101
|
Beirowski B, Babetto E, Golden JP, Chen YJ, Yang K, Gross RW, Patti GJ, Milbrandt J. Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat Neurosci 2014; 17:1351-61. [PMID: 25195104 PMCID: PMC4494117 DOI: 10.1038/nn.3809] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/15/2014] [Indexed: 02/06/2023]
Abstract
Schwann cells (SCs) promote axonal integrity independently of myelination by poorly understood mechanisms. Current models suggest that SC metabolism is critical for this support function and that SC metabolic deficits may lead to axonal demise. The LKB1-AMP-activated protein kinase (AMPK) kinase pathway targets several downstream effectors, including mammalian target of rapamycin (mTOR), and is a key metabolic regulator implicated in metabolic diseases. We found through molecular, structural and behavioral characterization of SC-specific mutant mice that LKB1 activity is central to axon stability, whereas AMPK and mTOR in SCs are largely dispensable. The degeneration of axons in LKB1 mutants was most dramatic in unmyelinated small sensory fibers, whereas motor axons were comparatively spared. LKB1 deletion in SCs led to abnormalities in nerve energy and lipid homeostasis and to increased lactate release. The latter acts in a compensatory manner to support distressed axons. LKB1 signaling is essential for SC-mediated axon support, a function that may be dysregulated in diabetic neuropathy.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elisabetta Babetto
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Judith P Golden
- Department of Anesthesiology, Washington University Pain Center, St. Louis, Missouri, USA
| | - Ying-Jr Chen
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Kui Yang
- Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard W Gross
- Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gary J Patti
- 1] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Department of Chemistry, Washington University, St. Louis, Missouri, USA. [3] Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey Milbrandt
- 1] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
102
|
Neukomm LJ, Freeman MR. Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol 2014; 24:515-23. [PMID: 24780172 PMCID: PMC4149811 DOI: 10.1016/j.tcb.2014.04.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 01/11/2023]
Abstract
The elimination of large portions of axons is a widespread event in the developing and diseased nervous system. Subsets of axons are selectively destroyed to help fine-tune neural circuit connectivity during development. Axonal degeneration is also an early feature of nearly all neurodegenerative diseases, occurs after most neural injuries, and is a primary driver of functional impairment in patients. In this review we discuss the diversity of cellular mechanisms by which axons degenerate. Initial molecular characterization highlights some similarities in their execution but also argues that unique genetic programs modulate each mode of degeneration. Defining these pathways rigorously will provide new targets for therapeutic intervention after neural injury or in neurodegenerative disease.
Collapse
Affiliation(s)
- Lukas J Neukomm
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, 704 LRB, 364 Plantation Street, Worcester, MA 01609, USA
| | - Marc R Freeman
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, 704 LRB, 364 Plantation Street, Worcester, MA 01609, USA.
| |
Collapse
|
103
|
Pease SE, Segal RA. Preserve and protect: maintaining axons within functional circuits. Trends Neurosci 2014; 37:572-82. [PMID: 25167775 DOI: 10.1016/j.tins.2014.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/21/2014] [Accepted: 07/27/2014] [Indexed: 12/14/2022]
Abstract
During development, neural circuits are initially generated by exuberant innervation and are rapidly refined by selective preservation and elimination of axons. The establishment and maintenance of functional circuits therefore requires coordination of axon survival and degeneration pathways. Both developing and mature circuits rely on interdependent mitochondrial and cytoskeletal components to maintain axonal health and homeostasis; injury or diseases that impinge on these components frequently cause pathologic axon loss. Here, we review recent findings that identify mechanisms of axonal preservation in the contexts of development, injury, and disease.
Collapse
Affiliation(s)
- Sarah E Pease
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
104
|
Kraemer BR, Snow JP, Vollbrecht P, Pathak A, Valentine WM, Deutch AY, Carter BD. A role for the p75 neurotrophin receptor in axonal degeneration and apoptosis induced by oxidative stress. J Biol Chem 2014; 289:21205-16. [PMID: 24939843 PMCID: PMC4118083 DOI: 10.1074/jbc.m114.563403] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/10/2014] [Indexed: 12/14/2022] Open
Abstract
The p75 neurotrophin receptor (p75(NTR)) mediates the death of specific populations of neurons during the development of the nervous system or after cellular injury. The receptor has also been implicated as a contributor to neurodegeneration caused by numerous pathological conditions. Because many of these conditions are associated with increases in reactive oxygen species, we investigated whether p75(NTR) has a role in neurodegeneration in response to oxidative stress. Here we demonstrate that p75(NTR) signaling is activated by 4-hydroxynonenal (HNE), a lipid peroxidation product generated naturally during oxidative stress. Exposure of sympathetic neurons to HNE resulted in neurite degeneration and apoptosis. However, these effects were reduced markedly in neurons from p75(NTR-/-) mice. The neurodegenerative effects of HNE were not associated with production of neurotrophins and were unaffected by pretreatment with a receptor-blocking antibody, suggesting that oxidative stress activates p75(NTR) via a ligand-independent mechanism. Previous studies have established that proteolysis of p75(NTR) by the metalloprotease TNFα-converting enzyme and γ-secretase is necessary for p75(NTR)-mediated apoptotic signaling. Exposure of sympathetic neurons to HNE resulted in metalloprotease- and γ-secretase-dependent cleavage of p75(NTR). Pharmacological blockade of p75(NTR) proteolysis protected sympathetic neurons from HNE-induced neurite degeneration and apoptosis, suggesting that cleavage of p75(NTR) is necessary for oxidant-induced neurodegeneration. In vivo, p75(NTR-/-) mice exhibited resistance to axonal degeneration associated with oxidative injury following administration of the neurotoxin 6-hydroxydopamine. Together, these data suggest a novel mechanism linking oxidative stress to ligand-independent cleavage of p75(NTR), resulting in axonal fragmentation and neuronal death.
Collapse
Affiliation(s)
| | | | | | | | - William M Valentine
- Pathology, Microbiology, and Immunology, the Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | |
Collapse
|
105
|
The Nesprin family member ANC-1 regulates synapse formation and axon termination by functioning in a pathway with RPM-1 and β-Catenin. PLoS Genet 2014; 10:e1004481. [PMID: 25010424 PMCID: PMC4091705 DOI: 10.1371/journal.pgen.1004481] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 05/16/2014] [Indexed: 01/08/2023] Open
Abstract
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions. The molecular mechanisms that underpin synapse formation and axon termination are central to forming a functional, fully connected nervous system. The PHR proteins are important regulators of neuronal development that function in axon outgrowth and termination, as well as synapse formation. Here we describe the discovery of a novel, conserved pathway that is positively regulated by the C. elegans PHR protein, RPM-1. This pathway is composed of RPM-1, ANC-1 (a Nesprin family protein), and BAR-1 (a canonical β-catenin). Nesprins, such as ANC-1, regulate nuclear anchorage and positioning in multinuclear cells. We now show that in neurons, ANC-1 regulates neuronal development by positively regulating BAR-1. Thus, Nesprins are multi-functional proteins that act through β-catenin to regulate neuronal development, and link the nucleus to the actin cytoskeleton in order to mediate nuclear anchorage and positioning in multi-nuclear cells.
Collapse
|
106
|
Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila. Proc Natl Acad Sci U S A 2014; 111:9965-70. [PMID: 24958874 DOI: 10.1073/pnas.1406230111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axons damaged by acute injury, toxic insults, or neurodegenerative diseases execute a poorly defined autodestruction signaling pathway leading to widespread fragmentation and functional loss. Here, we describe an approach to study Wallerian degeneration in the Drosophila L1 wing vein that allows for analysis of axon degenerative phenotypes with single-axon resolution in vivo. This method allows for the axotomy of specific subsets of axons followed by examination of progressive axonal degeneration and debris clearance alongside uninjured control axons. We developed new Flippase (FLP) reagents using proneural gene promoters to drive FLP expression very early in neural lineages. These tools allow for the production of mosaic clone populations with high efficiency in sensory neurons in the wing. We describe a collection of lines optimized for forward genetic mosaic screens using MARCM (mosaic analysis with a repressible cell marker; i.e., GFP-labeled, homozygous mutant) on all major autosomal arms (∼95% of the fly genome). Finally, as a proof of principle we screened the X chromosome and identified a collection eight recessive and two dominant alleles of highwire, a ubiquitin E3 ligase required for axon degeneration. Similar unbiased forward genetic screens should help rapidly delineate axon death genes, thereby providing novel potential drug targets for therapeutic intervention to prevent axonal and synaptic loss.
Collapse
|
107
|
Brace EJ, Wu C, Valakh V, DiAntonio A. SkpA restrains synaptic terminal growth during development and promotes axonal degeneration following injury. J Neurosci 2014; 34:8398-410. [PMID: 24948796 PMCID: PMC4061385 DOI: 10.1523/jneurosci.4715-13.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/22/2014] [Accepted: 05/13/2014] [Indexed: 02/04/2023] Open
Abstract
The Wallenda (Wnd)/dual leucine zipper kinase (DLK)-Jnk pathway is an evolutionarily conserved MAPK signaling pathway that functions during neuronal development and following axonal injury. Improper pathway activation causes defects in axonal guidance and synaptic growth, whereas loss-of-function mutations in pathway components impairs axonal regeneration and degeneration after injury. Regulation of this pathway is in part through the E3 ubiquitin ligase Highwire (Hiw), which targets Wnd/DLK for degradation to limit MAPK signaling. To explore mechanisms controlling Wnd/DLK signaling, we performed a large-scale genetic screen in Drosophila to identify negative regulators of the pathway. Here we describe the identification and characterization of SkpA, a core component of SCF E3 ubiquitin ligases. Mutants in SkpA display synaptic overgrowth and an increase in Jnk signaling, similar to hiw mutants. The combination of hypomorphic alleles of SkpA and hiw leads to enhanced synaptic growth. Mutants in the Wnd-Jnk pathway suppress the overgrowth of SkpA mutants demonstrating that the synaptic overgrowth is due to increased Jnk signaling. These findings support the model that SkpA and the E3 ligase Hiw function as part of an SCF-like complex that attenuates Wnd/DLK signaling. In addition, SkpA, like Hiw, is required for synaptic and axonal responses to injury. Synapses in SkpA mutants are more stable following genetic or traumatic axonal injury, and axon loss is delayed in SkpA mutants after nerve crush. As in highwire mutants, this axonal protection requires Nmnat. Hence, SkpA is a novel negative regulator of the Wnd-Jnk pathway that functions with Hiw to regulate both synaptic development and axonal maintenance.
Collapse
Affiliation(s)
- E J Brace
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, and
| | - Chunlai Wu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Vera Valakh
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, and
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri 63110, and
| |
Collapse
|
108
|
Freeman MR. Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol 2014; 27:224-31. [PMID: 24907513 DOI: 10.1016/j.conb.2014.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 02/06/2023]
Abstract
Wallerian degeneration (WD) occurs after an axon is cut or crushed and entails the disintegration and clearance of the severed axon distal to the injury site. WD was initially thought to result from the passive wasting away of the distal axonal fragment, presumably because it lacked a nutrient supply from the cell body. The discovery of the slow Wallerian degeneration (Wld(s)) mutant mouse, in which distal severed axons survive intact for weeks rather than only one to two days, radically changed our thoughts on the autonomy of axon survival. Wld(s) taught us that under some conditions the axonal compartment can survive for weeks after axotomy without a cell body. The phenotypic and molecular characterization of Wld(S) and current models for Wld(S) molecular function are reviewed herein-the mechanism(s) by which Wld(S) spares severed axons remains unresolved. However, recent studies inspired by Wld(s) have led to the identification of the first 'axon death' signaling molecules whose endogenous activities promote axon destruction during WD.
Collapse
Affiliation(s)
- Marc R Freeman
- Dept of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605-2324, United States.
| |
Collapse
|
109
|
Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 2014; 15:394-409. [DOI: 10.1038/nrn3680] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
110
|
RPM-1 uses both ubiquitin ligase and phosphatase-based mechanisms to regulate DLK-1 during neuronal development. PLoS Genet 2014; 10:e1004297. [PMID: 24810406 PMCID: PMC4014440 DOI: 10.1371/journal.pgen.1004297] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 02/21/2014] [Indexed: 01/06/2023] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are key regulators of neuronal development that function in axon extension and guidance, termination of axon outgrowth, and synapse formation. Outside of development, the PHR proteins also regulate axon regeneration and Wallerian degeneration. The PHR proteins function in part by acting as ubiquitin ligases that degrade the Dual Leucine zipper-bearing Kinase (DLK). Here, we show that the Caenorhabditis elegans PHR protein, Regulator of Presynaptic Morphology 1 (RPM-1), also utilizes a phosphatase-based mechanism to regulate DLK-1. Using mass spectrometry, we identified Protein Phosphatase Magnesium/Manganese dependent 2 (PPM-2) as a novel RPM-1 binding protein. Genetic, transgenic, and biochemical studies indicated that PPM-2 functions coordinately with the ubiquitin ligase activity of RPM-1 and the F-box protein FSN-1 to negatively regulate DLK-1. PPM-2 acts on S874 of DLK-1, a residue implicated in regulation of DLK-1 binding to a short, inhibitory isoform of DLK-1 (DLK-1S). Our study demonstrates that PHR proteins function through both phosphatase and ubiquitin ligase mechanisms to inhibit DLK. Thus, PHR proteins are potentially more accurate and sensitive regulators of DLK than originally thought. Our results also highlight an important and expanding role for the PP2C phosphatase family in neuronal development. The molecular mechanisms that govern formation of functional synaptic connections are central to brain development and function. We have used the nematode C. elegans to explore the mechanism of how the intracellular signaling protein RPM-1 regulates neuronal development. Using a combination of proteomic, genetic, transgenic, and biochemical approaches we have shown that RPM-1 functions through a PP2C phosphatase, PPM-2, to regulate the activity of a MAP3 kinase, DLK-1. Our results indicate that a combination of PPM-2 phosphatase activity and RPM-1 ubiquitin ligase activity inhibit DLK-1.
Collapse
|
111
|
Deletions within its subcellular targeting domain enhance the axon protective capacity of Nmnat2 in vivo. Sci Rep 2014; 3:2567. [PMID: 23995269 PMCID: PMC3759051 DOI: 10.1038/srep02567] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/16/2013] [Indexed: 11/15/2022] Open
Abstract
The NAD-synthesising enzyme Nmnat2 is a critical survival factor for axons in vitro and in vivo. We recently reported that loss of axonal transport vesicle association through mutations in its isoform-specific targeting and interaction domain (ISTID) reduces Nmnat2 ubiquitination, prolongs its half-life and boosts its axon protective capacity in primary culture neurons. Here, we report evidence for a role of ISTID sequences in tuning Nmnat2 localisation, stability and protective capacity in vivo. Deletion of central ISTID sequences abolishes vesicle association and increases protein stability of fluorescently tagged, transgenic Nmnat2 in mouse peripheral axons in vivo. Overexpression of fluorescently tagged Nmnat2 significantly delays Wallerian degeneration in these mice. Furthermore, while mammalian Nmnat2 is unable to protect transected Drosophila olfactory receptor neuron axons in vivo, mutant Nmnat2s lacking ISTID regions substantially delay Wallerian degeneration. Together, our results establish Nmnat2 localisation and turnover as a valuable target for modulating axon degeneration in vivo.
Collapse
|
112
|
Sodium and potassium currents influence Wallerian degeneration of injured Drosophila axons. J Neurosci 2014; 33:18728-39. [PMID: 24285879 DOI: 10.1523/jneurosci.1007-13.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Axons degenerate after injury and in neuropathies and disease via a self-destruction program whose mechanism is poorly understood. Axons that have lost connection to their cell bodies have altered electrical and synaptic activities, but whether such changes play a role in the axonal degeneration process is not clear. We have used a Drosophila model to study the Wallerian degeneration of motoneuron axons and their neuromuscular junction synapses. We found that degeneration of the distal nerve stump after a nerve crush is greatly delayed when there is increased potassium channel activity (by overexpression of two different potassium channels, Kir2.1 and dORKΔ-C) or decreased voltage-gated sodium channel activity (using mutations in the para sodium channel). Conversely, degeneration is accelerated when potassium channel activity is decreased (by expressing a dominant-negative mutation of Shaker). Despite the effect of altering voltage-gated sodium and potassium channel activity, recordings made after nerve crush demonstrated that the distal stump does not fire action potentials. Rather, a variety of lines of evidence suggest that the sodium and potassium channels manifest their effects upon degeneration through changes in the resting membrane potential, which in turn regulates the level of intracellular free calcium within the isolated distal axon.
Collapse
|
113
|
Loss of the spectraplakin short stop activates the DLK injury response pathway in Drosophila. J Neurosci 2013; 33:17863-73. [PMID: 24198375 DOI: 10.1523/jneurosci.2196-13.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The MAPKKK dual leucine zipper-containing kinase (DLK, Wallenda in Drosophila) is an evolutionarily conserved component of the axonal injury response pathway. After nerve injury, DLK promotes degeneration of distal axons and regeneration of proximal axons. This dual role in coordinating degeneration and regeneration suggests that DLK may be a sensor of axon injury, and so understanding how DLK is activated is important. Two mechanisms are known to activate DLK. First, increasing the levels of DLK via overexpression or loss of the PHR ubiquitin ligases that target DLK activate DLK signaling. Second, in Caenorhabditis elegans, a calcium-dependent mechanism, can activate DLK. Here we describe a new mechanism that activates DLK in Drosophila: loss of the spectraplakin short stop (shot). In a genetic screen for mutants with defective neuromuscular junction development, we identify a hypomorphic allele of shot that displays synaptic terminal overgrowth and a precocious regenerative response to nerve injury. We demonstrate that both phenotypes are the result of overactivation of the DLK signaling pathway. We further show that, unlike mutations in the PHR ligase Highwire, loss of function of shot activates DLK without a concomitant increase in the levels of DLK. As a spectraplakin, Shot binds to both actin and microtubules and promotes cytoskeletal stability. The DLK pathway is also activated by downregulation of the TCP1 chaperonin complex, whose normal function is to promote cytoskeletal stability. These findings support the model that DLK is activated by cytoskeletal instability, which is a shared feature of both spectraplakin mutants and injured axons.
Collapse
|
114
|
New approaches for studying synaptic development, function, and plasticity using Drosophila as a model system. J Neurosci 2013; 33:17560-8. [PMID: 24198346 DOI: 10.1523/jneurosci.3261-13.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fruit fly Drosophila melanogaster has been established as a premier experimental model system for neuroscience research. These organisms are genetically tractable, yet their nervous systems are sufficiently complex to study diverse processes that are conserved across metazoans, including neural cell fate determination and migration, axon guidance, synaptogenesis and function, behavioral neurogenetics, and responses to neuronal injury. For several decades, Drosophila neuroscientists have taken advantage of a vast toolkit of genetic and molecular techniques to reveal fundamental principles of neuroscience illuminating to all systems, including the first behavioral mutants from Seymour Benzer's pioneering work in the 1960s and 1970s, the cloning of the first potassium channel in the 1980s, and the identification of the core genes that orchestrate axon guidance and circadian rhythms in the 1990s. Over the past decade, new tools and innovations in genetic, imaging, and electrophysiological technologies have enabled the visualization, in vivo, of dynamic processes in synapses with unprecedented resolution. We will review some of the fresh insights into synaptic development, function, and plasticity that have recently emerged in Drosophila with an emphasis on the unique advantages of this model system.
Collapse
|
115
|
Beirowski B. Concepts for regulation of axon integrity by enwrapping glia. Front Cell Neurosci 2013; 7:256. [PMID: 24391540 PMCID: PMC3867696 DOI: 10.3389/fncel.2013.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes (OLGs)) form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that EG nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral nervous system and central nervous system (PNS and CNS).
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
116
|
Shin JE, Geisler S, DiAntonio A. Dynamic regulation of SCG10 in regenerating axons after injury. Exp Neurol 2013; 252:1-11. [PMID: 24246279 DOI: 10.1016/j.expneurol.2013.11.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/03/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
Peripheral axons can re-extend robustly after nerve injury. Soon after a nerve crush regenerating axons grow through the nerve segment distal to the lesion in close proximity to distal axons that are still morphologically and molecularly preserved. Hence, following the progress of regenerating axons necessitates markers that can distinguish between regenerating and degenerating axons. Here, we show that axonal levels of superior cervical ganglion 10 (SCG10) are dynamically regulated after axonal injury and provide an efficient method to label regenerating axons. In contrast to the rapid loss of SCG10 in distal axons (Shin et al., 2012b), we report that SCG10 accumulates in the proximal axons within an hour after injury, leading to a rapid identification of the lesion site. The increase in SCG10 levels is maintained during axon regeneration after nerve crush or nerve repair and allows for more selective labeling of regenerating axons than the commonly used markers growth-associated protein 43 (GAP43) and YFP. SCG10 is preferentially expressed in regenerating sensory axons rather than motor axons in the sciatic nerve. In a mouse model of slow Wallerian degeneration, SCG10 labeling remains selective for regenerating axons and allows for a quantitative analysis of delayed regeneration in this mutant. Taken together, these data demonstrate the utility of SCG10 as an efficient and selective marker of sensory axon regeneration.
Collapse
Affiliation(s)
- Jung Eun Shin
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stefanie Geisler
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Aaron DiAntonio
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
117
|
Milde S, Gilley J, Coleman MP. Axonal trafficking of NMNAT2 and its roles in axon growth and survival in vivo. BIOARCHITECTURE 2013; 3:133-40. [PMID: 24284888 PMCID: PMC3907460 DOI: 10.4161/bioa.27049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The NAD-synthesizing enzyme NMNAT2 is critical for axon survival in primary culture and its depletion may contribute to axon degeneration in a variety of neurodegenerative disorders. Here we discuss several recent reports from our laboratory that establish a critical role for NMNAT2 in axon growth in vivo in mice and shed light on the delivery and turnover of this survival factor in axons. In the absence of NMNAT2, axons fail to extend more than a short distance beyond the cell body during embryonic development, implying a requirement for NMNAT2 in axon maintenance even during development. Furthermore, we highlight findings regarding the bidirectional trafficking of NMNAT2 in axons on a vesicle population that undergoes fast axonal transport in primary culture neurites and in mouse sciatic nerve axons in vivo. Surprisingly, loss of vesicle association boosts the axon protective capacity of NMNAT2, an effect that is at least partially mediated by a longer protein half-life of cytosolic NMNAT2 variants. Analysis of wild-type and variant NMNAT2 in mouse sciatic nerves and Drosophila olfactory receptor neuron axons supports the existence of a similar mechanism in vivo, highlighting the potential for regulation of NMNAT2 stability and turnover as a mechanism to modulate axon degeneration in vivo.
Collapse
Affiliation(s)
- Stefan Milde
- The Babraham Institute; Babraham Research Campus; Cambridge, UK
| | - Jonathan Gilley
- The Babraham Institute; Babraham Research Campus; Cambridge, UK
| | | |
Collapse
|
118
|
Abstract
Axon degeneration is an evolutionarily conserved pathway that eliminates damaged or unneeded axons. Manipulation of this poorly understood pathway may allow treatment of a wide range of neurological disorders. In an RNAi-based screen performed in cultured mouse DRG neurons, we observed strong suppression of injury-induced axon degeneration upon knockdown of Sarm1 [SARM (sterile α-motif-containing and armadillo-motif containing protein)]. We find that a SARM-dependent degeneration program is engaged by disparate neuronal insults: SARM ablation blocks axon degeneration induced by axotomy or vincristine treatment, while SARM acts in parallel with a soma-derived caspase-dependent pathway following trophic withdrawal. SARM is a multidomain protein that associates with neuronal mitochondria. Deletion of the N-terminal mitochondrial localization sequence disrupts SARM mitochondrial localization in neurons but does not alter its ability to promote axon degeneration. In contrast, mutation of either the SAM (sterile α motif) or TIR (Toll-interleukin-1 receptor) domains abolishes the ability of SARM to promote axonal degeneration, while a SARM mutant containing only these domains elicits axon degeneration and nonapoptotic neuronal death even in the absence of injury. Protein-protein interaction studies demonstrate that the SAM domains are necessary and sufficient to mediate SARM-SARM binding. SARM mutants lacking a TIR domain bind full-length SARM and exhibit strong dominant-negative activity. These results indicate that SARM plays an integral role in the dismantling of injured axons and support a model in which SAM-mediated multimerization is necessary for TIR-dependent engagement of a downstream destruction pathway. These findings suggest that inhibitors of SAM and TIR interactions represent therapeutic candidates for blocking pathological axon loss and neuronal cell death.
Collapse
|
119
|
Abstract
NMNAT2 is an NAD(+)-synthesizing enzyme with an essential axon maintenance role in primary culture neurons. We have generated an Nmnat2 gene trap mouse to examine the role of NMNAT2 in vivo. Homozygotes die perinatally with a severe peripheral nerve/axon defect and truncated axons in the optic nerve and other CNS regions. The cause appears to be limited axon extension, rather than dying-back degeneration of existing axons, which was previously proposed for the NMNAT2-deficient Blad mutant mouse. Neurite outgrowth in both PNS and CNS neuronal cultures consistently stalls at 1-2 mm, similar to the length of truncated axons in the embryos. Crucially, this suggests an essential role for NMNAT2 during axon growth. In addition, we show that the Wallerian degeneration slow protein (Wld(S)), a more stable, aberrant NMNAT that can substitute the axon maintenance function of NMNAT2 in primary cultures, can also correct developmental defects associated with NMNAT2 deficiency. This is dose-dependent, with extension of life span to at least 3 months by homozygous levels of Wld(S) the most obvious manifestation. Finally, we propose that endogenous mechanisms also compensate for otherwise limiting levels of NMNAT2. This could explain our finding that conditional silencing of a single Nmnat2 allele triggers substantial degeneration of established neurites, whereas similar, or greater, reduction of NMNAT2 in constitutively depleted neurons is compatible with normal axon growth and survival. A requirement for NMNAT2 for both axon growth and maintenance suggests that reduced levels could impair axon regeneration as well as axon survival in aging and disease.
Collapse
|
120
|
Evans C, Cook SJ, Coleman MP, Gilley J. MEK inhibitor U0126 reverses protection of axons from Wallerian degeneration independently of MEK-ERK signaling. PLoS One 2013; 8:e76505. [PMID: 24124570 PMCID: PMC3790678 DOI: 10.1371/journal.pone.0076505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/26/2013] [Indexed: 12/17/2022] Open
Abstract
Wallerian degeneration is delayed when sufficient levels of proteins with NMNAT activity are maintained within axons after injury. This has been proposed to form the basis of 'slow Wallerian degeneration' (WldS), a neuroprotective phenotype conferred by an aberrant fusion protein, WldS. Proteasome inhibition also delays Wallerian degeneration, although much less robustly, with stabilization of NMNAT2 likely to play a key role in this mechanism. The pan-MEK inhibitor U0126 has previously been shown to reverse the axon-protective effects of proteasome inhibition, suggesting that MEK-ERK signaling plays a role in delayed Wallerian degeneration, in addition to its established role in promoting neuronal survival. Here we show that whilst U0126 can also reverse WldS-mediated axon protection, more specific inhibitors of MEK1/2 and MEK5, PD184352 and BIX02189, have no significant effect on the delay to Wallerian degeneration in either situation, whether used alone or in combination. This suggests that an off-target effect of U0126 is responsible for reversion of the axon protective effects of WldS expression or proteasome inhibition, rather than inhibition of MEK1/2-ERK1/2 or MEK5-ERK5 signaling. Importantly, this off-target effect does not appear to result in alterations in the stabilities of either WldS or NMNAT2.
Collapse
Affiliation(s)
- Catherine Evans
- Signalling Programme, The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Michael P. Coleman
- Signalling Programme, The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Jonathan Gilley
- Signalling Programme, The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
- * E-mail:
| |
Collapse
|
121
|
Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD, Bustos D, Newton K, Kirkpatrick DS, Lewcock JW. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. ACTA ACUST UNITED AC 2013; 202:747-63. [PMID: 23979718 PMCID: PMC3760612 DOI: 10.1083/jcb.201303066] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuronal injury induces JNK phosphorylation of DLK, which reduces DLK ubiquitination and creates a positive feedback loop to enhance JNK signaling and increase apoptosis. Neurons are highly polarized cells that often project axons a considerable distance. To respond to axonal damage, neurons must transmit a retrograde signal to the nucleus to enable a transcriptional stress response. Here we describe a mechanism by which this signal is propagated through injury-induced stabilization of dual leucine zipper-bearing kinase (DLK/MAP3K12). After neuronal insult, specific sites throughout the length of DLK underwent phosphorylation by c-Jun N-terminal kinases (JNKs), which have been shown to be downstream targets of DLK pathway activity. These phosphorylation events resulted in increased DLK abundance via reduction of DLK ubiquitination, which was mediated by the E3 ubiquitin ligase PHR1 and the de-ubiquitinating enzyme USP9X. Abundance of DLK in turn controlled the levels of downstream JNK signaling and apoptosis. Through this feedback mechanism, the ubiquitin–proteasome system is able to provide an additional layer of regulation of retrograde stress signaling to generate a global cellular response to localized external insults.
Collapse
Affiliation(s)
- Sarah Huntwork-Rodriguez
- Department of Neuroscience, 2 Department of Microchemical Proteomics, and 3 Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Owens K, Park JH, Schuh R, Kristian T. Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury. Transl Stroke Res 2013; 4:618-34. [PMID: 24323416 DOI: 10.1007/s12975-013-0278-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/24/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is commonly believed to be one of the major players in mechanisms of brain injury. For several decades, pathologic mitochondrial calcium overload and associated opening of the mitochondrial permeability transition (MPT) pore were considered a detrimental factor causing mitochondrial damage and bioenergetics failure. Mitochondrial and cellular bioenergetic metabolism depends on the enzymatic reactions that require NAD(+) or its reduced form NADH as cofactors. Recently, it was shown that NAD(+) also has an important function as a substrate for several NAD(+) glycohydrolases whose overactivation can contribute to cell death mechanisms. Furthermore, downstream metabolites of NAD(+) catabolism can also adversely affect cell viability. In contrast to the negative effects of NAD(+)-catabolizing enzymes, enzymes that constitute the NAD(+) biosynthesis pathway possess neuroprotective properties. In the first part of this review, we discuss the role of MPT in acute brain injury and its role in mitochondrial NAD(+) metabolism. Next, we focus on individual NAD(+) glycohydrolases, both cytosolic and mitochondrial, and their role in NAD(+) catabolism and brain damage. Finally, we discuss the potential effects of downstream products of NAD(+) degradation and associated enzymes as well as the role of NAD(+) resynthesis enzymes as potential therapeutic targets.
Collapse
Affiliation(s)
- Katrina Owens
- Veterans Affairs Maryland Health Care System, 10 North Greene Street, Baltimore, MD, 21201, USA
| | | | | | | |
Collapse
|
123
|
Di Stefano M, Conforti L. Diversification of NAD biological role: the importance of location. FEBS J 2013; 280:4711-28. [PMID: 23848828 DOI: 10.1111/febs.12433] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 07/08/2013] [Indexed: 02/03/2023]
Abstract
Over 100 years after its first discovery, several new aspects of the biology of the redox co-factor NAD are rapidly emerging. NAD, as well as its precursors, its derivatives, and its metabolic enzymes, have been recently shown to play a determinant role in a variety of biological functions, from the classical role in oxidative phosphorylation and redox reactions to a role in regulation of gene transcription, lifespan and cell death, from a role in neurotransmission to a role in axon degeneration, and from a function in regulation of glucose homeostasis to that of control of circadian rhythm. It is also becoming clear that this variety of specialized functions is regulated by the fine subcellular localization of NAD, its related nucleotides and its metabolic enzymatic machinery. Here we describe the known NAD biosynthetic and catabolic pathways, and review evidence supporting a specialized role for NAD metabolism in a subcellular compartment-dependent manner.
Collapse
Affiliation(s)
- Michele Di Stefano
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK
| | | |
Collapse
|