101
|
PTTG1/ZEB1 Axis Regulates E-Cadherin Expression in Human Seminoma. Cancers (Basel) 2022; 14:cancers14194876. [PMID: 36230799 PMCID: PMC9564063 DOI: 10.3390/cancers14194876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Seminoma represents one of the most common neoplasms in Caucasian males between 15 and 40 years old. The molecular pathways underlying its clinical behavior are far from being understood yet. We previously demonstrated that nuclear Pituitary-tumor transforming-gene 1 (PTTG1), overexpressed in several neoplasms, promotes invasiveness through its transcriptional target matrix-metalloproteinase-2 (MMP2). PTTG1 sustains the migratory and invasive properties of cancer cells through the induction of the epithelial-to-mesenchymal transition (EMT). E-Cadherin (E-CAD) repression is the first step of EMT. Therefore, we investigated the role of PTTG1 in EMT in human seminoma using an in vitro and in vivo model and through Atlas database interrogation. Our data showed a PTTG1-mediated E-CAD transcriptional repression through Zinc finger E-box binding homeobox 1 (ZEB1), a master regulator of the EMT process. Our data provide insights into the molecular characterization of seminoma, promoting PTTG1 as a prognostic marker useful in human seminoma clinical management. Abstract (1) Background: PTTG1 sustains the EMT process and the invasiveness of several neoplasms. We previously showed the role of nuclear PTTG1 in promoting invasiveness, through its transcriptional target MMP2, in seminoma in vitro models. Here, we investigated the key players involved in PTTG1-mediated EMT in human seminoma. (2) Methods: Two seminoma cell lines and four human seminoma tumor specimens were used. E-Cadherin gene regulation was investigated using Western blot, real-time PCR, and luciferase assay. Immunoprecipitation, ChIP, RE-ChIP, and confocal microscopy analysis were performed to evaluate the interplay between PTTG1 and ZEB1. Matrigel invasion and spheroid formation assays were applied to functionally investigate PTTG1 involvement in the EMT of seminoma cell lines. RNA depletion and overexpression experiments were performed to verify the role of PTTG1/ZEB1 in E-Cadherin repression and seminoma invasiveness. E-Cadherin and ZEB1 levels were analyzed in human testicular tumors from the Atlas database. (3) Results: PTTG1 transcriptionally represses E-Cadherin in seminoma cell lines through ZEB1. The cooperation of PTTG1 with ZEB1 has a significant impact on cell growth/invasion properties involving the EMT process. Analysis of the Atlas database of testicular tumors showed significantly lower E-Cadherin levels in seminoma, where PTTG1 showed nuclear staining. Finally, PTTG1 and ZEB1 strongly localize together in the periphery of the tumors. (4) Conclusions: These results strengthen the evidence for a role of PTTG1 in the EMT process in human seminomas through its cooperation with the transcriptional repressor ZEB1 on the E-Cadherin gene. Our data enrich the molecular characterization of seminoma, suggesting that PTTG1 is a prognostic factor in seminoma clinical management.
Collapse
|
102
|
Reece AS, Hulse GK. State Trends of Cannabis Liberalization as a Causal Driver of Increasing Testicular Cancer Rates across the USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12759. [PMID: 36232059 PMCID: PMC9565972 DOI: 10.3390/ijerph191912759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/18/2022] [Accepted: 09/30/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND The cause of the worldwide doubling-tripling of testicular cancer rates (TCRs) in recent decades is unknown. Previous cohort studies associated cannabis use with TCR including dose-response relationships but the contribution of cannabis to TCRs at the population level is unknown. This relationship was tested by analyzing annual trends across US states and formally assessed causality. Four US datasets were linked at state level: age-adjusted TCRs from Centers for Disease Control Surveillance Epidemiology and End Results database; drug use data from annual National Survey of Drug Use and Health including 74.1% response rate; ethnicity and median household income data from the US Census Bureau; and cannabinoid concentration data from Drug Enforcement Agency reports. Data was processed in R in spatiotemporal and causal inference protocols. RESULTS Cannabis-use quintile scatterplot-time and boxplots closely paralleled those for TCRs. The highest cannabis-use quintile had a higher TCR than others (3.44 ± 0.05 vs. 2.91 ± 0.2, mean ± S.E.M., t = 10.68, p = 1.29 × 10-22). A dose-response relationship was seen between TCR and Δ9-tetrahydrocannabinol (THC), cannabinol, cannabigerol, and cannabichromene (6.75 × 10-9 < p < 1.83 × 10-142). In a multivariate inverse probability-weighted interactive regression including race and ethnic cannabis exposure (ECE), ECE was significantly related to TCR (β-estimate = 0.89 (95%C.I. 0.36, 2.67), p < 2.2 × 10-16). In an additive geospatiotemporal model controlling for other drugs, cannabis alone was significant (β-estimate = 0.19 (0.10, 0.28), p = 3.4 × 10-5). In a full geospatial model including drugs, income and ethnicity cannabinoid exposure was significant (cannabigerol: β-estimate = 1.39 (0.024, 2.53), p = 0.0017); a pattern repeated at two spatial and two temporal lags (cannabigerol: β-estimate = 0.71 (0.05, 1.37), p = 0.0.0350; THC: β-estimate = 23.60 (11.92, 35.29), p = 7.5 × 10-5). 40/41 e-Values > 1.25 ranged up to 1.4 × 1063 and 10 > 1000 fitting causal relationship criteria. Cannabis liberalization was associated with higher TCRs (ChiSqu. = 312.2, p = 2.64 × 10-11). Rates of TC in cannabis-legal states were elevated (3.36 ± 0.09 vs. 3.01 ± 0.03, t = 4.69, p = 4.86 × 10-5). CONCLUSIONS Cannabis use is closely and causally associated with TCRs across both time and space and higher in States with liberal cannabis legislation. Strong dose-response effects were demonstrated for THC, cannabigerol, cannabinol, cannabichromene and cannabidiol. Cannabinoid genotoxicity replicates all major steps to testicular carcinogenesis including whole-genome doubling, chromosomal arm excision, generalized DNA demethylation and chromosomal translocations thereby accelerating the pathway to testicular carcinogenesis by several decades.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
103
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
104
|
Oing C, Fankhauser CD. Hodentumoren aus klinischer Sicht. DIE PATHOLOGIE 2022; 43:434-440. [PMID: 36156132 PMCID: PMC9585009 DOI: 10.1007/s00292-022-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 10/25/2022]
Abstract
Zusammenfassung
Hintergrund
Keimzelltumoren des Hodens sind die häufigste maligne Tumorerkrankung bei Männern im Alter von 15–40 Jahren. Die Unterscheidung von Seminomen und Nichtseminomen hat prognostische Bedeutung und ist für Therapieplanung und Nachsorge essenziell. Durch interdisziplinäre, stadiengerechte Therapie haben Keimzelltumoren generell eine sehr gute Prognose. Eine Übertherapie sollte wegen möglicher Langzeitfolgen vermieden werden. Hierbei hilft die Risikobeurteilung anhand klinischer und pathologischer Faktoren.
Ziel der Arbeit
Darstellung der (histo-)pathologischen Charakteristika, die die uroonkologische Therapieplanung maßgeblich beeinflussen.
Material und Methoden
Nichtsystematischer Übersichtsartikel über die relevanten (histo-)pathologischen Befunde für die klinische Therapieplanung im interdisziplinären Kontext.
Ergebnisse
Zentrale Pathologiebefunde für Kliniker:Innen sind: (i) Identifikation eines Keimzelltumors, ggf. durch Nachweis eines Chromosom-12p-Zugewinns, (ii) Subtypenspezifizierung und (iii) Angabe von Risikofaktoren (insbesondere Invasion von Lymphgefäßen und/oder Rete testis und Tumorgröße). Molekularpathologische Untersuchungen i. S. von Mutationsanalysen sind angesichts einer sehr geringen Mutationslast und bislang fehlender prädiktiver Marker und zielgerichteter Therapieoptionen nicht Teil der Routinediagnostik.
Diskussion
Ein detaillierter, idealerweise synoptischer histopathologischer Befundbericht ist Grundlage der Planung und Durchführung einer leitlinienkonformen, risikoadaptierten Therapie und neben der bildgebenden Diagnostik und der Bestimmung der Serumtumormarker AFP und β‑HCG (letztere insbesondere bei Nichtseminomen) mitentscheidend, um die guten Heilungsaussichten zu wahren und eine Übertherapie zu vermeiden.
Collapse
Affiliation(s)
- Christoph Oing
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, NE1 7RU, Newcastle upon Tyne, Großbritannien.
- Mildred Scheel Nachwuchszentrum HaTriCS4, Universitäres Cancer Center Hamburg, Universitätsklinikum Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
| | | |
Collapse
|
105
|
Timmerman DM, Eleveld TF, Sriram S, Dorssers LC, Gillis AJ, Schmidtova S, Kalavska K, van de Werken HJ, Oing C, Honecker F, Mego M, Looijenga LH. Chromosome 3p25.3 Gain Is Associated With Cisplatin Resistance and Is an Independent Predictor of Poor Outcome in Male Malignant Germ Cell Tumors. J Clin Oncol 2022; 40:3077-3087. [PMID: 35442716 PMCID: PMC9462533 DOI: 10.1200/jco.21.02809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Cisplatin is the main systemic treatment modality for male type II germ cell tumors (GCTs). Although generally very effective, 5%-10% of patients suffer from cisplatin-resistant disease. Identification of the driving mechanisms of resistance will enable improved risk stratification and development of alternative treatments. METHODS We developed and characterized cisplatin-resistant GCT cell line models and compared their molecular characteristics with patient samples with cisplatin resistance and/or a poor clinical outcome. Subsequently, the association between the overlapping genetic features and clinical data was assessed. Finally, we used Cox regression to determine the prognostic relevance of these features within the currently used risk classification. RESULTS Gain of chromosome 3p25.3 was detected in all cisplatin-resistant cell lines, and copy number of this region correlated with the level of resistance (R = 0.96, P = 1.5e-04). Gain of this region was detected at low frequencies in primary tumors and at higher frequencies in relapsed and/or cisplatin-resistant tumors. Chromosome 3p25.3 gain was associated with shorter progression-free survival and overall survival, with the strongest association observed in nonseminomas excluding pure teratomas. 3p25.3 gain was more frequently observed in tumors with yolk sac tumor histology and predicted adverse outcome independent of the International Germ Cell Cancer Collaborative Group risk classification and the presence of TP53/MDM2 alterations. CONCLUSION On the basis of both in vitro analyses and clinical data, we found 3p25.3 to be strongly associated with cisplatin resistance and poor clinical outcome in male type II GCTs. Using genomic profiling, 3p25.3 status could help to improve risk stratification in male patients with type II GCT. Further characterization of this locus and underlying mechanisms of resistance is warranted to guide development of novel treatment approaches for cisplatin-resistant disease.
Collapse
Affiliation(s)
| | - Thomas F. Eleveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Sruthi Sriram
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lambert C.J. Dorssers
- Department of Pathology, Lab for Exp Patho-Oncology (LEPO), Erasmus MC-University Medical Center Rotterdam, Cancer Institute, Rotterdam, the Netherlands
| | - Ad J.M. Gillis
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Silvia Schmidtova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarina Kalavska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Harmen J.G. van de Werken
- Cancer Computational Biology Center, Department of Urology & Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Christoph Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCs4, University Cancer Center Hamburg, University Medical Center Eppendorf, Hamburg, Germany
| | - Friedemann Honecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
- Tumor- and Breast Center ZeTuP, Sankt Gallen, Switzerland
| | - Michal Mego
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | | |
Collapse
|
106
|
Reece AS, Hulse GK. Cannabis- and Substance-Related Epidemiological Patterns of Chromosomal Congenital Anomalies in Europe: Geospatiotemporal and Causal Inferential Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11208. [PMID: 36141481 PMCID: PMC9517644 DOI: 10.3390/ijerph191811208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Laboratory data link cannabinoid exposure to chromosomal mis-segregation errors. Recent epidemiological reports confirm this link and raise concern that elevated chromosomal congenital anomaly rates (CCAR) may be occurring in Europe which is experiencing increased cannabis use, daily intensity of use and cannabinoid potency. METHODS CCAR data from Eurocat. Drug use data from the European Monitoring Centre for Drugs and Drug Addiction. Income from World Bank. Bivariate, multivariate, panel and geotemporospatial regressions analyzed. Inverse probability weighting of panel models and E-values used as major quantitative causal inferential methodologies. RESULTS In countries where daily cannabis use was rising the trend for CCA's was upwards whereas in those where daily use was declining it was usually downwards (p = 0.0002). In inverse probability weighted panel models terms for cannabis metrics were significant for chromosomal disorders, trisomies 21 and 13 and Klinefelters syndrome from p < 2.2 × 10-16. In spatiotemporal models cannabis terms were positive and significant for chromosomal disorders, genetic disorders, trisomies 21, 18 and 13, Turners and Klinefelters syndromes from 4.28 × 10-6, 5.79 × 10-12, 1.26 × 10-11, 1.12 × 10-7, 7.52 × 10-9, 7.19 × 10-7 and 7.27 × 10-7. 83.7% of E-value estimates and 74.4% of minimum E-values (mEV) > 9 including four values each at infinity. Considering E-values: the sensitivity of the individual disorders was trisomy 13 > trisomy 21 > Klinefelters > chromosomal disorders > Turners > genetic syndromes > trisomy 18 with mEV's 1.91 × 1025 to 59.31; and daily cannabis use was the most powerful covariate (median mEV = 1.91 × 1025). CONCLUSIONS Data indicate that, consistent with reports from Hawaii, Canada, Colorado, Australia and USA, CCARs are causally and spatiotemporally related to metrics and intensity of cannabis exposure, directly impact 645 MB (21.5%) of the human genome and may implicate epigenomic-centrosomal mechanisms.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
107
|
Grasso C, Popovic M, Isaevska E, Lazzarato F, Fiano V, Zugna D, Pluta J, Weathers B, D’Andrea K, Almstrup K, Anson-Cartwright L, Bishop DT, Chanock SJ, Chen C, Cortessis VK, Dalgaard MD, Daneshmand S, Ferlin A, Foresta C, Frone MN, Gamulin M, Gietema JA, Greene MH, Grotmol T, Hamilton RJ, Haugen TB, Hauser R, Karlsson R, Kiemeney LA, Lessel D, Lista P, Lothe RA, Loveday C, Meijer C, Nead KT, Nsengimana J, Skotheim RI, Turnbull C, Vaughn DJ, Wiklund F, Zheng T, Zitella A, Schwartz SM, McGlynn KA, Kanetsky PA, Nathanson KL, Richiardi L. Association Study between Polymorphisms in DNA Methylation-Related Genes and Testicular Germ Cell Tumor Risk. Cancer Epidemiol Biomarkers Prev 2022; 31:1769-1779. [PMID: 35700037 PMCID: PMC9444936 DOI: 10.1158/1055-9965.epi-22-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Testicular germ cell tumors (TGCT), histologically classified as seminomas and nonseminomas, are believed to arise from primordial gonocytes, with the maturation process blocked when they are subjected to DNA methylation reprogramming. SNPs in DNA methylation machinery and folate-dependent one-carbon metabolism genes have been postulated to influence the proper establishment of DNA methylation. METHODS In this pathway-focused investigation, we evaluated the association between 273 selected tag SNPs from 28 DNA methylation-related genes and TGCT risk. We carried out association analysis at individual SNP and gene-based level using summary statistics from the Genome Wide Association Study meta-analysis recently conducted by the international Testicular Cancer Consortium on 10,156 TGCT cases and 179,683 controls. RESULTS In individual SNP analyses, seven SNPs, four mapping within MTHFR, were associated with TGCT risk after correction for multiple testing (q ≤ 0.05). Queries of public databases showed that three of these SNPs were associated with MTHFR changes in enzymatic activity (rs1801133) or expression level in testis tissue (rs12121543, rs1476413). Gene-based analyses revealed MTHFR (q = 8.4 × 10-4), methyl-CpG-binding protein 2 (MECP2; q = 2 × 10-3), and ZBTB4 (q = 0.03) as the top TGCT-associated genes. Stratifying by tumor histology, four MTHFR SNPs were associated with seminoma. In gene-based analysis MTHFR was associated with risk of seminoma (q = 2.8 × 10-4), but not with nonseminomatous tumors (q = 0.22). CONCLUSIONS Genetic variants within MTHFR, potentially having an impact on the DNA methylation pattern, are associated with TGCT risk. IMPACT This finding suggests that TGCT pathogenesis could be associated with the folate cycle status, and this relation could be partly due to hereditary factors.
Collapse
Affiliation(s)
- Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Fulvio Lazzarato
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Valentina Fiano
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - Daniela Zugna
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D’Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynn Anson-Cartwright
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - D. Timothy Bishop
- Department of Haematology and Immunology, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Stephen J. Chanock
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria K. Cortessis
- Department of Population and Public Health Sciences, and Obstetrics and Gynecology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Marlene D. Dalgaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Siamak Daneshmand
- Department of Urology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Megan N. Frone
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Marija Gamulin
- Department of Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jourik A. Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mark H. Greene
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Robert J. Hamilton
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trine B. Haugen
- Faculty of Health Sciences, OsloMet – Oslo Metropolitan University, Oslo, Norway
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrizia Lista
- Division of Medical Oncology1, AOU “Città della Salute e della Scienza di Torino”, Turin, Italy
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chey Loveday
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kevin T. Nead
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Hospital, London, United Kingdom
| | - David J. Vaughn
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Andrea Zitella
- Division of Urology, Department of Surgical Science, AOU “Città della Salute e della Scienza di Torino”, University of Turin, Turin, Italy
| | - Stephen M. Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Katherine A. McGlynn
- Division of Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piedmont, Turin, Italy
| | | |
Collapse
|
108
|
Paramita P, Preeti A, Mili J, Ridhi J, Mala S, MM G. Spectrum of Germ Cell Tumor (GCT): 5 Years' Experience in a Tertiary Care Center and Utility of OCT4 as a Diagnostic Adjunct. Indian J Surg Oncol 2022; 13:533-541. [PMID: 36187544 PMCID: PMC9515291 DOI: 10.1007/s13193-022-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/13/2022] [Indexed: 09/03/2023] Open
Abstract
Germ cell tumors (GCT) are an intriguing group of neoplasm having myriad clinical and morphological presentation. More and more transcription factors are being evaluated for identification of same. To study the spectrum of GCTs in a tertiary care center and the use of a stem cell marker OCT4 as a diagnostic adjunct, a retrospective 5-year (2008-2013) study was carried out. Immunohistochemistry (IHC) with OCT4 was performed on all cases and IHC for α feto protein (AFP), CD30, and epithelial membrane antigen (EMA) as per requirement. Cohort included 73 cases (23 males and 50 females). Testicular and ovarian GCTs accounted for 95.83% and 35.71% respectively. In males, seminoma was the commonest (34.78%) followed by mixed GCT (26%). 17.85% of ovarian GCTs were malignant mostly constituted by dysgerminoma (18%). Benign mature cystic teratoma (MCT) constituted 50% of ovarian GCTs. OCT4 immunoexpression was seen in all cases of seminoma/dysgerminoma, embryonal carcinoma, immature teratoma, and seminomatous/embryomatous component of mixed GCTs. Pure yolk sac tumor (YST) and MCT were consistently negative. OCT4 was especially helpful in identification of mixed GCT. A panel of immunohistochemical markers would be a more ideal way to identify and clarify the components because correct identification of the components is important for therapeutic intervention and prognostication. OCT4 being a primordial germ cell marker predicts aggressive behavior and targeted therapy against this should be investigated.
Collapse
Affiliation(s)
- Paul Paramita
- Department of Pathology, IMS-BHU, Varanasi, 221005 UP India
| | | | - Jain Mili
- Department of Pathology, KGMU, Lucknow, 226003 UP India
| | - Jaiswal Ridhi
- Department of Pathology, KGMU, Lucknow, 226003 UP India
| | - Sagar Mala
- Department of Pathology, KGMU, Lucknow, 226003 UP India
| | - Goel MM
- Department of Pathology, KGMU, Lucknow, 226003 UP India
| |
Collapse
|
109
|
Oliver TRW, Chappell L, Sanghvi R, Deighton L, Ansari-Pour N, Dentro SC, Young MD, Coorens THH, Jung H, Butler T, Neville MDC, Leongamornlert D, Sanders MA, Hooks Y, Cagan A, Mitchell TJ, Cortes-Ciriano I, Warren AY, Wedge DC, Heer R, Coleman N, Murray MJ, Campbell PJ, Rahbari R, Behjati S. Clonal diversification and histogenesis of malignant germ cell tumours. Nat Commun 2022; 13:4272. [PMID: 35953478 PMCID: PMC9372159 DOI: 10.1038/s41467-022-31375-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/21/2022] Open
Abstract
Germ cell tumours (GCTs) are a collection of benign and malignant neoplasms derived from primordial germ cells. They are uniquely able to recapitulate embryonic and extraembryonic tissues, which carries prognostic and therapeutic significance. The developmental pathways underpinning GCT initiation and histogenesis are incompletely understood. Here, we study the relationship of histogenesis and clonal diversification in GCTs by analysing the genomes and transcriptomes of 547 microdissected histological units. We find no correlation between genomic and histological heterogeneity. However, we identify unifying features including the retention of fetal developmental transcripts across tissues, expression changes on chromosome 12p, and a conserved somatic evolutionary sequence of whole genome duplication followed by clonal diversification. While this pattern is preserved across all GCTs, the developmental timing of the duplication varies between prepubertal and postpubertal cases. In addition, tumours of younger children exhibit distinct substitution signatures which may lend themselves as potential biomarkers for risk stratification. Our findings portray the extensive diversification of GCT tissues and genetic subclones as randomly distributed, while identifying overarching transcriptional and genomic features.
Collapse
Affiliation(s)
- Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | - Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | | | | | | | | | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Thomas J Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Anne Y Warren
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Manchester Cancer Research Centre, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Urology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicholas Coleman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Matthew J Murray
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
110
|
Constâncio V, Tavares NT, Henrique R, Jerónimo C, Lobo J. MiRNA biomarkers in cancers of the male reproductive system: are we approaching clinical application? Andrology 2022; 11:651-667. [PMID: 35930290 DOI: 10.1111/andr.13258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Specific cancer types face specific clinical management challenges. Owing to their stability, robustness and fast, easy, and cost-effective detection, microRNAs (miRNAs) are attractive candidate biomarkers to the clinic. OBJECTIVES Based on a comprehensive review of the relevant literature in the field, we explore the potential of miRNAs as biomarkers to answer relevant clinical dilemmas inherent to cancers of the male reproductive tract (prostate (PCa), testis (TGCTs) and penis (PeCa)) and identify some of the challenges/limitations hampering their widely application. RESULTS AND DISCUSSION We conclude that the use of miRNAs as biomarkers is at different stages for these distinct cancer types. While for TGCTs, miRNA-371a-3p is universally accepted to fill in important clinicals gaps and is moving fast towards clinical implementation, for PCa almost no overlap of miRNAs exists between studies, denoting the absence of a consistent miRNA biomarker, and for PeCa the field of miRNAs has just recently started, with only a few studies attempting to explore their clinical usefulness. CONCLUSION Technological advances influencing miRNA detection and quantification will be instrumental to continue to move forward with implementation of miRNAs in the clinic as biomarkers for non-invasive diagnosis, risk stratification, treatment monitoring and follow-up. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Doctoral Programme in Biomedical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| |
Collapse
|
111
|
Abstract
PURPOSE OF REVIEW Testicular germ cell tumours (TGCTs) are the most common solid malignant cancer diagnosed in young males and the incidence is increasing. Understanding the genetic basis of this disease will help us to navigate the challenges of early detection, diagnosis, treatment, surveillance, and long-term outcomes for patients. RECENT FINDINGS TGCTs are highly heritable. Current understanding of germline risk includes the identification of one moderate-penetrance predisposition gene, checkpoint kinase 2 (CHEK2), and 78 low-to-moderate-risk single nucleotide polymorphisms identified in genome-wide-associated studies, which account for 44% of familial risk. Biomarker research in TGCTs has been challenging for multiple reasons: oncogenesis is complex, actionable mutations are uncommon, clonal evolution unpredictable and tumours can be histologically and molecularly heterogeneous. Three somatic mutations have thus far been identified by DNA exome sequencing, exclusively in seminomas: KIT, KRAS and NRAS. Several genetic markers appear to be associated with risk of TGCT and treatment resistance. TP53 mutations appear to be associated with platinum resistance. MicroRNA expression may be a useful biomarker of residual disease and relapse in future. SUMMARY The biology of testicular germ cells tumours is complex, and further research is needed to fully explain the high heritability of these cancers, as well as the molecular signatures which may drive their biological behaviour.
Collapse
|
112
|
Reece AS, Hulse GK. Epidemiology of Δ8THC-Related Carcinogenesis in USA: A Panel Regression and Causal Inferential Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7726. [PMID: 35805384 PMCID: PMC9265369 DOI: 10.3390/ijerph19137726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
The use of Δ8THC is increasing at present across the USA in association with widespread cannabis legalization and the common notion that it is "legal weed". As genotoxic actions have been described for many cannabinoids, we studied the cancer epidemiology of Δ8THC. Data on 34 cancer types was from the Centers for Disease Control Atlanta Georgia, substance abuse data from the Substance Abuse and Mental Health Services Administration, ethnicity and income data from the U.S. Census Bureau, and cannabinoid concentration data from the Drug Enforcement Agency, were combined and processed in R. Eight cancers (corpus uteri, liver, gastric cardia, breast and post-menopausal breast, anorectum, pancreas, and thyroid) were related to Δ8THC exposure on bivariate testing, and 18 (additionally, stomach, Hodgkins, and Non-Hodgkins lymphomas, ovary, cervix uteri, gall bladder, oropharynx, bladder, lung, esophagus, colorectal cancer, and all cancers (excluding non-melanoma skin cancer)) demonstrated positive average marginal effects on fully adjusted inverse probability weighted interactive panel regression. Many minimum E-Values (mEVs) were infinite. p-values rose from 8.04 × 10-78. Marginal effect calculations revealed that 18 Δ8THC-related cancers are predicted to lead to a further 8.58 cases/100,000 compared to 7.93 for alcoholism and -8.48 for tobacco. Results indicate that between 8 and 20/34 cancer types were associated with Δ8THC exposure, with very high effect sizes (mEVs) and marginal effects after adjustment exceeding tobacco and alcohol, fulfilling the epidemiological criteria of causality and suggesting a cannabinoid class effect. The inclusion of pediatric leukemias and testicular cancer herein demonstrates heritable malignant teratogenesis.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
113
|
Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel) 2022; 14:2919. [PMID: 35740585 PMCID: PMC9220899 DOI: 10.3390/cancers14122919] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Poly- and perfluoroalkylated substances (PFAS) are chemicals that persist and bioaccumulate in the environment and are found in nearly all human populations through several routes of exposure. Human occupational and community exposure to PFAS has been associated with several cancers, including cancers of the kidney, testis, prostate, and liver. While evidence suggests that PFAS are not directly mutagenic, many diverse mechanisms of carcinogenicity have been proposed. In this mini-review, we organize these mechanisms into three major proposed pathways of PFAS action-metabolism, endocrine disruption, and epigenetic perturbation-and discuss how these distinct but interdependent pathways may explain many of the proposed pro-carcinogenic effects of the PFAS class of environmental contaminants. Notably, each of the pathways is predicted to be highly sensitive to the dose and window of exposure which may, in part, explain the variable epidemiologic and experimental evidence linking PFAS and cancer. We highlight testicular and prostate cancer as models to validate this concept.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
114
|
Ricci C, Franceschini T, Giunchi F, Grillini M, Ambrosi F, Massari F, Mollica V, Colecchia M, Fiorentino M. Immunohistochemical Expression of Preferentially Expressed Antigen in Melanoma (PRAME) in the Uninvolved Background Testis, Germ Cell Neoplasia In Situ, and Germ Cell Tumors of the Testis. Am J Clin Pathol 2022; 157:644-648. [PMID: 34864837 DOI: 10.1093/ajcp/aqab200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Preferentially expressed antigen in melanoma (PRAME) has a key role in regulating pluripotency of primordial germ cells and in the development of germ cell tumors of the testis (GCTT). However, its immunohistochemical expression in normal testes and its neoplastic counterpart remain largely unknown. METHODS We retrospectively investigated the expression of PRAME in 26 cases of GCTT, 21 cases of germ cell neoplasia in situ (GCNIS), and 17 cases of uninvolved background testes. RESULTS We found that PRAME was expressed more strongly by seminomatous rather than nonseminomatous GCTT (P = .000) and by pure seminoma rather than the seminoma component of seminomatous/nonseminomatous GCTT (P = .025). In addition, GCNIS and uninvolved background testes displayed high levels of PRAME expression. CONCLUSIONS PRAME is an additional marker for the differential diagnosis of GCTT and could play a key role in the transition from seminomatous to nonseminomatous GCTT.
Collapse
Affiliation(s)
- Costantino Ricci
- Department of Pathology, Maggiore Hospital, AUSL-Bologna , Bologna , Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna , Bologna , Italy
| | - Tania Franceschini
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
| | - Francesca Giunchi
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
| | - Marco Grillini
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
| | - Francesca Ambrosi
- Department of Pathology, Maggiore Hospital, AUSL-Bologna , Bologna , Italy
| | - Francesco Massari
- Department of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
| | - Veronica Mollica
- Department of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
| | - Maurizio Colecchia
- Department of Pathology, IRCCS San Raffaele Scientific Institute , Milano , Italy
| | - Michelangelo Fiorentino
- Department of Pathology, Maggiore Hospital, AUSL-Bologna , Bologna , Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna , Bologna , Italy
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna , Bologna , Italy
| |
Collapse
|
115
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
116
|
Acosta AM, Al-Obaidy KI, Sholl LM, Dickson BC, Lindeman NI, Hirsch MS, Collins K, Fletcher CD, Idrees MT. Sarcomatoid Yolk Sac Tumor Harbors Somatic Mutations That Are Otherwise Rare in Testicular Germ Cell Tumors. Am J Surg Pathol 2022; 46:701-712. [PMID: 35034041 DOI: 10.1097/pas.0000000000001865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In testicular germ cell tumors (TGCTs), components with nonspecific sarcomatous features that express keratins and glypican 3 are classified as sarcomatoid yolk sac tumor (SYST). SYST is most frequently seen in metastatic sites after chemotherapy. Like so-called "somatic-type" malignancies arising in TGCTs, SYST is markedly resistant to systemic therapy and has a more aggressive clinical course than conventional types of TGCT. However, the clinicopathologic and molecular features of SYST remain incompletely described. This study evaluated a multi-institutional series of 20 SYSTs using massively parallel sequencing and p53 immunohistochemistry. The histologic and clinical characteristics of the cases were also assessed, including analyses of disease-specific outcomes. DNA sequencing identified somatic mutations in 12/20 cases (60%), including recurrent TP53 and RIF1 mutations (present in 4/20 cases, 20% each). In 3 of the 4 SYST with TP53 mutations, there was molecular evidence of loss of heterozygosity. Immunohistochemistry demonstrated diffuse overexpression of p53 protein in 3/4 (75%) cases with TP53 mutations. The remaining TP53-mutant case demonstrated multifocal overexpression of p53, suggestive of subclonal inactivation of the gene. Overexpression of p53 protein was not seen in any of 15 TP53 wild-type cases evaluated by immunohistochemistry. A subset of 4 cases underwent RNA sequencing (fusion panel), which demonstrated the absence of oncogenic gene fusions. A 2-tiered grading system based on 3 histologic parameters (cellularity, number of mitoses, and necrosis) demonstrated that high-grade SYSTs have a higher risk of disease-specific death compared to low-grade tumors. The risk of disease-specific mortality was also higher in SYSTs with somatic mutations. In conclusion, this study demonstrated that 60% of SYSTs harbor somatic oncogenic mutations that are otherwise rare in TGCTs, and the presence of these mutations is associated with an aggressive clinical course. In addition, the results presented herein suggest that grading SYSTs may be clinically relevant.
Collapse
Affiliation(s)
- Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Khaleel I Al-Obaidy
- Department of Pathology, Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Brendan C Dickson
- Department of Pathology, Mount Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Katrina Collins
- Department of Pathology, Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| | - Christopher D Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Muhammad T Idrees
- Department of Pathology, Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
117
|
Országhová Z, Kalavska K, Mego M, Chovanec M. Overcoming Chemotherapy Resistance in Germ Cell Tumors. Biomedicines 2022; 10:biomedicines10050972. [PMID: 35625709 PMCID: PMC9139090 DOI: 10.3390/biomedicines10050972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Testicular germ cell tumors (GCTs) are highly curable malignancies. Excellent survival rates in patients with metastatic disease can be attributed to the exceptional sensitivity of GCTs to cisplatin-based chemotherapy. This hypersensitivity is probably related to alterations in the DNA repair of cisplatin-induced DNA damage, and an excessive apoptotic response. However, chemotherapy fails due to the development of cisplatin resistance in a proportion of patients. The molecular basis of this resistance appears to be multifactorial. Tracking the mechanisms of cisplatin resistance in GCTs, multiple molecules have been identified as potential therapeutic targets. A variety of therapeutic agents have been evaluated in preclinical and clinical studies. These include different chemotherapeutics, targeted therapies, such as tyrosine kinase inhibitors, mTOR inhibitors, PARP inhibitors, CDK inhibitors, and anti-CD30 therapy, as well as immune-checkpoint inhibitors, epigenetic therapy, and others. These therapeutics have been used as single agents or in combination with cisplatin. Some of them have shown promising in vitro activity in overcoming cisplatin resistance, but have not been effective in clinical trials in refractory GCT patients. This review provides a summary of current knowledge about the molecular mechanisms of cisplatin sensitivity and resistance in GCTs and outlines possible therapeutic approaches that seek to overcome this chemoresistance.
Collapse
Affiliation(s)
- Zuzana Országhová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
| | - Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
- Correspondence:
| |
Collapse
|
118
|
González-Barrios R, Alcaraz N, Montalvo-Casimiro M, Cervera A, Arriaga-Canon C, Munguia-Garza P, Hinojosa-Ugarte D, Sobrevilla-Moreno N, Torres-Arciga K, Mendoza-Perez J, Diaz-Chavez J, Cortes-González CC, Castro-Hernández C, Martínez-Cedillo J, Scavuzzo A, Pérez-Montiel D, Jiménez-Ríos MA, Herrera LA. Genomic Profile in a Non-Seminoma Testicular Germ-Cell Tumor Cohort Reveals a Potential Biomarker of Sensitivity to Platinum-Based Therapy. Cancers (Basel) 2022; 14:cancers14092065. [PMID: 35565196 PMCID: PMC9101377 DOI: 10.3390/cancers14092065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite having a favorable response to platinum-based chemotherapies, ~15% of Testicular Germ-Cell Tumor (TGCT) patients are platinum-resistant. Mortality rates among Latin American countries have remained constant over time, which makes the study of this population of particular interest. To gain insight into this phenomenon, we conducted whole-exome sequencing, microarray-based comparative genomic hybridization, and copy number analysis of 32 tumors from a Mexican cohort, of which 18 were platinum-sensitive and 14 were platinum-resistant. We incorporated analyses of mutational burden, driver mutations, and SNV and CNV signatures. DNA breakpoints in genes were also investigated and might represent an interesting research opportunity. We observed that sensitivity to chemotherapy does not seem to be explained by any of the mutations detected. Instead, we uncovered CNVs, particularly amplifications on segment 2q11.1 as a novel variant with chemosensitivity biomarker potential. Our data shed light into understanding platinum resistance in a Latin-origin population.
Collapse
Affiliation(s)
- Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Nicolás Alcaraz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Diego Hinojosa-Ugarte
- Departamento de Cirugía, Hospital Regional de Alta Especialidad del Bajío, Leon 37660, Mexico;
| | - Nora Sobrevilla-Moreno
- Departamento de Oncología Médica, Clínica de Tumores Genitourinarios, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.S.-M.); (J.M.-C.)
| | - Karla Torres-Arciga
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Julia Mendoza-Perez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - José Diaz-Chavez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Carlo Cesar Cortes-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Jorge Martínez-Cedillo
- Departamento de Oncología Médica, Clínica de Tumores Genitourinarios, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.S.-M.); (J.M.-C.)
| | - Ana Scavuzzo
- Departamento de Urología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (A.S.); (M.A.J.-R.)
| | - Delia Pérez-Montiel
- Departamento de Patología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Miguel A. Jiménez-Ríos
- Departamento de Urología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (A.S.); (M.A.J.-R.)
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
- Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
- Correspondence: ; Tel.: +52-55-5350-1900
| |
Collapse
|
119
|
Aldrink JH, Glick RD, Baertschiger RM, Kulaylat AN, Lautz TB, Christison-Lagay E, Grant CN, Tracy E, Dasgupta R, Brown EG, Mattei P, Rothstein DH, Rodeberg DA, Ehrlich PF. Update on pediatric testicular germ cell tumors. J Pediatr Surg 2022; 57:690-699. [PMID: 33975708 DOI: 10.1016/j.jpedsurg.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Testicular germ cell tumors are uncommon tumors that are encountered by pediatric surgeons and urologists and require a knowledge of appropriate contemporary evaluation and surgical and medical management. METHOD A review of the recommended diagnostic evaluation and current surgical and medical management of children and adolescents with testicular germ cell tumors based upon recently completed clinical trials was performed and summarized in this article. RESULTS In this summary of childhood and adolescent testicular germ cell tumors, we review the initial clinical evaluation, surgical and medical management, risk stratification, results from recent prospective cooperative group studies, and clinical outcomes. A summary of recently completed clinical trials by pediatric oncology cooperative groups is provided, and best surgical practices are discussed. CONCLUSIONS Testicular germ cell tumors in children are rare tumors. International collaborations, data-sharing, and enrollment of patients at all stages and risk classifications into active clinical trials will enhance our knowledge of these rare tumors and most importantly improve outcomes of patients with testicular germ cell tumors. LEVEL OF EVIDENCE This is a review article of previously published and referenced level 1 and 2 studies, but also includes expert opinion level 5, represented by the American Pediatric Surgical Association Cancer Committee.
Collapse
Affiliation(s)
- Jennifer H Aldrink
- Department of Surgery, Division of Pediatric Surgery, The Ohio State University College of Medicine, Nationwide Children's Hospital, Columbus, OH 43205, United States.
| | - Richard D Glick
- Division of Pediatric Surgery, Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Cohen Children's Medical Center, New Hyde Park, NY, United States
| | - Reto M Baertschiger
- Division of General and Thoracic Surgery, The Hospital for Sick Kids, University of Toronto, Toronto, Ontario, Canada
| | - Afif N Kulaylat
- Division of Pediatric Surgery, Department of Surgery, Penn State Children's Hospital, Hershey, PA, United States
| | - Timothy B Lautz
- Division of Pediatric Surgery, Department of Surgery, Ann and Robert H Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, United States
| | - Emily Christison-Lagay
- Department of Surgery, Division of Pediatric Surgery, Yale-New Haven Children's Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christa N Grant
- Division of Pediatric Surgery, Department of Surgery, Penn State Children's Hospital, Hershey, PA, United States
| | - Elisabeth Tracy
- Department of Surgery, Division of Pediatric Surgery, Duke University Medical Center, Durham, NC, United States
| | - Roshni Dasgupta
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Medical Center, University of Cincinnati, Cincinnati OH, United States
| | - Erin G Brown
- Division of Pediatric Surgery, Department of Surgery, University of California Davis, Sacramento, CA, United States
| | - Peter Mattei
- General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - David H Rothstein
- Department of Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA, United States
| | - David A Rodeberg
- Department of Surgery, Division of Pediatric Surgery, East Carolina University, Greenville, NC, United States
| | - Peter F Ehrlich
- Department of Surgery, Mott Children's Hospital, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
120
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 2 - categorical bivariate analysis and attributable fractions. Arch Public Health 2022; 80:100. [PMID: 35354495 PMCID: PMC8969377 DOI: 10.1186/s13690-022-00812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/29/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As the cannabis-cancer relationship remains an important open question epidemiological investigation is warranted to calculate key metrics including Rate Ratios (RR), Attributable Fractions in the Exposed (AFE) and Population Attributable Risks (PAR) to directly compare the implicated case burden between emerging cannabinoids and the established carcinogen tobacco. METHODS SEER*Stat software from Centres for Disease Control was used to access age-standardized state census incidence of 28 cancer types (including "All (non-skin) Cancer") from National Cancer Institute in US states 2001-2017. Drug exposures taken from the National Survey of Drug Use and Health 2003-2017, response rate 74.1%. Federal seizure data provided cannabinoid exposure. US Census Bureau furnished income and ethnicity. Exposure dichotomized as highest v. lowest exposure quintiles. Data processed in R. RESULTS Nineteen thousand eight hundred seventy-seven age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Fifteen cancers displayed elevated E-Values in the highest compared to the lowest quintiles of cannabidiol exposure, namely (in order): prostate, melanoma, Kaposi sarcoma, ovarian, bladder, colorectal, stomach, Hodgkins, esophagus, Non-Hodgkins lymphoma, All cancer, brain, lung, CLL and breast. Eleven cancers were elevated in the highest THC exposure quintile: melanoma, thyroid, liver, AML, ALL, pancreas, myeloma, CML, breast, oropharynx and stomach. Twelve cancers were elevated in the highest tobacco quintile confirming extant knowledge and study methodology. For cannabidiol RR declined from 1.397 (95%C.I. 1.392, 1.402), AFE declined from 28.40% (28.14, 28.66%), PAR declined from 15.3% (15.1, 15.5%) and minimum E-Values declined from 2.13. For THC RR declined from 2.166 (95%C.I. 2.153, 2.180), AFE declined from 53.8% (53.5, 54.1%); PAR declined from 36.1% (35.9, 36.4%) and minimum E-Values declined from 3.72. For tobacco, THC and cannabidiol based on AFE this implies an excess of 93,860, 91,677 and 48,510 cases; based on PAR data imply an excess of 36,450, 55,780 and 14,819 cases. CONCLUSION Data implicate 23/28 cancers as being linked with THC or cannabidiol exposure with epidemiologically-causal relationships comparable to those for tobacco. AFE-attributable cases for cannabinoids (91,677 and 48,510) compare with PAR-attributable cases for tobacco (36,450). Cannabinoids constitute an important multivalent community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
121
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 1 - continuous bivariate analysis. Arch Public Health 2022; 80:99. [PMID: 35354487 PMCID: PMC8966217 DOI: 10.1186/s13690-022-00811-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/29/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The genotoxic and cancerogenic impacts of population-wide cannabinoid exposure remains an open but highly salient question. The present report examines these issues from a continuous bivariate perspective with subsequent reports continuing categorical and detailed analyses. METHODS Age-standardized state census incidence of 28 cancer types (including "All (non-skin) Cancer") was sourced using SEER*Stat software from Centres for Disease Control and National Cancer Institute across US states 2001-2017. It was joined with drug exposure data from the nationally representative National Survey of Drug Use and Health conducted annually by the Substance Abuse and Mental Health Services Administration 2003-2017, response rate 74.1%. Cannabinoid data was from Federal seizure data. Income and ethnicity data sourced from the US Census Bureau. Data was processed in R. RESULTS Nineteen thousand eight hundred seventy-seven age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Regression lines were charted for cancer-substance exposures for cigarettes, alcohol use disorder (AUD), cannabis, THC, cannabidiol, cannabichromene, cannabinol and cannabigerol. In this substance series positive trends were found for 14, 9, 6, 9, 12, 6, 9 and 7 cancers; with largest minimum E-Values (mEV) of 1.76 × 109, 4.67 × 108, 2.74 × 104, 4.72, 2.34 × 1018, 2.74 × 1017, 1.90 × 107, 5.05 × 109; and total sum of exponents of mEV of 34, 32, 13, 0, 103, 58, 25, 31 indicating that cannabidiol followed by cannabichromene are the most strongly implicated in environmental carcinogenesis. Breast cancer was associated with tobacco and all cannabinoids (from mEV = 3.53 × 109); "All Cancer" (non-skin) linked with cannabidiol (mEV = 1.43 × 1011); pediatric AML linked with cannabis (mEV = 19.61); testicular cancer linked with THC (mEV = 1.33). Cancers demonstrating elevated mEV in association with THC were: thyroid, liver, pancreas, AML, breast, oropharynx, CML, testis and kidney. Cancers demonstrating elevated mEV in relation to cannabidiol: prostate, bladder, ovary, all cancers, colorectum, Hodgkins, brain, Non-Hodgkins lymphoma, esophagus, breast and stomach. CONCLUSION Data suggest that cannabinoids including THC and cannabidiol are important community carcinogens exceeding the effects of tobacco or alcohol. Testicular, (prostatic) and ovarian tumours indicate mutagenic corruption of the germline in both sexes; pediatric tumourigenesis confirms transgenerational oncogenesis; quantitative criteria implying causality are fulfilled.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
122
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 3 - spatiotemporal, multivariable and causal inferential pathfinding and exploratory analyses of prostate and ovarian cancers. Arch Public Health 2022; 80:101. [PMID: 35354499 PMCID: PMC8969240 DOI: 10.1186/s13690-022-00813-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/29/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The epidemiology of cannabinoid-related cancerogenesis has not been studied with cutting edge epidemiological techniques. Building on earlier bivariate papers in this series we aimed to conduct pathfinding studies to address this gap in two tumours of the reproductive tract, prostate and ovarian cancer. METHODS Age-standardized cancer incidence data for 28 tumour types (including "All (non-skin) Cancer") was sourced from Centres for Disease Control and National Cancer Institute using SEER*Stat software across US states 2001-2017. Drug exposure was sourced from the nationally representative household survey National Survey of Drug Use and Health conducted annually by the Substance Abuse and Mental Health Services Administration 2003-2017 with response rate 74.1%. Federal seizure data provided cannabinoid concentration data. US Census Bureau provided income and ethnicity data. Inverse probability weighted mixed effects, robust and panel regression together with geospatiotemporal regression analyses were conducted in R. E-Values were also calculated. RESULTS 19,877 age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Inverse probability weighted regressions for prostate and ovarian cancers confirmed causal associations robust to adjustment. Cannabidiol alone was significantly associated with prostate cancer (β-estimate = 1.61, (95%C.I. 0.99, 2.23), P = 3.75 × 10- 7). In a fully adjusted geospatiotemporal model at one spatial and two temporal years lags cannabidiol was significantly independently associated with prostate cancer (β-estimate = 2.08, (1.19, 2.98), P = 5.20 × 10- 6). Cannabidiol alone was positively associated with ovarian cancer incidence in a geospatiotemporal model (β-estimate = 0.36, (0.30, 0.42), P < 2.20 × 10- 16). The cigarette: THC: cannabidiol interaction was significant in a fully adjusted geospatiotemporal model at six years of temporal lag (β-estimate = 1.93, (1.07, 2.78), P = 9.96 × 10- 6). Minimal modelled polynomial E-Values for prostate and ovarian cancer ranged up to 5.59 × 1059 and 1.92 × 10125. Geotemporospatial modelling of these tumours showed that the cannabidiol-carcinogenesis relationship was supra-linear and highly sigmoidal (P = 1.25 × 10- 45 and 12.82 × 10- 52 for linear v. polynomial models). CONCLUSION Cannabinoids including THC and cannabidiol are therefore important community carcinogens additive to the effects of tobacco and greatly exceeding those of alcohol. Reproductive tract carcinogenesis necessarily implies genotoxicity and epigenotoxicity of the germ line with transgenerational potential. Pseudoexponential and causal dose-response power functions are demonstrated.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
123
|
Testicular Germ Cell Tumours and Proprotein Convertases. Cancers (Basel) 2022; 14:cancers14071633. [PMID: 35406405 PMCID: PMC8996948 DOI: 10.3390/cancers14071633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite the high survival rate of the most common neoplasia in young Caucasian men: Testicular Germ Cell Tumors (TGCT), the quality of life of these patients is impaired by the multiple long-term side effects of their treatment. The study of molecules that can serve both as diagnostic biomarkers for tumor development and as therapeutic targets seems necessary. Proprotein convertases (PC) are a group of proteases responsible for the maturation of inactive proproteins with very diverse functions, whose alterations in expression have been associated with various diseases, such as other types of cancer and inflammation. The study of the immune tumor microenvironment and the substrates of PCs could contribute to the development of new and necessary immunotherapies to treat this pathology. Abstract Testicular Germ Cell Tumours (TGCT) are widely considered a “curable cancer” due to their exceptionally high survival rate, even if it is reduced by many years after the diagnosis due to metastases and relapses. The most common therapeutic approach to TGCTs has not changed in the last 50 years despite its multiple long-term side effects, and because it is the most common malignancy in young Caucasian men, much research is needed to better the quality of life of the many survivors. Proprotein Convertases (PC) are nine serine proteases responsible for the maturation of inactive proproteins with many diverse functions. Alterations in their expression have been associated with various diseases, including cancer and inflammation. Many of their substrates are adhesion molecules, metalloproteases and proinflammatory molecules, all of which are involved in tumour development. Inhibition of certain convertases has also been shown to slow tumour formation, demonstrating their involvement in this process. Considering the very established link between PCs and inflammation-related malignancies and the recent studies carried out into the immune microenvironment of TGCTs, the study of the involvement of PCs in testicular cancer may open up avenues for being both a biomarker for diagnosis and a therapeutic target.
Collapse
|
124
|
Myklebust MP, Søviknes AM, Halvorsen OJ, Thor A, Dahl O, Ræder H. MicroRNAs in Differentiation of Embryoid Bodies and the Teratoma Subtype of Testicular Cancer. Cancer Genomics Proteomics 2022; 19:178-193. [PMID: 35181587 DOI: 10.21873/cgp.20313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Testicular germ cell tumours (TGCTs) are the most frequent tumour type among young, adult men. TGCTs can be efficiently treated, but metastases of the teratoma subtype, for which there are no circulating biomarkers, represent a challenge. MATERIALS AND METHODS Global microRNA expression in teratoma tissue and embryoid bodies was assessed using next-generation sequencing. Levels of microRNAs identified as potential biomarkers were obtained from serum of patients with teratoma and matched healthy men. RESULTS We identified miR-222-5p, miR-200a-5p, miR-196b-3p and miR-454-5p as biomarker candidates from the tumour tissue and embryoid body screening but the expression of these microRNAs was very low in serum and not statistically different between patients and controls. miR-375-3p was highly expressed, being highest in patients with teratoma (p=0.012) but the levels of expression in serum from these patients and healthy controls overlapped. miR-371a-3p was not expressed in serum from patients with pure teratoma, only in patients with mixed tumours. CONCLUSION The microRNA profiles of the teratoma subtype of TGCT and embryoid bodies were obtained and assessed for candidate circulating biomarkers, but none with high sensitivity and specificity for teratoma were identified in our study. We conclude that neither the proposed teratoma marker miR-375-3p nor miR-371a-3p are suitable as circulating teratoma markers.
Collapse
Affiliation(s)
| | - Anne Mette Søviknes
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole Johan Halvorsen
- Gade Laboratory for Pathology, Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Anna Thor
- Department of Urology and CLINTEC Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Helge Ræder
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
125
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
126
|
Diverse Roles and Targets of miRNA in the Pathogenesis of Testicular Germ Cell Tumour. Cancers (Basel) 2022; 14:cancers14051190. [PMID: 35267498 PMCID: PMC8909779 DOI: 10.3390/cancers14051190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Testicular germ cell tumour (TGCT) is the most common cancer type among young adults in many parts of the world. Although the pathogenesis of TGCT is not well understood, the involvement of heritable components is evident, and the risk is polygenic. Genome-wide association studies have so far found 78 susceptibility loci for TGCT, and many of the loci are in non-coding regions indicating the involvement of non-coding RNAs in TGCT pathogenesis. MicroRNAs (miRNAs), a class of non-coding RNAs, have emerged as important gene regulators at the post-transcriptional level. They are crucial in controlling many cellular processes, such as proliferation, differentiation, and apoptosis, and an aberrant miRNA expression may contribute to the pathogenesis of several cancers, including TGCT. In support of this notion, several studies reported differential expression of miRNAs in TGCTs. We previously demonstrated that miRNAs were the most common group of small non-coding RNAs in TGCTs, and several functional studies of miRNAs in TGCTs suggest that they may act as either oncogene or tumour suppressors. Moreover, individual miRNA targets and downstream pathways in the context of TGCT development have been explored. In this review, we will focus on the diverse roles and targets of miRNAs in TGCT pathogenesis.
Collapse
|
127
|
Moore JA, Slack RS, Lehner MJ, Campbell MT, Shah AY, Zhang M, Guo CC, Ward JF, Karam JA, Wood CG, Pisters LL, Tu SM. Very Late Recurrence in Germ Cell Tumor of the Testis: Lessons and Implications. Cancers (Basel) 2022; 14:cancers14051127. [PMID: 35267435 PMCID: PMC8909729 DOI: 10.3390/cancers14051127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Very late recurrence (LR), i.e., >5 years after initial presentation, occurs in about 1% of patients with germ cell tumors of the testis (TGCT) and is associated with poor prognosis. Methods. We retrospectively reviewed the records of patients at the M. D. Anderson Cancer Center who developed LR > 5 years after their initial diagnosis of TGCT. Results. We identified 25 patients who developed LR between July 2007 and August 2020. The median age at the time of LR was 46 years (range, 29−61). Pathology of LR: somatic transformation to carcinoma or sarcoma—11, nonseminoma with yolk sac tumor or teratoma—11, nonseminoma without yolk sac tumor or teratoma—2, not available—1. With a median follow-up of 3.5 years, 68% of patients are alive 3 years after LR. Patients with prior post-chemotherapy consolidation surgery do not have statistically significant longer survival compared to patients who did not receive post-chemotherapy consolidation surgery, 83.3% vs. 60.8% at 3 years, respectively, p = 0.50. Conclusions. Patients with LR > 5 years tend to harbor nonseminoma (with yolk sac tumor and or teratoma). Among these patients, a majority who did not undergo surgery to remove residual disease after chemotherapy developed somatic transformation and succumbed to their LR.
Collapse
Affiliation(s)
- Joseph A. Moore
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rebecca S. Slack
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Michael J. Lehner
- Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Matthew T. Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.C.); (A.Y.S.)
| | - Amishi Y. Shah
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.C.); (A.Y.S.)
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.Z.); (C.C.G.)
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.Z.); (C.C.G.)
| | - John F. Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.F.W.); (J.A.K.); (C.G.W.); (L.L.P.)
| | - Jose A. Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.F.W.); (J.A.K.); (C.G.W.); (L.L.P.)
| | - Christopher G. Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.F.W.); (J.A.K.); (C.G.W.); (L.L.P.)
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.F.W.); (J.A.K.); (C.G.W.); (L.L.P.)
| | - Shi-Ming Tu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.C.); (A.Y.S.)
- Correspondence:
| |
Collapse
|
128
|
Sivakumar S, Qi S, Cheng N, Sathe AA, Kanchwala M, Kumar A, Evers BM, Xing C, Yu H. TP53 promotes lineage commitment of human embryonic stem cells through ciliogenesis and sonic hedgehog signaling. Cell Rep 2022; 38:110395. [PMID: 35172133 PMCID: PMC8904926 DOI: 10.1016/j.celrep.2022.110395] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Aneuploidy, defective differentiation, and inactivation of the tumor suppressor TP53 all occur frequently during tumorigenesis. Here, we probe the potential links among these cancer traits by inactivating TP53 in human embryonic stem cells (hESCs). TP53-/- hESCs exhibit increased proliferation rates, mitotic errors, and low-grade structural aneuploidy; produce poorly differentiated immature teratomas in mice; and fail to differentiate into neural progenitor cells (NPCs) in vitro. Genome-wide CRISPR screen reveals requirements of ciliogenesis and sonic hedgehog (Shh) pathways for hESC differentiation into NPCs. TP53 deletion causes abnormal ciliogenesis in neural rosettes. In addition to restraining cell proliferation through CDKN1A, TP53 activates the transcription of BBS9, which encodes a ciliogenesis regulator required for proper Shh signaling and NPC formation. This developmentally regulated transcriptional program of TP53 promotes ciliogenesis, restrains Shh signaling, and commits hESCs to neural lineages.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Shutao Qi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ningyan Cheng
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Adwait A Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
129
|
Takami H, Elzawahry A, Mamatjan Y, Fukushima S, Fukuoka K, Suzuki T, Yanagisawa T, Matsushita Y, Nakamura T, Satomi K, Tanaka S, Mukasa A, Saito N, Kanamori M, Kumabe T, Tominaga T, Kobayashi K, Nagane M, Iuchi T, Tamura K, Maehara T, Sugiyama K, Yoshimoto K, Sakai K, Nonaka M, Asai A, Yokogami K, Takeshima H, Narita Y, Shibui S, Nakazato Y, Hama N, Totoki Y, Kato M, Shibata T, Nishikawa R, Matsutani M, Ichimura K. Transcriptome and methylome analysis of CNS germ cell tumor finds its cell-of-origin in embryogenesis and reveals shared similarities with testicular counterparts. Neuro Oncol 2022; 24:1246-1258. [PMID: 35137206 PMCID: PMC9340652 DOI: 10.1093/neuonc/noac021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND CNS germ cell tumors (GCTs) predominantly develop in pediatric and young adult patients with variable responses to surgery, radiation, and chemotherapy. This study aimed to examine the complex and largely unknown pathogenesis of CNS GCTs. METHODS We used a combined transcriptomic and methylomic approach in 84 cases and conducted an integrative analysis of the normal cells undergoing embryogenesis and testicular GCTs. RESULTS Genome-wide transcriptome analysis in CNS GCTs indicated that germinoma had a transcriptomic profile representative of primitive cells during early embryogenesis with high meiosis/mitosis potentials, while nongerminomatous GCTs (NGGCTs) had differentiated phenotypes oriented toward tissue formation and organogenesis. Co-analysis with the transcriptome of human embryonic cells revealed that germinomas had expression profiles similar to those of primordial germ cells, while the expression profiles of NGGCTs were similar to those of embryonic stem cells. Some germinoma cases were characterized by extensive immune-cell infiltration and high expression of cancer-testis antigens. NGGCTs had significantly higher immune-cell infiltration, characterized by immune-suppression phenotype. CNS and testicular GCTs (TGCTs) had similar mutational profiles; TGCTs showed enhanced copy number alterations. Methylation analysis clustered germinoma/seminoma and nongerminoma/nonseminoma separately. Germinoma and seminoma were co-categorized based on the degree of the tumor microenvironment balance. CONCLUSIONS These results suggested that the pathophysiology of GCTs was less dependent on their site of origin and more dependent on the state of differentiation as well as on the tumor microenvironment balance. This study revealed distinct biological properties of GCTs, which will hopefully lead to future treatment development.
Collapse
Affiliation(s)
- Hirokazu Takami
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan,Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asmaa Elzawahry
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasin Mamatjan
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada,Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Shintaro Fukushima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kohei Fukuoka
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan,Division of Pediatric Neuro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan,Department of Pediatrics, Saitama Children’s Medical Center, Saitama, Japan
| | - Tomonari Suzuki
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Takaaki Yanagisawa
- Division of Pediatric Neuro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan,Department of Neurosurgery and Neuro-oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taishi Nakamura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan,Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Kaishi Satomi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan,Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University School of Medicine, Miyagi, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Tohoku University School of Medicine, Miyagi, Japan,Department of Neurosurgery, Kitasato University, Kanagawa, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University School of Medicine, Miyagi, Japan
| | - Keiichi Kobayashi
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Toshihiko Iuchi
- Department of Neurosurgery, Chiba Cancer Center, Chiba, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Kazuhiko Sugiyama
- Department of Neurosurgery, Hiroshima University Faculty of Medicine, Hiroshima, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Kyushu University Hospital, Fukuoka, Japan,Department of Neurosurgery, Kagoshima University Hospital, Kagoshima, Japan
| | - Keiichi Sakai
- Department of Neurosurgery, Shinshu Ueda Medical Center, Ueda, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Kiyotaka Yokogami
- Department of Neurosurgery, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Hideo Takeshima
- Department of Neurosurgery, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Soichiro Shibui
- Department of Neurosurgery and Neuro-oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mamoru Kato
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Masao Matsutani
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Koichi Ichimura
- Corresponding Author: Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan ()
| |
Collapse
|
130
|
Skowron MA, Becker TK, Kurz L, Jostes S, Bremmer F, Fronhoffs F, Funke K, Wakileh GA, Müller MR, Burmeister A, Lenz T, Stefanski A, Stühler K, Petzsch P, Köhrer K, Altevogt P, Albers P, Kristiansen G, Schorle H, Nettersheim D. The signal transducer CD24 suppresses the germ cell program and promotes an ectodermal rather than mesodermal cell fate in embryonal carcinomas. Mol Oncol 2022; 16:982-1008. [PMID: 34293822 PMCID: PMC8847992 DOI: 10.1002/1878-0261.13066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022] Open
Abstract
Testicular germ cell tumors (GCTs) are stratified into seminomas and nonseminomas. Seminomas share many histological and molecular features with primordial germ cells, whereas the nonseminoma stem cell population-embryonal carcinoma (EC)-is pluripotent and thus able to differentiate into cells of all three germ layers (teratomas). Furthermore, ECs are capable of differentiating into extra-embryonic lineages (yolk sac tumors, choriocarcinomas). In this study, we deciphered the molecular and (epi)genetic mechanisms regulating expression of CD24, a highly glycosylated signaling molecule upregulated in many cancers. CD24 is overexpressed in ECs compared with other GCT entities and can be associated with an undifferentiated pluripotent cell fate. We demonstrate that CD24 can be transactivated by the pluripotency factor SOX2, which binds in proximity to the CD24 promoter. In GCTs, CD24 expression is controlled by epigenetic mechanisms, that is, histone acetylation, since CD24 can be induced by the application histone deacetylase inhibitors. Vice versa, CD24 expression is downregulated upon inhibition of histone methyltransferases, E3 ubiquitin ligases, or bromodomain (BRD) proteins. Additionally, three-dimensional (3D) co-cultivation of EC cells with microenvironmental cells, such as fibroblasts, and endothelial or immune cells, reduced CD24 expression, suggesting that crosstalk with the somatic microenvironment influences CD24 expression. In a CRISPR/Cas9 deficiency model, we demonstrate that CD24 fulfills a bivalent role in differentiation via regulation of homeobox, and phospho- and glycoproteins; that is, it is involved in suppressing the germ cell/spermatogenesis program and mesodermal/endodermal differentiation, while poising the cells for ectodermal differentiation. Finally, blocking CD24 by a monoclonal antibody enhanced sensitivity toward cisplatin in EC cells, including cisplatin-resistant subclones, highlighting CD24 as a putative target in combination with cisplatin.
Collapse
Affiliation(s)
- Margaretha A. Skowron
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Teresa K. Becker
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Lukas Kurz
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Sina Jostes
- Department of Oncological ScienceIcahn School of Medicine at Mount SinaiHess Center for Science and MedicineNew YorkNYUSA
| | - Felix Bremmer
- Institute of PathologyUniversity Medical Center GoettingenGermany
| | | | - Kai Funke
- Department of Developmental PathologyInstitute of PathologyUniversity Hospital BonnGermany
| | - Gamal A. Wakileh
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
- Department of UrologyUniversity Hospital UlmGermany
| | - Melanie R. Müller
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Aaron Burmeister
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Thomas Lenz
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Anja Stefanski
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Patrick Petzsch
- Genomics & Transcriptomics LabHeinrich Heine University DüsseldorfGermany
| | - Karl Köhrer
- Genomics & Transcriptomics LabHeinrich Heine University DüsseldorfGermany
| | - Peter Altevogt
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center MannheimRuprecht‐Karl University HeidelbergGermany
| | - Peter Albers
- Department of UrologyMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfGermany
| | | | - Hubert Schorle
- Department of Developmental PathologyInstitute of PathologyUniversity Hospital BonnGermany
| | - Daniel Nettersheim
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| |
Collapse
|
131
|
Biles MJ, Haffner MC, Hanratty B, Pierorazio PM. Whole Genome Sequencing Reveals Independent Clonal Origin of Bilateral Testicular Germ Cell Tumors in Two Patients with Pure Seminoma. Urology 2022; 165:184-186. [DOI: 10.1016/j.urology.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
132
|
Paweł K, Maria Małgorzata S. CpG Island Methylator Phenotype-A Hope for the Future or a Road to Nowhere? Int J Mol Sci 2022; 23:ijms23020830. [PMID: 35055016 PMCID: PMC8777692 DOI: 10.3390/ijms23020830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
The CpG island methylator phenotype (CIMP) can be regarded as the most notable emanation of epigenetic instability in cancer. Since its discovery in the late 1990s, CIMP has been extensively studied, mainly in colorectal cancers (CRC) and gliomas. Consequently, knowledge on molecular and pathological characteristics of CIMP in CRC and other tumour types has rapidly expanded. Concordant and widespread hypermethylation of multiple CpG islands observed in CIMP in multiple cancers raised hopes for future epigenetically based diagnostics and treatments of solid tumours. However, studies on CIMP in solid tumours were hampered by a lack of generalisability and reproducibility of epigenetic markers. Moreover, CIMP was not a satisfactory marker in predicting clinical outcomes. The idea of targeting epigenetic abnormalities such as CIMP for cancer therapy has not been implemented for solid tumours, either. Twenty-one years after its discovery, we aim to cover both the fundamental and new aspects of CIMP and its future application as a diagnostic marker and target in anticancer therapies.
Collapse
|
133
|
Therapeutical interference with the epigenetic landscape of germ cell tumors: a comparative drug study and new mechanistical insights. Clin Epigenetics 2022; 14:5. [PMID: 34996497 PMCID: PMC8742467 DOI: 10.1186/s13148-021-01223-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Type II germ cell tumors (GCT) are the most common solid cancers in males of age 15 to 35 years. Treatment of these tumors includes cisplatin-based therapy achieving high cure rates, but also leading to late toxicities. As mainly young men are suffering from GCTs, late toxicities play a major role regarding life expectancy, and the development of therapy resistance emphasizes the need for alternative therapeutic options. GCTs are highly susceptible to interference with the epigenetic landscape; therefore, this study focuses on screening of drugs against epigenetic factors as a treatment option for GCTs.
Results We present seven different epigenetic inhibitors efficiently decreasing cell viability in GCT cell lines including cisplatin-resistant subclones at low concentrations by targeting epigenetic modifiers and interactors, like histone deacetylases (Quisinostat), histone demethylases (JIB-04), histone methyltransferases (Chaetocin), epigenetic readers (MZ-1, LP99) and polycomb-repressive complexes (PRT4165, GSK343). Mass spectrometry-based analyses of the histone modification landscape revealed effects beyond the expected mode-of-action of each drug, suggesting a wider spectrum of activity than initially assumed. Moreover, we characterized the effects of each drug on the transcriptome of GCT cells by RNA sequencing and found common deregulations in gene expression of ion transporters and DNA-binding factors. A kinase array revealed deregulations of signaling pathways, like cAMP, JAK-STAT and WNT. Conclusion Our study identified seven drugs against epigenetic modifiers to treat cisplatin-resistant GCTs. Further, we extensively analyzed off-target effects and modes-of-action, which are important for risk assessment of the individual drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01223-1.
Collapse
|
134
|
Reece AS, Hulse GK. European epidemiological patterns of cannabis- and substance-related congenital cardiovascular anomalies: geospatiotemporal and causal inferential study. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac015. [PMID: 35966825 PMCID: PMC9364688 DOI: 10.1093/eep/dvac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 05/16/2023]
Abstract
As prenatal and community cannabis exposures have recently been linked with congenital heart disease (CHD), it was of interest to explore these associations in Europe in a causal framework and space-time context. Congenital anomaly data from Eurocat, drug-use data from the European Monitoring Centre for Drugs and Drug Addiction, and income from the World Bank. Countries with rising daily cannabis use had in general higher congenital anomaly rates over time than those without (time: status interaction: β-Est. = 0.0267, P = 0.0059). At inverse probability-weighted panel regression, cannabis terms were positive and significant for CHD, severe CHD, atrial septal defect, ventricular septal defect, atrioventricular septal defect, patent ductus arteriosus, tetralogy of Fallot, vascular disruptions, double outlet right ventricle, transposition of the great vessels, hypoplastic right heart, and mitral valve anomalies from 1.75 × 10-19, 4.20 × 10-11, <2.2 × 10-16, <2.2 × 10-16, 1.58 × 10-12, 4.30 × 10-9, 4.36 × 10-16, 3.50 × 10-8, 5.35 × 10-12, <2.2 × 10-16, 5.65 × 10-5 and 6.06 × 10-10. At spatial regression, terms including cannabis were positive and significant for this same list of anomalies from 0.0038, 1.05 × 10-10, 0.0215, 8.94 × 10-6, 1.23 × 10-5, 2.05 × 10-5, 1.07 × 10-6, 8.77 × 10-5, 9.11 × 10-6, 0.0001, 3.10 × 10-7 and 2.17 × 10-7. 92.6% and 75.2% of 149 E-value estimates and minimum E-values were in high zone >9; 100.0% and 98.7% >1.25. Data show many congenital cardiac anomalies exhibit strong bivariate relationships with metrics of cannabis exposure. Causal inferential modelling for the twelve anomalies selected demonstrated convincing evidence of robust relationships to cannabis which survived adjustment and fulfilled epidemiological criteria for causal relationships. Space-time regression was similarly confirmatory. Epigenomic pathways constitute viable potential mechanisms. Given exponential genotoxic dose-response effects, careful and astute control of cannabinoid penetration is indicated.
Collapse
Affiliation(s)
- Albert Stuart Reece
- *Correspondence address. 39 Gladstone Rd., Highgate Hill, Brisbane, QLD, Australia. Tel: +617 3844-4000; Fax: (617) 3844-4015; E-mail:
| | - Gary Kenneth Hulse
- Department of Psychiatry, University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
135
|
PET imaging of testicular cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
136
|
Raos D, Abramović I, Tomić M, Vrtarić A, Kuliš T, Ćorić M, Ulamec M, Katušić Bojanac A, Ježek D, Sinčić N. CNV Hotspots in Testicular Seminoma Tissue and Seminal Plasma. Cancers (Basel) 2021; 14:189. [PMID: 35008352 PMCID: PMC8750740 DOI: 10.3390/cancers14010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Seminoma (SE) is the most frequent type of testicular tumour, affecting predominantly young men. Early detection and diagnosis of SE could significantly improve life quality and reproductive health after diagnosis and treatment. Copy number variation (CNV) has already been associated with various cancers as well as SE. In this study, we selected four genes (MAGEC2, NANOG, RASSF1A, and KITLG) for CNV analysis in genomic DNA (gDNA), which are located on chromosomes susceptible to gains, and whose aberrant expression was already detected in SE. Furthermore, CNV was analysed in cell-free DNA (cfDNA) from seminal plasma. Analysis was performed by droplet digital polymerase chain reaction (ddPCR) on gDNA from SE and nonmalignant testicular tissue. Seminal plasma cfDNA from SE patients before and after surgery was analysed, as well as from healthy volunteers. The CNV hotspot in gDNA from SE tissue was detected for the first time in all analysed genes, and for two genes, NANOG and KITLG it was reflected in cfDNA from seminal plasma. Although clinical value is yet to be determined, presented data emphasize a potential use of CNV as a potential SE biomarker from a liquid biopsy.
Collapse
Affiliation(s)
- Dora Raos
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Irena Abramović
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Miroslav Tomić
- Department of Urology, University Clinical Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Alen Vrtarić
- Department of Clinical Chemistry, University Clinical Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Tomislav Kuliš
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Marijana Ćorić
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia
- Department of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ana Katušić Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Davor Ježek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Nino Sinčić
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
137
|
Epigenetic Dysregulation of Trophoblastic Gene Expression in Gestational Trophoblastic Disease. Biomedicines 2021; 9:biomedicines9121935. [PMID: 34944751 PMCID: PMC8698431 DOI: 10.3390/biomedicines9121935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Gestational trophoblastic diseases (GTDs) have not been investigated for their epigenetic marks and consequent transcriptomic changes. Here, we analyzed genome-wide DNA methylation and transcriptome data to reveal the epigenetic basis of disease pathways that may lead to benign or malignant GTDs. RNA-Seq, mRNA microarray, and Human Methylation 450 BeadChip data from complete moles and choriocarcinoma cells were bioinformatically analyzed. Paraffin-embedded tissues from complete moles and control placentas were used for tissue microarray construction, DNMT3B immunostaining and immunoscoring. We found that DNA methylation increases with disease severity in GTDs. Differentially expressed genes are mainly upregulated in moles while predominantly downregulated in choriocarcinoma. DNA methylation principally influences the gene expression of villous trophoblast differentiation-related or predominantly placenta-expressed genes in moles and choriocarcinoma cells. Affected genes in these subsets shared focal adhesion and actin cytoskeleton pathways in moles and choriocarcinoma. In moles, cell cycle and differentiation regulatory pathways, essential for trophoblast/placental development, were enriched. In choriocarcinoma cells, hormone biosynthetic, extracellular matrix-related, hypoxic gene regulatory, and differentiation-related signaling pathways were enriched. In moles, we found slight upregulation of DNMT3B protein, a developmentally important de novo DNA methylase, which is strongly overexpressed in choriocarcinoma cells that may partly be responsible for the large DNA methylation differences. Our findings provide new insights into the shared and disparate molecular pathways of disease in GTDs and may help in designing new diagnostic and therapeutic tools.
Collapse
|
138
|
Morra F, Merolla F, Zito Marino F, Catalano R, Franco R, Chieffi P, Celetti A. The tumour suppressor CCDC6 is involved in ROS tolerance and neoplastic transformation by evading ferroptosis. Heliyon 2021; 7:e08399. [PMID: 34841108 PMCID: PMC8605351 DOI: 10.1016/j.heliyon.2021.e08399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 10/26/2022] Open
Abstract
Coiled-coil domain containing 6 (CCDC6) is a tumour suppressor gene involved in apoptosis and DNA damage response. CCDC6 is known to be functionally impaired upon gene fusions, somatic mutations, and altered protein turnover in several tumours. Testicular germ cell tumours are among the most common malignancies in young males. Despite the high cure rate, achieved through chemotherapy and/or surgery, drug resistance can still occur. In a human cellular model of testis Embryonal Carcinoma, the deficiency of CCDC6 was associated with defects in DNA repair via homologous recombination and sensitivity to PARP1/2 inhibitors. Same data were obtained in a panel of murine testicular cell lines, including Sertoli, Spermatogonia and Spermatocytes. In these cells, upon oxidative damage exposure, the absence of CCDC6 conferred tolerance to reactive oxygen species affecting regulated cell death pathways by apoptosis and ferroptosis. At molecular level, the loss of CCDC6 was associated with an enhancement of the xCT/SLC7A11 cystine antiporter expression which, by promoting the accumulation of ROS, interfered with the activation of ferroptosis pathway. In conclusion, our data suggest that the CCDC6 downregulation could aid the testis germ cells to be part of a pro-survival pathway that helps to evade the toxic effects of endogenous oxidants contributing to testicular neoplastic growth. Novel therapeutic options will be discussed.
Collapse
Affiliation(s)
- Francesco Morra
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Rosaria Catalano
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Renato Franco
- Pathology Unit, University of Campania "L. Vanvitelli", Naples, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| |
Collapse
|
139
|
Reddy J, Fonseca MAS, Corona RI, Nameki R, Segato Dezem F, Klein IA, Chang H, Chaves-Moreira D, Afeyan LK, Malta TM, Lin X, Abbasi F, Font-Tello A, Sabedot T, Cejas P, Rodríguez-Malavé N, Seo JH, Lin DC, Matulonis U, Karlan BY, Gayther SA, Pasaniuc B, Gusev A, Noushmehr H, Long H, Freedman ML, Drapkin R, Young RA, Abraham BJ, Lawrenson K. Predicting master transcription factors from pan-cancer expression data. SCIENCE ADVANCES 2021; 7:eabf6123. [PMID: 34818047 PMCID: PMC8612691 DOI: 10.1126/sciadv.abf6123] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.
Collapse
Affiliation(s)
- Jessica Reddy
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Marcos A. S. Fonseca
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Rosario I. Corona
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robbin Nameki
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Felipe Segato Dezem
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Isaac A. Klein
- Whitehead Institute for Biomedical Research,
Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Boston, MA, USA
| | - Heidi Chang
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | | | - Lena K. Afeyan
- Whitehead Institute for Biomedical Research,
Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of
Technology, Cambridge, MA, USA
| | | | - Xianzhi Lin
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Forough Abbasi
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alba Font-Tello
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
| | | | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
| | - Norma Rodríguez-Malavé
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Ursula Matulonis
- Division of Gynecologic Oncology, Dana Farber
Cancer Institute, Boston, MA, USA
| | - Beth Y. Karlan
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Cancer Population Genetics, Jonsson Comprehensive
Cancer Center, David Geffen School of Medicine, University of California, Los
Angeles, Los Angeles, CA, USA
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program,
University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School
of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine,
David Geffen School of Medicine, University of California, Los Angeles, Los
Angeles, CA, USA
- Department of Computational Medicine, David Geffen
School of Medicine, University of California, Los Angeles, Los Angeles, CA,
USA
| | - Alexander Gusev
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
- McGraw/Patterson Center for Population Sciences,
Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge,
MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of
Pennsylvania, Philadelphia, PA, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research,
Cambridge, MA, USA
- Department of Biology, M.I.T., Cambridge, MA,
USA
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude
Children’s Research Hospital, Memphis, TN, USA
- Corresponding author.
(B.J.A.);
(K.L.)
| | - Kate Lawrenson
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Corresponding author.
(B.J.A.);
(K.L.)
| |
Collapse
|
140
|
Mealey NE, O’Sullivan DE, Peters CE, Heng DYC, Brenner DR. Mutational signatures among young-onset testicular cancers. BMC Med Genomics 2021; 14:280. [PMID: 34819066 PMCID: PMC8611954 DOI: 10.1186/s12920-021-01121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Incidence of testicular cancer is highest among young adults and has been increasing dramatically for men born since 1945. This study aimed to elucidate the factors driving this trend by investigating differences in mutational signatures by age of onset. METHODS We retrieved somatic variant and clinical data pertaining to 135 testicular tumors from The Cancer Genome Atlas. We compared mutational load, prevalence of specific mutated genes, mutation types, and mutational signatures between age of onset groups (< 30 years, 30-39 years, ≥ 40 years) after adjusting for subtype. A recursively partitioned mixture model was utilized to characterize combinations of signatures among the young-onset cases. RESULTS Mutational load was significantly higher among older-onset tumors (p < 0.05). There were no highly prevalent driver mutations among young-onset tumors. Mutated genes and types of nucleotide mutations were not significantly different by age group (p > 0.05). Signatures 1, 8 and 29 were more common among young-onset tumors, while signatures 11 and 16 had higher prevalence among older-onset tumors (p < 0.05). Among young-onset tumors, clustering of signatures resulted in four distinct tumor classes. CONCLUSIONS Signature contributions differ by age with signatures 1, 8 and 29 were more common among younger-onset tumors. While these signatures are connected with endogenous deamination of 5-methylcytosine, late replication errors and chewing tobacco, respectively, additional research is needed to further elucidate the etiology of young-onset testicular cancer. Large studies of mutational signatures among young-onset patients are required to understand epidemiologic trends as well as inform targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Nicole E. Mealey
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Dylan E. O’Sullivan
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Cheryl E. Peters
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, CancerControl Alberta, Calgary, AB Canada
- CAREX Canada, Simon Fraser University, Vancouver, BC Canada
| | - Daniel Y. C. Heng
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Department of Internal Medicine, Medical Oncology, Alberta Health Services, Calgary, AB Canada
| | - Darren R. Brenner
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, CancerControl Alberta, Calgary, AB Canada
| |
Collapse
|
141
|
Ahmadi H, Jang TL, Daneshmand S, Ghodoussipour S. Editorial by Bendu K. Konneh, John T. Lafin and Aditya Bagrodia on pp. 341-342 of this issue: MicroRNA-371a-3p as a blood-based biomarker in testis cancer. Asian J Urol 2021; 8:400-406. [PMID: 34765447 PMCID: PMC8566368 DOI: 10.1016/j.ajur.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs involved in the regulation of mRNA transcription and translation, and possess all desirable features of an ideal tumor marker. Of almost 31 different miRNA clusters identified in germ cell tumors (GCTs), miR-371a-3p has shown exceptionally high sensitivity and specificity for both seminomatous and nonseminomatous GCTs. It is easily obtainable and correlates well with tumor burden. Recent multi-institutional prospective studies have shown promising test characteristics for miR-371a-3p as a diagnostic blood-based biomarker for GCT prior to orchiectomy including 80%-100% sensitivity and 90%-100% specificity. This accuracy may address other unmet needs in the management of patients with GCT. Early studies have suggested the utility of miR-371a-3p in detecting occult nodal metastasis in high-risk clinical stage I and early stage II disease. Ongoing clinical trials including SWOG 1823 and AGCT1531 are specifically designed to confirm the utility of miR-371a-3p in clinical stage I GCT. Despite its strong association with viable GCT after treatment with chemotherapy, miR-371a-3p does not seem to accurately predict the presence of teratoma in residual lesions. Also, standardization of extraction and interpretation methods is a necessary step to assure uniform results across different institutions.
Collapse
Affiliation(s)
- Hamed Ahmadi
- Department of Urology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Thomas L Jang
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Siamak Daneshmand
- Department of Urology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Saum Ghodoussipour
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
142
|
Papanicolau-Sengos A, Aldape K. DNA Methylation Profiling: An Emerging Paradigm for Cancer Diagnosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:295-321. [PMID: 34736341 DOI: 10.1146/annurev-pathol-042220-022304] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histomorphology has been a mainstay of cancer diagnosis in anatomic pathology for many years. DNA methylation profiling is an additional emerging tool that will serve as an adjunct to increase accuracy of pathological diagnosis. Genome-wide interrogation of DNA methylation signatures, in conjunction with machine learning methods, has allowed for the creation of clinical-grade classifiers, most prominently in central nervous system and soft tissue tumors. Tumor DNA methylation profiling has led to the identification of new entities and the consolidation of morphologically disparate cancers into biologically coherent entities, and it will progressively become mainstream in the future. In addition, DNA methylation patterns in circulating tumor DNA hold great promise for minimally invasive cancer detection and classification. Despite practical challenges that accompany any new technology, methylation profiling is here to stay and will become increasingly utilized as a cancer diagnostic tool across a range of tumor types. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
143
|
Jia L, Deng FM, Kong MX, Wu CL, Yang XJ. Common Diagnostic Challenges and Pitfalls in Genitourinary Organs, With Emphasis on Immunohistochemical and Molecular Updates. Arch Pathol Lab Med 2021; 145:1387-1404. [PMID: 34673910 DOI: 10.5858/arpa.2021-0107-ra] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Lesions in the genitourinary (GU) organs, both benign and malignant, can demonstrate overlapping morphology, and practicing surgical pathologists should be aware of these potential pitfalls and consider a broad differential diagnosis for each specific type of lesion involving the GU organs. The following summary of the contents presented at the 6th Annual Chinese American Pathologists Association (CAPA) Diagnostic Course (October 10-11, 2020), supplemented with relevant literature review, exemplifies the common diagnostic challenges and pitfalls for mass lesions of the GU system of adults, including adrenal gland, with emphasis on immunohistochemical and molecular updates when relevant. OBJECTIVE.— To describe the common mass lesions in the GU system of adults, including adrenal gland, with emphasis on the diagnostic challenges and pitfalls that may arise in the pathologic assessment, and to highlight immunohistochemical workups and emerging molecular findings when relevant. DATA SOURCES.— The contents presented at the course and literature search comprise our data sources. CONCLUSIONS.— The diagnostic challenges and pitfalls that arise in the pathologic assessment of the mass lesions in the GU system of adults, including adrenal gland, are common. We summarize the contents presented at the course, supplemented with relevant literature review, and hope to provide a diagnostic framework to evaluate these lesions in routine clinical practice.
Collapse
Affiliation(s)
- Liwei Jia
- From the Department of Pathology, University of Texas Southwestern Medical Center, Dallas (Jia)
| | - Fang-Ming Deng
- the Department of Pathology, New York University Grossman School of Medicine, New York City (Deng)
| | - Max X Kong
- Northern California Kaiser, Kaiser Sacramento Medical Center, Sacramento (Kong)
| | - Chin-Lee Wu
- the Department of Pathology and Urology, Massachusetts General Hospital, Boston (Wu)
| | - Ximing J Yang
- the Department of Pathology, Northwestern University, Chicago, Illinois (Yang)
| |
Collapse
|
144
|
Satomi K, Takami H, Fukushima S, Yamashita S, Matsushita Y, Nakazato Y, Suzuki T, Tanaka S, Mukasa A, Saito N, Kanamori M, Kumabe T, Tominaga T, Kobayashi K, Nagane M, Iuchi T, Yoshimoto K, Tamura K, Maehara T, Sakai K, Sugiyama K, Yokogami K, Takeshima H, Nonaka M, Asai A, Ushijima T, Matsutani M, Nishikawa R, Ichimura K. 12p gain is predominantly observed in non-germinomatous germ cell tumors and identifies an unfavorable subgroup of central nervous system germ cell tumors. Neuro Oncol 2021; 24:834-846. [PMID: 34698864 DOI: 10.1093/neuonc/noab246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) germ cell tumors (GCTs) are neoplasms predominantly arising in pediatric and young adult populations. While germinomas generally respond to chemotherapy and radiation, non-germinomatous GCTs (NGGCTs) require more intensive treatment. This study aimed to determine whether 12p gain could predict the prognosis of CNS GCTs. METHODS Eighty-two CNS GCTs were included in this study. The 12p gain was defined by an additional 12p in the background of potential polyploidy or polysomy. Cases were analyzed using an Illumina methylation 450K array for copy number investigations and validated by fluorescence in situ hybridization (FISH). RESULTS A 12p gain was found in 25-out-of-82 cases (30%) and was more frequent in NGGCTs (12% of germinoma cases and 50% of NGGCT cases), particularly in cases with malignant components, such as immature teratoma, yolk sac tumor, choriocarcinoma, and embryonal carcinoma. 12p gain and KIT mutation were mutually exclusive events. The presence of 12p gain correlated with shorter progression-free (PFS) and overall survival (OS) (10-year OS: 59% vs 94%, with and without 12p gain, respectively, P = 0.0002), even with histology and tumor markers incorporated in the multivariate analysis. Among NGGCTs, 12p gain still had prognostic significance for PFS and OS (10-year OS: 47% vs. 90%, respectively, P = 0.02). The 12p copy number status was shared among histological components in mixed GCTs. CONCLUSIONS 12p gain may predict the presence of malignant components of NGGCTs, and poor prognosis of the patients. It may be associated with early tumorigenesis of CNS GCT.
Collapse
Affiliation(s)
- Kaishi Satomi
- Department of Diagnostic Pathology, National Cancer Center Hospital.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute
| | - Hirokazu Takami
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute.,Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Shintaro Fukushima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute
| | | | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute
| | | | - Tomonari Suzuki
- Department of NeuroOncology/Neurosurgery, Saitama Medical University International Medical Center
| | - Shota Tanaka
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Akitake Mukasa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo.,Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | - Toshihiro Kumabe
- Department of Neurosurgery, Tohoku University Graduate School of Medicine.,Department of Neurosurgery, Kitasato University
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine
| | | | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine
| | | | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Kaoru Tamura
- Department of Functional Neurosurgery, Tokyo Medical and Dental University
| | - Taketoshi Maehara
- Department of Functional Neurosurgery, Tokyo Medical and Dental University
| | - Keiichi Sakai
- Department of Neurosurgery, Shinshu Ueda Medical Center
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology and Neurooncology Program, Cancer Treatment Center, Hiroshima University Hospital
| | - Kiyotaka Yokogami
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki
| | - Hideo Takeshima
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki
| | - Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University Hospital
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University Hospital
| | | | | | - Ryo Nishikawa
- Department of NeuroOncology/Neurosurgery, Saitama Medical University International Medical Center
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute.,Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine
| |
Collapse
|
145
|
Primary Mediastinal and Testicular Germ Cell Tumors in Adolescents and Adults: A Comparison of Genomic Alterations and Clinical Implications. Cancers (Basel) 2021; 13:cancers13205223. [PMID: 34680371 PMCID: PMC8533956 DOI: 10.3390/cancers13205223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary The germ cell tumors (GCTs) family is a heterogeneous group of neoplasms that includes tumors affecting testis (TGCTs) and rarer cases occurring in extragonadal sites. Mediastinal germ cell tumors (MGCTs) are more aggressive and have poorer prognosis. Due to their rarity of MGCTs, few molecular and clinical studies are reported. MGCTs share biological similarities with TGCT, and international guidelines recommend use of the same therapies validated for TGCT. However, while high response rate is achieved in TGCT, MGCT tend to be resistant to therapy. This review resumes all molecular findings reported in MGCTs, summarizing molecular characteristics common with TGCT and highlighting the different molecular alterations that characterize mediastinal tumors. A deeper understanding of the MGCT biology will help in clinical management of these patients. Abstract Mediastinal germ cell tumors (MGCTs) share histologic, molecular and biomarkers features with testicular GCTs; however, nonseminomatous MGCTs are usually more aggressive and have poorer prognosis than nonseminomatous TGCTs. Most nonseminomatous MGCT cases show early resistance to platinum-based therapies and seldom have been associated with the onset of one or more concomitant somatic malignancies, in particular myeloid neoplasms with recent findings supporting a common, shared genetic precursor with the primary MGCT. Genomic, transcriptomic and epigenetic features of testicular GCTs have been extensively studied, allowing for the understanding of GCT development and transformation of seminomatous and nonseminomatous histologies. However, MGCTs are still lacking proper multi-omics analysis and only few data are reported in the literature. Understanding of the mechanism involved in the development, in the progression and in their higher resistance to common therapies is still poorly understood. With this review, we aim to collect all molecular findings reported in this rare disease, resuming the similarities and disparities with the gonadal counterparts.
Collapse
|
146
|
Nappi L, Nichols C, Kollmannsberger C. Narrative review of developing new biomarkers for decision making in advanced testis cancer. Transl Androl Urol 2021; 10:4075-4084. [PMID: 34804849 PMCID: PMC8575592 DOI: 10.21037/tau-20-1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/03/2022] Open
Abstract
Management of testicular germ cell tumor (GCT) patients is based on clinical determinants, mainly CT scan and serum tumor markers (alpha-fetoprotein, beta subunit of HCG and LDH). Treatment decisions are usually straightforward for patients with clear evidence of metastatic disease, confirmed either by imaging tests or by unequivocal elevated tumor markers. However, there are several clinical scenarios where the assessment of metastatic disease is complicated by the limited specificity of the current imaging tests and serum tumor markers. These include patients with clinical stage IIA GCT with negative tumor markers and patients with post-chemotherapy residual disease where, in absence of clear indicators of GCT, decision making and patient treatment allocation become challenging. Therefore, more accurate biomarkers are critical to reduce the risk of under-or over-treatment and to always deliver the most optimal therapy. The objectives of this narrative review are to review the available publications about micro-RNAs in GCT s and their potential clinical applications. Two clusters of micro-RNAs, miR-371a-3p and miR-302/367, specifically expressed by both seminoma and non-seminoma GCT and easily detectable in the peripheral blood, have demonstrated to be promising in this endeavor. Large prospective trials are ongoing to define the operating characteristics of these biomarkers and their clinical utility to improve GCT patient management and reduce the error rate deriving from clinical uncertainty, therefore reducing the risk of sub-optimal treatments.
Collapse
Affiliation(s)
- Lucia Nappi
- Division of Medical Oncology, British Columbia Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Christian Kollmannsberger
- Division of Medical Oncology, British Columbia Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| |
Collapse
|
147
|
Jung SH, Park HC, Choi YJ, Song SY, Chung YJ, Lee SH. Molecular genetic evidence supporting diverse histogenic origins of germ cell tumors. J Pathol 2021; 256:38-49. [PMID: 34561860 DOI: 10.1002/path.5799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022]
Abstract
Germ cell tumors (GCTs) originate during the histogenesis of primordial germ cells to mature gametes. Previous studies identified five histogenic mechanisms in ovarian mature teratomas (type I: failure of meiosis I; type II: failure of meiosis II; type III: duplication of the genome of a mature gamete; type IV: no meiosis; and type V: fusion of two different ova), but those of other GCTs remain elusive. In this study, we analyzed 84 GCTs of various pathologic types to identify the histogenesis using single-nucleotide polymorphism array by analyzing copy-neutral loss of heterozygosity (CN-LOH) and copy number alterations (CNAs). We detected types I and II in ovarian teratomas, type III in ovarian teratomas and yolk sac tumors (YSTs), and type IV in all GCT types. The GCTs with multiple-type histogenesis (I-IV) (ovarian mature/immature teratomas and YST) show meiotic CN-LOH with scant CNAs. Type IV-only GCTs are either with mitotic CN-LOH and abundant CNAs (seminoma, dysgerminoma, testicular mixed GCTs) or with scant CNAs and no CN-LOH (pediatric testicular and mediastinal teratomas). The development sequences of CN-LOH and CNA are different between the multiple type (I-IV) GCTs and type IV-only GCTs. We analyzed two different histologic areas in eight GCTs (one mature teratoma with a mucin-secreting adenoma, two immature teratomas, and five mixed GCTs). We found that GCTs (mature teratoma, immature teratoma, and mixed GCT) showed different genomic alterations between histologic areas, suggesting that genomic differences within a GCT could accompany histologic differentiation. Of note, we found evidence for collision tumors in a mixed GCT. Our data indicate that GCTs may have various histogenesis and intratumoral genomic differences, which might provide important information for the identification of GCTs, especially for those with different histologic areas. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon-Chun Park
- Department of Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Jin Choi
- Department of Obstetrics/Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Yong Song
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Department of Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
148
|
Abstract
Testicular germ cell tumours (TGCTs) are the most common solid tumours in young men and have an excellent overall cure rate and prognosis. In most patients, localised disease is cured by surgery alone, and a minority of patients receive short-course adjuvant chemotherapy to reduce the risk of further relapse. Also, in about 80% of patients, metastatic disease can be cured by systemic cisplatin-based chemotherapy. Unfortunately, for a proportion of patients, the disease exhibits platinum resistance and relapse occurs. Despite further lines of systemic treatment, cure can be difficult to achieve in these patients and ultimately about 20% of them will die from disease progression. Addressing the mechanisms underpinning platinum resistance is critical to improving the survival and chances of cure for these patients. This review describes the latest advances in TGCT research, focusing on the identification of novel biomarkers, genetic characteristics and exploring novel treatments.
Collapse
Affiliation(s)
- Teresa Mele
- The Royal Marsden NHS Foundation Trust, Sutton, UK
- The Institute of Cancer Research, London, UK
| | - Alison Reid
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Robert Huddart
- The Royal Marsden NHS Foundation Trust, Sutton, UK
- The Institute of Cancer Research, London, UK
| |
Collapse
|
149
|
Gene expression microarray analysis of adult testicular germ cell tumor: a comparison between pure-type seminomas and seminoma components in mixed tumors. Virchows Arch 2021; 479:1177-1186. [PMID: 34347114 DOI: 10.1007/s00428-021-03168-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022]
Abstract
We previously demonstrated a genetic evidence of the progression from seminoma to embryonal carcinoma in mixed testicular germ cell tumors (TGCTs). This process, the "reprogramming" of seminoma cells, is crucial for pathological tumorigenesis and should be kept in mind while designing clinical therapeutic strategies. We hypothesized that a comparison between pure-type seminomas and seminoma components in mixed tumors (mixed-type seminomas) could reveal early changes in the reprogramming process. In the present study, we performed gene expression microarray analysis of six pure-type and six mixed-type seminomas. Hierarchical clustering analysis properly grouped each type of seminomas into a separated cluster. Supervised analysis between pure-type and mixed-type seminomas revealed 154 significantly dysregulated genes (Storey-adjusted q < 0.05). The genes with the highest overexpression in mixed-type seminomas compared with the pure-type seminomas included MT1 isoforms, PRSS8, TSC22D1, and SLC39A4; downregulated genes included DEFB123, LMTK2, and MYRF. Functional annotation analysis of the differentially expressed genes revealed that the top-ranked functional categories were related to cellular zinc metabolism and consisted of MT1 isoforms and SLC39A4, the results of which were validated using quantitative polymerase chain reaction and immunohistochemical analysis. In conclusion, this research provides further evidence that pure and mixed types of seminomas are molecularly different, which may contribute to elucidate the reprogramming mechanism in the progression of TGCTs.
Collapse
|
150
|
Tan KT, Ding LW, Wu CS, Tenen DG, Yang H. Repurposing RNA sequencing for discovery of RNA modifications in clinical cohorts. SCIENCE ADVANCES 2021; 7:eabd2605. [PMID: 34348892 PMCID: PMC8336963 DOI: 10.1126/sciadv.abd2605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/14/2021] [Indexed: 05/07/2023]
Abstract
The study of RNA modifications in large clinical cohorts can reveal relationships between the epitranscriptome and human diseases, although this is especially challenging. We developed ModTect (https://github.com/ktan8/ModTect), a statistical framework to identify RNA modifications de novo by standard RNA-sequencing with deletion and mis-incorporation signals. We show that ModTect can identify both known (N 1-methyladenosine) and previously unknown types of mRNA modifications (N 2,N 2-dimethylguanosine) at nucleotide-resolution. Applying ModTect to 11,371 patient samples and 934 cell lines across 33 cancer types, we show that the epitranscriptome was dysregulated in patients across multiple cancer types and was additionally associated with cancer progression and survival outcomes. Some types of RNA modification were also more disrupted than others in patients with cancer. Moreover, RNA modifications contribute to multiple types of RNA-DNA sequence differences, which unexpectedly escape detection by Sanger sequencing. ModTect can thus be used to discover associations between RNA modifications and clinical outcomes in patient cohorts.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Biological and Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore
| | - Ling-Wen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chan-Shuo Wu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|