101
|
Chao H, Cao Y, Liu Y. Multi-channel EEG emotion recognition through residual graph attention neural network. Front Neurosci 2023; 17:1135850. [PMID: 37559702 PMCID: PMC10407101 DOI: 10.3389/fnins.2023.1135850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
In this paper, a novel EEG emotion recognition method based on residual graph attention neural network is proposed. The method constructs a three-dimensional sparse feature matrix according to the relative position of electrode channels, and inputs it into the residual network to extract high-level abstract features containing electrode spatial position information. At the same time, the adjacency matrix representing the connection relationship of electrode channels is constructed, and the time-domain features of multi-channel EEG are modeled using graph. Then, the graph attention neural network is utilized to learn the intrinsic connection relationship between EEG channels located in different brain regions from the adjacency matrix and the constructed graph structure data. Finally, the high-level abstract features extracted from the two networks are fused to judge the emotional state. The experiment is carried out on DEAP data set. The experimental results show that the spatial domain information of electrode channels and the intrinsic connection relationship between different channels contain salient information related to emotional state, and the proposed model can effectively fuse these information to improve the performance of multi-channel EEG emotion recognition.
Collapse
Affiliation(s)
- Hao Chao
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | | | | |
Collapse
|
102
|
Lin Y, Jiang Z, Zhan G, Su H, Kang X, Jia J. Brain network characteristics between subacute and chronic stroke survivors in active, imagery, passive movement task: a pilot study. Front Neurol 2023; 14:1143955. [PMID: 37538258 PMCID: PMC10395333 DOI: 10.3389/fneur.2023.1143955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Background The activation patterns and functional network characteristics between stroke survivors and healthy individuals based on resting-or task-state neuroimaging and neurophysiological techniques have been extensively explored. However, the discrepancy between stroke patients at different recovery stages remains unclear. Objective To investigate the changes in brain connectivity and network topology between subacute and chronic patients, and hope to provide a basis for rehabilitation strategies at different stages after stroke. Methods Fifteen stroke survivors were assigned to the subacute group (SG, N = 9) and chronic group (CG, N = 6). They were asked to perform hand grasping under active, passive, and MI conditions when recording EEG. The Fugl-Meyer Assessment Upper Extremity subscale (FMA_UE), modified Ashworth Scale (MAS), Manual Muscle Test (MMT), grip and pinch strength, modified Barthel Index (MBI), and Berg Balance Scale (BBS) were measured. Results Functional connectivity analyses showed significant interactions on frontal, parietal and occipital lobes connections in each frequency band, particularly in the delta band. The coupling strength of premotor cortex, M1, S1 and several connections linked to frontal, parietal, and occipital lobes in subacute subjects were lower than in chronic subjects in low alpha, high alpha, low beta, and high beta bands. Nodal clustering coefficient (CC) analyses revealed that the CC in chronic subjects was higher than in subacute subjects in the ipsilesional S1 and occipital area, contralesional dorsolateral prefrontal cortex and parietal area. Characteristic path length (CPL) analyses showed that CPL in subacute subjects was lower than in chronic subjects in low beta, high beta, and gamma bands. There were no significant differences between subacute and chronic subjects for small-world property. Conclusion Subacute stroke survivors were characterized by higher transfer efficiency of the entire brain network and weak local nodal effects. Transfer efficiency was reduced, the local nodal role was strengthened, and more neural resources needed to be mobilized to perform motor tasks for chronic survivors. Overall, these results may help to understand the remodeling pattern of the brain network for different post-stroke stages on task conditions and the mechanism of spontaneous recovery.
Collapse
Affiliation(s)
- Yifang Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Jing’an District Central Hospital, Shanghai, China
| | - Zewu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Gege Zhan
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Haolong Su
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - XiaoYang Kang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Jing’an District Central Hospital, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
103
|
Adama S, Bogdan M. Assessing consciousness in patients with disorders of consciousness using soft-clustering. Brain Inform 2023; 10:16. [PMID: 37450213 PMCID: PMC10348975 DOI: 10.1186/s40708-023-00197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Consciousness is something we experience in our everyday life, more especially between the time we wake up in the morning and go to sleep at night, but also during the rapid eye movement (REM) sleep stage. Disorders of consciousness (DoC) are states in which a person's consciousness is damaged, possibly after a traumatic brain injury. Completely locked-in syndrome (CLIS) patients, on the other hand, display covert states of consciousness. Although they appear unconscious, their cognitive functions are mostly intact. Only, they cannot externally display it due to their quadriplegia and inability to speak. Determining these patients' states constitutes a challenging task. The ultimate goal of the approach presented in this paper is to assess these CLIS patients consciousness states. EEG data from DoC patients are used here first, under the assumption that if the proposed approach is able to accurately assess their consciousness states, it will assuredly do so on CLIS patients too. This method combines different sets of features consisting of spectral, complexity and connectivity measures in order to increase the probability of correctly estimating their consciousness levels. The obtained results showed that the proposed approach was able to correctly estimate several DoC patients' consciousness levels. This estimation is intended as a step prior attempting to communicate with them, in order to maximise the efficiency of brain-computer interfaces (BCI)-based communication systems.
Collapse
Affiliation(s)
- Sophie Adama
- Department of Neuromorphe Information Processing, Leipzig University, Augustusplatz 10, Leipzig, 04109 Germany
| | - Martin Bogdan
- Department of Neuromorphe Information Processing, Leipzig University, Augustusplatz 10, Leipzig, 04109 Germany
| |
Collapse
|
104
|
Petro NM, Picci G, Embury CM, Ott LR, Penhale SH, Rempe MP, Johnson HJ, Willett MP, Wang YP, Stephen JM, Calhoun VD, Doucet GE, Wilson TW. Developmental differences in functional organization of multispectral networks. Cereb Cortex 2023; 33:9175-9185. [PMID: 37279931 PMCID: PMC10505424 DOI: 10.1093/cercor/bhad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
Assessing brain connectivity during rest has become a widely used approach to identify changes in functional brain organization during development. Generally, previous works have demonstrated that brain activity shifts from more local to more distributed processing from childhood into adolescence. However, the majority of those works have been based on functional magnetic resonance imaging measures, whereas multispectral functional connectivity, as measured using magnetoencephalography (MEG), has been far less characterized. In our study, we examined spontaneous cortical activity during eyes-closed rest using MEG in 101 typically developing youth (9-15 years old; 51 females, 50 males). Multispectral MEG images were computed, and connectivity was estimated in the canonical delta, theta, alpha, beta, and gamma bands using the imaginary part of the phase coherence, which was computed between 200 brain regions defined by the Schaefer cortical atlas. Delta and alpha connectivity matrices formed more communities as a function of increasing age. Connectivity weights predominantly decreased with age in both frequency bands; delta-band differences largely implicated limbic cortical regions and alpha band differences in attention and cognitive networks. These results are consistent with previous work, indicating the functional organization of the brain becomes more segregated across development, and highlight spectral specificity across different canonical networks.
Collapse
Affiliation(s)
- Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Lauren R Ott
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Samantha H Penhale
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | | | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, United States
| | - Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
105
|
Wang W, Shi B, Wang D, Wang J, Liu G. Enhanced lower-limb motor imagery by kinesthetic illusion. Front Neurosci 2023; 17:1077479. [PMID: 37409102 PMCID: PMC10319417 DOI: 10.3389/fnins.2023.1077479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Brain-computer interface (BCI) based on lower-limb motor imagery (LMI) enables hemiplegic patients to stand and walk independently. However, LMI ability is usually poor for BCI-illiterate (e.g., some stroke patients), limiting BCI performance. This study proposed a novel LMI-BCI paradigm with kinesthetic illusion(KI) induced by vibratory stimulation on Achilles tendon to enhance LMI ability. Sixteen healthy subjects were recruited to carry out two research contents: (1) To verify the feasibility of induced KI by vibrating Achilles tendon and analyze the EEG features produced by KI, research 1 compared the subjective feeling and brain activity of participants during rest task with and without vibratory stimulation (V-rest, rest). (2) Research 2 compared the LMI-BCI performance with and without KI (KI-LMI, no-LMI) to explore whether KI enhances LMI ability. The analysis methods of both experiments included classification accuracy (V-rest vs. rest, no-LMI vs. rest, KI-LMI vs. rest, KI-LMI vs. V-rest), time-domain features, oral questionnaire, statistic analysis and brain functional connectivity analysis. Research 1 verified that induced KI by vibrating Achilles tendon might be feasible, and provided a theoretical basis for applying KI to LMI-BCI paradigm, evidenced by oral questionnaire (Q1) and the independent effect of vibratory stimulation during rest task. The results of research 2 that KI enhanced mesial cortex activation and induced more intensive EEG features, evidenced by ERD power, topographical distribution, oral questionnaire (Q2 and Q3), and brain functional connectivity map. Additionally, the KI increased the offline accuracy of no-LMI/rest task by 6.88 to 82.19% (p < 0.001). The simulated online accuracy was also improved for most subjects (average accuracy for all subjects: 77.23% > 75.31%, and average F1_score for all subjects: 76.4% > 74.3%). The LMI-BCI paradigm of this study provides a novel approach to enhance LMI ability and accelerates the practical applications of the LMI-BCI system.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Bin Shi
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dong Wang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Jing Wang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Gang Liu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
106
|
Baker A, Schranz C, Seo NJ. Associating Functional Neural Connectivity and Specific Aspects of Sensorimotor Control in Chronic Stroke. SENSORS (BASEL, SWITZERLAND) 2023; 23:5398. [PMID: 37420566 DOI: 10.3390/s23125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Hand sensorimotor deficits often result from stroke, limiting the ability to perform daily living activities. Sensorimotor deficits are heterogeneous among stroke survivors. Previous work suggests a cause of hand deficits is altered neural connectivity. However, the relationships between neural connectivity and specific aspects of sensorimotor control have seldom been explored. Understanding these relationships is important for developing personalized rehabilitation strategies to improve individual patients' specific sensorimotor deficits and, thus, rehabilitation outcomes. Here, we investigated the hypothesis that specific aspects of sensorimotor control will be associated with distinct neural connectivity in chronic stroke survivors. Twelve chronic stroke survivors performed a paretic hand grip-and-relax task while EEG was collected. Four aspects of hand sensorimotor grip control were extracted, including reaction time, relaxation time, force magnitude control, and force direction control. EEG source connectivity in the bilateral sensorimotor regions was calculated in α and β frequency bands during grip preparation and execution. Each of the four hand grip measures was significantly associated with a distinct connectivity measure. These results support further investigations into functional neural connectivity signatures that explain various aspects of sensorimotor control, to assist the development of personalized rehabilitation that targets the specific brain networks responsible for the individuals' distinct sensorimotor deficits.
Collapse
Affiliation(s)
- Adam Baker
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President St., Charleston, SC 29425, USA
| | - Christian Schranz
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President St., Charleston, SC 29425, USA
| | - Na Jin Seo
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President St., Charleston, SC 29425, USA
- Division of Occupational Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, 151B Rutledge Ave., Charleston, SC 29425, USA
- Ralph H. Johnson VA Health Care System, 109 Bee St., Charleston, SC 29425, USA
| |
Collapse
|
107
|
Langhein M, Lyall AE, Steinmann S, Seitz-Holland J, Nägele FL, Cetin-Karayumak S, Zhang F, Rauh J, Mußmann M, Billah T, Makris N, Pasternak O, O’Donnell LJ, Rathi Y, Leicht G, Kubicki M, Shenton ME, Mulert C. The decoupling of structural and functional connectivity of auditory networks in individuals at clinical high-risk for psychosis. World J Biol Psychiatry 2023; 24:387-399. [PMID: 36083108 PMCID: PMC10399965 DOI: 10.1080/15622975.2022.2112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Disrupted auditory networks play an important role in the pathophysiology of psychosis, with abnormalities already observed in individuals at clinical high-risk for psychosis (CHR). Here, we examine structural and functional connectivity of an auditory network in CHR utilising state-of-the-art electroencephalography and diffusion imaging techniques. METHODS Twenty-six CHR subjects and 13 healthy controls (HC) underwent diffusion MRI and electroencephalography while performing an auditory task. We investigated structural connectivity, measured as fractional anisotropy in the Arcuate Fasciculus (AF), Cingulum Bundle, and Superior Longitudinal Fasciculus-II. Gamma-band lagged-phase synchronisation, a functional connectivity measure, was calculated between cortical regions connected by these tracts. RESULTS CHR subjects showed significantly higher structural connectivity in the right AF than HC (p < .001). Although non-significant, functional connectivity between cortical areas connected by the AF was lower in CHR than HC (p = .078). Structural and functional connectivity were correlated in HC (p = .056) but not in CHR (p = .29). CONCLUSIONS We observe significant differences in structural connectivity of the AF, without a concomitant significant change in functional connectivity in CHR subjects. This may suggest that the CHR state is characterised by a decoupling of structural and functional connectivity, possibly due to abnormal white matter maturation.
Collapse
Affiliation(s)
- Mina Langhein
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren J O’Donnell
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Psychiatry, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
108
|
Kamarajan C, Pandey AK, Chorlian DB, Meyers JL, Kinreich S, Pandey G, Subbie-Saenz de Viteri S, Zhang J, Kuang W, Barr PB, Aliev F, Anokhin AP, Plawecki MH, Kuperman S, Almasy L, Merikangas A, Brislin SJ, Bauer L, Hesselbrock V, Chan G, Kramer J, Lai D, Hartz S, Bierut LJ, McCutcheon VV, Bucholz KK, Dick DM, Schuckit MA, Edenberg HJ, Porjesz B. Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features. Behav Sci (Basel) 2023; 13:bs13050427. [PMID: 37232664 DOI: 10.3390/bs13050427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Memory problems are common among older adults with a history of alcohol use disorder (AUD). Employing a machine learning framework, the current study investigates the use of multi-domain features to classify individuals with and without alcohol-induced memory problems. A group of 94 individuals (ages 50-81 years) with alcohol-induced memory problems (the memory group) were compared with a matched control group who did not have memory problems. The random forests model identified specific features from each domain that contributed to the classification of the memory group vs. the control group (AUC = 88.29%). Specifically, individuals from the memory group manifested a predominant pattern of hyperconnectivity across the default mode network regions except for some connections involving the anterior cingulate cortex, which were predominantly hypoconnected. Other significant contributing features were: (i) polygenic risk scores for AUD, (ii) alcohol consumption and related health consequences during the past five years, such as health problems, past negative experiences, withdrawal symptoms, and the largest number of drinks in a day during the past twelve months, and (iii) elevated neuroticism and increased harm avoidance, and fewer positive "uplift" life events. At the neural systems level, hyperconnectivity across the default mode network regions, including the connections across the hippocampal hub regions, in individuals with memory problems may indicate dysregulation in neural information processing. Overall, the study outlines the importance of utilizing multidomain features, consisting of resting-state brain connectivity data collected ~18 years ago, together with personality, life experiences, polygenic risk, and alcohol consumption and related consequences, to predict the alcohol-related memory problems that arise in later life.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Ashwini K Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - David B Chorlian
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jacquelyn L Meyers
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Sivan Kinreich
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Gayathri Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Stacey Subbie-Saenz de Viteri
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jian Zhang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Weipeng Kuang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Peter B Barr
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Fazil Aliev
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrey P Anokhin
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | | | - Samuel Kuperman
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Almasy
- The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alison Merikangas
- The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J Brislin
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Lance Bauer
- Department of Psychiatry, University of Connecticut, Farmington, CT 06030, USA
| | - Victor Hesselbrock
- Department of Psychiatry, University of Connecticut, Farmington, CT 06030, USA
| | - Grace Chan
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, University of Connecticut, Farmington, CT 06030, USA
| | - John Kramer
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Dongbing Lai
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah Hartz
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Laura J Bierut
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Vivia V McCutcheon
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kathleen K Bucholz
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Danielle M Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Marc A Schuckit
- Department of Psychiatry, University of California, San Diego, CA 92103, USA
| | | | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
109
|
Krishna S, Choudhury A, Keough MB, Seo K, Ni L, Kakaizada S, Lee A, Aabedi A, Popova G, Lipkin B, Cao C, Nava Gonzales C, Sudharshan R, Egladyous A, Almeida N, Zhang Y, Molinaro AM, Venkatesh HS, Daniel AGS, Shamardani K, Hyer J, Chang EF, Findlay A, Phillips JJ, Nagarajan S, Raleigh DR, Brang D, Monje M, Hervey-Jumper SL. Glioblastoma remodelling of human neural circuits decreases survival. Nature 2023; 617:599-607. [PMID: 37138086 PMCID: PMC10191851 DOI: 10.1038/s41586-023-06036-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Gliomas synaptically integrate into neural circuits1,2. Previous research has demonstrated bidirectional interactions between neurons and glioma cells, with neuronal activity driving glioma growth1-4 and gliomas increasing neuronal excitability2,5-8. Here we sought to determine how glioma-induced neuronal changes influence neural circuits underlying cognition and whether these interactions influence patient survival. Using intracranial brain recordings during lexical retrieval language tasks in awake humans together with site-specific tumour tissue biopsies and cell biology experiments, we find that gliomas remodel functional neural circuitry such that task-relevant neural responses activate tumour-infiltrated cortex well beyond the cortical regions that are normally recruited in the healthy brain. Site-directed biopsies from regions within the tumour that exhibit high functional connectivity between the tumour and the rest of the brain are enriched for a glioblastoma subpopulation that exhibits a distinct synaptogenic and neuronotrophic phenotype. Tumour cells from functionally connected regions secrete the synaptogenic factor thrombospondin-1, which contributes to the differential neuron-glioma interactions observed in functionally connected tumour regions compared with tumour regions with less functional connectivity. Pharmacological inhibition of thrombospondin-1 using the FDA-approved drug gabapentin decreases glioblastoma proliferation. The degree of functional connectivity between glioblastoma and the normal brain negatively affects both patient survival and performance in language tasks. These data demonstrate that high-grade gliomas functionally remodel neural circuits in the human brain, which both promotes tumour progression and impairs cognition.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kyounghee Seo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Sofia Kakaizada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Aabedi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Galina Popova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Lipkin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Caroline Cao
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Cesar Nava Gonzales
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Rasika Sudharshan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Egladyous
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nyle Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Andy G S Daniel
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jeanette Hyer
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, USA
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
110
|
Alterations in EEG functional connectivity in individuals with depression: A systematic review. J Affect Disord 2023; 328:287-302. [PMID: 36801418 DOI: 10.1016/j.jad.2023.01.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023]
Abstract
The brain works as an organised, network-like structure of functionally interconnected regions. Disruptions to interconnectivity in certain networks have been linked to symptoms of depression and impairments in cognition. Electroencephalography (EEG) is a low-burden tool by which differences in functional connectivity (FC) can be assessed. This systematic review aims to provide a synthesis of evidence relating to EEG FC in depression. A comprehensive electronic literature search for terms relating to depression, EEG, and FC was conducted on studies published before the end of November 2021, according to PRISMA guidelines. Studies comparing EEG measures of FC of individuals with depression to that of healthy control groups were included. Data was extracted by two independent reviewers, and the quality of EEG FC methods was assessed. Fifty-two studies assessing EEG FC in depression were identified: 36 assessed resting-state FC, and 16 assessed task-related or other (i.e., sleep) FC. Somewhat consistent findings in resting-state studies suggest for no differences between depression and control groups in EEG FC in the delta and gamma frequencies. However, while most resting-state studies noted a difference in alpha, theta, and beta, no clear conclusions could be drawn about the direction of the difference, due to considerable inconsistencies between study design and methodology. This was also true for task-related and other EEG FC. More robust research is needed to understand the true differences in EEG FC in depression. Given that the FC between brain regions drives behaviour, cognition, and emotion, characterising how FC differs in depression is essential for understanding the aetiology of depression.
Collapse
|
111
|
Lassi M, Fabbiani C, Mazzeo S, Burali R, Vergani AA, Giacomucci G, Moschini V, Morinelli C, Emiliani F, Scarpino M, Bagnoli S, Ingannato A, Nacmias B, Padiglioni S, Micera S, Sorbi S, Grippo A, Bessi V, Mazzoni A. Degradation of EEG microstates patterns in subjective cognitive decline and mild cognitive impairment: Early biomarkers along the Alzheimer's Disease continuum? Neuroimage Clin 2023; 38:103407. [PMID: 37094437 PMCID: PMC10149415 DOI: 10.1016/j.nicl.2023.103407] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
Alzheimer's disease (AD) pathological changes may begin up to decades earlier than the appearance of the first symptoms of cognitive decline. Subjective cognitive decline (SCD) could be the first pre-clinical sign of possible AD, which might be followed by mild cognitive impairment (MCI), the initial stage of clinical cognitive decline. However, the neural correlates of these prodromic stages are not completely clear yet. Recent studies suggest that EEG analysis tools characterizing the cortical activity as a whole, such as microstates and cortical regions connectivity, might support a characterization of SCD and MCI conditions. Here we test this approach by performing a broad set of analyses to identify the prominent EEG markers differentiating SCD (n = 57), MCI (n = 46) and healthy control subjects (HC, n = 19). We found that the salient differences were in the temporal structure of the microstates patterns, with MCI being associated with less complex sequences due to the altered transition probability, frequency and duration of canonic microstate C. Spectral content of EEG, network connectivity, and spatial arrangement of microstates were instead largely similar in the three groups. Interestingly, comparing properties of EEG microstates in different cerebrospinal fluid (CSF) biomarkers profiles, we found that canonic microstate C displayed significant differences in topography in AD-like profile. These results show that the progression of dementia might be associated with a degradation of the cortical organization captured by microstates analysis, and that this leads to altered transitions between cortical states. Overall, our approach paves the way for the use of non-invasive EEG recordings in the identification of possible biomarkers of progression to AD from its prodromal states.
Collapse
Affiliation(s)
- Michael Lassi
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| | - Carlo Fabbiani
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Salvatore Mazzeo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Rachele Burali
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Alberto Arturo Vergani
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Moschini
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Carmen Morinelli
- Dipartimento Neuromuscolo-scheletrico e degli organi di senso, Careggi University Hospital, 50134 Florence, Italy
| | - Filippo Emiliani
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Maenia Scarpino
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Benedetta Nacmias
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Sonia Padiglioni
- Regional Referral Centre for Relational Criticalities - Tuscany Region, 50139 Florence, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy; Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sandro Sorbi
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Antonello Grippo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pisa, Italy.
| |
Collapse
|
112
|
Päeske L, Uudeberg T, Hinrikus H, Lass J, Bachmann M. Correlation between electroencephalographic markers in the healthy brain. Sci Rep 2023; 13:6307. [PMID: 37072499 PMCID: PMC10113388 DOI: 10.1038/s41598-023-33364-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Mental disorders have an increasing tendency and represent the main burden of disease to society today. A wide variety of electroencephalographic (EEG) markers have been successfully used to assess different symptoms of mental disorders. Different EEG markers have demonstrated similar classification accuracy, raising a question of their independence. The current study is aimed to investigate the hypotheses that different EEG markers reveal partly the same EEG features reflecting brain functioning and therefore provide overlapping information. The assessment of the correlations between EEG signal frequency band power, dynamics, and functional connectivity markers demonstrates that a statistically significant correlation is evident in 37 of 66 (56%) comparisons performed between 12 markers of different natures. A significant correlation between the majority of the markers supports the similarity of information in the markers. The results of the performed study confirm the hypotheses that different EEG markers reflect partly the same features in brain functioning. Higuchi's fractal dimension has demonstrated a significant correlation with the 82% of other markers and is suggested to reveal a wide spectrum of various brain disorders. This marker is preferable in the early detection of symptoms of mental disorders.
Collapse
Affiliation(s)
- Laura Päeske
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia
| | - Tuuli Uudeberg
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia
| | - Hiie Hinrikus
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia.
| | - Jaanus Lass
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia
| | - Maie Bachmann
- Department of Health Technologies, School of Information Technology, Tallinn University of Technology, 5 Ehitajate Rd, 19086, Tallinn, Estonia
| |
Collapse
|
113
|
Jaeger C, Nuttall R, Zimmermann J, Dowsett J, Preibisch C, Sorg C, Wohlschlaeger A. Targeted rhythmic visual stimulation at individual participants' intrinsic alpha frequency causes selective increase of occipitoparietal BOLD-fMRI and EEG functional connectivity. Neuroimage 2023; 270:119981. [PMID: 36848971 DOI: 10.1016/j.neuroimage.2023.119981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023] Open
Abstract
Neural oscillations in distinct frequency bands are ubiquitous in the brain and play a role in many cognitive processes. The "communication by coherence" hypothesis, poses that the synchronization through phase coupling of frequency-specific neural oscillations regulate information flow across distribute brain regions. Specifically, the posterior alpha frequency band (7-12 Hz) is thought to gate bottom-up visual information flow by inhibition during visual processing. Evidence shows that increased alpha phase coherency positively correlates with functional connectivity in resting state connectivity networks, supporting alpha mediates neural communication through coherency. However, these findings have mainly been derived from spontaneous changes in the ongoing alpha rhythm. In this study, we experimentally modulate the alpha rhythm by targeting individuals' intrinsic alpha frequency with sustained rhythmic light to investigate alpha-mediated synchronous cortical activity in both EEG and fMRI. We hypothesize increased alpha coherency and fMRI connectivity should arise from modulation of the intrinsic alpha frequency (IAF) as opposed to control frequencies in the alpha range. Sustained rhythmic and arrhythmic stimulation at the IAF and at neighboring frequencies within the alpha band range (7-12 Hz) was implemented and assessed in a separate EEG and fMRI study. We observed increased cortical alpha phase coherency in the visual cortex during rhythmic stimulation at the IAF as in comparison to rhythmic stimulation of control frequencies. In the fMRI, we found increased functional connectivity for stimulation at the IAF in visual and parietal areas as compared to other rhythmic control frequencies by correlating time courses from a set of regions of interest for the different stimulation conditions and applying network-based statistics. This suggests that rhythmic stimulation at the IAF frequency induces a higher degree of synchronicity of neural activity across the occipital and parietal cortex, which supports the role of the alpha oscillation in gating information flow during visual processing.
Collapse
Affiliation(s)
- Cilia Jaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neuroscience, Ludwig Maximilian University, Planneg-Martinsried, Germany
| | - Rachel Nuttall
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - James Dowsett
- Department of Psychology, Ludwig Maximilian University, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Clinic for Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Psychiatry, Technical University of Munich, Munich, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
114
|
Rahimi S, Jackson R, Farahibozorg SR, Hauk O. Time-Lagged Multidimensional Pattern Connectivity (TL-MDPC): An EEG/MEG pattern transformation based functional connectivity metric. Neuroimage 2023; 270:119958. [PMID: 36813063 PMCID: PMC10030313 DOI: 10.1016/j.neuroimage.2023.119958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Functional and effective connectivity methods are essential to study the complex information flow in brain networks underlying human cognition. Only recently have connectivity methods begun to emerge that make use of the full multidimensional information contained in patterns of brain activation, rather than unidimensional summary measures of these patterns. To date, these methods have mostly been applied to fMRI data, and no method allows vertex-to-vertex transformations with the temporal specificity of EEG/MEG data. Here, we introduce time-lagged multidimensional pattern connectivity (TL-MDPC) as a novel bivariate functional connectivity metric for EEG/MEG research. TL-MDPC estimates the vertex-to-vertex transformations among multiple brain regions and across different latency ranges. It determines how well patterns in ROI X at time point tx can linearly predict patterns of ROI Y at time point ty. In the present study, we use simulations to demonstrate TL-MDPC's increased sensitivity to multidimensional effects compared to a unidimensional approach across realistic choices of number of trials and signal-to-noise ratios. We applied TL-MDPC, as well as its unidimensional counterpart, to an existing dataset varying the depth of semantic processing of visually presented words by contrasting a semantic decision and a lexical decision task. TL-MDPC detected significant effects beginning very early on, and showed stronger task modulations than the unidimensional approach, suggesting that it is capable of capturing more information. With TL-MDPC only, we observed rich connectivity between core semantic representation (left and right anterior temporal lobes) and semantic control (inferior frontal gyrus and posterior temporal cortex) areas with greater semantic demands. TL-MDPC is a promising approach to identify multidimensional connectivity patterns, typically missed by unidimensional approaches.
Collapse
Affiliation(s)
- Setareh Rahimi
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom.
| | - Rebecca Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom
| | - Seyedeh-Rezvan Farahibozorg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom
| |
Collapse
|
115
|
Lam WS, Lam WH, Jaaman SH, Lee PF. Bibliometric Analysis of Granger Causality Studies. ENTROPY (BASEL, SWITZERLAND) 2023; 25:632. [PMID: 37190420 PMCID: PMC10137504 DOI: 10.3390/e25040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
Granger causality provides a framework that uses predictability to identify causation between time series variables. This is important to policymakers for effective policy management and recommendations. Granger causality is recognized as the primary advance on the causation problem. The objective of this paper is to conduct a bibliometric analysis of Granger causality publications indexed in the Web of Science database. Harzing's Publish or Perish and VOSviewer were used for performance analysis and science mapping. The first paper indexed was published in 1981 and there has been an upward trend in the annual publication of Granger causality studies which are shifting towards the areas of environmental science, energy, and economics. Most of the publications are articles and proceeding papers under the areas of business economics, environmental science ecology, and neurosciences/neurology. China has the highest number of publications while the United States has the highest number of citations. England has the highest citation impact. This paper also constructed country co-authorship, co-analysis of cited references, cited sources, and cited authors, keyword co-occurrence, and keyword overlay visualization maps.
Collapse
Affiliation(s)
- Weng Siew Lam
- Department of Physical and Mathematical Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia; (W.S.L.); (P.F.L.)
| | - Weng Hoe Lam
- Department of Physical and Mathematical Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia; (W.S.L.); (P.F.L.)
| | - Saiful Hafizah Jaaman
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Pei Fun Lee
- Department of Physical and Mathematical Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia; (W.S.L.); (P.F.L.)
| |
Collapse
|
116
|
Kida T, Tanaka E, Kakigi R, Inui K. Brain-wide network analysis of resting-state neuromagnetic data. Hum Brain Mapp 2023; 44:3519-3540. [PMID: 36988453 DOI: 10.1002/hbm.26295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study performed a brain-wide network analysis of resting-state magnetoencephalograms recorded from 53 healthy participants to visualize elaborate brain maps of phase- and amplitude-derived graph-theory metrics at different frequencies. To achieve this, we conducted a vertex-wise computation of threshold-independent graph metrics by combining proportional thresholding and a conjunction analysis and applied them to a correlation analysis of age and brain networks. Source power showed a frequency-dependent cortical distribution. Threshold-independent graph metrics derived from phase- and amplitude-based connectivity showed similar or different distributions depending on frequency. Vertex-wise age-brain correlation maps revealed that source power at the beta band and the amplitude-based degree at the alpha band changed with age in local regions. The present results indicate that a brain-wide analysis of neuromagnetic data has the potential to reveal neurophysiological network features in the human brain in a resting state.
Collapse
Affiliation(s)
- Tetsuo Kida
- Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Emi Tanaka
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
117
|
Hindriks R, Tewarie PKB. Dissociation between phase and power correlation networks in the human brain is driven by co-occurrent bursts. Commun Biol 2023; 6:286. [PMID: 36934153 PMCID: PMC10024695 DOI: 10.1038/s42003-023-04648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
Well-known haemodynamic resting-state networks are better mirrored in power correlation networks than phase coupling networks in electrophysiological data. However, what do these power correlation networks reflect? We address this long-outstanding question in neuroscience using rigorous mathematical analysis, biophysical simulations with ground truth and application of these mathematical concepts to empirical magnetoencephalography (MEG) data. Our mathematical derivations show that for two non-Gaussian electrophysiological signals, their power correlation depends on their coherence, cokurtosis and conjugate-coherence. Only coherence and cokurtosis contribute to power correlation networks in MEG data, but cokurtosis is less affected by artefactual signal leakage and better mirrors haemodynamic resting-state networks. Simulations and MEG data show that cokurtosis may reflect co-occurrent bursting events. Our findings shed light on the origin of the complementary nature of power correlation networks to phase coupling networks and suggests that the origin of resting-state networks is partly reflected in co-occurent bursts in neuronal activity.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Prejaas K B Tewarie
- Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands
- Sir Peter Mansfield Imaging Center, School of Physics, University of Nottingham, Nottingham, UK
| |
Collapse
|
118
|
Chiarion G, Sparacino L, Antonacci Y, Faes L, Mesin L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering (Basel) 2023; 10:bioengineering10030372. [PMID: 36978763 PMCID: PMC10044923 DOI: 10.3390/bioengineering10030372] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks.
Collapse
Affiliation(s)
- Giovanni Chiarion
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Laura Sparacino
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Mesin
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
119
|
Elmer S, Besson M, Rodriguez-Fornells A, Giroud N. Foreign speech sound discrimination and associative word learning lead to a fast reconfiguration of resting-state networks. Neuroimage 2023; 271:120026. [PMID: 36921678 DOI: 10.1016/j.neuroimage.2023.120026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Learning new words in an unfamiliar language is a complex endeavor that requires the orchestration of multiple perceptual and cognitive functions. Although the neural mechanisms governing word learning are becoming better understood, little is known about the predictive value of resting-state (RS) metrics for foreign word discrimination and word learning attainment. In addition, it is still unknown which of the multistep processes involved in word learning have the potential to rapidly reconfigure RS networks. To address these research questions, we used electroencephalography (EEG), measured forty participants, and examined scalp-based power spectra, source-based spectral density maps and functional connectivity metrics before (RS1), in between (RS2) and after (RS3) a series of tasks which are known to facilitate the acquisition of new words in a foreign language, namely word discrimination, word-referent mapping and semantic generalization. Power spectra at the scalp level consistently revealed a reconfiguration of RS networks as a function of foreign word discrimination (RS1 vs. RS2) and word learning (RS1 vs. RS3) tasks in the delta, lower and upper alpha, and upper beta frequency ranges. Otherwise, functional reconfigurations at the source level were restricted to the theta (spectral density maps) and to the lower and upper alpha frequency bands (spectral density maps and functional connectivity). Notably, scalp RS changes related to the word discrimination tasks (difference between RS2 and RS1) correlated with word discrimination abilities (upper alpha band) and semantic generalization performance (theta and upper alpha bands), whereas functional changes related to the word learning tasks (difference between RS3 and RS1) correlated with word discrimination scores (lower alpha band). Taken together, these results highlight that foreign speech sound discrimination and word learning have the potential to rapidly reconfigure RS networks at multiple functional scales.
Collapse
Affiliation(s)
- Stefan Elmer
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland; Bellvitge Biomedical Research Institute, Barcelona, Spain; Competence center Language & Medicine, University of Zurich, Switzerland.
| | - Mireille Besson
- Laboratoire de Neurosciences Cognitives, Université Publique de France, CNRS & Aix-Marseille University, Marseille, France
| | - Antoni Rodriguez-Fornells
- Bellvitge Biomedical Research Institute, Barcelona, Spain; University of Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Nathalie Giroud
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland; Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland; Competence center Language & Medicine, University of Zurich, Switzerland
| |
Collapse
|
120
|
Natraj N, Richards A. Sleep spindles, stress and PTSD: The state of the science and future directions. Neurobiol Stress 2023; 23:100516. [PMID: 36861030 PMCID: PMC9969071 DOI: 10.1016/j.ynstr.2023.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Sleep spindles are a signature feature of non-REM (NREM) sleep, with demonstrated relationships to sleep maintenance and learning and memory. Because PTSD is characterized by disturbances in sleep maintenance and in stress learning and memory, there is now a growing interest in examining the role of sleep spindles in the neurobiology of PTSD. This review provides an overview of methods for measuring and detecting sleep spindles as they pertain to human PTSD and stress research, presents a critical review of early findings examining sleep spindles in PTSD and stress neurobiology, and proposes several directions for future research. In doing so, this review underscores the extensive heterogeneity in sleep spindle measurement and detection methods, the wide range of spindle features that may be and have been examined, the many persisting unknowns about the clinical and functional relevance of those features, and the problems considering PTSD as a homogeneous group in between-group comparisons. This review also highlights the progress that has been made in this field and underscores the strong rationale for ongoing work in this area.
Collapse
Affiliation(s)
- Nikhilesh Natraj
- Department of Neurology, University of California, San Francisco, USA
- San Francisco VA Health Care System, San Francisco, USA
| | - Anne Richards
- San Francisco VA Health Care System, San Francisco, USA
- Department of Psychiatry and Behavioral Sciences and UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| |
Collapse
|
121
|
Fischer MHF, Zibrandtsen IC, Høgh P, Musaeus CS. Systematic Review of EEG Coherence in Alzheimer's Disease. J Alzheimers Dis 2023; 91:1261-1272. [PMID: 36641665 DOI: 10.3233/jad-220508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Magnitude-squared coherence (MSCOH) is an electroencephalography (EEG) measure of functional connectivity. MSCOH has been widely applied to investigate pathological changes in patients with Alzheimer's disease (AD). However, significant heterogeneity exists between the studies using MSOCH. OBJECTIVE We systematically reviewed the literature on MSCOH changes in AD as compared to healthy controls to investigate the clinical utility of MSCOH as a marker of AD. METHODS We searched PubMed, Embase, and Scopus to identify studies reporting EEG MSCOH used in patients with AD. The identified studies were independently screened by two researchers and the data was extracted, which included cognitive scores, preprocessing steps, and changes in MSCOH across frequency bands. RESULTS A total of 35 studies investigating changes in MSCOH in patients with AD were included in the review. Alpha coherence was significantly decreased in patients with AD in 24 out of 34 studies. Differences in other frequency bands were less consistent. Some studies showed that MSCOH may serve as a diagnostic marker of AD. CONCLUSION Reduced alpha MSCOH is present in patients with AD and MSCOH may serve as a diagnostic marker. However, studies validating MSCOH as a diagnostic marker are needed.
Collapse
Affiliation(s)
| | | | - Peter Høgh
- Department of Neurology, University Hospital of Zealand, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
122
|
Maura RM, Rueda Parra S, Stevens RE, Weeks DL, Wolbrecht ET, Perry JC. Literature review of stroke assessment for upper-extremity physical function via EEG, EMG, kinematic, and kinetic measurements and their reliability. J Neuroeng Rehabil 2023; 20:21. [PMID: 36793077 PMCID: PMC9930366 DOI: 10.1186/s12984-023-01142-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Significant clinician training is required to mitigate the subjective nature and achieve useful reliability between measurement occasions and therapists. Previous research supports that robotic instruments can improve quantitative biomechanical assessments of the upper limb, offering reliable and more sensitive measures. Furthermore, combining kinematic and kinetic measurements with electrophysiological measurements offers new insights to unlock targeted impairment-specific therapy. This review presents common methods for analyzing biomechanical and neuromuscular data by describing their validity and reporting their reliability measures. METHODS This paper reviews literature (2000-2021) on sensor-based measures and metrics for upper-limb biomechanical and electrophysiological (neurological) assessment, which have been shown to correlate with clinical test outcomes for motor assessment. The search terms targeted robotic and passive devices developed for movement therapy. Journal and conference papers on stroke assessment metrics were selected using PRISMA guidelines. Intra-class correlation values of some of the metrics are recorded, along with model, type of agreement, and confidence intervals, when reported. RESULTS A total of 60 articles are identified. The sensor-based metrics assess various aspects of movement performance, such as smoothness, spasticity, efficiency, planning, efficacy, accuracy, coordination, range of motion, and strength. Additional metrics assess abnormal activation patterns of cortical activity and interconnections between brain regions and muscle groups; aiming to characterize differences between the population who had a stroke and the healthy population. CONCLUSION Range of motion, mean speed, mean distance, normal path length, spectral arc length, number of peaks, and task time metrics have all demonstrated good to excellent reliability, as well as provide a finer resolution compared to discrete clinical assessment tests. EEG power features for multiple frequency bands of interest, specifically the bands relating to slow and fast frequencies comparing affected and non-affected hemispheres, demonstrate good to excellent reliability for populations at various stages of stroke recovery. Further investigation is needed to evaluate the metrics missing reliability information. In the few studies combining biomechanical measures with neuroelectric signals, the multi-domain approaches demonstrated agreement with clinical assessments and provide further information during the relearning phase. Combining the reliable sensor-based metrics in the clinical assessment process will provide a more objective approach, relying less on therapist expertise. This paper suggests future work on analyzing the reliability of metrics to prevent biasedness and selecting the appropriate analysis.
Collapse
Affiliation(s)
- Rene M. Maura
- Mechanical Engineering Department, University of Idaho, Moscow, ID USA
| | | | - Richard E. Stevens
- Engineering and Physics Department, Whitworth University, Spokane, WA USA
| | - Douglas L. Weeks
- College of Medicine, Washington State University, Spokane, WA USA
| | - Eric T. Wolbrecht
- Mechanical Engineering Department, University of Idaho, Moscow, ID USA
| | - Joel C. Perry
- Mechanical Engineering Department, University of Idaho, Moscow, ID USA
| |
Collapse
|
123
|
Soyuhos O, Baldauf D. Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex. Eur J Neurosci 2023; 57:1114-1140. [PMID: 36789470 DOI: 10.1111/ejn.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Neuroimaging evidence suggests that the frontal eye field (FEF) and inferior frontal junction (IFJ) govern the encoding of spatial and nonspatial (such as feature- or object-based) representations, respectively, both during visual attention and working memory tasks. However, it is still unclear whether such contrasting functional segregation is also reflected in their underlying functional connectivity patterns. Here, we hypothesized that FEF has predominant functional coupling with spatiotopically organized regions in the dorsal ('where') visual stream whereas IFJ has predominant functional connectivity with the ventral ('what') visual stream. We applied seed-based functional connectivity analyses to temporally high-resolving resting-state magnetoencephalography (MEG) recordings. We parcellated the brain according to the multimodal Glasser atlas and tested, for various frequency bands, whether the spontaneous activity of each parcel in the ventral and dorsal visual pathway has predominant functional connectivity with FEF or IFJ. The results show that FEF has a robust power correlation with the dorsal visual pathway in beta and gamma bands. In contrast, anterior IFJ (IFJa) has a strong power coupling with the ventral visual stream in delta, beta and gamma oscillations. Moreover, while FEF is phase-coupled with the superior parietal lobe in the beta band, IFJa is phase-coupled with the middle and inferior temporal cortex in delta and gamma oscillations. We argue that these intrinsic connectivity fingerprints are congruent with each brain region's function. Therefore, we conclude that FEF and IFJ have dissociable connectivity patterns that fit their respective functional roles in spatial versus nonspatial top-down attention and working memory control.
Collapse
Affiliation(s)
- Orhan Soyuhos
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.,Center for Neuroscience, University of California, Davis, California, USA
| | - Daniel Baldauf
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
124
|
Rampp S, Kaltenhäuser M, Müller-Voggel N, Doerfler A, Kasper BS, Hamer HM, Brandner S, Buchfelder M. MEG Node Degree for Focus Localization: Comparison with Invasive EEG. Biomedicines 2023; 11:biomedicines11020438. [PMID: 36830974 PMCID: PMC9953213 DOI: 10.3390/biomedicines11020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Epilepsy surgery is a viable therapy option for patients with pharmacoresistant focal epilepsies. A prerequisite for postoperative seizure freedom is the localization of the epileptogenic zone, e.g., using electro- and magnetoencephalography (EEG/MEG). Evidence shows that resting state MEG contains subtle alterations, which may add information to the workup of epilepsy surgery. Here, we investigate node degree (ND), a graph-theoretical parameter of functional connectivity, in relation to the seizure onset zone (SOZ) determined by invasive EEG (iEEG) in a consecutive series of 50 adult patients. Resting state data were subjected to whole brain, all-to-all connectivity analysis using the imaginary part of coherence. Graphs were described using parcellated ND. SOZ localization was investigated on a lobar and sublobar level. On a lobar level, all frequency bands except alpha showed significantly higher maximal ND (mND) values inside the SOZ compared to outside (ratios 1.11-1.20, alpha 1.02). Area-under-the-curve (AUC) was 0.67-0.78 for all expected alpha (0.44, ns). On a sublobar level, mND inside the SOZ was higher for all frequency bands (1.13-1.38, AUC 0.58-0.78) except gamma (1.02). MEG ND is significantly related to SOZ in delta, theta and beta bands. ND may provide new localization tools for presurgical evaluation of epilepsy surgery.
Collapse
Affiliation(s)
- Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-9131-85-46921; Fax: +49-9131-85-34476
| | - Martin Kaltenhäuser
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Nadia Müller-Voggel
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Burkhard S. Kasper
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Hajo M. Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
125
|
Lehnertz K. Ordinal methods for a characterization of evolving functional brain networks. CHAOS (WOODBURY, N.Y.) 2023; 33:022101. [PMID: 36859225 DOI: 10.1063/5.0136181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Ordinal time series analysis is based on the idea to map time series to ordinal patterns, i.e., order relations between the values of a time series and not the values themselves, as introduced in 2002 by C. Bandt and B. Pompe. Despite a resulting loss of information, this approach captures meaningful information about the temporal structure of the underlying system dynamics as well as about properties of interactions between coupled systems. This-together with its conceptual simplicity and robustness against measurement noise-makes ordinal time series analysis well suited to improve characterization of the still poorly understood spatiotemporal dynamics of the human brain. This minireview briefly summarizes the state-of-the-art of uni- and bivariate ordinal time-series-analysis techniques together with applications in the neurosciences. It will highlight current limitations to stimulate further developments, which would be necessary to advance characterization of evolving functional brain networks.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany; and Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany
| |
Collapse
|
126
|
Herrmann B, Maess B, Johnsrude IS. Sustained responses and neural synchronization to amplitude and frequency modulation in sound change with age. Hear Res 2023; 428:108677. [PMID: 36580732 DOI: 10.1016/j.heares.2022.108677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Perception of speech requires sensitivity to features, such as amplitude and frequency modulations, that are often temporally regular. Previous work suggests age-related changes in neural responses to temporally regular features, but little work has focused on age differences for different types of modulations. We recorded magnetoencephalography in younger (21-33 years) and older adults (53-73 years) to investigate age differences in neural responses to slow (2-6 Hz sinusoidal and non-sinusoidal) modulations in amplitude, frequency, or combined amplitude and frequency. Audiometric pure-tone average thresholds were elevated in older compared to younger adults, indicating subclinical hearing impairment in the recruited older-adult sample. Neural responses to sound onset (independent of temporal modulations) were increased in magnitude in older compared to younger adults, suggesting hyperresponsivity and a loss of inhibition in the aged auditory system. Analyses of neural activity to modulations revealed greater neural synchronization with amplitude, frequency, and combined amplitude-frequency modulations for older compared to younger adults. This potentiated response generalized across different degrees of temporal regularity (sinusoidal and non-sinusoidal), although neural synchronization was generally lower for non-sinusoidal modulation. Despite greater synchronization, sustained neural activity was reduced in older compared to younger adults for sounds modulated both sinusoidally and non-sinusoidally in frequency. Our results suggest age differences in the sensitivity of the auditory system to features present in speech and other natural sounds.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, North York, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Unit, Leipzig 04103, Germany
| | - Ingrid S Johnsrude
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; School of Communication Sciences & Disorders, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
127
|
Pandria N, Athanasiou A, Styliadis C, Terzopoulos N, Mitsopoulos K, Paraskevopoulos E, Karagianni M, Pataka A, Kourtidou-Papadeli C, Makedou K, Iliadis S, Lymperaki E, Nimatoudis I, Argyropoulou-Pataka P, Bamidis PD. Does combined training of biofeedback and neurofeedback affect smoking status, behavior, and longitudinal brain plasticity? Front Behav Neurosci 2023; 17:1096122. [PMID: 36778131 PMCID: PMC9911884 DOI: 10.3389/fnbeh.2023.1096122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction: Investigations of biofeedback (BF) and neurofeedback (NF) training for nicotine addiction have been long documented to lead to positive gains in smoking status, behavior and to changes in brain activity. We aimed to: (a) evaluate a multi-visit combined BF/NF intervention as an alternative smoking cessation approach, (b) validate training-induced feedback learning, and (c) document effects on resting-state functional connectivity networks (rsFCN); considering gender and degree of nicotine dependence in a longitudinal design. Methods: We analyzed clinical, behavioral, and electrophysiological data from 17 smokers who completed five BF and 20 NF sessions and three evaluation stages. Possible neuroplastic effects were explored comparing whole-brain rsFCN by phase-lag index (PLI) for different brain rhythms. PLI connections with significant change across time were investigated according to different resting-state networks (RSNs). Results: Improvements in smoking status were observed as exhaled carbon monoxide levels, Total Oxidative Stress, and Fageström scores decreased while Vitamin E levels increased across time. BF/NF promoted gains in anxiety, self-esteem, and several aspects of cognitive performance. BF learning in temperature enhancement was observed within sessions. NF learning in theta/alpha ratio increase was achieved across baselines and within sessions. PLI network connections significantly changed across time mainly between or within visual, default mode and frontoparietal networks in theta and alpha rhythms, while beta band RSNs mostly changed significantly after BF sessions. Discussion: Combined BF/NF training positively affects the clinical and behavioral status of smokers, displays benefit in smoking harm reduction, plays a neuroprotective role, leads to learning effects and to positive reorganization of RSNs across time. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02991781.
Collapse
Affiliation(s)
- Niki Pandria
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Alkinoos Athanasiou
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Charis Styliadis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Nikos Terzopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Konstantinos Mitsopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Maria Karagianni
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Athanasia Pataka
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evgenia Lymperaki
- Department of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | - Ioannis Nimatoudis
- Third Department of Psychiatry, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Panagiotis D. Bamidis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece,*Correspondence: Panagiotis D. Bamidis
| |
Collapse
|
128
|
Mortazavi M, Lucini FA, Joffe D, Oakley DS. Electrophysiological trajectories of concussion recovery: From acute to prolonged stages in late teenagers. J Pediatr Rehabil Med 2023; 16:287-299. [PMID: 36710690 PMCID: PMC10894572 DOI: 10.3233/prm-210114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Numerous studies have reported electrophysiological differences between concussed and non-concussed groups, but few studies have systematically explored recovery trajectories from acute concussion to symptom recovery and the transition from acute concussion to prolonged phases. Questions remain about recovery prognosis and the extent to which symptom resolution coincides with injury resolution. This study therefore investigated the electrophysiological differences in recoveries between simple and complex concussion. METHODS Student athletes with acute concussion from a previous study (19(2) years old) were tracked from pre-injury baseline, 24-48 hours after concussion, and through in-season recovery. The electroencephalography (EEG) with P300 evoked response trajectories from this acute study were compared to an age-matched population of 71 patients (18(2) years old) with prolonged post-concussive symptoms (PPCS), 61 (SD 31) days after concussion. RESULTS Acute, return-to-play, and PPCS groups all experienced a significant deficit in P300 amplitude compared to the pre-injury baseline group. The PPCS group, however, had significantly different EEG spectral and coherence patterns from every other group. CONCLUSION These data suggest that while the evoked response potentials deficits of simple concussion may persist in more prolonged stages, there are certain EEG measures unique to PPCS. These metrics are readily accessible to clinicians and may provide useful parameters to help predict trajectories, characterize injury (phenotype), and track the course of injury.
Collapse
Affiliation(s)
- Mo Mortazavi
- SPARCC Sports Medicine, Rehabilitation, and Concussion Center, Tucson, AZ, USA
- Department of Pediatrics, Tucson Medical Center, Tucson, AZ, USA
| | | | | | | |
Collapse
|
129
|
McClelland VM, Lin JP. Dystonia in Childhood: How Insights from Paediatric Research Enrich the Network Theory of Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:1-22. [PMID: 37338693 DOI: 10.1007/978-3-031-26220-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Dystonia is now widely accepted as a network disorder, with multiple brain regions and their interconnections playing a potential role in the pathophysiology. This model reconciles what could previously have been viewed as conflicting findings regarding the neuroanatomical and neurophysiological characteristics of the disorder, but there are still significant gaps in scientific understanding of the underlying pathophysiology. One of the greatest unmet challenges is to understand the network model of dystonia in the context of the developing brain. This article outlines how research in childhood dystonia supports and contributes to the network theory and highlights aspects where data from paediatric studies has revealed novel and unique physiological insights, with important implications for understanding dystonia across the lifespan.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Women and Children's Institute, Faculty of Life Sciences and Medicine (FolSM), King's College London, London, UK
| |
Collapse
|
130
|
Kumar A, Lyzhko E, Hamid L, Srivastav A, Stephani U, Japaridze N. Neuronal networks underlying ictal and subclinical discharges in childhood absence epilepsy. J Neurol 2023; 270:1402-1415. [PMID: 36370186 PMCID: PMC9971098 DOI: 10.1007/s00415-022-11462-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Childhood absence epilepsy (CAE), involves 3 Hz generalized spikes and waves discharges (GSWDs) on the electroencephalogram (EEG), associated with ictal discharges (seizures) with clinical symptoms and impairment of consciousness and subclinical discharges without any objective clinical symptoms or impairment of consciousness. This study aims to comparatively characterize neuronal networks underlying absence seizures and subclinical discharges, using source localization and functional connectivity (FC), to better understand the pathophysiological mechanism of these discharges. Routine EEG data from 12 CAE patients, consisting of 45 ictal and 42 subclinical discharges were selected. Source localization was performed using the exact low-resolution electromagnetic tomography (eLORETA) algorithm, followed by FC based on the imaginary part of coherency. FC based on the thalamus as the seed of interest showed significant differences between ictal and subclinical GSWDs (p < 0.05). For delta (1-3 Hz) and alpha bands (8-12 Hz), the thalamus displayed stronger connectivity towards other brain regions for ictal GSWDs as compared to subclinical GSWDs. For delta band, the thalamus was strongly connected to the posterior cingulate cortex (PCC), precuneus, angular gyrus, supramarginal gyrus, parietal superior, and occipital mid-region for ictal GSWDs. The strong connections of the thalamus with other brain regions that are important for consciousness, and with components of the default mode network (DMN) suggest the severe impairment of consciousness in ictal GSWDs. However, for subclinical discharges, weaker connectivity between the thalamus and these brain regions may suggest the prevention of impairment of consciousness. This may benefit future therapeutic targets and improve the management of CAE patients.
Collapse
Affiliation(s)
- Ami Kumar
- Department of Neuropediatrics, Children's Hospital, University Medical Center Schleswig-Holstein, University of Kiel, Kiel, Germany. .,Faculty of Mathematics and Natural Sciences, University of Kiel, Kiel, Germany. .,Department of Neurology, Columbia University Irving Medical Center, New York, USA.
| | - Ekaterina Lyzhko
- Department of Neuropediatrics, Children’s Hospital, University Medical Center Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Laith Hamid
- Institute of Medical Psychology and Medical Sociology, University of Kiel, Kiel, Germany ,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Anand Srivastav
- Faculty of Mathematics and Natural Sciences, University of Kiel, Kiel, Germany
| | - Ulrich Stephani
- Department of Neuropediatrics, Children’s Hospital, University Medical Center Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Natia Japaridze
- Department of Neuropediatrics, Children’s Hospital, University Medical Center Schleswig-Holstein, University of Kiel, Kiel, Germany
| |
Collapse
|
131
|
Tobe M, Nobukawa S, Mizukami K, Kawaguchi M, Higashima M, Tanaka Y, Yamanishi T, Takahashi T. Hub structure in functional network of EEG signals supporting high cognitive functions in older individuals. Front Aging Neurosci 2023; 15:1130428. [PMID: 37139091 PMCID: PMC10149684 DOI: 10.3389/fnagi.2023.1130428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Maintaining high cognitive functions is desirable for "wellbeing" in old age and is particularly relevant to a super-aging society. According to their individual cognitive functions, optimal intervention for older individuals facilitates the maintenance of cognitive functions. Cognitive function is a result of whole-brain interactions. These interactions are reflected in several measures in graph theory analysis for the topological characteristics of functional connectivity. Betweenness centrality (BC), which can identify the "hub" node, i.e., the most important node affecting whole-brain network activity, may be appropriate for capturing whole-brain interactions. During the past decade, BC has been applied to capture changes in brain networks related to cognitive deficits arising from pathological conditions. In this study, we hypothesized that the hub structure of functional networks would reflect cognitive function, even in healthy elderly individuals. Method To test this hypothesis, based on the BC value of the functional connectivity obtained using the phase lag index from the electroencephalogram under the eyes closed resting state, we examined the relationship between the BC value and cognitive function measured using the Five Cognitive Functions test total score. Results We found a significant positive correlation of BC with cognitive functioning and a significant enhancement in the BC value of individuals with high cognitive functioning, particularly in the frontal theta network. Discussion The hub structure may reflect the sophisticated integration and transmission of information in whole-brain networks to support high-level cognitive function. Our findings may contribute to the development of biomarkers for assessing cognitive function, enabling optimal interventions for maintaining cognitive function in older individuals.
Collapse
Affiliation(s)
- Mayuna Tobe
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- *Correspondence: Sou Nobukawa
| | - Kimiko Mizukami
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Kawaguchi
- Department of Nursing, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
| | | | | | | | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
132
|
Koo GE, Jeong HT, Youn YC, Han SH. Is Functional Connectivity after a First Unprovoked Seizure Different Based on Subsequent Seizures and Future Diagnosis of Epilepsy? J Epilepsy Res 2022; 12:62-67. [PMID: 36685746 PMCID: PMC9830024 DOI: 10.14581/jer.22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose There are no highly sensitive biomarkers for epilepsy to date. Recently, promising results regarding functional connectivity analysis have been obtained, which may improve epilepsy diagnosis even in the absence of visible abnormality in electroencephalography. We aimed to investigate the differences in functional connectivity after a first unprovoked seizure between patients diagnosed with epilepsy within 1 year due to subsequent seizures and those who were not. Methods We compared quantitative electroencephalography power spectra and functional connectivity between 12 patients who were diagnosed with epilepsy (two or more unprovoked seizures) within 1 year and 17 controls (those not diagnosed within 1 year) using iSyncBrain® (iMediSync Inc., Suwon, Korea; https://isyncbrain.com/). In the source-level analysis, the current distribution across the brain was assessed using the standardized low-resolution brain electromagnetic tomography technique, to compare relative power values in 68 regions of interest and connectivity (the imaginary part of coherency) between regions of interest. Results In the epilepsy group, quantitative electroencephalography showed lower alpha2 band power in left frontal, central, superior temporal, and parietal regions and higher beta2 power in both frontal, central, temporal, occipital, and left parietal regions compared with the control group. Additionally, epilepsy patients had significantly lower connectivity in alpha2 and beta2 bands than the controls. Conclusions Patients experiencing their first unprovoked seizure presented different brain function according to whether they have subsequent seizures and future epilepsy. Our results propose the potential clinical ability to diagnose epilepsy after the first unprovoked seizure in the absence of interictal epileptiform discharges.
Collapse
Affiliation(s)
- Ga Eun Koo
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ho Tae Jeong
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Su-Hyun Han
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
133
|
Adama S, Bogdan M. Application of Soft-Clustering to Assess Consciousness in a CLIS Patient. Brain Sci 2022; 13:brainsci13010065. [PMID: 36672046 PMCID: PMC9856569 DOI: 10.3390/brainsci13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
Completely locked-in (CLIS) patients are characterized by sufficiently intact cognitive functions, but a complete paralysis that prevents them to interact with their surroundings. On one hand, studies have shown that the ability to communicate plays an important part in these patients' quality of life and prognosis. On the other hand, brain-computer interfaces (BCIs) provide a means for them to communicate using their brain signals. However, one major problem for such patients is the difficulty to determine if they are conscious or not at a specific time. This work aims to combine different sets of features consisting of spectral, complexity and connectivity measures, to increase the probability of correctly estimating CLIS patients' consciousness levels. The proposed approach was tested on data from one CLIS patient, which is particular in the sense that the experimenter was able to point out one time frame Δt during which he was undoubtedly conscious. Results showed that the method presented in this paper was able to detect increases and decreases of the patient's consciousness levels. More specifically, increases were observed during this Δt, corroborating the assertion of the experimenter reporting that the patient was definitely conscious then. Assessing the patients' consciousness is intended as a step prior attempting to communicate with them, in order to maximize the efficiency of BCI-based communication systems.
Collapse
|
134
|
Thapa N, Yang JG, Bae S, Kim GM, Park HJ, Park H. Effect of Electrical Muscle Stimulation and Resistance Exercise Intervention on Physical and Brain Function in Middle-Aged and Older Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:101. [PMID: 36612423 PMCID: PMC9819342 DOI: 10.3390/ijerph20010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effectiveness of electrical muscle stimulation (EMS) with resistance exercise training (ERT) and resistance exercise training (RT) on physical and brain function in middle-aged and older women. Method: Forty-eight participants were randomly allocated into three groups: (i) ERT (n = 16), (ii) RT (n = 16), and (iii) control group (n = 16). The intervention session was 50 min long and performed three times/week for four weeks. The ERT group performed quadriceps setting, straight leg raises, and ankle pump exercises while constantly receiving EMS on their quadriceps muscle on both legs. The RT group performed the same exercise without EMS. Physical function was measured using skeletal muscle mass index (SMI), handgrip strength, gait speed, five times sit-to-stand test (FTSS) and timed up-and-go test (TUG). Brain function was assessed with electroencephalogram measurement of whole brain activity. Results: After four-week intervention, significant improvements were observed in SMI (p < 0.01), phase angle (p < 0.05), and gait speed (p < 0.05) in the ERT group compared to the control group. ERT also increased muscle strength (p < 0.05) and mobility in lower limbs as observed in FTSS and TUG tests (p < 0.05) at post-intervention compared to the baseline. In the ERT group, significant positive changes were observed in Beta1 band power, Theta band power, and Alpha1 band whole brain connectivity (p < 0.005) compared to the control group. Conclusions: Our findings showed that ERT can improve muscle and brain function in middle-aged and older adults during a four-week intervention program whereas significant improvements were not observed with RT. Therefore might be one of the feasible alternative intervention to RT for the prevention of muscle loss whilst improving brain function for middle-aged and older population.
Collapse
Affiliation(s)
- Ngeemasara Thapa
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| | - Ja-Gyeong Yang
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| | - Seongryu Bae
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| | - Gwon-Min Kim
- Medical Research Institute, Pusan National University, Busan 49241, Republic of Korea
| | - Hye-Jin Park
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| | - Hyuntae Park
- Department of Health Sciences, Graduate School, Dong-A University, Busan 49315, Republic of Korea
- Laboratory of Smart Healthcare, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
135
|
Jacobs FENB, Bernhard H, van Kranen-Mastenbroek VHJM, Wagner GL, Schaper FLWVJ, Ackermans L, Rouhl RPW, Roberts MJ, Gommer ED. Thalamocortical coherence and causality in different sleep stages using deep brain stimulation recordings. Sleep Med 2022; 100:573-576. [PMID: 36327586 DOI: 10.1016/j.sleep.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Previous research has shown an interplay between the thalamus and cerebral cortex during NREM sleep in humans, however the directionality of the thalamocortical synchronization is as yet unknown. In this study thalamocortical connectivity during different NREM sleep stages using sleep scalp electroencephalograms and local field potentials from the left and right anterior thalamus was measured in three epilepsy patients implanted with deep brain stimulation electrodes. Connectivity was assessed as debiased weighted phase lag index and granger causality between the thalamus and cortex for the NREM sleep stages N1, N2 and N3. Results showed connectivity was most prominently directed from cortex to thalamus. Moreover, connectivity varied in strength between the different sleep stages, but barely in direction or frequency. These results imply relatively stable thalamocortical connectivity during NREM sleep directed from the cortex to the thalamus.
Collapse
Affiliation(s)
- Fleur E N B Jacobs
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands
| | - Hannah Bernhard
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Vivianne H J M van Kranen-Mastenbroek
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Oosterhout, Heeze en Maastricht, Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - G Louis Wagner
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Oosterhout, Heeze en Maastricht, Netherlands
| | - Frederic L W V J Schaper
- Department of Neurosurgery, Maastricht University Medical Center Maastricht, Maastricht University, Maastricht, Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center Maastricht, Maastricht University, Maastricht, Netherlands
| | - Rob P W Rouhl
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Oosterhout, Heeze en Maastricht, Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Erik D Gommer
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht University, Maastricht, Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
136
|
Gofton TE, Norton L, Laforge G, Gibson R, Debicki D, Althenayan E, Scales N, Beinum AV, Hornby L, Shemie S, Dhanani S, Slessarev M. Cerebral cortical activity after withdrawal of life-sustaining measures in critically ill patients. Am J Transplant 2022; 22:3120-3129. [PMID: 35822321 DOI: 10.1111/ajt.17146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023]
Abstract
Establishing when cerebral cortical activity stops relative to circulatory arrest during the dying process will enhance trust in donation after circulatory determination of death. We used continuous electroencephalography and arterial blood pressure monitoring prior to withdrawal of life sustaining measures and for 30 min following circulatory arrest to explore the temporal relationship between cessation of cerebral cortical activity and circulatory arrest. Qualitative and quantitative EEG analyses were completed. Among 140 screened patients, 52 were eligible, 15 were enrolled, 11 completed the full study, and 8 (3 female, median age 68 years) were included in the analysis. Across participants, EEG activity stopped at a median of 78 (Q1 = -387, Q3 = 111) seconds before circulatory arrest. Following withdrawal of life sustaining measures there was a progressive reduction in electroencephalographic amplitude (p = .002), spectral power (p = .008), and coherence (p = .003). Prospective recording of cerebral cortical activity in imminently dying patients is feasible. Our results from this small cohort suggest that cerebral cortical activity does not persist after circulatory arrest. Confirmation of these findings in a larger multicenter study are needed to help promote stakeholder trust in donation after circulatory determination of death.
Collapse
Affiliation(s)
- Teneille E Gofton
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Loretta Norton
- Department of Psychology, King's University College at Western University, London, Ontario, Canada
| | - Geoffrey Laforge
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Raechelle Gibson
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Derek Debicki
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Eyad Althenayan
- Department of Medicine/Critical Care, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nathan Scales
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Laura Hornby
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Canadian Blood Services, Ottawa, Ontario, Canada
| | - Sam Shemie
- Canadian Blood Services, Ottawa, Ontario, Canada.,Pediatric Intensive Care, McGill University Health Centre & Research Institute, Montreal, Quebec, Canada
| | - Sonny Dhanani
- Pediatric Critical Care, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Marat Slessarev
- Department of Psychology, King's University College at Western University, London, Ontario, Canada.,Department of Medicine/Critical Care, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
137
|
Ismail L, Karwowski W, Farahani FV, Rahman M, Alhujailli A, Fernandez-Sumano R, Hancock PA. Modeling Brain Functional Connectivity Patterns during an Isometric Arm Force Exertion Task at Different Levels of Perceived Exertion: A Graph Theoretical Approach. Brain Sci 2022; 12:1575. [PMID: 36421899 PMCID: PMC9688629 DOI: 10.3390/brainsci12111575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 09/29/2023] Open
Abstract
The perception of physical exertion is the cognitive sensation of work demands associated with voluntary muscular actions. Measurements of exerted force are crucial for avoiding the risk of overexertion and understanding human physical capability. For this purpose, various physiological measures have been used; however, the state-of-the-art in-force exertion evaluation lacks assessments of underlying neurophysiological signals. The current study applied a graph theoretical approach to investigate the topological changes in the functional brain network induced by predefined force exertion levels for twelve female participants during an isometric arm task and rated their perceived physical comfort levels. The functional connectivity under predefined force exertion levels was assessed using the coherence method for 84 anatomical brain regions of interest at the electroencephalogram (EEG) source level. Then, graph measures were calculated to quantify the network topology for two frequency bands. The results showed that high-level force exertions are associated with brain networks characterized by more significant clustering coefficients (6%), greater modularity (5%), higher global efficiency (9%), and less distance synchronization (25%) under alpha coherence. This study on the neurophysiological basis of physical exertions with various force levels suggests that brain regions communicate and cooperate higher when muscle force exertions increase to meet the demands of physically challenging tasks.
Collapse
Affiliation(s)
- Lina Ismail
- Department of Industrial and Management Engineering, Arab Academy for Science Technology & Maritime Transport, Alexandria 2913, Egypt
| | - Waldemar Karwowski
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mahjabeen Rahman
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Ashraf Alhujailli
- Department of Management Science, Yanbu Industrial College, Yanbu 46452, Saudi Arabia
| | - Raul Fernandez-Sumano
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
138
|
Pitetzis D, Frantzidis C, Psoma E, Deretzi G, Kalogera-Fountzila A, Bamidis PD, Spilioti M. EEG Network Analysis in Epilepsy with Generalized Tonic-Clonic Seizures Alone. Brain Sci 2022; 12:1574. [PMID: 36421898 PMCID: PMC9688338 DOI: 10.3390/brainsci12111574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/13/2024] Open
Abstract
Many contradictory theories regarding epileptogenesis in idiopathic generalized epilepsy have been proposed. This study aims to define the network that takes part in the formation of the spike-wave discharges in patients with generalized tonic-clonic seizures alone (GTCSa) and elucidate the network characteristics. Furthermore, we intend to define the most influential brain areas and clarify the connectivity pattern among them. The data were collected from 23 patients with GTCSa utilizing low-density electroencephalogram (EEG). The source localization of generalized spike-wave discharges (GSWDs) was conducted using the Standardized low-resolution brain electromagnetic tomography (sLORETA) methodology. Cortical connectivity was calculated utilizing the imaginary part of coherence. The network characteristics were investigated through small-world propensity and the integrated value of influence (IVI). Source localization analysis estimated that most sources of GSWDs were in the superior frontal gyrus and anterior cingulate. Graph theory analysis revealed that epileptic sources created a network that tended to be regularized during generalized spike-wave activity. The IVI analysis concluded that the most influential nodes were the left insular gyrus and the left inferior parietal gyrus at 3 and 4 Hz, respectively. In conclusion, some nodes acted mainly as generators of GSWDs and others as influential ones across the whole network.
Collapse
Affiliation(s)
- Dimitrios Pitetzis
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Christos Frantzidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Elizabeth Psoma
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Anna Kalogera-Fountzila
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Panagiotis D. Bamidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Martha Spilioti
- 1st Department of Neurology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
139
|
Shahdadian S, Wang X, Wanniarachchi H, Chaudhari A, Truong NCD, Liu H. Neuromodulation of brain power topography and network topology by prefrontal transcranial photobiomodulation. J Neural Eng 2022; 19:10.1088/1741-2552/ac9ede. [PMID: 36317341 PMCID: PMC9795815 DOI: 10.1088/1741-2552/ac9ede] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Objective.Transcranial photobiomodulation (tPBM) has shown promising benefits, including cognitive improvement, in healthy humans and in patients with Alzheimer's disease. In this study, we aimed to identify key cortical regions that present significant changes caused by tPBM in the electroencephalogram (EEG) oscillation powers and functional connectivity in the healthy human brain.Approach. A 64-channel EEG was recorded from 45 healthy participants during a 13 min period consisting of a 2 min baseline, 8 min tPBM/sham intervention, and 3 min recovery. After pre-processing and normalizing the EEG data at the five EEG rhythms, cluster-based permutation tests were performed for multiple comparisons of spectral power topographies, followed by graph-theory analysis as a topological approach for quantification of brain connectivity metrics at global and nodal/cluster levels.Main results. EEG power enhancement was observed in clusters of channels over the frontoparietal regions in the alpha band and the centroparietal regions in the beta band. The global measures of the network revealed a reduction in synchronization, global efficiency, and small-worldness of beta band connectivity, implying an enhancement of brain network complexity. In addition, in the beta band, nodal graphical analysis demonstrated significant increases in local information integration and centrality over the frontal clusters, accompanied by a decrease in segregation over the bilateral frontal, left parietal, and left occipital regions.Significance.Frontal tPBM increased EEG alpha and beta powers in the frontal-central-parietal regions, enhanced the complexity of the global beta-wave brain network, and augmented local information flow and integration of beta oscillations across prefrontal cortical regions. This study sheds light on the potential link between electrophysiological effects and human cognitive improvement induced by tPBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanli Liu
- Authors to whom any correspondence should be addressed,
| |
Collapse
|
140
|
Matos J, Peralta G, Heyse J, Menetre E, Seeck M, van Mierlo P. Diagnosis of Epilepsy with Functional Connectivity in EEG after a Suspected First Seizure. Bioengineering (Basel) 2022; 9:690. [PMID: 36421091 PMCID: PMC9687589 DOI: 10.3390/bioengineering9110690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 09/29/2023] Open
Abstract
Epilepsy is regarded as a structural and functional network disorder, affecting around 50 million people worldwide. A correct disease diagnosis can lead to quicker medical action, preventing adverse effects. This paper reports the design of a classifier for epilepsy diagnosis in patients after a first ictal episode, using electroencephalogram (EEG) recordings. The dataset consists of resting-state EEG from 629 patients, of which 504 were retained for the study. The patient's cohort exists out of 291 patients with epilepsy and 213 patients with other pathologies. The data were split into two sets: 80% training set and 20% test set. The extracted features from EEG included functional connectivity measures, graph measures, band powers and brain asymmetry ratios. Feature reduction was performed, and the models were trained using Machine Learning (ML) techniques. The models' evaluation was performed with the area under the receiver operating characteristic curve (AUC). When focusing specifically on focal lesional epileptic patients, better results were obtained. This classification task was optimized using a 5-fold cross-validation, where SVM using PCA for feature reduction achieved an AUC of 0.730 ± 0.030. In the test set, the same model achieved 0.649 of AUC. The verified decrease is justified by the considerable diversity of pathologies in the cohort. An analysis of the selected features across tested models shows that functional connectivity and its graph measures have the most considerable predictive power, along with full-spectrum frequency-based features. To conclude, the proposed algorithms, with some refinement, can be of added value for doctors diagnosing epilepsy from EEG recordings after a suspected first seizure.
Collapse
Affiliation(s)
- João Matos
- Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Guilherme Peralta
- Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Jolan Heyse
- Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
| | - Eric Menetre
- EEG and Epilepsy Unit, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Pieter van Mierlo
- Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
141
|
Li Q, Coulson Theodorsen M, Konvalinka I, Eskelund K, Karstoft KI, Bo Andersen S, Andersen TS. Resting-state EEG functional connectivity predicts post-traumatic stress disorder subtypes in veterans. J Neural Eng 2022; 19. [PMID: 36250685 DOI: 10.1088/1741-2552/ac9aaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 01/11/2023]
Abstract
Objective. Post-traumatic stress disorder (PTSD) is highly heterogeneous, and identification of quantifiable biomarkers that could pave the way for targeted treatment remains a challenge. Most previous electroencephalography (EEG) studies on PTSD have been limited to specific handpicked features, and their findings have been highly variable and inconsistent. Therefore, to disentangle the role of promising EEG biomarkers, we developed a machine learning framework to investigate a wide range of commonly used EEG biomarkers in order to identify which features or combinations of features are capable of characterizing PTSD and potential subtypes.Approach. We recorded 5 min of eyes-closed and 5 min of eyes-open resting-state EEG from 202 combat-exposed veterans (53% with probable PTSD and 47% combat-exposed controls). Multiple spectral, temporal, and connectivity features were computed and logistic regression, random forest, and support vector machines with feature selection methods were employed to classify PTSD. To obtain robust results, we performed repeated two-layer cross-validation to test on an entirely unseen test set.Main results. Our classifiers obtained a balanced test accuracy of up to 62.9% for predicting PTSD patients. In addition, we identified two subtypes within PTSD: one where EEG patterns were similar to those of the combat-exposed controls, and another that were characterized by increased global functional connectivity. Our classifier obtained a balanced test accuracy of 79.4% when classifying this PTSD subtype from controls, a clear improvement compared to predicting the whole PTSD group. Interestingly, alpha connectivity in the dorsal and ventral attention network was particularly important for the prediction, and these connections were positively correlated with arousal symptom scores, a central symptom cluster of PTSD.Significance. Taken together, the novel framework presented here demonstrates how unsupervised subtyping can delineate heterogeneity and improve machine learning prediction of PTSD, and may pave the way for better identification of quantifiable biomarkers.
Collapse
Affiliation(s)
- Qianliang Li
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maya Coulson Theodorsen
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Military Psychology, Danish Veteran Centre, Danish Defence, Copenhagen, Denmark.,Research and Knowledge Centre, Danish Veteran Centre, Danish Defence, Ringsted, Denmark
| | - Ivana Konvalinka
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kasper Eskelund
- Department of Military Psychology, Danish Veteran Centre, Danish Defence, Copenhagen, Denmark.,Research and Knowledge Centre, Danish Veteran Centre, Danish Defence, Ringsted, Denmark
| | - Karen-Inge Karstoft
- Research and Knowledge Centre, Danish Veteran Centre, Danish Defence, Ringsted, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Bo Andersen
- Research and Knowledge Centre, Danish Veteran Centre, Danish Defence, Ringsted, Denmark
| | - Tobias S Andersen
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
142
|
Li Q, Weiland RF, Konvalinka I, Mansvelder HD, Andersen TS, Smit DJA, Begeer S, Linkenkaer-Hansen K. Intellectually able adults with autism spectrum disorder show typical resting-state EEG activity. Sci Rep 2022; 12:19016. [PMID: 36347938 PMCID: PMC9643446 DOI: 10.1038/s41598-022-22597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
There is broad interest in discovering quantifiable physiological biomarkers for psychiatric disorders to aid diagnostic assessment. However, finding biomarkers for autism spectrum disorder (ASD) has proven particularly difficult, partly due to high heterogeneity. Here, we recorded five minutes eyes-closed rest electroencephalography (EEG) from 186 adults (51% with ASD and 49% without ASD) and investigated the potential of EEG biomarkers to classify ASD using three conventional machine learning models with two-layer cross-validation. Comprehensive characterization of spectral, temporal and spatial dimensions of source-modelled EEG resulted in 3443 biomarkers per recording. We found no significant group-mean or group-variance differences for any of the EEG features. Interestingly, we obtained validation accuracies above 80%; however, the best machine learning model merely distinguished ASD from the non-autistic comparison group with a mean balanced test accuracy of 56% on the entirely unseen test set. The large drop in model performance between validation and testing, stress the importance of rigorous model evaluation, and further highlights the high heterogeneity in ASD. Overall, the lack of significant differences and weak classification indicates that, at the group level, intellectually able adults with ASD show remarkably typical resting-state EEG.
Collapse
Affiliation(s)
- Qianliang Li
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ricarda F Weiland
- Faculty of Behavioural and Movement Sciences, Department of Clinical- Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, 1081 HV, Amsterdam, The Netherlands
| | - Ivana Konvalinka
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Tobias S Andersen
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Dirk J A Smit
- Amsterdam Neuroscience, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, 1012 WX, Amsterdam, The Netherlands
| | - Sander Begeer
- Faculty of Behavioural and Movement Sciences, Department of Clinical- Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, 1081 HV, Amsterdam, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
143
|
Adamovich T, Zakharov I, Tabueva A, Malykh S. The thresholding problem and variability in the EEG graph network parameters. Sci Rep 2022; 12:18659. [PMID: 36333413 PMCID: PMC9636266 DOI: 10.1038/s41598-022-22079-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Graph thresholding is a frequently used practice of eliminating the weak connections in brain functional connectivity graphs. The main aim of the procedure is to delete the spurious connections in the data. However, the choice of the threshold is arbitrary, and the effect of the threshold choice is not fully understood. Here we present the description of the changes in the global measures of a functional connectivity graph depending on the different proportional thresholds based on the 146 resting-state EEG recordings. The dynamics is presented in five different synchronization measures (wPLI, ImCoh, Coherence, ciPLV, PPC) in sensors and source spaces. The analysis shows significant changes in the graph's global connectivity measures as a function of the chosen threshold which may influence the outcome of the study. The choice of the threshold could lead to different study conclusions; thus it is necessary to improve the reasoning behind the choice of the different analytic options and consider the adoption of different analytic approaches. We also proposed some ways of improving the procedure of thresholding in functional connectivity research.
Collapse
Affiliation(s)
- Timofey Adamovich
- Psychological Institute of Russian Academy of Education, Moscow, Russia.
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia.
| | - Ilya Zakharov
- Psychological Institute of Russian Academy of Education, Moscow, Russia
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Anna Tabueva
- Psychological Institute of Russian Academy of Education, Moscow, Russia
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Sergey Malykh
- Psychological Institute of Russian Academy of Education, Moscow, Russia
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
144
|
Li F, Liu Y, Lu L, Li H, Xing C, Chen H, Yuan F, Yin X, Chen YC. Causal interactions with an insular-cortical network in mild traumatic brain injury. Eur J Radiol 2022; 157:110594. [DOI: 10.1016/j.ejrad.2022.110594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
145
|
Hyperconnectivity matters in early-onset Alzheimer's disease: a resting-state EEG connectivity study. Neurophysiol Clin 2022; 52:459-471. [DOI: 10.1016/j.neucli.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
|
146
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
147
|
Park HK, Choi SH, Kim S, Park U, Kang SW, Jeong JH, Moon SY, Hong CH, Song HS, Chun BO, Lee SM, Choi M, Park KW, Kim BC, Cho SH, Na HR, Park YK. Functional brain changes using electroencephalography after a 24-week multidomain intervention program to prevent dementia. Front Aging Neurosci 2022; 14:892590. [PMID: 36313025 PMCID: PMC9597498 DOI: 10.3389/fnagi.2022.892590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Quantitative electroencephalography (QEEG) has proven useful in predicting the response to various treatments, but, until now, no study has investigated changes in functional connectivity using QEEG following a lifestyle intervention program. We aimed to investigate neurophysiological changes in QEEG after a 24-week multidomain lifestyle intervention program in the SoUth Korean study to PrEvent cognitive impaiRment and protect BRAIN health through lifestyle intervention in at-risk elderly people (SUPERBRAIN). Participants without dementia and with at least one modifiable dementia risk factor, aged 60–79 years, were randomly assigned to the facility-based multidomain intervention (FMI) (n = 51), the home-based multidomain intervention (HMI) (n = 51), and the control group (n = 50). The analysis of this study included data from 44, 49, and 34 participants who underwent EEG at baseline and at the end of the study in the FMI, HMI, and control groups, respectively. The spectrum power and power ratio of EEG were calculated. Source cortical current density and functional connectivity were estimated by standardized low-resolution brain electromagnetic tomography. Participants who received the intervention showed increases in the power of the beta1 and beta3 bands and in the imaginary part of coherence of the alpha1 band compared to the control group. Decreases in the characteristic path lengths of the alpha1 band in the right supramarginal gyrus and right rostral middle frontal cortex were observed in those who received the intervention. This study showed positive biological changes, including increased functional connectivity and higher global efficiency in QEEG after a multidomain lifestyle intervention.Clinical trial registration[https://clinicaltrials.gov/ct2/show/NCT03980392] identifier [NCT03980392].
Collapse
Affiliation(s)
- Hee Kyung Park
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, South Korea
- Department of Mental Health Care of Older People, Division of Psychiatry, University College London, London, United Kingdom
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, South Korea
| | | | | | - Seung Wan Kang
- iMediSync Inc., Seoul, South Korea
- Data Center for Korean EEG, College of Nursing, Seoul National University, Seoul, South Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, South Korea
| | - So Young Moon
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, South Korea
| | - Hong-Sun Song
- Department of Sports Sciences, Korea Institute of Sports Science, Seoul, South Korea
| | - Buong-O Chun
- Graduate School of Physical Education, College of Arts and Physical Education, Myongji University, Seoul, South Korea
| | - Sun Min Lee
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Muncheong Choi
- Department of Sports and Health Science, Shinhan University, Uijeongbu-si, South Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A University College of Medicine, Busan, South Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hae Ri Na
- Department of Neurology, Bobath Memorial Hospital, Seongnam, South Korea
- *Correspondence: Hae Ri Na,
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Graduate School of East-West Medical Nutrition, Kyung Hee University, Yongin, South Korea
- Department of Food Innovation and Health, Graduate School of East-West Medical Nutrition, Kyung Hee University, Yongin, South Korea
- Yoo Kyoung Park,
| |
Collapse
|
148
|
Hsiao FJ, Chen WT, Pan LLH, Liu HY, Wang YF, Chen SP, Lai KL, Coppola G, Wang SJ. Resting-state magnetoencephalographic oscillatory connectivity to identify patients with chronic migraine using machine learning. J Headache Pain 2022; 23:130. [PMID: 36192689 PMCID: PMC9531441 DOI: 10.1186/s10194-022-01500-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
To identify and validate the neural signatures of resting-state oscillatory connectivity for chronic migraine (CM), we used machine learning techniques to classify patients with CM from healthy controls (HC) and patients with other pain disorders. The cross-sectional study obtained resting-state magnetoencephalographic data from 240 participants (70 HC, 100 CM, 35 episodic migraine [EM], and 35 fibromyalgia [FM]). Source-based oscillatory connectivity of relevant cortical regions was calculated to determine intrinsic connectivity at 1–40 Hz. A classification model that employed a support vector machine was developed using the magnetoencephalographic data to assess the reliability and generalizability of CM identification. In the findings, the discriminative features that differentiate CM from HC were principally observed from the functional interactions between salience, sensorimotor, and part of the default mode networks. The classification model with these features exhibited excellent performance in distinguishing patients with CM from HC (accuracy ≥ 86.8%, area under the curve (AUC) ≥ 0.9) and from those with EM (accuracy: 94.5%, AUC: 0.96). The model also achieved high performance (accuracy: 89.1%, AUC: 0.91) in classifying CM from other pain disorders (FM in this study). These resting-state magnetoencephalographic electrophysiological features yield oscillatory connectivity to identify patients with CM from those with a different type of migraine and pain disorder, with adequate reliability and generalizability.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, Taiwan, 11217. .,Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan.
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, Taiwan, 11217
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, Taiwan, 11217
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, Taiwan, 11217
| | - Kuan-Lin Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, Taiwan, 11217
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, Taiwan, 11217
| |
Collapse
|
149
|
Wodeyar A, Srinivasan R. Structural connectome constrained graphical lasso for MEG partial coherence. Netw Neurosci 2022; 6:1219-1242. [PMID: 38800455 PMCID: PMC11117092 DOI: 10.1162/netn_a_00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 05/29/2024] Open
Abstract
Structural connectivity provides the backbone for communication between neural populations. Since axonal transmission occurs on a millisecond time scale, measures of M/EEG functional connectivity sensitive to phase synchronization, such as coherence, are expected to reflect structural connectivity. We develop a model of MEG functional connectivity whose edges are constrained by the structural connectome. The edge strengths are defined by partial coherence, a measure of conditional dependence. We build a new method-the adaptive graphical lasso (AGL)-to fit the partial coherence to perform inference on the hypothesis that the structural connectome is reflected in MEG functional connectivity. In simulations, we demonstrate that the structural connectivity's influence on the partial coherence can be inferred using the AGL. Further, we show that fitting the partial coherence is superior to alternative methods at recovering the structural connectome, even after the source localization estimates required to map MEG from sensors to the cortex. Finally, we show how partial coherence can be used to explore how distinct parts of the structural connectome contribute to MEG functional connectivity in different frequency bands. Partial coherence offers better estimates of the strength of direct functional connections and consequently a potentially better estimate of network structure.
Collapse
Affiliation(s)
- Anirudh Wodeyar
- Department of Cognitive Sciences, University of California, Irvine, California, USA
- Department of Statistics, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Ramesh Srinivasan
- Department of Statistics, University of California, Irvine, California, USA
| |
Collapse
|
150
|
Smith EE, Bel-Bahar TS, Kayser J. A systematic data-driven approach to analyze sensor-level EEG connectivity: Identifying robust phase-synchronized network components using surface Laplacian with spectral-spatial PCA. Psychophysiology 2022; 59:e14080. [PMID: 35478408 PMCID: PMC9427703 DOI: 10.1111/psyp.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
Although conventional averaging across predefined frequency bands reduces the complexity of EEG functional connectivity (FC), it obscures the identification of resting-state brain networks (RSN) and impedes accurate estimation of FC reliability. Extending prior work, we combined scalp current source density (CSD; spherical spline surface Laplacian) and spectral-spatial PCA to identify FC components. Phase-based FC was estimated via debiased-weighted phase-locking index from CSD-transformed resting EEGs (71 sensors, 8 min, eyes open/closed, 35 healthy adults, 1-week retest). Spectral PCA extracted six robust alpha and theta components (86.6% variance). Subsequent spatial PCA for each spectral component revealed seven robust regionally focused (posterior, central, and frontal) and long-range (posterior-anterior) alpha components (peaks at 8, 10, and 13 Hz) and a midfrontal theta (6 Hz) component, accounting for 37.0% of FC variance. These spatial FC components were consistent with well-known networks (e.g., default mode, visual, and sensorimotor), and four were sensitive to eyes open/closed conditions. Most FC components had good-to-excellent internal consistency (odd/even epochs, eyes open/closed) and test-retest reliability (ICCs ≥ .8). Moreover, the FC component structure was generally present in subsamples (session × odd/even epoch, or smaller subgroups [n = 7-10]), as indicated by high similarity of component loadings across PCA solutions. Apart from systematically reducing FC dimensionality, our approach avoids arbitrary thresholds and allows quantification of meaningful and reliable network components that may prove to be of high relevance for basic and clinical research applications.
Collapse
Affiliation(s)
- Ezra E. Smith
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Tarik S. Bel-Bahar
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Jürgen Kayser
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|