tuned by allosteric modulators, which interact with channels and modulate their activities by binding to sites spatially discrete from those of orthosteric ligands. Positive and negative allosteric modulators have presented a plethora of potential therapeutic advantages over traditionally orthosteric agonists and antagonists in terms of selectivity and safety. This thematic review highlights the discovery of representative allosteric modulators for ligand-gated and voltage-gated ion channels, discussing in particular their identifications, locations, and therapeutic uses in the treatment of a range of channelopathies. Additionally, structures and functions of selected ion channels are briefly described to aid in the rational design of channel modulators. Overall, allosteric modulation represents an innovative targeting approach, and the corresponding modulators provide an abundant but challenging landscape for novel therapeutics targeting ligand-gated and voltage-gated ion channels.
Collapse
Affiliation(s)
- Yanyun Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiyi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
114
|
An Additional Ca 2+ Binding Site Allosterically Controls TMEM16A Activation. Cell Rep 2020; 33:108570. [PMID: 33378669 PMCID: PMC7786149 DOI: 10.1016/j.celrep.2020.108570] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/18/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) is the primary stimulus for transmembrane protein 16 (TMEM16) Ca2+-activated chloride channels and phospholipid scramblases, which regulate important physiological processes ranging from smooth muscle contraction to blood coagulation and tumor progression. Binding of intracellular Ca2+ to two highly conserved orthosteric binding sites in transmembrane helices (TMs) 6-8 efficiently opens the permeation pathway formed by TMs 3-7. Recent structures of TMEM16K and TMEM16F scramblases revealed an additional Ca2+ binding site between TM2 and TM10, whose functional relevance remains unknown. Here, we report that Ca2+ binds with high affinity to the equivalent third Ca2+ site in TMEM16A to enhance channel activation. Our cadmium (Cd2+) metal bridging experiments reveal that the third Ca2+ site's conformational states can profoundly influence TMEM16A's opening. Our study thus confirms the existence of a third Ca2+ site in TMEM16A, defines its functional importance in channel gating, and provides insight into a long-range allosteric gating mechanism of TMEM16 channels and scramblases.
Collapse
|
115
|
Samanta A, Sabatino V, Ward TR, Walther A. Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. NATURE NANOTECHNOLOGY 2020; 15:914-921. [PMID: 32895521 PMCID: PMC7610402 DOI: 10.1038/s41565-020-0761-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/03/2020] [Indexed: 05/21/2023]
Abstract
For life to emerge, the confinement of catalytic reactions within protocellular environments has been proposed to be a decisive aspect to regulate chemical activity in space1. Today, cells and organisms adapt to signals2-6 by processing them through reaction networks that ultimately provide downstream functional responses and structural morphogenesis7,8. Re-enacting such signal processing in de novo-designed protocells is a profound challenge, but of high importance for understanding the design of adaptive systems with life-like traits. We report on engineered all-DNA protocells9 harbouring an artificial metalloenzyme10 whose olefin metathesis activity leads to downstream morphogenetic protocellular responses with varying levels of complexity. The artificial metalloenzyme catalyses the uncaging of a pro-fluorescent signal molecule that generates a self-reporting fluorescent metabolite designed to weaken DNA duplex interactions. This leads to pronounced growth, intraparticular functional adaptation in the presence of a fluorescent DNA mechanosensor11 or interparticle protocell fusion. Such processes mimic chemically transduced processes found in cell adaptation and cell-to-cell adhesion. Our concept showcases new opportunities to study life-like behaviour via abiotic bioorthogonal chemical and mechanical transformations in synthetic protocells. Furthermore, it reveals a strategy for inducing complex behaviour in adaptive and communicating soft-matter microsystems, and it illustrates how dynamic properties can be upregulated and sustained in micro-compartmentalized media.
Collapse
Affiliation(s)
- Avik Samanta
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS)@FIT, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg, Germany
| | - Valerio Sabatino
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel, Switzerland.
| | - Andreas Walther
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany.
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS)@FIT, Freiburg, Germany.
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
116
|
Spatiotemporal identification of druggable binding sites using deep learning. Commun Biol 2020; 3:618. [PMID: 33110179 PMCID: PMC7591901 DOI: 10.1038/s42003-020-01350-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Identification of novel protein binding sites expands druggable genome and opens new opportunities for drug discovery. Generally, presence or absence of a binding site depends on the three-dimensional conformation of a protein, making binding site identification resemble the object detection problem in computer vision. Here we introduce a computational approach for the large-scale detection of protein binding sites, that considers protein conformations as 3D-images, binding sites as objects on these images to detect, and conformational ensembles of proteins as 3D-videos to analyze. BiteNet is suitable for spatiotemporal detection of hard-to-spot allosteric binding sites, as we showed for conformation-specific binding site of the epidermal growth factor receptor, oligomer-specific binding site of the ion channel, and binding site in G protein-coupled receptor. BiteNet outperforms state-of-the-art methods both in terms of accuracy and speed, taking about 1.5 minutes to analyze 1000 conformations of a protein with ~2000 atoms. Kozlovskii and Popov present BiteNet, a new computational method utilizing deep learning principles for rapid detection of binding sites. BiteNet considers proteins as 3D images, enabling rapid detection of allosteric sites from either static protein structures or its dynamic ensembles.
Collapse
|
117
|
Westerlund AM, Fleetwood O, Pérez-Conesa S, Delemotte L. Network analysis reveals how lipids and other cofactors influence membrane protein allostery. J Chem Phys 2020; 153:141103. [DOI: 10.1063/5.0020974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Annie M. Westerlund
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Oliver Fleetwood
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Sergio Pérez-Conesa
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Lucie Delemotte
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
118
|
Tian Y, Chen S, Shan Q. Charged residues at the pore extracellular half of the glycine receptor facilitate channel gating: a potential role played by electrostatic repulsion. J Physiol 2020; 598:4643-4661. [PMID: 32844405 DOI: 10.1113/jp279288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS The Arg271Gln mutation of the glycine receptor (GlyR) causes hereditary hyperekplexia. This mutation dramatically compromises GlyR function; however, the underlying mechanism is not yet known. This study, by employing function and computation methods, proposes that charged residues (including the Arg residue) at the pore extracellular half from each of the five subunits of the homomeric α1 GlyR, create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This mechanism explains how the Arg271Gln mutation, in which the positively charged Arg residue is substituted by the neutral Gln residue, compromises GlyR function. This study furthers our understanding of the biophysical mechanism underlying the Arg271Gln mutation compromising GlyR function. ABSTRACT The R271(19')Q mutation in the α1 subunit of the glycine receptor (GlyR) chloride channel causes hereditary hyperekplexia. This mutation dramatically compromises channel function; however, the underlying mechanism is not yet known. The R271 residue is located at the extracellular half of the channel pore. In this study, an Arg-scanning mutagenesis was performed at the pore extracellular half from the 262(10') to the 272(20') position on the background of the α1 GlyR carrying the hyperekplexia-causing mutation R271(19')Q. It was found that the placement of the Arg residue rescued channel function to an extent inversely correlated with the distance between the residue and the pore central axis (perpendicular to the plane of the lipid bilayer). Accordingly, it was hypothesized that the placed Arg residues from each of the five subunits of the homomeric α1 GlyR create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This hypothesis was quantitatively verified by theoretical computation via exploiting basic laws of electrostatics and thermodynamics, and further supported by more experimental findings that the placement of another positively charged Lys residue or even a negatively charged Asp residue also rescued channel function in the same manner. This study provides a novel mechanism via which charged residues in the pore region facilitate channel gating, not only for the disease-causing 19'R residue in the GlyR, but also potentially for charged residues in the same region of other ion channels.
Collapse
Affiliation(s)
- Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, 300071, China
| | - Shijie Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
119
|
Brahimi F, Galan A, Jmaeff S, Barcelona PF, De Jay N, Dejgaard K, Young JC, Kleinman CL, Thomas DY, Saragovi HU. Alternative Splicing of a Receptor Intracellular Domain Yields Different Ectodomain Conformations, Enabling Isoform-Selective Functional Ligands. iScience 2020; 23:101447. [PMID: 32829283 PMCID: PMC7452315 DOI: 10.1016/j.isci.2020.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/13/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023] Open
Abstract
Events at a receptor ectodomain affect the intracellular domain conformation, activating signal transduction (out-to-in conformational effects). We investigated the reverse direction (in-to-out) where the intracellular domain may impact on ectodomain conformation. The primary sequences of naturally occurring TrkC receptor isoforms (TrkC-FL and TrkC.T1) only differ at the intracellular domain. However, owing to their differential association with Protein Disulfide Isomerase the isoforms have different disulfide bonding and conformations at the ectodomain. Conformations were exploited to develop artificial ligands, mAbs, and small molecules, with isoform-specific binding and biased activation. Consistent, the physiological ligands NT-3 and PTP-sigma bind both isoforms, but NT-3 activates all signaling pathways, whereas PTP-sigma activates biased signals. Our data support an "in-to-out" model controlling receptor ectodomain conformation, a strategy that enables heterogeneity in receptors, ligands, and bioactivity. These concepts may be extended to the many wild-type or oncogenic receptors with known isoforms.
Collapse
Affiliation(s)
- Fouad Brahimi
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
| | - Alba Galan
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
| | - Sean Jmaeff
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Pharmacology, McGill University, Montreal, QC, Canada
| | - Pablo F. Barcelona
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
| | - Nicolas De Jay
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kurt Dejgaard
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Claudia L. Kleinman
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Y. Thomas
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - H. Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Pharmacology, McGill University, Montreal, QC, Canada
- Department of Ophthalmology and Visual Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
120
|
Carofiglio F, Trisciuzzi D, Gambacorta N, Leonetti F, Stefanachi A, Nicolotti O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020; 25:E4210. [PMID: 32937901 PMCID: PMC7570842 DOI: 10.3390/molecules25184210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The fusion oncoprotein Bcr-Abl is an aberrant tyrosine kinase responsible for chronic myeloid leukemia and acute lymphoblastic leukemia. The auto-inhibition regulatory module observed in the progenitor kinase c-Abl is lost in the aberrant Bcr-Abl, because of the lack of the N-myristoylated cap able to bind the myristoyl binding pocket also conserved in the Bcr-Abl kinase domain. A way to overcome the occurrence of resistance phenomena frequently observed for Bcr-Abl orthosteric drugs is the rational design of allosteric ligands approaching the so-called myristoyl binding pocket. The discovery of these allosteric inhibitors although very difficult and extremely challenging, represents a valuable option to minimize drug resistance, mostly due to the occurrence of mutations more frequently affecting orthosteric pockets, and to enhance target selectivity with lower off-target effects. In this perspective, we will elucidate at a molecular level the structural bases behind the Bcr-Abl allosteric control and will show how artificial intelligence can be effective to drive the automated de novo design towards off-patent regions of the chemical space.
Collapse
Affiliation(s)
- Francesca Carofiglio
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
- Molecular Horizon srl, Via Montelino 32, 06084 Bettona, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Francesco Leonetti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Angela Stefanachi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Orazio Nicolotti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| |
Collapse
|
121
|
Zhang S, Gong H, Ge Y, Ye RD. Biased allosteric modulation of formyl peptide receptor 2 leads to distinct receptor conformational states for pro- and anti-inflammatory signaling. Pharmacol Res 2020; 161:105117. [PMID: 32768626 DOI: 10.1016/j.phrs.2020.105117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Formyl peptide receptor 2 (FPR2) is a Class A G protein-coupled receptor (GPCR) that interacts with multiple ligands and transduces both proinflammatory and anti-inflammatory signals. These ligands include weak agonists and modulators that are produced during inflammation. The present study investigates how prolonged exposure to FPR2 modulators influence receptor signaling. EXPERIMENTAL APPROACH Fluorescent biosensors of FPR2 were constructed based on single-molecule fluorescent resonance energy transfer (FRET) and used for measurement of ligand-induced receptor conformational changes. These changes were combined with FPR2-mediated signaling events and used as parameters for the conformational states of FPR2. Ternary complex models were developed to interpret ligand concentration-dependent changes in FPR2 conformational states. KEY RESULTS Incubation with Ac2-26, an anti-inflammatory ligand of FPR2, decreased FRET intensity at picomolar concentrations. In comparison, WKYMVm (W-pep) and Aβ42, both proinflammatory agonists of FPR2, increased FRET intensity. Preincubation with Ac2-26 at 10 pM diminished W-pep-induced Ca2+ flux but potentiated W-pep-stimulated β-arrestin2 membrane translocation and p38 MAPK phosphorylation. The opposite effects were observed with 10 pM of Aβ42. Neither Ac2-26 nor Aβ42 competed for W-pep binding at the picomolar concentrations. CONCLUSIONS AND IMPLICATIONS The results support the presence of two allosteric binding sites on FPR2, each for Ac2-26 and Aβ42, with high and low affinities. Sequential binding of the two allosteric ligands at increasing concentrations induce different conformational changes in FPR2, providing a novel mechanism by which biased allosteric modulators alter receptor conformations and generate pro- and anti-inflammatory signals.
Collapse
Affiliation(s)
- Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Gong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunjun Ge
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China; Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
122
|
Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders. Int J Mol Sci 2020; 21:ijms21144918. [PMID: 32664647 PMCID: PMC7404387 DOI: 10.3390/ijms21144918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a key physiological phenomenon that can be pervasive when dysregulated. Persistent chronic inflammation precedes several pathophysiological conditions forming one of the critical cellular homeostatic checkpoints. With a steady global surge in inflammatory diseases, it is imperative to delineate underlying mechanisms and design suitable drug molecules targeting the cellular partners that mediate and regulate inflammation. Nicotinic acetylcholine receptors have a confirmed role in influencing inflammatory pathways and have been a subject of scientific scrutiny underlying drug development in recent years. Drugs designed to target allosteric sites on the nicotinic acetylcholine receptors present a unique opportunity to unravel the role of the cholinergic system in regulating and restoring inflammatory homeostasis. Such a therapeutic approach holds promise in treating several inflammatory conditions and diseases with inflammation as an underlying pathology. Here, we briefly describe the potential of cholinergic allosterism and some allosteric modulators as a promising therapeutic option for the treatment of neuroinflammation.
Collapse
|
123
|
Niello M, Gradisch R, Loland CJ, Stockner T, Sitte HH. Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends Pharmacol Sci 2020; 41:446-463. [PMID: 32471654 PMCID: PMC7610661 DOI: 10.1016/j.tips.2020.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Neurotransmitter transporters (NTTs) are involved in the fine-tuning of brain neurotransmitter homeostasis. As such, they are implicated in a plethora of complex behaviors, including reward, movement, and cognition. During recent decades, compounds that modulate NTT functions have been developed. Some of them are in clinical use for the management of different neuropsychiatric conditions. The majority of these compounds have been found to selectively interact with the orthosteric site of NTTs. Recently, diverse allosteric sites have been described in a number of NTTs, modulating their function. A more complex NTT pharmacology may be useful in the development of novel therapeutics. Here, we summarize current knowledge on such modulatory allosteric sites, with specific focus on their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Marco Niello
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claus Juul Loland
- Laboratory for Membrane Protein Dynamics. Department of Neuroscience. University of Copenhagen, Copenhagen, Denmark
| | - Thomas Stockner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; AddRess, Centre for Addiction Research and Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
124
|
Allostery in membrane proteins. Curr Opin Struct Biol 2020; 62:197-204. [DOI: 10.1016/j.sbi.2020.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
|
125
|
Xie J, Lai L. Protein topology and allostery. Curr Opin Struct Biol 2020; 62:158-165. [DOI: 10.1016/j.sbi.2020.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/07/2023]
|
126
|
Allosteric drugs and mutations: chances, challenges, and necessity. Curr Opin Struct Biol 2020; 62:149-157. [DOI: 10.1016/j.sbi.2020.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
|
127
|
Liu X, Lu S, Song K, Shen Q, Ni D, Li Q, He X, Zhang H, Wang Q, Chen Y, Li X, Wu J, Sheng C, Chen G, Liu Y, Lu X, Zhang J. Unraveling allosteric landscapes of allosterome with ASD. Nucleic Acids Res 2020; 48:D394-D401. [PMID: 31665428 PMCID: PMC7145546 DOI: 10.1093/nar/gkz958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Allosteric regulation is one of the most direct and efficient ways to fine-tune protein function; it is induced by the binding of a ligand at an allosteric site that is topographically distinct from an orthosteric site. The Allosteric Database (ASD, available online at http://mdl.shsmu.edu.cn/ASD) was developed ten years ago to provide comprehensive information related to allosteric regulation. In recent years, allosteric regulation has received great attention in biological research, bioengineering, and drug discovery, leading to the emergence of entire allosteric landscapes as allosteromes. To facilitate research from the perspective of the allosterome, in ASD 2019, novel features were curated as follows: (i) >10 000 potential allosteric sites of human proteins were deposited for allosteric drug discovery; (ii) 7 human allosterome maps, including protease and ion channel maps, were built to reveal allosteric evolution within families; (iii) 1312 somatic missense mutations at allosteric sites were collected from patient samples from 33 cancer types and (iv) 1493 pharmacophores extracted from allosteric sites were provided for modulator screening. Over the past ten years, the ASD has become a central resource for studying allosteric regulation and will play more important roles in both target identification and allosteric drug discovery in the future.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kun Song
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiancheng Shen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Li
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Xinheng He
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hao Zhang
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qi Wang
- China National Pharmaceutical Industry Information Center, Shanghai, 200040, China
| | - Yingyi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xinyi Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jing Wu
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guoqiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yaqin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
128
|
Stokes L, Bidula S, Bibič L, Allum E. To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Front Pharmacol 2020; 11:627. [PMID: 32477120 PMCID: PMC7235284 DOI: 10.3389/fphar.2020.00627] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The family of ligand-gated ion channels known as P2X receptors were discovered several decades ago. Since the cloning of the seven P2X receptors (P2X1-P2X7), a huge research effort has elucidated their roles in regulating a range of physiological and pathophysiological processes. Transgenic animals have been influential in understanding which P2X receptors could be new therapeutic targets for disease. Furthermore, understanding how inherited mutations can increase susceptibility to disorders and diseases has advanced this knowledge base. There has been an emphasis on the discovery and development of pharmacological tools to help dissect the individual roles of P2X receptors and the pharmaceutical industry has been involved in pushing forward clinical development of several lead compounds. During the discovery phase, a number of positive allosteric modulators have been described for P2X receptors and these have been useful in assigning physiological roles to receptors. This review will consider the major physiological roles of P2X1-P2X7 and discuss whether enhancement of P2X receptor activity would offer any therapeutic benefit. We will review what is known about identified compounds acting as positive allosteric modulators and the recent identification of drug binding pockets for such modulators.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Elizabeth Allum
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
129
|
Pu W, Zheng Y, Peng Y. Prolyl Isomerase Pin1 in Human Cancer: Function, Mechanism, and Significance. Front Cell Dev Biol 2020; 8:168. [PMID: 32296699 PMCID: PMC7136398 DOI: 10.3389/fcell.2020.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/29/2020] [Indexed: 02/05/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an evolutionally conserved and unique enzyme that specifically catalyzes the cis-trans isomerization of phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif and, subsequently, induces the conformational change of its substrates. Mounting evidence has demonstrated that Pin1 is widely overexpressed and/or overactivated in cancer, exerting a critical influence on tumor initiation and progression via regulation of the biological activity, protein degradation, or nucleus-cytoplasmic distribution of its substrates. Moreover, Pin1 participates in the cancer hallmarks through activating some oncogenes and growth enhancers, or inactivating some tumor suppressors and growth inhibitors, suggesting that Pin1 could be an attractive target for cancer therapy. In this review, we summarize the findings on the dysregulation, mechanisms, and biological functions of Pin1 in cancer cells, and also discuss the significance and potential applications of Pin1 dysregulation in human cancer.
Collapse
Affiliation(s)
- Wenchen Pu
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Zheng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
130
|
Fernández-Dueñas V, Qian M, Argerich J, Amaral C, Risseeuw MD, Van Calenbergh S, Ciruela F. Design, Synthesis and Characterization of a New Series of Fluorescent Metabotropic Glutamate Receptor Type 5 Negative Allosteric Modulators. Molecules 2020; 25:molecules25071532. [PMID: 32230915 PMCID: PMC7180738 DOI: 10.3390/molecules25071532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, new drug discovery approaches based on novel pharmacological concepts have emerged. Allosteric modulators, for example, target receptors at sites other than the orthosteric binding sites and can modulate agonist-mediated activation. Interestingly, allosteric regulation may allow a fine-tuned regulation of unbalanced neurotransmitter’ systems, thus providing safe and effective treatments for a number of central nervous system diseases. The metabotropic glutamate type 5 receptor (mGlu5R) has been shown to possess a druggable allosteric binding domain. Accordingly, novel allosteric ligands are being explored in order to finely regulate glutamate neurotransmission, especially in the brain. However, before testing the activity of these new ligands in the clinic or even in animal disease models, it is common to characterize their ability to bind mGlu5Rs in vitro. Here, we have developed a new series of fluorescent ligands that, when used in a new NanoBRET-based binding assay, will facilitate screening for novel mGlu5R allosteric modulators.
Collapse
Affiliation(s)
- Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.A.); (C.A.)
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (V.F.-D.); (S.V.C.); (F.C.)
| | - Mingcheng Qian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (M.Q.)
- Laboratory of Toxicology, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Josep Argerich
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.A.); (C.A.)
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carolina Amaral
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.A.); (C.A.)
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Martijn D.P. Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (M.Q.)
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (M.Q.)
- Correspondence: (V.F.-D.); (S.V.C.); (F.C.)
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.A.); (C.A.)
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (V.F.-D.); (S.V.C.); (F.C.)
| |
Collapse
|
131
|
Casarini L, Crépieux P, Reiter E, Lazzaretti C, Paradiso E, Rochira V, Brigante G, Santi D, Simoni M. FSH for the Treatment of Male Infertility. Int J Mol Sci 2020; 21:ijms21072270. [PMID: 32218314 PMCID: PMC7177393 DOI: 10.3390/ijms21072270] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Follicle-stimulating hormone (FSH) supports spermatogenesis acting via its receptor (FSHR), which activates trophic effects in gonadal Sertoli cells. These pathways are targeted by hormonal drugs used for clinical treatment of infertile men, mainly belonging to sub-groups defined as hypogonadotropic hypogonadism or idiopathic infertility. While, in the first case, fertility may be efficiently restored by specific treatments, such as pulsatile gonadotropin releasing hormone (GnRH) or choriogonadotropin (hCG) alone or in combination with FSH, less is known about the efficacy of FSH in supporting the treatment of male idiopathic infertility. This review focuses on the role of FSH in the clinical approach to male reproduction, addressing the state-of-the-art from the little data available and discussing the pharmacological evidence. New compounds, such as allosteric ligands, dually active, chimeric gonadotropins and immunoglobulins, may represent interesting avenues for future personalized, pharmacological approaches to male infertility.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0593961705; Fax: +39-0593962018
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
132
|
The mechanism of a high-affinity allosteric inhibitor of the serotonin transporter. Nat Commun 2020; 11:1491. [PMID: 32198394 PMCID: PMC7083837 DOI: 10.1038/s41467-020-15292-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/24/2020] [Indexed: 11/08/2022] Open
Abstract
The serotonin transporter (SERT) terminates serotonin signaling by rapid presynaptic reuptake. SERT activity is modulated by antidepressants, e.g., S-citalopram and imipramine, to alleviate symptoms of depression and anxiety. SERT crystal structures reveal two S-citalopram binding pockets in the central binding (S1) site and the extracellular vestibule (S2 site). In this study, our combined in vitro and in silico analysis indicates that the bound S-citalopram or imipramine in S1 is allosterically coupled to the ligand binding to S2 through altering protein conformations. Remarkably, SERT inhibitor Lu AF60097, the first high-affinity S2-ligand reported and characterized here, allosterically couples the ligand binding to S1 through a similar mechanism. The SERT inhibition by Lu AF60097 is demonstrated by the potentiated imipramine binding and increased hippocampal serotonin level in rats. Together, we reveal a S1-S2 coupling mechanism that will facilitate rational design of high-affinity SERT allosteric inhibitors.
Collapse
|
133
|
Lind S, Holdfeldt A, Mårtensson J, Sundqvist M, Kenakin TP, Björkman L, Forsman H, Dahlgren C. Interdependent allosteric free fatty acid receptor 2 modulators synergistically induce functional selective activation and desensitization in neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118689. [PMID: 32092308 DOI: 10.1016/j.bbamcr.2020.118689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 01/06/2023]
Abstract
The non-activating allosteric modulator AZ1729, specific for free fatty acid receptor 2 (FFAR2), transfers the orthosteric FFAR2 agonists propionate and the P2Y2R specific agonist ATP into activating ligands that trigger an assembly of the neutrophil superoxide generating NADPH-oxidase. The homologous priming effect on the propionate response and the heterologous receptor cross-talk sensitized ATP response mediated by AZ1729 are functional characteristics shared with Cmp58, another non-activating allosteric FFAR2 modulator. In addition, AZ1729 also turned Cmp58 into a potent activator of the superoxide generating neutrophil NADPH-oxidase, and in agreement with the allosteric modulation concept, the effect was reciprocal in that Cmp58 turned AZ1729 into a potent activating allosteric agonist. The activation signals down-stream of FFAR2 when stimulated by the two interdependent allosteric modulators were biased in that, unlike for orthosteric agonists, the two complementary modulators together triggered an activation of the NADPH-oxidase, but not any transient rise in the cytosolic concentration of free calcium ions (Ca2+). Furthermore, following AZ1729/Cmp58 activation, the signaling by the desensitized FFAR2s was functionally selective in that the orthosteric agonist propionate could still induce a transient rise in intracellular Ca2+. The novel neutrophil activation and receptor down-stream signaling pattern mediated by the two cross-sensitizing allosteric FFAR2 modulators represent a new regulatory mechanism that controls receptor signaling.
Collapse
Affiliation(s)
- Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Rheumatology Unit, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Terry P Kenakin
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Rheumatology Unit, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
134
|
Fogha J, Diharce J, Obled A, Aci-Sèche S, Bonnet P. Computational Analysis of Crystallization Additives for the Identification of New Allosteric Sites. ACS OMEGA 2020; 5:2114-2122. [PMID: 32064372 PMCID: PMC7016913 DOI: 10.1021/acsomega.9b02697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Allosteric effect can modulate the biological activity of a protein. Thus, the discovery of new allosteric sites is very attractive for designing new modulators or inhibitors. Here, we propose an innovative way to identify allosteric sites, based on crystallization additives (CA), used to stabilize proteins during the crystallization process. Density and clustering analyses of CA, applied on protein kinase and nuclear receptor families, revealed that CA are not randomly distributed around protein structures, but they tend to aggregate near common sites. All orthosteric and allosteric cavities described in the literature are retrieved from the analysis of CA distribution. In addition, new sites were identified, which could be associated to putative allosteric sites. We proposed an efficient and easy way to use the structural information of CA to identify allosteric sites. This method could assist medicinal chemists for the design of new allosteric compounds targeting cavities of new drug targets.
Collapse
|
135
|
Thapa D, Cairns EA, Szczesniak AM, Kulkarni PM, Straiker AJ, Thakur GA, Kelly MEM. Allosteric Cannabinoid Receptor 1 (CB1) Ligands Reduce Ocular Pain and Inflammation. Molecules 2020; 25:E417. [PMID: 31968549 PMCID: PMC7024337 DOI: 10.3390/molecules25020417] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 01/08/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) activation has been reported to reduce transient receptor potential cation channel subfamily V member 1 (TRPV1)-induced inflammatory responses and is anti-nociceptive and anti-inflammatory in corneal injury. We examined whether allosteric ligands, can modulate CB1 signaling to reduce pain and inflammation in corneal hyperalgesia. Corneal hyperalgesia was generated by chemical cauterization of cornea in wildtype and CB2 knockout (CB2-/-) mice. The novel racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229 were examined alone or in combination with the orthosteric CB1 agonist Δ8-tetrahydrocannabinol (Δ8-THC). Pain responses were assessed following capsaicin (1 µM) stimulation of injured corneas at 6 h post-cauterization. Corneal neutrophil infiltration was also analyzed. GAT228, but not GAT229 or GAT211, reduced pain scores in response to capsaicin stimulation. Combination treatments of 0.5% GAT229 or 1% GAT211 with subthreshold Δ8-THC (0.4%) significantly reduced pain scores following capsaicin stimulation. The anti-nociceptive effects of both GAT229 and GAT228 were blocked with CB1 antagonist AM251, but remained unaffected in CB2-/- mice. Two percent GAT228, or the combination of 0.2% Δ8-THC with 0.5% GAT229 also significantly reduced corneal inflammation. CB1 allosteric ligands could offer a novel approach for treating corneal pain and inflammation.
Collapse
Affiliation(s)
- Dinesh Thapa
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth A. Cairns
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Pushkar M. Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alex J. Straiker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Melanie E. M. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
136
|
Park J, Langmead CJ, Riddy DM. New Advances in Targeting the Resolution of Inflammation: Implications for Specialized Pro-Resolving Mediator GPCR Drug Discovery. ACS Pharmacol Transl Sci 2020; 3:88-106. [PMID: 32259091 DOI: 10.1021/acsptsci.9b00075] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic inflammation is a component of numerous diseases including autoimmune, metabolic, neurodegenerative, and cancer. The discovery and characterization of specialized pro-resolving mediators (SPMs) critical to the resolution of inflammation, and their cognate G protein-coupled receptors (GPCRs) has led to a significant increase in the understanding of this physiological process. Approximately 20 ligands, including lipoxins, resolvins, maresins, and protectins, and 6 receptors (FPR2/ALX, GPR32, GPR18, chemerin1, BLT1, and GPR37) have been identified highlighting the complex and multilayered nature of resolution. Therapeutic efforts in targeting these receptors have proved challenging, with very few ligands apparently progressing through to preclinical or clinical development. To date, some knowledge gaps remain in the understanding of how the activation of these receptors, and their downstream signaling, results in efficient resolution via apoptosis, phagocytosis, and efferocytosis of polymorphonuclear leukocytes (mainly neutrophils) and macrophages. SPMs bind and activate multiple receptors (ligand poly-pharmacology), while most receptors are activated by multiple ligands (receptor pleiotropy). In addition, allosteric binding sites have been identified signifying the capacity of more than one ligand to bind simultaneously. These fundamental characteristics of SPM receptors enable alternative targeting strategies to be considered, including biased signaling and allosteric modulation. This review describes those ligands and receptors involved in the resolution of inflammation, and highlights the most recent clinical trial results. Furthermore, we describe alternative mechanisms by which these SPM receptors could be targeted, paving the way for the identification of new therapeutics, perhaps with greater efficacy and fidelity.
Collapse
Affiliation(s)
- Julia Park
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
137
|
Botta J, Appelhans J, McCormick PJ. Continuing challenges in targeting oligomeric GPCR-based drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:213-245. [DOI: 10.1016/bs.pmbts.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
138
|
Lee L. Bohr equation and the lost allosteric Bohr effects in symmetry. Biophys Physicobiol 2019; 16:490-503. [PMID: 31984201 PMCID: PMC6975899 DOI: 10.2142/biophysico.16.0_490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/02/2022] Open
Abstract
Bohr, Hasselbalch and Krogh demonstrated a group of sigmoid curves under various carbon dioxide contents in 1904. Hill fitted these curves in 1910 with Hill equation without the physical meanings of Hill coefficient and dissociation constant. In 1965, Monod-Wyman-Changeux model (MWC) popularized the word “allostery” with 81 words of symmetry to define an orthosteric nature of cooperativity in a single and symmetric sigmoid curve. Paradoxically the MWC model didn’t quantify the homotropic Hill coefficient and confusingly described the symmetry of sigmoid shapes with three allosteric variables. A heterotropic Bohr equation, by clarifying the biophysical symmetry in allostery, suggests the solution of allosteric coefficients with only one Bohr variable. We reveal that the mathematical need of a fictional monomer by MWC model justify a symmetric logistic curve with a parabolic kernel of dissociation constant to model the 1904 sigmoid curves. The logistic-derived Bohr equation and its half-saturated P50 equation successfully used the embedded P50 values in the 1904 sigmoidal curves to quantify their hyperbolic conformational shifts and Hill coefficients (n) pending for a century. Both are the logarithmic functions of carbon dioxide. This truly quantitative Bohr equation digitizes the allosteric regulation of the orthosteric affinity by precisely cloning the original group of dissociation/association curves published in 1904. The Bohr equation honestly suggests that nature should have chosen the allosteric Bohr effects to modify hemoglobin to cope with the swift dynamic of gas exchange. The discovery of the Bohr function in Bohr equation challenges the feasibility of the orthosteric cooperativity of hemoglobin.
Collapse
Affiliation(s)
- Lihsin Lee
- Independent Physician of Anesthesia Former Director, Anesthesiology, Taiwan Adventist Hospital, Taipei City 10556, Taiwan
| |
Collapse
|
139
|
Goldsmith PJ. NMDAR PAMs: Multiple Chemotypes for Multiple Binding Sites. Curr Top Med Chem 2019; 19:2239-2253. [PMID: 31660834 DOI: 10.2174/1568026619666191011095341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.
Collapse
Affiliation(s)
- Paul J Goldsmith
- Eli Lilly and Co. Ltd, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, United Kingdom
| |
Collapse
|
140
|
Jong YJI, Harmon SK, O’Malley KL. Location and Cell-Type-Specific Bias of Metabotropic Glutamate Receptor, mGlu 5, Negative Allosteric Modulators. ACS Chem Neurosci 2019; 10:4558-4570. [PMID: 31609579 DOI: 10.1021/acschemneuro.9b00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Emerging data indicate that G-protein coupled receptor (GPCR) signaling is determined by not only the agonist and a given receptor but also a variety of cell-type-specific factors that can influence a receptor's response. For example, the metabotropic glutamate receptor, mGlu5, which is implicated in a number of neuropsychiatric disorders such as depression, anxiety, and autism, also signals from inside the cell which leads to sustained Ca2+ mobilization versus rapid transient responses. Because mGlu5 is an important drug target, many negative allosteric modulators (NAMs) have been generated to modulate its activity. Here we show that NAMs such as AFQ056, AZD2066, and RG7090 elicit very different end points when tested in postnatal neuronal cultures expressing endogenous mGlu5 receptors. For example, AFQ056 fails to block intracellular mGlu5-mediated Ca2+ increases whereas RG7090 is very effective. These differences are not due to differential receptor levels, since about the same number of mGlu5 receptors are present on neurons from the cortex, hippocampus, and striatum based on pharmacological, biochemical, and molecular data. Moreover, biotinylation studies reveal that more than 90% of the receptor is intracellular in these neurons. Taken together, these data indicate that the tested NAMs exhibit both location-dependent and cell type specific bias for mGlu5-mediated Ca2+ mobilization which may affect clinical outcomes.
Collapse
Affiliation(s)
- Yuh-Jiin Ivy Jong
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Steven K. Harmon
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
141
|
Hao J, Chen Q. Insights into the Structural Aspects of the mGlu Receptor Orthosteric Binding Site. Curr Top Med Chem 2019; 19:2421-2446. [PMID: 31660833 DOI: 10.2174/1568026619666191011094935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
The amino terminal domain (ATD) of the metabotropic glutamate (mGlu) receptors contains the orthosteric glutamate recognition site, which is highly conserved across the eight mGlu receptor subtypes. In total, 29 X-ray crystal structures of the mGlu ATD proteins have been reported to date. These structures span across 3 subgroups and 6 subtypes, and include apo, agonist- and antagonist-bound structures. We will discuss the insights gained from the analysis of these structures with the focus on the interactions contributing to the observed group and subtype selectivity for select agonists. Furthermore, we will define the full expanded orthosteric ligand binding pocket (LBP) of the mGlu receptors, and discuss the macroscopic features of the mGlu ATD proteins.
Collapse
Affiliation(s)
- Junliang Hao
- Discovery Chemistry Research and Technologies, Lilly Research Laboratory, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| | - Qi Chen
- Discovery Chemistry Research and Technologies, Lilly Research Laboratory, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| |
Collapse
|
142
|
Chong CH, Li Q, Mak PHS, Ng CCP, Leung EHW, Tan VH, Chan AKW, McAlonan G, Chan SY. Lrrc7 mutant mice model developmental emotional dysregulation that can be alleviated by mGluR5 allosteric modulation. Transl Psychiatry 2019; 9:244. [PMID: 31582721 PMCID: PMC6776540 DOI: 10.1038/s41398-019-0580-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/30/2023] Open
Abstract
LRRC7 has been identified as a candidate gene for severe childhood emotional dysregulation. Direct experimental evidence for a role of LRRC7 in the disease is needed, as is a better understanding of its impact on neuronal structure and signaling, and hence potential treatment targets. Here, we generated and analyzed an Lrrc7 mutant mouse line. Consistent with a critical role of LRRC7 in emotional regulation, mutant mice had inappropriate juvenile aggressive behavior and significant anxiety-like behavior and social dysfunction in adulthood. The pivotal role of mGluR5 signaling was demonstrated by rescue of behavioral defects with augmentation of mGluR5 receptor activity by 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB). Intra-peritoneal injection of CDPPB alleviated abnormal juvenile behavior, as well as anxiety-like behavior and hypersociability at adulthood. Furthermore, mutant primary neurons had impaired neurite outgrowth which was rescued by CDPPB treatment. In conclusion, Lrrc7 mutant mice provide a valuable tool to model childhood emotional dysregulation and persistent mental health comorbidities. Moreover, our data highlight an important role of LRRC7 in mGluR5 signaling, which is a potential new treatment target for anxiety and social dysfunction.
Collapse
Affiliation(s)
- Chi Ho Chong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Li
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Priscilla Hoi Shan Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cypress Chun Pong Ng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eva Hin Wa Leung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vicky Huiqi Tan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony Kin Wang Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Grainne McAlonan
- The Sackler Centre for Translational Neurodevelopment and The Department of Forensic and Neurodevelopmental Sciences, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
143
|
Fourati Z, Howard RJ, Heusser SA, Hu H, Ruza RR, Sauguet L, Lindahl E, Delarue M. Structural Basis for a Bimodal Allosteric Mechanism of General Anesthetic Modulation in Pentameric Ligand-Gated Ion Channels. Cell Rep 2019; 23:993-1004. [PMID: 29694907 DOI: 10.1016/j.celrep.2018.03.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/02/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022] Open
Abstract
Ion channel modulation by general anesthetics is a vital pharmacological process with implications for receptor biophysics and drug development. Functional studies have implicated conserved sites of both potentiation and inhibition in pentameric ligand-gated ion channels, but a detailed structural mechanism for these bimodal effects is lacking. The prokaryotic model protein GLIC recapitulates anesthetic modulation of human ion channels, and it is accessible to structure determination in both apparent open and closed states. Here, we report ten X-ray structures and electrophysiological characterization of GLIC variants in the presence and absence of general anesthetics, including the surgical agent propofol. We show that general anesthetics can allosterically favor closed channels by binding in the pore or favor open channels via various subsites in the transmembrane domain. Our results support an integrated, multi-site mechanism for allosteric modulation, and they provide atomic details of both potentiation and inhibition by one of the most common general anesthetics.
Collapse
Affiliation(s)
- Zaineb Fourati
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
| | - Stephanie A Heusser
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
| | - Haidai Hu
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France; Sorbonne Universités, UPMC University Paris 6, 75005 Paris, France
| | - Reinis R Ruza
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France
| | - Ludovic Sauguet
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France
| | - Erik Lindahl
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden; Swedish e-Science Research Center, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
| | - Marc Delarue
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France.
| |
Collapse
|
144
|
Huang M, Song K, Liu X, Lu S, Shen Q, Wang R, Gao J, Hong Y, Li Q, Ni D, Xu J, Chen G, Zhang J. AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Res 2019; 46:W451-W458. [PMID: 29757429 PMCID: PMC6030990 DOI: 10.1093/nar/gky374] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/28/2018] [Indexed: 01/07/2023] Open
Abstract
Allostery tweaks innumerable biological processes and plays a fundamental role in human disease and drug discovery. Exploration of allostery has thus been regarded as a crucial requirement for research on biological mechanisms and the development of novel therapeutics. Here, based on our previously developed allosteric data and methods, we present an interactive platform called AlloFinder that identifies potential endogenous or exogenous allosteric modulators and their involvement in human allosterome. AlloFinder automatically amalgamates allosteric site identification, allosteric screening and allosteric scoring evaluation of modulator-protein complexes to identify allosteric modulators, followed by allosterome mapping analyses of predicted allosteric sites and modulators in human proteome. This web server exhibits prominent performance in the reemergence of allosteric metabolites and exogenous allosteric modulators in known allosteric proteins. Specifically, AlloFinder enables identification of allosteric metabolites for metabolic enzymes and screening of potential allosteric compounds for disease-related targets. Significantly, the feasibility of AlloFinder to discover allosteric modulators was tested in a real case of signal transduction and activation of transcription 3 (STAT3) and validated by mutagenesis and functional experiments. Collectively, AlloFinder is expected to contribute to exploration of the mechanisms of allosteric regulation between metabolites and metabolic enzymes, and to accelerate allosteric drug discovery. The AlloFinder web server is freely available to all users at http://mdl.shsmu.edu.cn/ALF/.
Collapse
Affiliation(s)
- Min Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kun Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xinyi Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Renxiao Wang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingze Gao
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Yuanyuan Hong
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qian Li
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jianrong Xu
- Department of Pharmacology, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
145
|
Tee WV, Guarnera E, Berezovsky IN. On the Allosteric Effect of nsSNPs and the Emerging Importance of Allosteric Polymorphism. J Mol Biol 2019; 431:3933-3942. [PMID: 31306666 DOI: 10.1016/j.jmb.2019.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms of pathological non-synonymous single-nucleotide polymorphisms are still the object of intensive research. To this end, we explore here whether non-synonymous single-nucleotide polymorphisms can work via allosteric mechanisms. Using structure-based statistical mechanical model of allostery and analyzing energetics of the effects of mutations in a set of 27 proteins with at least 50 pathological SNPs in each molecule, we found that, indeed, some SNPs can work allosterically. We illustrate the molecular basis of disease phenotypes caused by allosteric SNPs with the case studies of human galactose 1-phosphate uridyltransferase (GALT) and glucose-6-phosphate dehydrogenase (G6PD). We also found that mutations of a number of other residues in the protein may cause modulation comparable to those observed for known pathological SNPs. In order to explain this, we propose a notion of allosteric polymorphism, which implies the presence of a number of critical positions in the protein sequence, whose mutations can allosterically disrupt the protein function and result in a disease phenotype. We conclude that the emerging importance of allosteric polymorphism calls for the development of computational framework for analyzing the allosteric effects of mutations and their role in the modulation of protein activity.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117597
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117597.
| |
Collapse
|
146
|
Song K, Li Q, Gao W, Lu S, Shen Q, Liu X, Wu Y, Wang B, Lin H, Chen G, Zhang J. AlloDriver: a method for the identification and analysis of cancer driver targets. Nucleic Acids Res 2019; 47:W315-W321. [PMID: 31069394 PMCID: PMC6602569 DOI: 10.1093/nar/gkz350] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Identifying the variants that alter protein function is a promising strategy for deciphering the biological consequences of somatic mutations during tumorigenesis, which could provide novel targets for the development of cancer therapies. Here, based on our previously developed method, we present a strategy called AlloDriver that identifies cancer driver genes/proteins as possible targets from mutations. AlloDriver utilizes structural and dynamic features to prioritize potentially functional genes/proteins in individual cancers via mapping mutations generated from clinical cancer samples to allosteric/orthosteric sites derived from three-dimensional protein structures. This strategy exhibits desirable performance in the reemergence of known cancer driver mutations and genes/proteins from clinical samples. Significantly, the practicability of AlloDriver to discover novel cancer driver proteins in head and neck squamous cell carcinoma (HNSC) was tested in a real case of human protein tyrosine phosphatase, receptor type K (PTPRK) through a L1143F driver mutation located at the allosteric site of PTPRK, which was experimentally validated by cell proliferation assay. AlloDriver is expected to help to uncover innovative molecular mechanisms of tumorigenesis by perturbing proteins and to discover novel targets based on cancer driver mutations. The AlloDriver is freely available to all users at http://mdl.shsmu.edu.cn/ALD.
Collapse
MESH Headings
- Algorithms
- Allosteric Regulation
- Allosteric Site
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation
- Drug Discovery
- Head and Neck Neoplasms/chemistry
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Humans
- Internet
- Molecular Targeted Therapy
- Mutation
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/antagonists & inhibitors
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/chemistry
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism
- Software
Collapse
Affiliation(s)
- Kun Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Qian Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Qiancheng Shen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xinyi Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, the First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Houwen Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Guoqiang Chen
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
- Department of Pathophysiology, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
147
|
Olsen RW, Lindemeyer AK, Wallner M, Li X, Huynh KW, Zhou ZH. Cryo-electron microscopy reveals informative details of GABA A receptor structural pharmacology: implications for drug discovery. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S144. [PMID: 31576351 DOI: 10.21037/atm.2019.06.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Richard W Olsen
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - A Kerstin Lindemeyer
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xiaorun Li
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Kevin W Huynh
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
148
|
A loss-of-function mutation of an inhibitory zinc- and proton-binding site reduces channel blocker potency in the glycine receptor. Neuropharmacology 2019; 153:121-133. [PMID: 31063738 DOI: 10.1016/j.neuropharm.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023]
|
149
|
On the perturbation nature of allostery: sites, mutations, and signal modulation. Curr Opin Struct Biol 2019; 56:18-27. [DOI: 10.1016/j.sbi.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|
150
|
Yeung PSW, Yamashita M, Prakriya M. Molecular basis of allosteric Orai1 channel activation by STIM1. J Physiol 2019; 598:1707-1723. [PMID: 30950063 DOI: 10.1113/jp276550] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Store-operated Ca2+ entry through Orai1 channels is a primary mechanism for Ca2+ entry in many cells and mediates numerous cellular effector functions ranging from gene transcription to exocytosis. Orai1 channels are amongst the most Ca2+ -selective channels known and are activated by direct physical interactions with the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) in response to store depletion triggered by stimulation of a variety of cell surface G-protein coupled and tyrosine kinase receptors. Work in the last decade has revealed that the Orai1 gating process is highly cooperative and strongly allosteric, likely driven by a wave of interdependent conformational changes throughout the protein originating in the peripheral C-terminal ligand binding site and culminating in pore opening. In this review, we survey the structural and molecular features in Orai1 that contribute to channel gating and consider how they give rise to the unique biophysical fingerprint of Orai1 currents.
Collapse
Affiliation(s)
- Priscilla See-Wai Yeung
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|