101
|
Al-Sowayan BS, Al-Shareeda AT, Al-Hujaily EM. Exosomes, cancer's little army. Stem Cell Investig 2019; 6:9. [PMID: 31119147 DOI: 10.21037/sci.2019.03.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
In an attempt to conceptualize the process of cancer formation, Hanahan and Weinberg [2000] have outlined six universal characteristics of tumorigenesis, and labelled them as the "hallmarks of cancer". These hallmarks include; unlimited proliferation, evading growth suppressors, resisting cell death, replicative immortality, inducing angiogenesis, initiating invasion and metastasis. Cancer cell signalling is crucial for initiating and controlling cellular pathways that are involved in these hallmarks. The intricate network of communication between cancer cells and other cancer or non-cancer cells is still being investigated, and is yet to be fully understood. Initially it was proposed that the main form of communication between cells within the tumour microenvironment are soluble growth factors, and gap junctions. Then, researchers reported another form of cell-to-cell communication, through the release of spherical particles called exosomes. It is believed that these exosomes enable communication through the transfer of active components from the releasing cell, and off-loading it into the recipient cell. As researchers continue to examine the development of the cancer hallmarks and the pathways involved, it became evident that cancer cell-derived exosomes play a major role in almost all of them. This review will examine the role played by cancer cell-derived exosomes in development of cancer.
Collapse
Affiliation(s)
- Balta S Al-Sowayan
- Cell Therapy & Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Alaa T Al-Shareeda
- Cell Therapy & Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ensaf M Al-Hujaily
- Cell Therapy & Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| |
Collapse
|
102
|
Should we consider telomere length and telomerase activity in male factor infertility? Curr Opin Obstet Gynecol 2019; 30:197-202. [PMID: 29664790 DOI: 10.1097/gco.0000000000000451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to analyze what is known to date about the relation between telomeres and male fertility, and if it is possible for telomeres, or elements related to them, to be used as new prognostic biomarkers in fertility treatment. RECENT FINDINGS Cells in germ series, including spermatozoids, have longer telomeres (10-20 kb), and do not seem to undergo the shortening that takes place in somatic cells with age as they present telomerase activity. Longer telomere length found in the sperm of older fathers, influences their offspring possessing cells with longer telomere length. Infertile patients have spermatozoids with shorter telomere length than fertile people, but telomere length does neither correlate with the sperm concentration, mobility or morphology, nor with the DNA fragmentation indices (DFI) of spermatozoids. Embryo quality rate and transplantable embryo rate are related with the telomere length of spermatozoids (STL), but pregnancy rates are not affected. SUMMARY Telomere length and telomerase levels can be used as biomarkers of male fertility. Higher STL can have beneficial effects on fertility, thus the use of spermatozoids with longer telomere length in an assisted reproduction technique (ART) could be one way of solving some infertility cases.
Collapse
|
103
|
Udroiu I, Sgura A. Rates of erythropoiesis in mammals and their relationship with lifespan and hematopoietic stem cells aging. Biogerontology 2019; 20:445-456. [PMID: 30834479 DOI: 10.1007/s10522-019-09804-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 03/02/2023]
Abstract
Investigations on possible links between hematological parameters and longevity are nearly absent. We tested the hypothesis that a fast rate of erythropoiesis, causing an earlier aging of the hematopoietic stem cells pool, contributes to a shorter lifespan. With this aim, we employed a new quantity, daily produced red blood cells per gram of body mass, as a measure of mass-specific rate of erythropoiesis. We found that among mammals rate of erythropoiesis and maximum lifespan are significantly correlated, independently from mass residuals. This seems to be confirmed also by intra-species comparisons and, although with limited data, by the significant correlation of rate of erythropoiesis and rate of telomere shortening in leukocytes (a proxy for hematopoietic stem cell telomere shortening). In our view, this may give a link of causality between rate of erythropoiesis and maximum lifespan. Further studies could test a similar hypothesis also for other kinds of stem cells.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università degli Studi Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy.
| | - Antonella Sgura
- Dipartimento di Scienze, Università degli Studi Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| |
Collapse
|
104
|
Liu J, Wang L, Wang Z, Liu JP. Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells 2019; 8:E54. [PMID: 30650660 PMCID: PMC6356700 DOI: 10.3390/cells8010054] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/07/2023] Open
Abstract
Telomeres with G-rich repetitive DNA and particular proteins as special heterochromatin structures at the termini of eukaryotic chromosomes are tightly maintained to safeguard genetic integrity and functionality. Telomerase as a specialized reverse transcriptase uses its intrinsic RNA template to lengthen telomeric G-rich strand in yeast and human cells. Cells sense telomere length shortening and respond with cell cycle arrest at a certain size of telomeres referring to the "Hayflick limit." In addition to regulating the cell replicative senescence, telomere biology plays a fundamental role in regulating the chronological post-mitotic cell ageing. In this review, we summarize the current understandings of telomere regulation of cell replicative and chronological ageing in the pioneer model system Saccharomyces cerevisiae and provide an overview on telomere regulation of animal lifespans. We focus on the mechanisms of survivals by telomere elongation, DNA damage response and environmental factors in the absence of telomerase maintenance of telomeres in the yeast and mammals.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Lihui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
- Department of Immunology, Monash University Faculty of Medicine, Melbourne, Vitoria 3004, Australia.
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
105
|
Portillo AM, Varela E, García-Velasco JA. Mathematical model to study the aging of the human follicle according to the telomerase activity. J Theor Biol 2018; 462:446-454. [PMID: 30502407 DOI: 10.1016/j.jtbi.2018.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/27/2022]
Abstract
The aim of this work is to study the aging rate at which human follicles reach the preovulatory state. To this end, both telomere length and telomerase activity effects on granulosa cells (GCs) aging has been studied. GCs are somatic cells which determine the development of the oocyte. A human preantral follicle takes approximately 85 days to achieve the preovulatory size, going through several stages (Gougeon, 1996). The telomere length of GCs of each class of follicles, during folliculogenesis, are modelled using a chemical master equation formalism similar to the one in Wesch et al. (2016). Seven differential ordinary systems of equations, corresponding to seven stages of the follicule maturation, concatenated in time, are considered. The mitotic and death rates are approximated by using the mean number of GCs in each class of follicles and the time they remain on each stage. The influence of different telomerase activity rates and the telomere shortening of the preovulatory follicle is studied. Some cases of infertility are associated with low levels of telomerase activity and short telomeres in GCs. The method aims at understanding how low levels of telomerase activity in preovulatory stages lead to the accumulation of aged GCs. In the case of higher telomerase activities, the mathematical model predicts a more juvenile outcome in preovulatory follicles. Juvenile GCs, could be critical for embryo development if the oocyte were fertilized, since GCs, transformed in corpus luteum, must divide and increase their size (Alila and Hansel, 1984) to sustain early pregnancy (Csapo et al., 1972).
Collapse
Affiliation(s)
- A M Portillo
- IMUVA, Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad de Valladolid, Spain.
| | - E Varela
- IVIRMA, Madrid. Av del Talgo, Madrid, 68. 28023, Spain; IdiPaz, Calle de Pedro Rico, Madrid, 6. 28029, Spain.
| | - J A García-Velasco
- IVIRMA, Madrid. Av del Talgo, Madrid, 68. 28023, Spain; IdiPaz, Calle de Pedro Rico, Madrid, 6. 28029, Spain; Rey Juan Carlos University, Madrid, Spain.
| |
Collapse
|
106
|
Muñoz-Lorente MA, Martínez P, Tejera Á, Whittemore K, Moisés-Silva AC, Bosch F, Blasco MA. AAV9-mediated telomerase activation does not accelerate tumorigenesis in the context of oncogenic K-Ras-induced lung cancer. PLoS Genet 2018; 14:e1007562. [PMID: 30114189 PMCID: PMC6095492 DOI: 10.1371/journal.pgen.1007562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
Short and dysfunctional telomeres are sufficient to induce a persistent DNA damage response at chromosome ends, which leads to the induction of senescence and/or apoptosis and to various age-related conditions, including a group of diseases known as “telomere syndromes”, which are provoked by extremely short telomeres owing to germline mutations in telomere genes. This opens the possibility of using telomerase activation as a potential therapeutic strategy to rescue short telomeres both in telomere syndromes and in age-related diseases, in this manner maintaining tissue homeostasis and ameliorating these diseases. In the past, we generated adeno-associated viral vectors carrying the telomerase gene (AAV9-Tert) and shown their therapeutic efficacy in mouse models of cardiac infarct, aplastic anemia, and pulmonary fibrosis. Although we did not observe increased cancer incidence as a consequence of Tert overexpression in any of those models, here we set to test the safety of AAV9-mediated Tert overexpression in the context of a cancer prone mouse model, owing to expression of oncogenic K-ras. As control, we also treated mice with AAV9 vectors carrying a catalytically inactive form of Tert, known to inhibit endogenous telomerase activity. We found that overexpression of Tert does not accelerate the onset or progression of lung carcinomas, even when in the setting of a p53-null background. These findings indicate that telomerase activation by using AAV9-mediated Tert gene therapy has no detectable cancer-prone effects in the context of oncogene-induced mouse tumors. The ends of our chromosomes, or telomeres, shorten with age. When telomeres become critically short cells stop dividing and die. Shortened telomeres are associated with onset of age-associated diseases. Telomerase is a retrotranscriptase enzyme that is able to elongate telomeres by coping an associated RNA template. Telomerase is silenced after birth in the majority of cells with the exception of adult stem cells. Cancer cells aberrantly reactivate telomerase facilitating indefinite cell division. Mutations in genes encoding for proteins involved in telomere maintenance lead the so-called “telomere syndromes” that include aplastic anemia and pulmonary fibrosis, among others. We have developed a telomerase gene therapy that has proven to be effective in delaying age-associated diseases and showed therapeutic effects in mouse models for the telomere syndromes. Given the potential cancer risk associated to telomerase expression in the organism, we set to analyze the effects of telomerase gene therapy in a lung cancer mouse model. Our work demonstrates that telomerase gene therapy does not aggravate the incidence, onset and progression of lung cancer in mice. These findings expand on the safety of AAV-mediated telomerase activation as a novel therapeutic strategy for the treatment of diseases associated to short telomeres.
Collapse
Affiliation(s)
- Miguel A. Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Águeda Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Kurt Whittemore
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Ana Carolina Moisés-Silva
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Fàtima Bosch
- Centre of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
- * E-mail:
| |
Collapse
|
107
|
Chatterjee S, de Gonzalo-Calvo D, Derda AA, Schimmel K, Sonnenschein K, Bavendiek U, Bauersachs J, Bär C, Thum T. Leukocyte telomere length correlates with hypertrophic cardiomyopathy severity. Sci Rep 2018; 8:11227. [PMID: 30046139 PMCID: PMC6060137 DOI: 10.1038/s41598-018-29072-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/04/2018] [Indexed: 01/28/2023] Open
Abstract
Telomere length is a marker of biological aging. Short leukocyte telomere length has been associated with various conditions including cardiovascular disorders. Here, we evaluated if patients with hypertrophic cardiomyopathy have altered leukocyte telomere length and whether this is associated with disease severity. A quantitative polymerase chain reaction-based method was used to measure peripheral blood leukocyte telomere length in 59 healthy control subjects and a well-characterized cohort of 88 patients diagnosed with hypertrophic cardiomyopathy: 32 patients with non-obstructive cardiomyopathy (HNCM) and 56 patients with obstructive cardiomyopathy (HOCM). We observed shorter leukocyte telomeres in both HNCM and HOCM patients compared to healthy controls. Furthermore, leukocyte telomere length was inversely associated with HCM even after adjusting for age and sex. Telomere length of HOCM patients was also inversely correlated with left ventricular outflow tract obstruction. Therefore, HOCM patients were categorized by tertiles of telomere length. Patients in the first tertile (shortest telomeres) had a significantly increased left ventricular posterior wall thickness at end-diastole and higher left ventricular outflow tract gradients, whereas the left ventricular end-diastolic diameter was lower compared with patients in the second and third tertile. In summary, telomere length is associated with the severity of the disease in the HOCM subtype.
Collapse
Affiliation(s)
- Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - David de Gonzalo-Calvo
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Anselm A Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Katharina Schimmel
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Kristina Sonnenschein
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Udo Bavendiek
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany. .,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany. .,National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
108
|
Abstract
PURPOSE OF REVIEW Telomere attrition and dysfunction has become a well established pathway involved in organismal aging, not only because it imposes a limitation to cell division and therefore, tissue regeneration but also because telomere homeostasis influences other pathways involved in aging. However, the implication of telomere biology in ovarian aging and fertility is barely starting to be unveiled. RECENT FINDINGS During the last years, mounting evidence in favor of the relationship between the accumulation of short telomeres and ovarian senescence has emerged. Telomere attrition and the loss of telomerase activity in ovarian cell types is a common characteristic of female infertility. SUMMARY Recent findings regarding telomere attrition in the ovary open the possibility of both, finding new molecular biomarkers related to telomere homeostasis that make possible the early detection of ovarian dysfunction before the ovarian reserve has vanished, and the search of new therapies to preserve or set up ovarian cell types so that new and better quality oocytes can be generated in aged ovaries to improve IVF outcomes.
Collapse
|
109
|
Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G. Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Front Med (Lausanne) 2018; 5:104. [PMID: 29719834 PMCID: PMC5913290 DOI: 10.3389/fmed.2018.00104] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
As average life span and elderly people prevalence in the western world population is gradually increasing, the incidence of age-related diseases such as cancer, heart diseases, diabetes, and dementia is increasing, bearing social and economic consequences worldwide. Understanding the molecular basis of aging-related processes can help extend the organism’s health span, i.e., the life period in which the organism is free of chronic diseases or decrease in basic body functions. During the last few decades, immense progress was made in the understanding of major components of aging and healthy aging biology, including genomic instability, telomere attrition, epigenetic changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and intracellular communications. This progress has been made by three spear-headed strategies: in vitro (cell and tissue culture from various sources), in vivo (includes diverse model and non-model organisms), both can be manipulated and translated to human biology, and the study of aging-like human syndromes and human populations. Herein, we will focus on current repository of genomic “senescence” stage of aging, which includes health decline, structural changes of the genome, faulty DNA damage response and DNA damage, telomere shortening, and epigenetic alterations. Although aging is a complex process, many of the “hallmarks” of aging are directly related to DNA structure and function. This review will illustrate the variety of these studies, done in in vitro, in vivo and human levels, and highlight the unique potential and contribution of each research level and eventually the link between them.
Collapse
Affiliation(s)
| | - Danielle Gutman
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
110
|
Young AJ. The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160452. [PMID: 29335379 PMCID: PMC5784072 DOI: 10.1098/rstb.2016.0452] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2017] [Indexed: 12/16/2022] Open
Abstract
Evolutionary biology and biomedicine have seen a surge of recent interest in the possibility that telomeres play a role in life-history trade-offs and ageing. Here, I evaluate alternative hypotheses for the role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing, and highlight outstanding challenges. First, while recent findings underscore the possibility of a proximate causal role for telomeres in current-future trade-offs and ageing, it is currently unclear (i) whether telomeres ever play a causal role in either and (ii) whether any causal role for telomeres arises via shortening or length-independent mechanisms. Second, I consider why, if telomeres do play a proximate causal role, selection has not decoupled such a telomere-mediated trade-off between current and future performance. Evidence suggests that evolutionary constraints have not rendered such decoupling impossible. Instead, a causal role for telomeres would more plausibly reflect an adaptive strategy, born of telomere maintenance costs and/or a function for telomere attrition (e.g. in countering cancer), the relative importance of which is currently unclear. Finally, I consider the potential for telomere biology to clarify the constraints at play in life-history evolution, and to explain the form of the current-future trade-offs and ageing trajectories that we observe today.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Andrew J Young
- School of Biosciences, University of Exeter Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
111
|
Platelet-Derived Growth Factor Receptor-Alpha Expressing Cardiac Progenitor Cells Can Be Derived from Previously Cryopreserved Human Heart Samples. Stem Cells Dev 2018; 27:184-198. [DOI: 10.1089/scd.2017.0082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
112
|
Povedano JM, Martinez P, Serrano R, Tejera Á, Gómez-López G, Bobadilla M, Flores JM, Bosch F, Blasco MA. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. eLife 2018; 7:31299. [PMID: 29378675 PMCID: PMC5818250 DOI: 10.7554/elife.31299] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Pulmonary fibrosis is a fatal lung disease characterized by fibrotic foci and inflammatory infiltrates. Short telomeres can impair tissue regeneration and are found both in hereditary and sporadic cases. We show here that telomerase expression using AAV9 vectors shows therapeutic effects in a mouse model of pulmonary fibrosis owing to a low-dose bleomycin insult and short telomeres. AAV9 preferentially targets regenerative alveolar type II cells (ATII). AAV9-Tert-treated mice show improved lung function and lower inflammation and fibrosis at 1–3 weeks after viral treatment, and improvement or disappearance of the fibrosis at 8 weeks after treatment. AAV9-Tert treatment leads to longer telomeres and increased proliferation of ATII cells, as well as lower DNA damage, apoptosis, and senescence. Transcriptome analysis of ATII cells confirms downregulation of fibrosis and inflammation pathways. We provide a proof-of-principle that telomerase activation may represent an effective treatment for pulmonary fibrosis provoked or associated with short telomeres. Idiopathic pulmonary fibrosis (or IPF for short) is a rare disease that scars the lungs. The condition gets worse over time, making it harder and harder to breathe, and eventually leading to death. Patients typically only survive for a few years after being diagnosed with IPF. This is because, as yet, there is no cure; the available treatments only act to lessen the symptoms. Several risk factors have linked to the development of IPF, among them, the presence of short telomeres. Like the plastic tips on shoelaces, telomeres are protective structures at the ends of chromosomes. Telomeres shorten with age, and when they become too short the cell stops dividing and often dies in a process known as apoptosis. IPF can develop when the telomeres in the cells that repair everyday wear and tear in the lungs (known as ATII cells) become too short. This means that the damage goes unrepaired, triggering an immune reaction and uncontrolled scarring. Telomerase is an enzyme that can lengthen short telomeres, and Povedano, Martínez et al. set out to develop a new treatment approach that would use this enzyme to correct the short telomeres, and cure the scarring seen in IPF. Gene therapy was used to introduce the gene for telomerase into mice that had scarring in their lungs due to short telomeres. Povedano, Martínez et al. found that, when injected into the mice, the telomerase gene therapy was able to reach ATII cells and could help to heal the lungs. At the level of individual cells, mice treated with telomerase had longer telomeres, meaning that more of their ATII cells stayed alive and kept dividing to regenerate the lung tissue. Consistent with previous studies, the telomerase gene therapy caused no negative side effects in the mice; for example, there was no increased risk of cancer. These findings may possibly lead to new treatments for those patients suffering from IPF associated with short telomeres. Developing this approach into a clinical trial could in the future benefit many IPF patients who currently have very limited treatment options.
Collapse
Affiliation(s)
- Juan Manuel Povedano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Paula Martinez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Águeda Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Core Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre, Madrid, Spain
| | - Maria Bobadilla
- Roche Pharma Research and Early Development (pRED), Neuroscience, Ophthalmology and Rare Disease, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.,Roche Partnering, EIN, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Juana Maria Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - Fátima Bosch
- Centre of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| |
Collapse
|
113
|
Telomeres, Aging and Exercise: Guilty by Association? Int J Mol Sci 2017; 18:ijms18122573. [PMID: 29186077 PMCID: PMC5751176 DOI: 10.3390/ijms18122573] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
Telomeres are repetitive tandem DNA sequences that cap chromosomal ends protecting genomic DNA from enzymatic degradation. Telomeres progressively shorten with cellular replication and are therefore assumed to correlate with biological and chronological age. An expanding body of evidence suggests (i) a predictable inverse association between telomere length, aging and age-related diseases and (ii) a positive association between physical activity and telomere length. Both hypotheses have garnered tremendous research attention and broad consensus; however, the evidence for each proposition is inconsistent and equivocal at best. Telomere length does not meet the basic criteria for an aging biomarker and at least 50% of key studies fail to find associations with physical activity. In this review, we address the evidence in support and refutation of the putative associations between telomere length, aging and physical activity. We finish with a brief review of plausible mechanisms and potential future research directions.
Collapse
|
114
|
Vera E, Bosco N, Studer L. Generating Late-Onset Human iPSC-Based Disease Models by Inducing Neuronal Age-Related Phenotypes through Telomerase Manipulation. Cell Rep 2017; 17:1184-1192. [PMID: 27760320 DOI: 10.1016/j.celrep.2016.09.062] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
Modeling late-onset disorders such as Parkinson's disease (PD) using iPSC technology remains a challenge, as current differentiation protocols yield cells with the properties of fetal-stage cells. Here, we tested whether it is possible to accelerate aging in vitro to trigger late-onset disease phenotypes in an iPSC model of PD. In order to manipulate a factor that is involved in natural aging as well as in premature aging syndromes, we used telomere shortening as an age-inducing tool. We show that shortened telomeres result in age-associated as well as potentially disease-associated phenotypes in human pluripotent stem cell (hPSC)-derived midbrain dopamine (mDA) neurons. Our approach provides proof of concept for the further validation of telomere shortening as an induced-aging tool for late-onset-disease modeling.
Collapse
Affiliation(s)
- Elsa Vera
- Center for Stem Cell Biology, Sloan-Kettering Institute, 1275 York Ave., New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute, 1275 York Ave., New York, NY 10065, USA.
| | - Nazario Bosco
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, Box 159, New York, NY 10065, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Sloan-Kettering Institute, 1275 York Ave., New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute, 1275 York Ave., New York, NY 10065, USA
| |
Collapse
|
115
|
Lai TP, Zhang N, Noh J, Mender I, Tedone E, Huang E, Wright WE, Danuser G, Shay JW. A method for measuring the distribution of the shortest telomeres in cells and tissues. Nat Commun 2017; 8:1356. [PMID: 29116081 PMCID: PMC5676791 DOI: 10.1038/s41467-017-01291-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023] Open
Abstract
Improved methods to measure the shortest (not just average) telomere lengths (TLs) are needed. We developed Telomere Shortest Length Assay (TeSLA), a technique that detects telomeres from all chromosome ends from <1 kb to 18 kb using small amounts of input DNA. TeSLA improves the specificity and efficiency of TL measurements that is facilitated by user friendly image-processing software to automatically detect and annotate band sizes, calculate average TL, as well as the percent of the shortest telomeres. Compared with other TL measurement methods, TeSLA provides more information about the shortest telomeres. The length of telomeres was measured longitudinally in peripheral blood mononuclear cells during human aging, in tissues during colon cancer progression, in telomere-related diseases such as idiopathic pulmonary fibrosis, as well as in mice and other organisms. The results indicate that TeSLA is a robust method that provides a better understanding of the shortest length of telomeres. Short telomeres are a hallmark of senescence and can result in genomic instability as well as cancer progression. Here, the authors present TeSLA, a technique to accurately detect telomeres under 1 kb in length.
Collapse
Affiliation(s)
- Tsung-Po Lai
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ning Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jungsik Noh
- Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ilgen Mender
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Enzo Tedone
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ejun Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
116
|
Gokarn R, Solon-Biet S, Youngson NA, Wahl D, Cogger VC, McMahon AC, Cooney GJ, Ballard JWO, Raubenheimer D, Morris MJ, Simpson SJ, Le Couteur DG. The Relationship Between Dietary Macronutrients and Hepatic Telomere Length in Aging Mice. J Gerontol A Biol Sci Med Sci 2017; 73:446-449. [DOI: 10.1093/gerona/glx186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/28/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rahul Gokarn
- Charles Perkins Centre, University of Sydney, New South Wales, Australia
- Aging and Alzheimers Institute (AAAI), Centre for Education and Research on Ageing (CERA), and ANZAC Research Institute, Concord Hospital, New South Wales, Australia
| | - Samantha Solon-Biet
- Charles Perkins Centre, University of Sydney, New South Wales, Australia
- Aging and Alzheimers Institute (AAAI), Centre for Education and Research on Ageing (CERA), and ANZAC Research Institute, Concord Hospital, New South Wales, Australia
| | - Neil A Youngson
- School of Medical Sciences, The University of New South Wales, Kensington, Australia
| | - Devin Wahl
- Charles Perkins Centre, University of Sydney, New South Wales, Australia
- Aging and Alzheimers Institute (AAAI), Centre for Education and Research on Ageing (CERA), and ANZAC Research Institute, Concord Hospital, New South Wales, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, New South Wales, Australia
- Aging and Alzheimers Institute (AAAI), Centre for Education and Research on Ageing (CERA), and ANZAC Research Institute, Concord Hospital, New South Wales, Australia
| | - Aisling C McMahon
- Aging and Alzheimers Institute (AAAI), Centre for Education and Research on Ageing (CERA), and ANZAC Research Institute, Concord Hospital, New South Wales, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Margaret J Morris
- School of Medical Sciences, The University of New South Wales, Kensington, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, New South Wales, Australia
- Aging and Alzheimers Institute (AAAI), Centre for Education and Research on Ageing (CERA), and ANZAC Research Institute, Concord Hospital, New South Wales, Australia
| |
Collapse
|
117
|
Olsson M, Wapstra E, Friesen CR. Evolutionary ecology of telomeres: a review. Ann N Y Acad Sci 2017; 1422:5-28. [DOI: 10.1111/nyas.13443] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Mats Olsson
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
- School of Biological Sciences The University of Wollongong Wollongong New South Wales Australia
| | - Erik Wapstra
- School of Biological Sciences University of Tasmania Hobart Tasmania Australia
| | - Christopher R. Friesen
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| |
Collapse
|
118
|
McLennan D, Armstrong JD, Stewart DC, Mckelvey S, Boner W, Monaghan P, Metcalfe NB. Shorter juvenile telomere length is associated with higher survival to spawning in migratory Atlantic salmon. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12939] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of Glasgow Glasgow UK
| | - John D. Armstrong
- Marine Scotland – ScienceFreshwater Laboratory Faskally Pitlochry UK
| | - David C. Stewart
- Marine Scotland – ScienceFreshwater Laboratory Faskally Pitlochry UK
| | | | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of Glasgow Glasgow UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of Glasgow Glasgow UK
| | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of Glasgow Glasgow UK
| |
Collapse
|
119
|
Abstract
Bacteria and viruses possess circular DNA, whereas eukaryotes with typically very large DNA molecules have had to evolve into linear chromosomes to circumvent the problem of supercoiling circular DNA of that size. Consequently, such organisms possess telomeres to cap chromosome ends. Telomeres are essentially tandem repeats of any DNA sequence that are present at the ends of chromosomes. Their biology has been an enigmatic one, involving various molecules interacting dynamically in an evolutionarily well-trimmed fashion. Telomeres range from canonical hexameric repeats in most eukaryotes to unimaginably random retrotransposons, which attach to chromosome ends and reverse-transcribe to DNA in some plants and insects. Telomeres invariably associate with specialised protein complexes that envelop it, also regulating access of the ends to legitimate enzymes involved in telomere metabolism. They also transcribe into repetitive RNA which also seems to be playing significant roles in telomere maintenance. Telomeres thus form the intersection of DNA, protein, and RNA molecules acting in concert to maintain chromosome integrity. Telomere biology is emerging to appear ever more complex than previously envisaged, with the continual discovery of more molecules and interplays at the telomeres. This review also includes a section dedicated to the history of telomere biology, and intends to target the scientific audience new to the field by rendering an understanding of the phenomenon of chromosome end protection at large, with more emphasis on the biology of human telomeres. The review provides an update on the field and mentions the questions that need to be addressed.
Collapse
Affiliation(s)
- Shriram Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
| | - Aik Kia Khaw
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828 Singapore, Singapore.
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Tembusu College, National University of Singapore, 138598 Singapore, Singapore.
- VIT University, Vellore 632014, India.
- Mangalore University, Mangalore 574199, India.
| |
Collapse
|
120
|
Abstract
The health of an organism is orchestrated by a multitude of molecular and biochemical networks responsible for ensuring homeostasis within cells and tissues. However, upon aging, a progressive failure in the maintenance of this homeostatic balance occurs in response to a variety of endogenous and environmental stresses, allowing the accumulation of damage, the physiological decline of individual tissues, and susceptibility to diseases. What are the molecular and cellular signaling events that control the aging process and how can this knowledge help design therapeutic strategies to combat age-associated diseases? Here we provide a comprehensive overview of the evolutionarily conserved biological processes that alter the rate of aging and discuss their link to disease prevention and the extension of healthy life span.
Collapse
Affiliation(s)
- Celine E Riera
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; .,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.,Glenn Center for Research on Aging, University of California, Berkeley, California 94720
| | - Carsten Merkwirth
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; .,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.,Glenn Center for Research on Aging, University of California, Berkeley, California 94720
| | - C Daniel De Magalhaes Filho
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.,The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; .,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.,Glenn Center for Research on Aging, University of California, Berkeley, California 94720
| |
Collapse
|
121
|
Martínez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol 2017; 216:875-887. [PMID: 28254828 PMCID: PMC5379954 DOI: 10.1083/jcb.201610111] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
Martínez and Blasco review the molecular mechanisms underlying diseases associated with telomere dysfunction, including telomeropathies, age-related disorders, and cancer. Current and future therapeutic strategies to treat and prevent these diseases, including preclinical development of telomere-targeted therapies using mouse models, are discussed. Telomeres, the protective ends of linear chromosomes, shorten throughout an individual’s lifetime. Telomere shortening is proposed to be a primary molecular cause of aging. Short telomeres block the proliferative capacity of stem cells, affecting their potential to regenerate tissues, and trigger the development of age-associated diseases. Mutations in telomere maintenance genes are associated with pathologies referred to as telomere syndromes, including Hoyeraal-Hreidarsson syndrome, dyskeratosis congenita, pulmonary fibrosis, aplastic anemia, and liver fibrosis. Telomere shortening induces chromosomal instability that, in the absence of functional tumor suppressor genes, can contribute to tumorigenesis. In addition, mutations in telomere length maintenance genes and in shelterin components, the protein complex that protects telomeres, have been found to be associated with different types of cancer. These observations have encouraged the development of therapeutic strategies to treat and prevent telomere-associated diseases, namely aging-related diseases, including cancer. Here we review the molecular mechanisms underlying telomere-driven diseases and highlight recent advances in the preclinical development of telomere-targeted therapies using mouse models.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| |
Collapse
|
122
|
Stauffer J, Panda B, Eeva T, Rainio M, Ilmonen P. Telomere damage and redox status alterations in free-living passerines exposed to metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:841-848. [PMID: 27693158 DOI: 10.1016/j.scitotenv.2016.09.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 04/14/2023]
Abstract
Telomere length may reflect the expected life span and possibly individual quality. Environmental stressors are known to increase oxidative stress and accelerate telomere attrition: however the interactions between redox status and telomere dynamics are not fully understood. We investigated whether exposure to heavy metal pollution is associated with oxidative stress and telomere damage in two insectivorous passerines, the Great tit (Parus major) and the Pied flycatcher (Ficedula hypoleuca). We were also interested to know whether within-brood competition could influence the nestling redox status or telomere length. Breeding females and nestlings were sampled near the point pollution source and compared to birds in non-polluted control zone. We measured heavy metal concentrations, calcium, metallothioneins, telomere lengths and redox status (oxidative damage, and enzymatic and non-enzymatic antioxidants) in liver samples. Great tit nestlings in the polluted zone had significantly shorter telomeres compared to those in the unpolluted control zone. In addition, those great tit nestlings that were lighter than their average siblings, had shorter telomeres compared to the heavier ones. In pied flycatchers neither pollution nor growth stress were associated with telomere length, but adult females had significantly shorter telomeres compared to the nestlings. All the results related to redox status varied remarkably among the species and the age groups. In both species antioxidants were related to pollution. There were no significant associations between redox status and telomere length. Our results suggest that wild birds at a young age are vulnerable to pollution and growth stress induced telomere damage. Redox status seems to interact with pollution and growth, but more studies are needed to clarify the underlying physiological mechanisms of telomere attrition. Our study highlights that all the observed associations and differences between the sampling zones varied depending on the species, age, and degree of exposure to pollution.
Collapse
Affiliation(s)
| | - Bineet Panda
- Department of Biology, University of Turku, Turku, Finland
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Miia Rainio
- Department of Biology, University of Turku, Turku, Finland
| | | |
Collapse
|
123
|
Boccardi V, Paolisso G, Mecocci P. Nutrition and lifestyle in healthy aging: the telomerase challenge. Aging (Albany NY) 2016; 8:12-5. [PMID: 26826704 PMCID: PMC4761710 DOI: 10.18632/aging.100886] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nutrition and lifestyle, known to modulate aging process and age-related diseases, might also affect telomerase activity. Short and dysfunctional telomeres rather than average telomere length are associated with longevity in animal models, and their rescue by telomerase maybe sufficient to restore cell and organismal viability. Improving telomerase activation in stem cells and potentially in other cells by diet and lifestyle interventions may represent an intriguing way to promote health-span in humans.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
124
|
Zierer J, Kastenmüller G, Suhre K, Gieger C, Codd V, Tsai PC, Bell J, Peters A, Strauch K, Schulz H, Weidinger S, Mohney RP, Samani NJ, Spector T, Mangino M, Menni C. Metabolomics profiling reveals novel markers for leukocyte telomere length. Aging (Albany NY) 2016; 8:77-94. [PMID: 26797767 DOI: 10.18632/aging.100874] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Leukocyte telomere length (LTL) is considered one of the most predictive markers of biological aging. The aim of this study was to identify novel pathways regulating LTL using a metabolomics approach. To this end, we tested associations between 280 blood metabolites and LTL in 3511 females from TwinsUK and replicated our results in the KORA cohort. We furthermore tested significant metabolites for associations with several aging-related phenotypes, gene expression markers and epigenetic markers to investigate potential underlying pathways. Five metabolites were associated with LTL: Two lysolipids, 1-stearoylglycerophosphoinositol (P=1.6×10(-5)) and 1-palmitoylglycerophosphoinositol (P=1.6×10(-5)), were found to be negatively associated with LTL and positively associated with phospholipase A2 expression levels suggesting an involvement of fatty acid metabolism and particularly membrane composition in biological aging. Moreover, two gamma-glutamyl amino acids, gamma-glutamyltyrosine (P=2.5×10(-6)) and gamma-glutamylphenylalanine (P=1.7×10(-5)), were negatively correlated with LTL. Both are products of the glutathione cycle and markers for increased oxidative stress. Metabolites were also correlated with functional measures of aging, i.e. higher blood pressure and HDL cholesterol levels and poorer lung, liver and kidney function. Our results suggest an involvement of altered fatty acid metabolism and increased oxidative stress in human biological aging, reflected by LTL and age-related phenotypes of vital organ systems.
Collapse
Affiliation(s)
- Jonas Zierer
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiologie II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Annette Peters
- Institute of Epidemiologie II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
125
|
Malik A, Domankevich V, Lijuan H, Xiaodong F, Korol A, Avivi A, Shams I. Genome maintenance and bioenergetics of the long-lived hypoxia-tolerant and cancer-resistant blind mole rat, Spalax: a cross-species analysis of brain transcriptome. Sci Rep 2016; 6:38624. [PMID: 27934892 PMCID: PMC5146665 DOI: 10.1038/srep38624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
The subterranean blind mole rat, Spalax, experiences acute hypoxia-reoxygenation cycles in its natural subterranean habitat. At the cellular level, these conditions are known to promote genomic instability, which underlies both cancer and aging. However, Spalax is a long-lived animal and is resistant to both spontaneous and induced cancers. To study this apparent paradox we utilized a computational procedure that allows detecting differences in transcript abundance between Spalax and the closely related above-ground Rattus norvegicus in individuals of different ages. Functional enrichment analysis showed that Spalax whole brain tissues maintain significantly higher normoxic mRNA levels of genes associated with DNA damage repair and DNA metabolism, yet keep significantly lower mRNA levels of genes involved in bioenergetics. Many of the genes that showed higher transcript abundance in Spalax are involved in DNA repair and metabolic pathways that, in other species, were shown to be downregulated under hypoxia, yet are required for overcoming replication- and oxidative-stress during the subsequent reoxygenation. We suggest that these differentially expressed genes may prevent the accumulation of DNA damage in mitotic and post-mitotic cells and defective resumption of replication in mitotic cells, thus maintaining genome integrity as an adaptation to acute hypoxia-reoxygenation cycles.
Collapse
Affiliation(s)
- Assaf Malik
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel.,Bioinformatics Core Unit, University of Haifa, Haifa 3498838, Israel
| | - Vered Domankevich
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel.,Deparment of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Han Lijuan
- BGI-Tech, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Abraham Korol
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel.,Deparment of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Aaron Avivi
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Imad Shams
- Institue of Evolution, University of Haifa, Haifa 3498838, Israel.,Deparment of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
126
|
Ujvari B, Biro PA, Charters JE, Brown G, Heasman K, Beckmann C, Madsen T. Curvilinear telomere length dynamics in a squamate reptile. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12764] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Beata Ujvari
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
| | - Peter A. Biro
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
| | - Jordan E. Charters
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
- School of Biological Sciences University of Queensland Brisbane Queensland4072 Australia
| | - Gregory Brown
- School of Biological Sciences University of Sydney Sydney New South Wales2006 Australia
| | - Kim Heasman
- Faculty of Veterinary Science University of Sydney Sydney New South Wales2006 Australia
| | - Christa Beckmann
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
| | - Thomas Madsen
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria3218 Australia
- School of Molecular Biosciences University of Sydney Sydney New South Wales2006 Australia
- School of Biological Sciences University of Wollongong Wollongong New South Wales2522 Australia
| |
Collapse
|
127
|
Abstract
One of the original hypotheses of organismal longevity posits that aging is the natural result of entropy on the cells, tissues, and organs of the animal—a slow, inexorable slide into nonfunctionality caused by stochastic degradation of its parts. We now have evidence that aging is instead at least in part genetically regulated. Many mutations have been discovered to extend lifespan in organisms of all complexities, from yeast to mammals. The study of metazoan model organisms, such as Caenorhabditis elegans, has been instrumental in understanding the role of genetics in the cell biology of aging. Longevity mutants across the spectrum of model organisms demonstrate that rates of aging are regulated through genetic control of cellular processes. The regulation and subsequent breakdown of cellular processes represent a programmatic decision by the cell to either continue or abandon maintenance procedures with age. Our understanding of cell biological processes involved in regulating aging have been particularly informed by longevity mutants and treatments, such as reduced insulin/IGF-1 signaling and dietary restriction, which are critical in determining the distinction between causes of and responses to aging and have revealed a set of downstream targets that participate in a range of cell biological activities. Here we briefly review some of these important cellular processes.
Collapse
Affiliation(s)
- Race DiLoreto
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Coleen T Murphy
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| |
Collapse
|
128
|
Zurek M, Altschmied J, Kohlgrüber S, Ale-Agha N, Haendeler J. Role of Telomerase in the Cardiovascular System. Genes (Basel) 2016; 7:genes7060029. [PMID: 27322328 PMCID: PMC4929428 DOI: 10.3390/genes7060029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 12/22/2022] Open
Abstract
Aging is one major risk factor for the incidence of cardiovascular diseases and the development of atherosclerosis. One important enzyme known to be involved in aging processes is Telomerase Reverse Transcriptase (TERT). After the discovery of the enzyme in humans, TERT had initially only been attributed to germ line cells, stem cells and cancer cells. However, over the last few years it has become clear that TERT is also active in cells of the cardiovascular system including cardiac myocytes, endothelial cells, smooth muscle cells and fibroblasts. Interference with the activity of this enzyme greatly contributes to cardiovascular diseases. This review will summarize the findings on the role of TERT in cardiovascular cells. Moreover, recent findings concerning TERT in different mouse models with respect to cardiovascular diseases will be described. Finally, the extranuclear functions of TERT will be covered within this review.
Collapse
Affiliation(s)
- Mark Zurek
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
| | - Joachim Altschmied
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
| | - Stefanie Kohlgrüber
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
| | - Niloofar Ale-Agha
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
| | - Judith Haendeler
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany.
- Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|
129
|
Varela E, Muñoz-Lorente MA, Tejera AM, Ortega S, Blasco MA. Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations. Nat Commun 2016; 7:11739. [PMID: 27252083 PMCID: PMC4895768 DOI: 10.1038/ncomms11739] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Although telomere length is genetically determined, mouse embryonic stem (ES) cells with telomeres of twice the normal size have been generated. Here, we use such ES cells with ‘hyper-long' telomeres, which also express green fluorescent protein (GFP), to generate chimaeric mice containing cells with both hyper-long and normal telomeres. We show that chimaeric mice contain GFP-positive cells in all mouse tissues, display normal tissue histology and normal survival. Both hyper-long and normal telomeres shorten with age, but GFP-positive cells retain longer telomeres as mice age. Chimaeric mice with hyper-long telomeres also accumulate fewer cells with short telomeres and less DNA damage with age, and express lower levels of p53. In highly renewing compartments, such as the blood, cells with hyper-long telomeres are longitudinally maintained or enriched with age. We further show that wound-healing rates in the skin are increased in chimaeric mice. Our work demonstrates that mice with functional, longer and better preserved telomeres can be generated without the need for genetic manipulations, such as TERT overexpression. Telomere shortening has been linked to some aspects of organismal ageing. Here the authors create chimaeric mice that contain a mix of cells with normal or unnaturally long telomeres, and show chimaeric mice are protected from some forms of ageing-associated cellular damage and have accelerated wound-healing.
Collapse
Affiliation(s)
- Elisa Varela
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Miguel A Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Agueda M Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Sagrario Ortega
- Transgenics Mice Unit, Biotechnology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| |
Collapse
|
130
|
Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, Hardy N, Mihalek AD, Lingala S, Kim YJ, Yao J, Jones E, Gochuico BR, Heller T, Wu CO, Calado RT, Scheinberg P, Young NS. Danazol Treatment for Telomere Diseases. N Engl J Med 2016; 374:1922-31. [PMID: 27192671 PMCID: PMC4968696 DOI: 10.1056/nejmoa1515319] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic defects in telomere maintenance and repair cause bone marrow failure, liver cirrhosis, and pulmonary fibrosis, and they increase susceptibility to cancer. Historically, androgens have been useful as treatment for marrow failure syndromes. In tissue culture and animal models, sex hormones regulate expression of the telomerase gene. METHODS In a phase 1-2 prospective study involving patients with telomere diseases, we administered the synthetic sex hormone danazol orally at a dose of 800 mg per day for a total of 24 months. The goal of treatment was the attenuation of accelerated telomere attrition, and the primary efficacy end point was a 20% reduction in the annual rate of telomere attrition measured at 24 months. The occurrence of toxic effects of treatment was the primary safety end point. Hematologic response to treatment at various time points was the secondary efficacy end point. RESULTS After 27 patients were enrolled, the study was halted early, because telomere attrition was reduced in all 12 patients who could be evaluated for the primary end point; in the intention-to-treat analysis, 12 of 27 patients (44%; 95% confidence interval [CI], 26 to 64) met the primary efficacy end point. Unexpectedly, almost all the patients (11 of 12, 92%) had a gain in telomere length at 24 months as compared with baseline (mean increase, 386 bp [95% CI, 178 to 593]); in exploratory analyses, similar increases were observed at 6 months (16 of 21 patients; mean increase, 175 bp [95% CI, 79 to 271]) and 12 months (16 of 18 patients; mean increase, 360 bp [95% CI, 209 to 512]). Hematologic responses occurred in 19 of 24 patients (79%) who could be evaluated at 3 months and in 10 of 12 patients (83%) who could be evaluated at 24 months. Known adverse effects of danazol--elevated liver-enzyme levels and muscle cramps--of grade 2 or less occurred in 41% and 33% of the patients, respectively. CONCLUSIONS In our study, treatment with danazol led to telomere elongation in patients with telomere diseases. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT01441037.).
Collapse
Affiliation(s)
- Danielle M Townsley
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Bogdan Dumitriu
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Delong Liu
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Angélique Biancotto
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Barbara Weinstein
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Christina Chen
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Nathan Hardy
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Andrew D Mihalek
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Shilpa Lingala
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Yun Ju Kim
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Jianhua Yao
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Elizabeth Jones
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Bernadette R Gochuico
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Theo Heller
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Colin O Wu
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Rodrigo T Calado
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Phillip Scheinberg
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| | - Neal S Young
- From the Hematology Branch (D.M.T., B.D., D.L., B.W., C.C., N.H., N.S.Y.), the Cardiopulmonary Branch (A.D.M.), and the Office of Biostatistics Research (C.O.W.), National Heart, Lung, and Blood Institute, the Center for Human Immunology, Autoimmunity, and Inflammation (A.B.), the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (S.L., Y.J.K., T.H.), Radiology and Imaging Sciences, Clinical Center (J.Y., E.J.), and the Medical Genetics Branch, National Human Genome Research Institute (B.R.G.), National Institutes of Health, Bethesda, MD; and the Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto (R.T.C.), and Clinical Hematology, Antônio Ermírio de Moraes Cancer Center, Hospital São José and Beneficência Portuguesa (P.S.), São Paulo
| |
Collapse
|
131
|
Noguera JC, Metcalfe NB, Reichert S, Monaghan P. Embryonic and postnatal telomere length decrease with ovulation order within clutches. Sci Rep 2016; 6:25915. [PMID: 27174767 PMCID: PMC4865837 DOI: 10.1038/srep25915] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022] Open
Abstract
Telomere length (TL) in early life has been found to be predictive of subsequent lifespan. Factors such as parental TL, parental age and environmental conditions during development have been shown to contribute to the observed variation in TL among individuals. One factor that has not hitherto been considered is ovulation order, although it is well established that the last hatched/born offspring in a brood or litter often show relatively poor subsequent performance. We examined the within- and across-clutch effect of ovulation order on TL in embryos of zebra finches experiencing the same controlled incubation conditions (N = 151), and tested whether any such ovulation order effects remained detectable in adults (N = 122). Irrespective of clutch and egg size, TL in early-stage embryos (72 h incubation) markedly decreased with within-clutch ovulation order; the difference in TL of first and last-laid embryos was equivalent to the average within-individual telomere loss over the entire period of nestling and juvenile life. This ovulation-order effect occurred only within but not across clutches, and was still evident in adults. Given that TL in early life predicts lifespan, our results suggest that parental effects on telomere length could contribute to the known poor performance of later-ovulated family members.
Collapse
Affiliation(s)
- José C Noguera
- Institute of Biodiversity Animal Health &Comparative Medicine, College of Medical, Veterinary &Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity Animal Health &Comparative Medicine, College of Medical, Veterinary &Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sophie Reichert
- Institute of Biodiversity Animal Health &Comparative Medicine, College of Medical, Veterinary &Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pat Monaghan
- Institute of Biodiversity Animal Health &Comparative Medicine, College of Medical, Veterinary &Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
132
|
Short Telomere Load, Telomere Length, and Subclinical Atherosclerosis. J Am Coll Cardiol 2016; 67:2467-76. [DOI: 10.1016/j.jacc.2016.03.530] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 11/20/2022]
|
133
|
Fairlie J, Holland R, Pilkington JG, Pemberton JM, Harrington L, Nussey DH. Lifelong leukocyte telomere dynamics and survival in a free-living mammal. Aging Cell 2016; 15:140-8. [PMID: 26521726 PMCID: PMC4717268 DOI: 10.1111/acel.12417] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 12/22/2022] Open
Abstract
Telomeres play a fundamental role in the maintenance of genomic integrity at a cellular level, and average leukocyte telomere length (LTL) has been proposed as a biomarker of organismal aging. However, studies tracking LTL across the entire life course of individuals are lacking. Here, we examined lifelong patterns of variation in LTL among four birth cohorts of female Soay sheep (Ovis aries) that were longitudinally monitored and sampled from birth to death. Over the first 4 months of life, there was within‐individual loss of LTL, consistent with findings in the human and primate literature, but there was little evidence of consistent LTL loss associated with age after this point. Overall, we observed only weak evidence of individual consistency in LTL across years and over the entire lifespan: Within‐individual variation was considerable, and birth cohorts differed markedly in their telomere dynamics. Despite the high levels of LTL variation within the lifetimes of individuals, there remained significant associations between LTL and longevity. Detailed analysis of the longitudinal data set showed that this association was driven by improved survival of individuals with longer LTL over the first 2 years of life. There was no evidence that LTL predicted survival in later adulthood. Our data provide the first evidence from a mammal that LTL can predict mortality and lifespan under natural conditions, and also highlight the potentially dynamic nature of LTL within the lifetimes of individuals experiencing a complex and highly variable environment.
Collapse
Affiliation(s)
- Jennifer Fairlie
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3FL UK
| | - Rebecca Holland
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3FL UK
| | - Jill G. Pilkington
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3FL UK
| | | | - Lea Harrington
- Institute for Research in Immunology & Cancer; Université de Montréal; Montreal QC Canada H3T 1J4
| | - Daniel H. Nussey
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3FL UK
| |
Collapse
|
134
|
Abstract
Telomeres, the protective ends of linear chromosomes, shorten throughout an individual's lifetime. Telomere shortening is a hallmark of molecular aging and is associated with premature appearance of diseases associated with aging. Here, we discuss the role of telomere shortening as a direct cause for aging and age-related diseases. In particular, we draw attention to the fact that telomere length influences longevity. Furthermore, we discuss intrinsic and environmental factors that can impact on human telomere erosion. Finally, we highlight recent advances in telomerase-based therapeutic strategies for the treatment of diseases associated with extremely short telomeres owing to mutations in telomerase, as well as age-related diseases, and ultimately aging itself.
Collapse
Affiliation(s)
- Christian Bär
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
135
|
Simons MJP. Questioning causal involvement of telomeres in aging. Ageing Res Rev 2015; 24:191-6. [PMID: 26304838 DOI: 10.1016/j.arr.2015.08.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022]
Abstract
Multiple studies have demonstrated that telomere length predicts mortality and that telomeres shorten with age. Although rarely acknowledged these associations do not dictate causality. I review telomerase knockout and overexpression studies and find little support that telomeres cause aging. In addition, the causality hypothesis assumes that there is a critical telomere length at which senescence is induced. This generates the prediction that variance in telomere length decreases with age. In contrast, using meta-analysis of human data, I find no such decline. Inferring the causal involvement of telomeres in aging from current knowledge is therefore speculative and could hinder scientific progress.
Collapse
Affiliation(s)
- Mirre J P Simons
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, Sheffield, United Kingdom.
| |
Collapse
|
136
|
García-Calzón S, Zalba G, Ruiz-Canela M, Shivappa N, Hébert JR, Martínez JA, Fitó M, Gómez-Gracia E, Martínez-González MA, Marti A. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 y. Am J Clin Nutr 2015; 102:897-904. [PMID: 26354530 PMCID: PMC4588745 DOI: 10.3945/ajcn.115.116863] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/04/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Dietary factors can affect telomere length (TL), a biomarker of aging, through oxidation and inflammation-related mechanisms. A Dietary Inflammatory Index (DII) could help to understand the effect of the inflammatory potential of the diet on telomere shortening. OBJECTIVE This study aimed to determine the association of the DII with TL and to examine whether diet-associated inflammation could modify the telomere attrition rate after a 5-y follow-up of a Mediterranean dietary intervention. DESIGN This was a prospective study of 520 participants at high cardiovascular disease risk (mean ± SD age: 67.0 ± 6.0 y, 45% males) from the PREDIMED-NAVARRA (PREvención con DIeta MEDiterránea-NAVARRA) trial. Leukocyte TL was measured by quantitative real-time polymerase chain reaction at baseline and after 5 y of follow-up. The DII was calculated from self-reported data by using a validated 137-item food-frequency questionnaire. RESULTS Longer telomeres at baseline were found in participants who had a more anti-inflammatory diet (lowest DII score) (P-trend = 0.012). Longitudinal analyses further showed that a greater anti-inflammatory potential of the diet (i.e., a decrease in the DII) could significantly slow down the rate of telomere shortening. Moreover, the multivariable-adjusted OR for short telomeres (z score ≤20th percentile) was 1.80 (95% CI: 1.03, 3.17) in a comparison between the highest (proinflammatory) and the lowest (anti-inflammatory) DII tertiles. Similarly, a greater DII (greatest proinflammatory values) after a 5-y follow-up was associated with almost a 2-fold higher risk of accelerated telomere attrition compared with the highest decrease in DII (greatest anti-inflammatory values) during this period (P-trend = 0.025). CONCLUSIONS This study showed both cross-sectional and longitudinal associations between the inflammatory potential of the diet and telomere shortening in subjects with a high cardiovascular disease risk. Our findings are consistent with, but do not show, a beneficial effect of adherence to an anti-inflammatory diet on aging and health by slowing down telomere shortening. These results suggest that diet might play a key role as a determinant of TL through proinflammatory or anti-inflammatory mechanisms. This trial was registered at controlled-trials.com as ISRCTN35739639.
Collapse
Affiliation(s)
- Sonia García-Calzón
- Departments of Nutrition, Food Science and Physiology, Navarra Institute for Health Research, Pamplona, Spain
| | - Guillermo Zalba
- Biochemistry and Genetics, and Navarra Institute for Health Research, Pamplona, Spain
| | - Miguel Ruiz-Canela
- Preventive Medicine and Public Health and Navarra Institute for Health Research, Pamplona, Spain; Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Nitin Shivappa
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - James R Hébert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - J Alfredo Martínez
- Departments of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain; Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Montserrat Fitó
- Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Cardiovascular Risk and Nutrition Research Group (Regicor Study Group), Barcelona, Spain; and
| | | | - Miguel A Martínez-González
- Preventive Medicine and Public Health and Navarra Institute for Health Research, Pamplona, Spain; Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Amelia Marti
- Departments of Nutrition, Food Science and Physiology, Navarra Institute for Health Research, Pamplona, Spain; Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain;
| |
Collapse
|
137
|
Venkatesan S, Natarajan AT, Hande MP. Chromosomal instability--mechanisms and consequences. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:176-84. [PMID: 26520388 DOI: 10.1016/j.mrgentox.2015.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 01/08/2023]
Abstract
Chromosomal instability is defined as a state of numerical and/or structural chromosomal anomalies in cells. Numerous studies have documented the incidence of chromosomal instability, which acutely or chronically may lead to accelerated ageing (tissue-wide or even organismal), cancer or other genetic disorders. Potential mechanisms leading to the generation of chromosome-genome instability include erroneous/inefficient DNA repair, chromosome segregation defects, spindle assembly defects, DNA replication stress, telomere shortening/dysfunction - to name a few. Understanding the cellular and molecular mechanisms for chromosomal instability in various human cells and tissues will be useful in elucidating the cause for many age associated diseases including cancer. This approach holds a great promise for the cytogenetic assays not only for prognosis but also for diagnostic purposes in clinical settings. In this review, a multi-dimensional approach has been attempted to portray the complexity behind the incidence of chromosome-genome instability including evolutionary implications at the species level for some of the mechanisms of chromosomal instability.
Collapse
Affiliation(s)
- Shriram Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597
| | - Adayapalam T Natarajan
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597; Tembusu College, National University of Singapore, Singapore, 138597.
| |
Collapse
|
138
|
Grosbellet E, Zahn S, Arrivé M, Dumont S, Gourmelen S, Pévet P, Challet E, Criscuolo F. Circadian desynchronization triggers premature cellular aging in a diurnal rodent. FASEB J 2015; 29:4794-803. [PMID: 26260033 DOI: 10.1096/fj.14-266817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/27/2015] [Indexed: 12/16/2022]
Abstract
Chronic jet lag or shift work is deleterious to human metabolic health, in that such circadian desynchronization is associated with being overweight and the prevalence of altered glucose metabolism. Similar metabolic changes are observed with age, suggesting that chronic jet lag and accelerated cell aging are intimately related, but the association remains to be determined. We addressed whether jet lag induces metabolic and cell aging impairments in young grass rats (2-3 mo old), using control old grass rats (12-18 mo old) as an aging reference. Desynchronized young and control old subjects had impaired glucose tolerance (+60 and +280%) when compared with control young animals. Despite no significant variation in liver DNA damage, shorter telomeres were characterized, not only in old animal liver cells (-18%), but also at an intermediate level in desynchronized young rats (-9%). The same pattern was found for deacetylase sirtuin (SIRT)-1 (-57 and -29%), confirming that jet-lagged young rats have an intermediate aging profile. Our data indicate that an experimental circadian desynchronization in young animals is associated with a precocious aging profile based on 3 well-known markers, as well as a prediabetic phenotype. Such chronic jet lag-induced alterations observed in a diurnal species constitute proof of principle of the need to develop preventive treatments in jet-lagged persons and shift workers.
Collapse
Affiliation(s)
- Edith Grosbellet
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Sandrine Zahn
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Mathilde Arrivé
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Stéphanie Dumont
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Sylviane Gourmelen
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - François Criscuolo
- *Institute of Cellular and Integrative Neurosciences, Unité Propres de Recherche 3212, and Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Unité Mixte de Recherche 7178, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| |
Collapse
|
139
|
Bär C, Huber N, Beier F, Blasco MA. Therapeutic effect of androgen therapy in a mouse model of aplastic anemia produced by short telomeres. Haematologica 2015. [PMID: 26206796 DOI: 10.3324/haematol.2015.129239] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aplastic anemia is a rare but life-threatening disorder characterized by cytopenia in at least two of the three blood lineages. A frequent feature of patients with aplastic anemia is that they have shorter telomeres than those of age-matched controls. Testosterone has been used for over half a century in the treatment of aplastic anemia. However, although remissions are frequent following hormone therapy, the molecular mechanism underlying the response to treatment has remained unknown. Here we explored the possibility that the recently described regulation of telomerase activity by sex hormones may be the mechanism responsible. To this end, we used a mouse model of aplastic anemia induced by short telomeres in the bone marrow compartment. We found that testosterone therapy results in telomerase up-regulation, improved blood counts, and a significant extension of life-span of these mice. Importantly, longitudinal follow-up studies revealed longer telomeres in peripheral blood in mice subjected to hormone treatment. Our results demonstrate that testosterone-mediated telomerase activation can attenuate or reverse aplastic anemia disease progression associated with the presence of short telomeres.
Collapse
Affiliation(s)
- Christian Bär
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Nicolas Huber
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Fabian Beier
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain Department of Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University Germany
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| |
Collapse
|
140
|
Povedano JM, Martinez P, Flores JM, Mulero F, Blasco MA. Mice with Pulmonary Fibrosis Driven by Telomere Dysfunction. Cell Rep 2015; 12:286-99. [PMID: 26146081 DOI: 10.1016/j.celrep.2015.06.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/01/2015] [Accepted: 06/05/2015] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a degenerative disease of the lungs with an average survival post-diagnosis of 2-3 years. New therapeutic targets and treatments are necessary. Mutations in components of the telomere-maintenance enzyme telomerase or in proteins important for telomere protection are found in both familial and sporadic IPF cases. However, the lack of mouse models that faithfully recapitulate the human disease has hampered new advances. Here, we generate two independent mouse models that develop IPF owing to either critically short telomeres (telomerase-deficient mice) or severe telomere dysfunction in the absence of telomere shortening (mice with Trf1 deletion in type II alveolar cells). We show that both mouse models develop pulmonary fibrosis through induction of telomere damage, thus providing proof of principle of the causal role of DNA damage stemming from dysfunctional telomeres in IPF development and identifying telomeres as promising targets for new treatments.
Collapse
Affiliation(s)
- Juan M Povedano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Paula Martinez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Juana M Flores
- Animal Surgery and Medicine Department, Faculty of Veterinary Science, Complutense University of Madrid, Madrid 28029, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
141
|
Boccardi V, Pelini L, Ercolani S, Ruggiero C, Mecocci P. From cellular senescence to Alzheimer's disease: The role of telomere shortening. Ageing Res Rev 2015; 22:1-8. [PMID: 25896211 DOI: 10.1016/j.arr.2015.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/17/2022]
Abstract
The old age population is increasing worldwide as well as age related diseases, including neurodegenerative disorders, such as Alzheimer's disease (AD), which negatively impacts on the health care systems. Aging represents per se a risk factor for AD. Thus, the study and identification of pathways within the biology of aging represent an important end point for the development of novel and effective disease-modifying drugs to treat, delay, or prevent AD. Cellular senescence and telomere shortening represent suitable and promising targets. Several studies show that cellular senescence is tightly interconnected to aging and AD, while the role of telomere dynamic and stability in AD pathogenesis is still unclear. This review will focus on the linking mechanisms between cellular senescence, telomere shortening, and AD.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Luca Pelini
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Ercolani
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
142
|
M'kacher R, Girinsky T, Colicchio B, Ricoul M, Dieterlen A, Jeandidier E, Heidingsfelder L, Cuceu C, Shim G, Frenzel M, Lenain A, Morat L, Bourhis J, Hempel WM, Koscielny S, Paul JF, Carde P, Sabatier L. Telomere shortening: a new prognostic factor for cardiovascular disease post-radiation exposure. RADIATION PROTECTION DOSIMETRY 2015; 164:134-137. [PMID: 25274533 DOI: 10.1093/rpd/ncu296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Telomere length has been proposed as a marker of mitotic cell age and as a general index of human organism aging. Telomere shortening in peripheral blood lymphocytes has been linked to cardiovascular-related morbidity and mortality. The authors investigated the potential correlation of conventional risk factors, radiation dose and telomere shortening with the development of coronary artery disease (CAD) following radiation therapy in a large cohort of Hodgkin lymphoma (HL) patients. Multivariate analysis demonstrated that hypertension and telomere length were the only independent risk factors. This is the first study in a large cohort of patients that demonstrates significant telomere shortening in patients treated by radiation therapy who developed cardiovascular disease. Telomere length appears to be an independent prognostic factor that could help determine patients at high risk of developing CAD after exposure in order to implement early detection and prevention.
Collapse
Affiliation(s)
- R M'kacher
- Laboratory of Radiobiology and Oncology, CEA, DSV/iRCM, Fontenay-aux-Roses 92265, France Laboratory of Radiation Sensitivity and Radio-carcinogenesis INSERM 1030, Institut Gustave Roussy, Villejuif 94 804, France
| | - T Girinsky
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif 94 804, France
| | - B Colicchio
- Laboratoire MIPS - Groupe TIIM3D, Université de Haute-Alsace, Mulhouse Cedex F-68093, France
| | - M Ricoul
- Laboratory of Radiobiology and Oncology, CEA, DSV/iRCM, Fontenay-aux-Roses 92265, France
| | - A Dieterlen
- Laboratoire MIPS - Groupe TIIM3D, Université de Haute-Alsace, Mulhouse Cedex F-68093, France
| | - E Jeandidier
- Department of genetics, CHU, Mulhouse Cedex 68093, France
| | - L Heidingsfelder
- MetaSystems GmbH, Robert-Bosch-Str. 6, Altlussheim D-68804, Germany
| | - C Cuceu
- Laboratory of Radiobiology and Oncology, CEA, DSV/iRCM, Fontenay-aux-Roses 92265, France
| | - G Shim
- Laboratory of Radiobiology and Oncology, CEA, DSV/iRCM, Fontenay-aux-Roses 92265, France
| | - M Frenzel
- Laboratory of Radiobiology and Oncology, CEA, DSV/iRCM, Fontenay-aux-Roses 92265, France Laboratory of Radiation Sensitivity and Radio-carcinogenesis INSERM 1030, Institut Gustave Roussy, Villejuif 94 804, France Department of Radiation Oncology, Institut Gustave Roussy, Villejuif 94 804, France Laboratoire MIPS - Groupe TIIM3D, Université de Haute-Alsace, Mulhouse Cedex F-68093, France Department of genetics, CHU, Mulhouse Cedex 68093, France MetaSystems GmbH, Robert-Bosch-Str. 6, Altlussheim D-68804, Germany Biostatistics and Epidemiology Unit, Institut Gustave Roussy, Villejuif 94 804, France Department of Radiology, Marie Lannelongue, Chatenay-Malabry 92019, France Department of hematology, Institut Gustave Roussy, Villejuif 94 804, France
| | - A Lenain
- Laboratory of Radiobiology and Oncology, CEA, DSV/iRCM, Fontenay-aux-Roses 92265, France
| | - L Morat
- Laboratory of Radiobiology and Oncology, CEA, DSV/iRCM, Fontenay-aux-Roses 92265, France
| | - J Bourhis
- Laboratory of Radiation Sensitivity and Radio-carcinogenesis INSERM 1030, Institut Gustave Roussy, Villejuif 94 804, France Department of Radiation Oncology, Institut Gustave Roussy, Villejuif 94 804, France Laboratoire MIPS - Groupe TIIM3D, Université de Haute-Alsace, Mulhouse Cedex F-68093, France Department of genetics, CHU, Mulhouse Cedex 68093, France
| | - W M Hempel
- Laboratory of Radiobiology and Oncology, CEA, DSV/iRCM, Fontenay-aux-Roses 92265, France
| | - S Koscielny
- Biostatistics and Epidemiology Unit, Institut Gustave Roussy, Villejuif 94 804, France
| | - J F Paul
- Department of Radiology, Marie Lannelongue, Chatenay-Malabry 92019, France
| | - P Carde
- Department of hematology, Institut Gustave Roussy, Villejuif 94 804, France
| | - L Sabatier
- Laboratory of Radiobiology and Oncology, CEA, DSV/iRCM, Fontenay-aux-Roses 92265, France
| |
Collapse
|
143
|
Chen Y, Wu Y, Huang X, Qu P, Li G, Jin T, Xing J, He S. Leukocyte telomere length: a novel biomarker to predict the prognosis of glioma patients. J Cancer Res Clin Oncol 2015; 141:1739-47. [PMID: 25702101 DOI: 10.1007/s00432-015-1938-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE Epidemiological studies have demonstrated that leukocyte telomere length is associated with the developing risk of various malignancies, including glioma. However, its prognostic value in glioma patients has never been investigated. METHODS Relative telomere length (RTL) of peripheral blood leukocytes from 301 glioma patients were examined using a real-time PCR-based method. Kaplan-Meier curves and Cox proportional hazards regression model were used to assess the association of RTL with clinical outcomes of patients. To explore the potential mechanism, the immune phenotype of peripheral blood mononuclear cells (PBMCs) and concentrations of several cytokines from another 20 glioma patients were detected by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. The relationship between RTL and immunological characteristics of PBMCs were further analyzed. RESULTS Patients with short RTL showed both poorer overall survival (OS) and progression-free survival (PFS) than those with long RTL. Multivariate Cox regression analysis demonstrated that RTL was an independent prognostic factor for both OS and PFS in glioma patients. Moreover, the effects of RTL on the prognosis of patients exhibited a dose-dependent manner. Stratified analysis showed that the prognostic value of RTL was not affected by host characteristics except for age. In addition, flow cytometry and ELISA analyses indicated that there was no significant association between RTL and frequency of different immune cell subsets or plasma cytokine concentrations. CONCLUSIONS Our study for the first time demonstrates that leukocyte RTL is an independent prognostic marker for glioma patients. The potential mechanism needs further investigation.
Collapse
Affiliation(s)
- Yibing Chen
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
144
|
|
145
|
Bär C, Bernardes de Jesus B, Serrano R, Tejera A, Ayuso E, Jimenez V, Formentini I, Bobadilla M, Mizrahi J, de Martino A, Gomez G, Pisano D, Mulero F, Wollert KC, Bosch F, Blasco MA. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun 2014; 5:5863. [PMID: 25519492 PMCID: PMC4871230 DOI: 10.1038/ncomms6863] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022] Open
Abstract
Coronary heart disease is one of the main causes of death in the developed world, and treatment success remains modest, with high mortality rates within 1 year after myocardial infarction (MI). Thus, new therapeutic targets and effective treatments are necessary. Short telomeres are risk factors for age-associated diseases, including heart disease. Here we address the potential of telomerase (Tert) activation in prevention of heart failure after MI in adult mice. We use adeno-associated viruses for cardiac-specific Tert expression. We find that upon MI, hearts expressing Tert show attenuated cardiac dilation, improved ventricular function and smaller infarct scars concomitant with increased mouse survival by 17% compared with controls. Furthermore, Tert treatment results in elongated telomeres, increased numbers of Ki67 and pH3-positive cardiomyocytes and a gene expression switch towards a regeneration signature of neonatal mice. Our work suggests telomerase activation could be a therapeutic strategy to prevent heart failure after MI.
Collapse
Affiliation(s)
- Christian Bär
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Bruno Bernardes de Jesus
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Agueda Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Eduard Ayuso
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Veronica Jimenez
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Ivan Formentini
- Cardiovascular and Metabolism Disease Therapy Area, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Maria Bobadilla
- Cardiovascular and Metabolism Disease Therapy Area, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jacques Mizrahi
- Cardiovascular and Metabolism Disease Therapy Area, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alba de Martino
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Gonzalo Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - David Pisano
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Kai C Wollert
- Molekulare und Translationale Kardiologie, Hans-Borst-Zentrum fuür Herzund Stammzellforschung, Klinik fuür Kardiologie und Angiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autónoma de Barcelona, E-08193 Bellaterra, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| |
Collapse
|
146
|
Beirne C, Delahay R, Hares M, Young A. Age-related declines and disease-associated variation in immune cell telomere length in a wild mammal. PLoS One 2014; 9:e108964. [PMID: 25268841 PMCID: PMC4182606 DOI: 10.1371/journal.pone.0108964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes ('immune cells'), stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles). Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations.
Collapse
Affiliation(s)
- Christopher Beirne
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Richard Delahay
- National Wildlife Management Centre, Animal Health and Veterinary Laboratories Agency, Woodchester Park, Nympsfield, Gloucestershire, United Kingdom
| | - Michelle Hares
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Andrew Young
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- * E-mail:
| |
Collapse
|
147
|
Sox4 links tumor suppression to accelerated aging in mice by modulating stem cell activation. Cell Rep 2014; 8:487-500. [PMID: 25043184 PMCID: PMC4905521 DOI: 10.1016/j.celrep.2014.06.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/29/2014] [Accepted: 06/19/2014] [Indexed: 12/20/2022] Open
Abstract
Sox4 expression is restricted in mammals to embryonic structures and some adult tissues, such as lymphoid organs, pancreas, intestine, and skin. During embryogenesis, Sox4 regulates mesenchymal and neural progenitor survival, as well as lymphocyte and myeloid differentiation, and contributes to pancreas, bone, and heart development. Aberrant Sox4 expression is linked to malignant transformation and metastasis in several types of cancer. To understand the role of Sox4 in the adult organism, we first generated mice with reduced whole-body Sox4 expression. These mice display accelerated aging and reduced cancer incidence. To specifically address a role for Sox4 in adult stem cells, we conditionally deleted Sox4 (Sox4cKO) in stratified epithelia. Sox4cKO mice show increased skin stem cell quiescence and resistance to chemical carcinogenesis concomitantly with downregulation of cell cycle, DNA repair, and activated hair follicle stem cell pathways. Altogether, these findings highlight the importance of Sox4 in regulating adult tissue homeostasis and cancer.
Collapse
|
148
|
Boccardi V, Paolisso G. Telomerase activation: a potential key modulator for human healthspan and longevity. Ageing Res Rev 2014; 15:1-5. [PMID: 24561251 DOI: 10.1016/j.arr.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
Abstract
The elderly population is increasing progressively. Along with this increase the number of age related diseases, such as cardiovascular, neurodegenerative diseases, metabolic impairment and cancer, is also on the rise thereby negatively impacting the burden on health care systems. Telomere shortening and dysfunction results in cellular senescence, an irreversible proliferative arrest that has been suggested to promote organismal aging and disabling age-related diseases. Given that telomerase, the enzyme responsible for maintaining telomere lengths, is not expressed at levels sufficient to prevent telomere shortening in most of our cells, telomeres progressively erode with advancing age. Telomerase activation, therefore, might serve as a viable therapeutic strategy to delay the onset of cellular senescence, tissue dysfunction and organismal decline. Here we analyze the more recent findings in telomerase activation as a potential key modulator for human healthspan and longevity.
Collapse
|
149
|
Eitan E, Hutchison ER, Mattson MP. Telomere shortening in neurological disorders: an abundance of unanswered questions. Trends Neurosci 2014; 37:256-63. [PMID: 24698125 PMCID: PMC4008659 DOI: 10.1016/j.tins.2014.02.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 11/24/2022]
Abstract
Telomeres, ribonucleoprotein complexes that cap eukaryotic chromosomes, typically shorten in leukocytes with aging. Aging is a primary risk factor for neurodegenerative disease (ND), and a common assumption has arisen that leukocyte telomere length (LTL) can serve as a predictor of neurological disease. However, the evidence for shorter LTL in Alzheimer's and Parkinson's patients is inconsistent. The diverse causes of telomere shortening may explain variability in LTL between studies and individuals. Additional research is needed to determine whether neuronal and glial telomeres shorten during aging and in neurodegenerative disorders, if and how LTL is related to brain cell telomere shortening, and whether telomere shortening plays a causal role in or exacerbates neurological disorders.
Collapse
Affiliation(s)
- Erez Eitan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Emmette R Hutchison
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
150
|
Herborn KA, Heidinger BJ, Boner W, Noguera JC, Adam A, Daunt F, Monaghan P. Stress exposure in early post-natal life reduces telomere length: an experimental demonstration in a long-lived seabird. Proc Biol Sci 2014; 281:20133151. [PMID: 24648221 PMCID: PMC3973262 DOI: 10.1098/rspb.2013.3151] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Exposure to stressors early in life is associated with faster ageing and reduced longevity. One important mechanism that could underlie these late life effects is increased telomere loss. Telomere length in early post-natal life is an important predictor of subsequent lifespan, but the factors underpinning its variability are poorly understood. Recent human studies have linked stress exposure to increased telomere loss. These studies have of necessity been non-experimental and are consequently subjected to several confounding factors; also, being based on leucocyte populations, where cell composition is variable and some telomere restoration can occur, the extent to which these effects extend beyond the immune system has been questioned. In this study, we experimentally manipulated stress exposure early in post-natal life in nestling European shags (Phalacrocorax aristotelis) in the wild and examined the effect on telomere length in erythrocytes. Our results show that greater stress exposure during early post-natal life increases telomere loss at this life-history stage, and that such an effect is not confined to immune cells. The delayed effects of increased telomere attrition in early life could therefore give rise to a ‘time bomb’ that reduces longevity in the absence of any obvious phenotypic consequences early in life.
Collapse
Affiliation(s)
- Katherine A Herborn
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, , Graham Kerr Building, Glasgow G12 8QQ, UK, Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | | | | | | | | | | | | |
Collapse
|