101
|
Shiba S, Ikeda K, Horie-Inoue K, Nakayama A, Tanaka T, Inoue S. Deficiency of COX7RP, a mitochondrial supercomplex assembly promoting factor, lowers blood glucose level in mice. Sci Rep 2017; 7:7606. [PMID: 28790391 PMCID: PMC5548899 DOI: 10.1038/s41598-017-08081-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023] Open
Abstract
Mitochondria are essential organelles to efficiently produce ATP by ATP-synthase, which uses a proton-gradient generated by respiratory chain complexes. We previously demonstrated that COX7RP/COX7A2L/SCAF1 is a key molecule that promotes respiratory supercomplex assembly and regulates energy generation. The contribution of COX7RP to metabolic homeostasis, however, remains to be clarified. In the present study, we showed a metabolic phenotype of Cox7rp knockout (Cox7rpKO) mice, which exhibit lower blood glucose levels after insulin or pyruvate injection. Notably, ATP synthesis rate was reduced in Cox7rpKO mice liver, in accordance with decreased percentages of complex III subunit RISP and complex IV subunit COX1 involved in I + III + IV supercomplex fraction. The present findings suggest that COX7RP-mediated mitochondrial respiration plays crucial roles in the regulation of glucose homeostasis and its impairment will lead to the pathophysiology of metabolic states.
Collapse
Affiliation(s)
- Sachiko Shiba
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Akitoshi Nakayama
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
102
|
Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1α and mTORC1: Role of protein farnesylation. Sci Rep 2017; 7:6618. [PMID: 28747716 PMCID: PMC5529411 DOI: 10.1038/s41598-017-07011-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/21/2017] [Indexed: 12/28/2022] Open
Abstract
Metabolic derangements are a clinically significant complication of major trauma (e.g., burn injury) and include various aspects of metabolism, such as insulin resistance, muscle wasting, mitochondrial dysfunction and hyperlactatemia. Nonetheless, the molecular pathogenesis and the relation between these diverse metabolic alterations are poorly understood. We have previously shown that burn increases farnesyltransferase (FTase) expression and protein farnesylation and that FTase inhibitor (FTI) prevents burn-induced hyperlactatemia, insulin resistance, and increased proteolysis in mouse skeletal muscle. In this study, we found that burn injury activated mTORC1 and hypoxia-inducible factor (HIF)-1α, which paralleled dysfunction, morphological alterations (i.e., enlargement, partial loss of cristae structure) and impairment of respiratory supercomplex assembly of the mitochondria, and ER stress. FTI reversed or ameliorated all of these alterations in burned mice. These findings indicate that these burn-induced changes, which encompass various aspects of metabolism, may be linked to one another and require protein farnesylation. Our results provide evidence of involvement of the mTORC1-HIF-1α pathway in burn-induced metabolic derangements. Our study identifies protein farnesylation as a potential hub of the signaling network affecting multiple aspects of metabolic alterations after burn injury and as a novel potential molecular target to improve the clinical outcome of severely burned patients.
Collapse
|
103
|
Mitochondrial Respiration in Human Colorectal and Breast Cancer Clinical Material Is Regulated Differently. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1372640. [PMID: 28781720 PMCID: PMC5525093 DOI: 10.1155/2017/1372640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
We conducted quantitative cellular respiration analysis on samples taken from human breast cancer (HBC) and human colorectal cancer (HCC) patients. Respiratory capacity is not lost as a result of tumor formation and even though, functionally, complex I in HCC was found to be suppressed, it was not evident on the protein level. Additionally, metabolic control analysis was used to quantify the role of components of mitochondrial interactosome. The main rate-controlling steps in HBC are complex IV and adenine nucleotide transporter, but in HCC, complexes I and III. Our kinetic measurements confirmed previous studies that respiratory chain complexes I and III in HBC and HCC can be assembled into supercomplexes with a possible partial addition from the complex IV pool. Therefore, the kinetic method can be a useful addition in studying supercomplexes in cell lines or human samples. In addition, when results from culture cells were compared to those from clinical samples, clear differences were present, but we also detected two different types of mitochondria within clinical HBC samples, possibly linked to two-compartment metabolism. Taken together, our data show that mitochondrial respiration and regulation of mitochondrial membrane permeability have substantial differences between these two cancer types when compared to each other to their adjacent healthy tissue or to respective cell cultures.
Collapse
|
104
|
Bottani E, Cerutti R, Harbour ME, Ravaglia S, Dogan SA, Giordano C, Fearnley IM, D'Amati G, Viscomi C, Fernandez-Vizarra E, Zeviani M. TTC19 Plays a Husbandry Role on UQCRFS1 Turnover in the Biogenesis of Mitochondrial Respiratory Complex III. Mol Cell 2017; 67:96-105.e4. [PMID: 28673544 DOI: 10.1016/j.molcel.2017.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/03/2017] [Accepted: 06/01/2017] [Indexed: 12/29/2022]
Abstract
Loss-of-function mutations in TTC19 (tetra-tricopeptide repeat domain 19) have been associated with severe neurological phenotypes and mitochondrial respiratory chain complex III deficiency. We previously demonstrated the mitochondrial localization of TTC19 and its link with complex III biogenesis. Here we provide detailed insight into the mechanistic role of TTC19, by investigating a Ttc19?/? mouse model that shows progressive neurological and metabolic decline, decreased complex III activity, and increased production of reactive oxygen species. By using both the Ttc19?/? mouse model and a range of human cell lines, we demonstrate that TTC19 binds to the fully assembled complex III dimer, i.e., after the incorporation of the iron-sulfur Rieske protein (UQCRFS1). The in situ maturation of UQCRFS1 produces N-terminal polypeptides, which remain bound to holocomplex III. We show that, in normal conditions, these UQCRFS1 fragments are rapidly removed, but when TTC19 is absent they accumulate within complex III, causing its structural and functional impairment.
Collapse
Affiliation(s)
- Emanuela Bottani
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Michael E Harbour
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Sabrina Ravaglia
- Istituto Neurologico "Casimiro Mondino," via Mondino 2, Pavia 27100, Italy
| | - Sukru Anil Dogan
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Ian M Fearnley
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Giulia D'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Erika Fernandez-Vizarra
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK.
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
105
|
Being right on Q: shaping eukaryotic evolution. Biochem J 2017; 473:4103-4127. [PMID: 27834740 PMCID: PMC5103874 DOI: 10.1042/bcj20160647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) formation by mitochondria is an incompletely understood eukaryotic process. I proposed a kinetic model [BioEssays (2011) 33, 88–94] in which the ratio between electrons entering the respiratory chain via FADH2 or NADH (the F/N ratio) is a crucial determinant of ROS formation. During glucose breakdown, the ratio is low, while during fatty acid breakdown, the ratio is high (the longer the fatty acid, the higher is the ratio), leading to higher ROS levels. Thus, breakdown of (very-long-chain) fatty acids should occur without generating extra FADH2 in mitochondria. This explains peroxisome evolution. A potential ROS increase could also explain the absence of fatty acid oxidation in long-lived cells (neurons) as well as other eukaryotic adaptations, such as dynamic supercomplex formation. Effective combinations of metabolic pathways from the host and the endosymbiont (mitochondrion) allowed larger varieties of substrates (with different F/N ratios) to be oxidized, but high F/N ratios increase ROS formation. This might have led to carnitine shuttles, uncoupling proteins, and multiple antioxidant mechanisms, especially linked to fatty acid oxidation [BioEssays (2014) 36, 634–643]. Recent data regarding peroxisome evolution and their relationships with mitochondria, ROS formation by Complex I during ischaemia/reperfusion injury, and supercomplex formation adjustment to F/N ratios strongly support the model. I will further discuss the model in the light of experimental findings regarding mitochondrial ROS formation.
Collapse
|
106
|
Lu YW, Acoba MG, Selvaraju K, Huang TC, Nirujogi RS, Sathe G, Pandey A, Claypool SM. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell 2017; 28:1489-1506. [PMID: 28404750 PMCID: PMC5449148 DOI: 10.1091/mbc.e17-03-0195] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 11/11/2022] Open
Abstract
A network of interactions for human adenine nucleotide translocases, required for oxidative phosphorylation, is reported. Of particular interest is an evolutionarily conserved and functionally important association with respiratory supercomplexes, which is surprising because the respirasomes of yeast and mammals are different. Members of the adenine nucleotide translocase (ANT) family exchange ADP for ATP across the mitochondrial inner membrane, an activity that is essential for oxidative phosphorylation (OXPHOS). Mutations in or dysregulation of ANTs is associated with progressive external ophthalmoplegia, cardiomyopathy, nonsyndromic intellectual disability, apoptosis, and the Warburg effect. Binding partners of human ANTs have not been systematically identified. The absence of such information has prevented a detailed molecular understanding of the assorted ANT-associated diseases, including insight into their disparate phenotypic manifestations. To fill this void, in this study, we define the interactomes of two human ANT isoforms. Analogous to its yeast counterpart, human ANTs associate with heterologous partner proteins, including the respiratory supercomplex (RSC) and other solute carriers. The evolutionarily conserved ANT–RSC association is particularly noteworthy because the composition, and thereby organization, of RSCs in yeast and human is different. Surprisingly, absence of the major ANT isoform only modestly impairs OXPHOS in HEK293 cells, indicating that the low levels of other isoforms provide functional redundancy. In contrast, pharmacological inhibition of OXPHOS expression and function inhibits ANT-dependent ADP/ATP exchange. Thus ANTs and the OXPHOS machinery physically interact and functionally cooperate to enhance ANT transport capacity and mitochondrial respiration.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Kandasamy Selvaraju
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Tai-Chung Huang
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei 10051, Taiwan
| | - Raja S Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Gajanan Sathe
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
107
|
Abstract
Respiratory chain dysfunction plays an important role in human disease and aging. It is now well established that the individual respiratory complexes can be organized into supercomplexes, and structures for these macromolecular assemblies, determined by electron cryo-microscopy, have been described recently. Nevertheless, the reason why supercomplexes exist remains an enigma. The widely held view that they enhance catalysis by channeling substrates is challenged by both structural and biophysical information. Here, we evaluate and discuss data and hypotheses on the structures, roles, and assembly of respiratory-chain supercomplexes and propose a future research agenda to address unanswered questions.
Collapse
Affiliation(s)
- Dusanka Milenkovic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - James N Blaza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
108
|
Lee H, Smith SB, Yoon Y. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J Biol Chem 2017; 292:7115-7130. [PMID: 28298442 DOI: 10.1074/jbc.m116.762567] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
The protein optic atrophy 1 (OPA1) is a dynamin-related protein associated with the inner mitochondrial membrane and functions in mitochondrial inner membrane fusion and cristae maintenance. Inner membrane-anchored long OPA1 (L-OPA1) undergoes proteolytic cleavage resulting in short OPA1 (S-OPA1). It is often thought that S-OPA1 is a functionally insignificant proteolytic product of L-OPA1 because the accumulation of S-OPA1 due to L-OPA1 cleavage is observed in mitochondrial fragmentation and dysfunction. However, cells contain a mixture of both L- and S-OPA1 in normal conditions, suggesting the functional significance of maintaining both OPA1 forms, but the differential roles of L- and S-OPA1 in mitochondrial fusion and energetics are ill-defined. Here, we examined mitochondrial fusion and energetic activities in cells possessing L-OPA1 alone, S-OPA1 alone, or both L- and S-OPA1. Using a mitochondrial fusion assay, we established that L-OPA1 confers fusion competence, whereas S-OPA1 does not. Remarkably, we found that S-OPA1 alone without L-OPA1 can maintain oxidative phosphorylation function as judged by growth in oxidative phosphorylation-requiring media, respiration measurements, and levels of the respiratory complexes. Most strikingly, S-OPA1 alone maintained normal mitochondrial cristae structure, which has been commonly assumed to be the function of OPA1 oligomers containing both L- and S-OPA1. Furthermore, we found that the GTPase activity of OPA1 is critical for maintaining cristae tightness and thus energetic competency. Our results demonstrate that, contrary to conventional notion, S-OPA1 is fully competent for maintaining mitochondrial energetics and cristae structure.
Collapse
Affiliation(s)
| | - Sylvia B Smith
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | | |
Collapse
|
109
|
Dong LF, Kovarova J, Bajzikova M, Bezawork-Geleta A, Svec D, Endaya B, Sachaphibulkij K, Coelho AR, Sebkova N, Ruzickova A, Tan AS, Kluckova K, Judasova K, Zamecnikova K, Rychtarcikova Z, Gopalan V, Andera L, Sobol M, Yan B, Pattnaik B, Bhatraju N, Truksa J, Stopka P, Hozak P, Lam AK, Sedlacek R, Oliveira PJ, Kubista M, Agrawal A, Dvorakova-Hortova K, Rohlena J, Berridge MV, Neuzil J. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife 2017; 6. [PMID: 28195532 PMCID: PMC5367896 DOI: 10.7554/elife.22187] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer. DOI:http://dx.doi.org/10.7554/eLife.22187.001
Collapse
Affiliation(s)
- Lan-Feng Dong
- School of Medical Science, Griffith University, Southport, Australia
| | - Jaromira Kovarova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Bajzikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - David Svec
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Berwini Endaya
- School of Medical Science, Griffith University, Southport, Australia
| | | | - Ana R Coelho
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Natasa Sebkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Ruzickova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - An S Tan
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katarina Kluckova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Judasova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Zamecnikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Zittau/Goerlitz University of Applied Sciences, Zittau, Germany
| | - Zuzana Rychtarcikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Vinod Gopalan
- School of Medical Science, Griffith University, Southport, Australia.,School of Medicine, Griffith University, Southport, Australia
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Margarita Sobol
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Bing Yan
- School of Medical Science, Griffith University, Southport, Australia
| | - Bijay Pattnaik
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Naveen Bhatraju
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Hozak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Alfred K Lam
- School of Medicine, Griffith University, Southport, Australia
| | - Radislav Sedlacek
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Mikael Kubista
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,TATAA Biocenter, Gothenburg, Sweden
| | - Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Katerina Dvorakova-Hortova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
110
|
Koziel A, Jarmuszkiewicz W. Hypoxia and aerobic metabolism adaptations of human endothelial cells. Pflugers Arch 2017; 469:815-827. [PMID: 28176017 PMCID: PMC5438427 DOI: 10.1007/s00424-017-1935-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
The goal of our study was to assess the influence of chronic exposure to hypoxia on mitochondrial oxidative metabolism in human umbilical vein endothelial cells (EA.hy926 line) cultured for 6 days at 1% O2 tension. The hypoxia-induced effects were elucidated at the cellular and isolated mitochondria levels. Hypoxia elevated fermentation but did not change mitochondrial biogenesis or the aerobic respiratory capacity of endothelial cells. In endothelial cells, hypoxia caused a general decrease in mitochondrial respiration during carbohydrate, fatty acid, and amino acid oxidation but increased exclusively ketogenic amino acid oxidation. Hypoxia induced an elevation of intracellular and mitochondrial reactive oxygen species (ROS) formation, although cell viability was unchanged and antioxidant systems (superoxide dismutases SOD1 and SOD2, and uncoupling proteins (UCPs)) were not increased. In mitochondria from hypoxic cells, the opposite change was observed at the respiratory chain level, i.e., considerably elevated expression and activity of complex II, and decreased expression and activity of complex I were observed. The elevated activity of complex II resulted in an increase in succinate-sustained mitochondrial ROS formation, mainly through increased reverse electron transport. A hypoxia-induced decrease in UCP2 expression and activity was also observed. It can be concluded that the exposure to chronic hypoxia induces a shift from aerobic toward anaerobic catabolic metabolism. The hypoxia-induced increase in intracellular and mitochondrial ROS formation was not excessive and may be involved in endothelial signaling of hypoxic responses. Our results indicate an important role of succinate, complex II, and reverse electron transport in hypoxia-induced adjustments in endothelial cells.
Collapse
Affiliation(s)
- Agnieszka Koziel
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
111
|
Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, Wang X, Conde Alonso S, Ofori E, Auwerx J, Cantó C, Amati F. Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle. Cell Metab 2017; 25:301-311. [PMID: 27916530 DOI: 10.1016/j.cmet.2016.11.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 09/08/2016] [Accepted: 11/05/2016] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is a hallmark of multiple metabolic complications. Physical activity is known to increase mitochondrial content in skeletal muscle, counteracting age-related decline in muscle function and protecting against metabolic and cardiovascular complications. Here, we investigated the effect of 4 months of exercise training on skeletal muscle mitochondria electron transport chain complexes and supercomplexes in 26 healthy, sedentary older adults. Exercise differentially modulated respiratory complexes. Complex I was the most upregulated complex and not stoichiometrically associated to the other complexes. In contrast to the other complexes, complex I was almost exclusively found assembled in supercomplexes in muscle mitochondria. Overall, supercomplex content was increased after exercise. In particular, complexes I, III, and IV were redistributed to supercomplexes in the form of I+III2+IV. Taken together, our results provide the first evidence that exercise affects the stoichiometry of supercomplex formation in humans and thus reveal a novel adaptive mechanism for increased energy demand.
Collapse
Affiliation(s)
- Chiara Greggio
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne 1005, Switzerland
| | - Pooja Jha
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | | | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne 1005, Switzerland
| | - Nicholas T Broskey
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne 1005, Switzerland
| | - Marie Boutant
- Nestlé Institute of Health Sciences, Lausanne 1015, Switzerland
| | - Xu Wang
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sonia Conde Alonso
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne 1005, Switzerland; Institute of Sports Sciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Emmanuel Ofori
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne 1005, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Carles Cantó
- Nestlé Institute of Health Sciences, Lausanne 1015, Switzerland.
| | - Francesca Amati
- Aging and Muscle Metabolism Laboratory, Department of Physiology, University of Lausanne, Lausanne 1005, Switzerland; Institute of Sports Sciences, University of Lausanne, Lausanne 1005, Switzerland; Service of Endocrinology, Diabetology, and Metabolism, Department of Medicine, Lausanne University Hospital, Lausanne 1011, Switzerland.
| |
Collapse
|
112
|
MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase. Cell Rep 2017; 18:1727-1738. [DOI: 10.1016/j.celrep.2017.01.044] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 01/04/2023] Open
|
113
|
Abstract
Understanding the mammalian respiratory complex I assembly has been an arduous task due to the lack of appropriate techniques and the complexity of the process. In this issue, a new tour de force based on complexome profiling provides an encyclopedic description of the process (Guerrero-Castillo et al., 2017).
Collapse
|
114
|
Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork-Geleta A, Blecha J, Endaya B, Werner L, Cerny J, Zobalova R, Goodwin J, Spacek T, Alizadeh Pesdar E, Yan B, Nguyen MN, Vondrusova M, Sobol M, Jezek P, Hozak P, Truksa J, Rohlena J, Dong LF, Neuzil J. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2 high Breast Cancer. Antioxid Redox Signal 2017; 26:84-103. [PMID: 27392540 PMCID: PMC5206771 DOI: 10.1089/ars.2016.6677] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Expression of the HER2 oncogene in breast cancer is associated with resistance to treatment, and Her2 may regulate bioenergetics. Therefore, we investigated whether disruption of the electron transport chain (ETC) is a viable strategy to eliminate Her2high disease. RESULTS We demonstrate that Her2high cells and tumors have increased assembly of respiratory supercomplexes (SCs) and increased complex I-driven respiration in vitro and in vivo. They are also highly sensitive to MitoTam, a novel mitochondrial-targeted derivative of tamoxifen. Unlike tamoxifen, MitoTam efficiently suppresses experimental Her2high tumors without systemic toxicity. Mechanistically, MitoTam inhibits complex I-driven respiration and disrupts respiratory SCs in Her2high background in vitro and in vivo, leading to elevated reactive oxygen species production and cell death. Intriguingly, higher sensitivity of Her2high cells to MitoTam is dependent on the mitochondrial fraction of Her2. INNOVATION Oncogenes such as HER2 can restructure ETC, creating a previously unrecognized therapeutic vulnerability exploitable by SC-disrupting agents such as MitoTam. CONCLUSION We propose that the ETC is a suitable therapeutic target in Her2high disease. Antioxid. Redox Signal. 26, 84-103.
Collapse
Affiliation(s)
- Katerina Rohlenova
- 1 Institute of Biotechnology , Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | | | - Jan Stursa
- 2 School of Medical Science, Griffith University , Southport, Australia .,3 Prague Institute of Chemical Technology , Prague, Czech Republic .,4 Biomedical Research Center, University Hospital , Hradec Kralove, Czech Republic
| | | | - Jan Blecha
- 1 Institute of Biotechnology , Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Berwini Endaya
- 2 School of Medical Science, Griffith University , Southport, Australia
| | - Lukas Werner
- 4 Biomedical Research Center, University Hospital , Hradec Kralove, Czech Republic
| | - Jiri Cerny
- 1 Institute of Biotechnology , Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Renata Zobalova
- 1 Institute of Biotechnology , Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic .,2 School of Medical Science, Griffith University , Southport, Australia
| | - Jacob Goodwin
- 2 School of Medical Science, Griffith University , Southport, Australia
| | - Tomas Spacek
- 5 Institute of Physiology , Prague, Czech Republic
| | | | - Bing Yan
- 2 School of Medical Science, Griffith University , Southport, Australia
| | - Maria Nga Nguyen
- 2 School of Medical Science, Griffith University , Southport, Australia
| | - Magdalena Vondrusova
- 1 Institute of Biotechnology , Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Margaryta Sobol
- 6 Institute of Molecular Genetics , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Jezek
- 5 Institute of Physiology , Prague, Czech Republic
| | - Pavel Hozak
- 6 Institute of Molecular Genetics , Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Truksa
- 1 Institute of Biotechnology , Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Jakub Rohlena
- 1 Institute of Biotechnology , Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Lan-Feng Dong
- 2 School of Medical Science, Griffith University , Southport, Australia
| | - Jiri Neuzil
- 1 Institute of Biotechnology , Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic .,2 School of Medical Science, Griffith University , Southport, Australia
| |
Collapse
|
115
|
The Assembly Pathway of Mitochondrial Respiratory Chain Complex I. Cell Metab 2017; 25:128-139. [PMID: 27720676 DOI: 10.1016/j.cmet.2016.09.002] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/21/2016] [Accepted: 09/10/2016] [Indexed: 11/20/2022]
Abstract
Mitochondrial complex I is the largest integral membrane enzyme of the respiratory chain and consists of 44 different subunits encoded in the mitochondrial and nuclear genome. Its biosynthesis is a highly complicated and multifaceted process involving at least 14 additional assembly factors. How these subunits assemble into a functional complex I and where the assembly factors come into play is largely unknown. Here, we applied a dynamic complexome profiling approach to elucidate the assembly of human mitochondrial complex I and its further incorporation into respiratory chain supercomplexes. We delineate the stepwise incorporation of all but one subunit into a series of distinct assembly intermediates and their association with known and putative assembly factors, which had not been implicated in this process before. The resulting detailed and comprehensive model of complex I assembly is fully consistent with recent structural data and the remarkable modular architecture of this multiprotein complex.
Collapse
|
116
|
Martino Adami PV, Quijano C, Magnani N, Galeano P, Evelson P, Cassina A, Do Carmo S, Leal MC, Castaño EM, Cuello AC, Morelli L. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease. J Cereb Blood Flow Metab 2017; 37:69-84. [PMID: 26661224 PMCID: PMC5363729 DOI: 10.1177/0271678x15615132] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
Abstract
Synaptic bioenergetic deficiencies may be associated with early Alzheimer's disease (AD). To explore this concept, we assessed pre-synaptic mitochondrial function in hemizygous (+/-)TgMcGill-R-Thy1-APP rats. The low burden of Aβ and the wide array of behavioral and cognitive impairments described in 6-month-old hemizygous TgMcGill-R-Thy1-APP rats (Tg(+/-)) support their use to investigate synaptic bioenergetics deficiencies described in subjects with early Alzheimer's disease (AD). In this report, we show that pre-synaptic mitochondria from Tg(+/-) rats evidence a decreased respiratory control ratio and spare respiratory capacity associated with deficits in complex I enzymatic activity. Cognitive impairments were prevented and bioenergetic deficits partially reversed when Tg(+/-) rats were fed a nutritionally complete diet from weaning to 6-month-old supplemented with pyrroloquinoline quinone, a mitochondrial biogenesis stimulator with antioxidant and neuroprotective effects. These results provide evidence that, as described in AD brain and not proven in Tg mice models with AD-like phenotype, the mitochondrial bioenergetic capacity of synaptosomes is not conserved in the Tg(+/-) rats. This animal model may be suitable for understanding the basic biochemical mechanisms involved in early AD.
Collapse
Affiliation(s)
- Pamela V Martino Adami
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - Celia Quijano
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Magnani
- IBIMOL-UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Galeano
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina.,ININCA- UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Evelson
- IBIMOL-UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Cassina
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - María C Leal
- Laboratory of Protective and Regenerative Therapies of the CNS, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Laura Morelli
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
117
|
Structure of Mammalian Respiratory Supercomplex I 1 III 2 IV 1. Cell 2016; 167:1598-1609.e10. [DOI: 10.1016/j.cell.2016.11.012] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 01/14/2023]
|
118
|
Sousa JS, Mills DJ, Vonck J, Kühlbrandt W. Functional asymmetry and electron flow in the bovine respirasome. eLife 2016; 5. [PMID: 27830641 PMCID: PMC5117854 DOI: 10.7554/elife.21290] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/03/2016] [Indexed: 01/11/2023] Open
Abstract
Respirasomes are macromolecular assemblies of the respiratory chain complexes I, III and IV in the inner mitochondrial membrane. We determined the structure of supercomplex I1III2IV1 from bovine heart mitochondria by cryo-EM at 9 Å resolution. Most protein-protein contacts between complex I, III and IV in the membrane are mediated by supernumerary subunits. Of the two Rieske iron-sulfur cluster domains in the complex III dimer, one is resolved, indicating that this domain is immobile and unable to transfer electrons. The central position of the active complex III monomer between complex I and IV in the respirasome is optimal for accepting reduced quinone from complex I over a short diffusion distance of 11 nm, and delivering reduced cytochrome c to complex IV. The functional asymmetry of complex III provides strong evidence for directed electron flow from complex I to complex IV through the active complex III monomer in the mammalian supercomplex. DOI:http://dx.doi.org/10.7554/eLife.21290.001
Collapse
Affiliation(s)
- Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| |
Collapse
|
119
|
Abstract
INTRODUCTION Heart failure (HF) has reached epidemic proportions worldwide. Despite the availability of drugs that reduce mortality and afford good symptom relief, HF continues to exact a considerable clinical and economic burden. Current HF therapies elicit benefit by reducing cardiac workload by lowering heart rate and loading conditions, thereby reducing myocardial energy demands. Areas covered: Recent recognition that the failing heart is 'energy deprived' and its primary energy source, the mitochondria, is dysfunctional, has focused attention on mitochondria as a worthy therapeutic target. In HF, mitochondrial dysfunction leads to reduced adenosine triphosphate (ATP) synthesis and excessive formation of damaging reactive oxygen species (ROS), a combination the failing heart can ill afford. Expert commentary: Correcting mitochondrial dysfunction can help forge a new therapeutic approach based on readily available energy that can meet increasing cardiac demands. This paradigm shift, once implemented successfully, is likely to elicit better overall cardiac function, better quality of life, and improved survival for patients with HF.
Collapse
Affiliation(s)
- Hani N Sabbah
- a Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Research , Henry Ford Hospital , Detroit , MI , USA
| |
Collapse
|
120
|
Boehm E, Zornoza M, Jourdain AA, Delmiro Magdalena A, García-Consuegra I, Torres Merino R, Orduña A, Martín MA, Martinou JC, De la Fuente MA, Simarro M. Role of FAST Kinase Domains 3 (FASTKD3) in Post-transcriptional Regulation of Mitochondrial Gene Expression. J Biol Chem 2016; 291:25877-25887. [PMID: 27789713 DOI: 10.1074/jbc.m116.730291] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/30/2016] [Indexed: 11/06/2022] Open
Abstract
The Fas-activated serine/threonine kinase (FASTK) family of proteins has recently emerged as a central regulator of mitochondrial gene expression through the function of an unusual RNA-binding domain named RAP (for RNA-binding domain abundant in Apicomplexans), shared by all six members of the family. Here we describe the role of one of the less characterized members, FASTKD3, in mitochondrial RNA metabolism. First, we show that, in contrast to FASTK, FASTKD2, and FASTKD5, FASTKD3 does not localize in mitochondrial RNA granules, which are sites of processing and maturation of mtRNAs and ribosome biogenesis. Second, we generated FASTKD3 homozygous knock-out cell lines by homologous recombination and observed that the absence of FASTKD3 resulted in increased steady-state levels and half-lives of a subset of mature mitochondrial mRNAs: ND2, ND3, CYTB, COX2, and ATP8/6. No aberrant processing of RNA precursors was observed. Rescue experiments demonstrated that RAP domain is required for FASTKD3 function in mRNA stability. Besides, we describe that FASTKD3 is required for efficient COX1 mRNA translation without altering mRNA levels, which results in a decrease in the steady-state levels of COX1 protein. This finding is associated with reduced mitochondrial complex IV assembly and activity. Our observations suggest that the function of this family of proteins goes beyond RNA processing and ribosome assembly and includes RNA stability and translation regulation within mitochondria.
Collapse
Affiliation(s)
- Erik Boehm
- From the Department of Cell Biology, University of Geneva, 1211 Genève 4, Switzerland
| | - María Zornoza
- the Departamento de Biología, Histología y Farmacología, Universidad de Valladolid, Instituto de Biología y Genética Molecular, Valladolid 47003, Spain
| | - Alexis A Jourdain
- From the Department of Cell Biology, University of Geneva, 1211 Genève 4, Switzerland
| | - Aitor Delmiro Magdalena
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28041, Spain
| | - Inés García-Consuegra
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28041, Spain
| | - Rebeca Torres Merino
- the Departamento de Biología, Histología y Farmacología, Universidad de Valladolid, Instituto de Biología y Genética Molecular, Valladolid 47003, Spain
| | - Antonio Orduña
- the Departamento de Microbiología, Facultad de Medicina, Edificio de Ciencias de la Salud, Valladolid 47005, Spain, and
| | - Miguel A Martín
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28041, Spain
| | - Jean-Claude Martinou
- From the Department of Cell Biology, University of Geneva, 1211 Genève 4, Switzerland
| | - Miguel A De la Fuente
- the Departamento de Biología, Histología y Farmacología, Universidad de Valladolid, Instituto de Biología y Genética Molecular, Valladolid 47003, Spain
| | - María Simarro
- the Departamento de Microbiología, Facultad de Medicina, Edificio de Ciencias de la Salud, Valladolid 47005, Spain, and .,the Departamento de Enfermería, Facultad de Enfermería, Edificio de Ciencias de la Salud, Avda Ramón y Cajal 7, Valladolid 47005, Spain
| |
Collapse
|
121
|
Amazing structure of respirasome: unveiling the secrets of cell respiration. Protein Cell 2016; 7:854-865. [PMID: 27743346 PMCID: PMC5205662 DOI: 10.1007/s13238-016-0329-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 11/02/2022] Open
Abstract
Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.
Collapse
|
122
|
Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-López M. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases. Front Mol Biosci 2016; 3:43. [PMID: 27597947 PMCID: PMC4992684 DOI: 10.3389/fmolb.2016.00043] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Gabriele Giachin
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Romain Bouverot
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | - Serena Pantalone
- Structural Biology Group, European Synchrotron Radiation Facility Grenoble, France
| | | |
Collapse
|
123
|
Pérez-Pérez R, Lobo-Jarne T, Milenkovic D, Mourier A, Bratic A, García-Bartolomé A, Fernández-Vizarra E, Cadenas S, Delmiro A, García-Consuegra I, Arenas J, Martín MA, Larsson NG, Ugalde C. COX7A2L Is a Mitochondrial Complex III Binding Protein that Stabilizes the III2+IV Supercomplex without Affecting Respirasome Formation. Cell Rep 2016; 16:2387-98. [PMID: 27545886 DOI: 10.1016/j.celrep.2016.07.081] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/28/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds primarily to free mitochondrial complex III and, to a minor extent, to complex IV to specifically promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. Furthermore, COX7A2L does not affect the biogenesis, stabilization, and function of the individual oxidative phosphorylation complexes. These data show that independent regulatory mechanisms for the biogenesis and turnover of different MRC supercomplex structures co-exist.
Collapse
Affiliation(s)
- Rafael Pérez-Pérez
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Teresa Lobo-Jarne
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Dusanka Milenkovic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ana Bratic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Alberto García-Bartolomé
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | | | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Aitor Delmiro
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Inés García-Consuegra
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Joaquín Arenas
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Miguel A Martín
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Cristina Ugalde
- Instituto de Investigación, Hospital Universitario 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain.
| |
Collapse
|
124
|
Wu L, Guo X, Wang W, Medeiros DM, Clarke SL, Lucas EA, Smith BJ, Lin D. Molecular aspects of β, β-carotene-9', 10'-oxygenase 2 in carotenoid metabolism and diseases. Exp Biol Med (Maywood) 2016; 241:1879-1887. [PMID: 27390265 DOI: 10.1177/1535370216657900] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
Carotenoids, the carotenes and xanthophylls, are essential components in human nutrition. β, β-carotene-9', 10'-oxygenase 2 (BCO2), also named as β, β-carotene-9', 10'-dioxygenase 2 (BCDO2) catalyzes the asymmetrical cleavage of carotenoids, whereas β, β-carotene-15, 15'-monooxygenase (BCMO1) conducts the symmetrical cleavage of pro-vitamin A carotenoids into retinoid. Unlike BCMO1, BCO2 has a broader substrate specificity and has been considered an alternative way to produce vitamin A. In contrast to BCMO1, a cytoplasmic protein, BCO2 is located in the inner mitochondrial membrane. The difference in cellular compartmentalization may reflect the different substrate specificity and physiological functions with respect to BCMO1 and BCO2. The BCO2 gene mutations are proven to be associated with yellow color of skin and fat tissue and milk in livestock. Mutation in intron 2 of BCO2 gene is also supposed to be related to the expression of IL-18, a pro-inflammatory cytokine associated with obesity, cardiovascular diseases, and type 2 diabetes. Further, BCO2 is associated with the development of mitochondrial oxidative stress, macular degeneration, anemia, and hepatic steatosis. This review of the literature will mostly address recent updates regarding the role of BCO2 in carotenoid metabolism, and discuss the potential impacts of BCO2 protein and the mutations in mammalian diseases.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Weiqun Wang
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, KS 66506, USA
| | - Denis M Medeiros
- College of Graduate Studies, University of Missouri-Kansas City, Kansas City, MO 64112, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
125
|
Complex I function in mitochondrial supercomplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:991-1000. [DOI: 10.1016/j.bbabio.2016.01.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 02/02/2023]
|
126
|
Tepp K, Timohhina N, Puurand M, Klepinin A, Chekulayev V, Shevchuk I, Kaambre T. Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies. Ageing Res Rev 2016; 28:1-14. [PMID: 27063513 DOI: 10.1016/j.arr.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/03/2023]
Abstract
Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Faculty of Science, Tallinn University, Narva mnt. 25, 10120, Estonia
| |
Collapse
|
127
|
Emelyanova L, Ashary Z, Cosic M, Negmadjanov U, Ross G, Rizvi F, Olet S, Kress D, Sra J, Tajik AJ, Holmuhamedov EL, Shi Y, Jahangir A. Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation. Am J Physiol Heart Circ Physiol 2016; 311:H54-63. [PMID: 27199126 PMCID: PMC4967212 DOI: 10.1152/ajpheart.00699.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
Mitochondria are critical for maintaining normal cardiac function, and a deficit in mitochondrial energetics can lead to the development of the substrate that promotes atrial fibrillation (AF) and its progression. However, the link between mitochondrial dysfunction and AF in humans is still not fully defined. The aim of this study was to elucidate differences in the functional activity of mitochondrial oxidative phosphorylation (OXPHOS) complexes and oxidative stress in right atrial tissue from patients without (non-AF) and with AF (AF) who were undergoing open-heart surgery and were not significantly different for age, sex, major comorbidities, and medications. The overall functional activity of the electron transport chain (ETC), NADH:O2 oxidoreductase activity, was reduced by 30% in atrial tissue from AF compared with non-AF patients. This was predominantly due to a selective reduction in complex I (0.06 ± 0.007 vs. 0.09 ± 0.006 nmol·min(-1)·citrate synthase activity(-1), P = 0.02) and II (0.11 ± 0.012 vs. 0.16 ± 0.012 nmol·min(-1)·citrate synthase activity(-1), P = 0.003) functional activity in AF patients. Conversely, complex V activity was significantly increased in AF patients (0.21 ± 0.027 vs. 0.12 ± 0.01 nmol·min(-1)·citrate synthase activity(-1), P = 0.005). In addition, AF patients exhibited a higher oxidative stress with increased production of mitochondrial superoxide (73 ± 17 vs. 11 ± 2 arbitrary units, P = 0.03) and 4-hydroxynonenal level (77.64 ± 30.2 vs. 9.83 ± 2.83 ng·mg(-1) protein, P = 0.048). Our findings suggest that AF is associated with selective downregulation of ETC activity and increased oxidative stress that can contribute to the progression of the substrate for AF.
Collapse
Affiliation(s)
- Larisa Emelyanova
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Zain Ashary
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Milanka Cosic
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Ulugbek Negmadjanov
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Gracious Ross
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Farhan Rizvi
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Susan Olet
- Patient-Centered Research, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin; and
| | - David Kress
- Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Jasbir Sra
- Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - A Jamil Tajik
- Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Ekhson L Holmuhamedov
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Yang Shi
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Arshad Jahangir
- Sheikh Khalifa bin Hamad Al Thani Center for Integrative Research on Cardiovascular Aging, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin; Patient-Centered Research, Aurora Research Institute, Aurora Health Care, Milwaukee, Wisconsin; and Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| |
Collapse
|
128
|
Cell Type-Specific Modulation of Respiratory Chain Supercomplex Organization. Int J Mol Sci 2016; 17:ijms17060926. [PMID: 27338358 PMCID: PMC4926459 DOI: 10.3390/ijms17060926] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 02/02/2023] Open
Abstract
Respiratory chain complexes are organized into large supercomplexes among which supercomplex In + IIIn + IVn is the only one that can directly transfer electrons from NADH to oxygen. Recently, it was reported that the formation of supercomplex In + IIIn + IVn in mice largely depends on their genetic background. However, in this study, we showed that the composition of supercomplex In + IIIn + IVn is well conserved in various mouse and human cell lines. Strikingly, we found that a minimal supercomplex In + IIIn, termed “lowest supercomplex” (LSC) in this study because of its migration at the lowest position close to complex V dimers in blue native polyacrylamide gel electrophoresis, was associated with complex IV to form a supercomplex In + IIIn + IVn in some, but not all of the human and mouse cells. In addition, we observed that the 3697G>A mutation in mitochondrial-encoded NADH dehydrogenase 1 (ND1) in one patient with Leigh’s disease specifically affected the assembly of supercomplex In + IIIn + IVn containing LSC, leading to decreased cellular respiration and ATP generation. In conclusion, we showed the existence of LSC In + IIIn + IVn and impairment of this supercomplex causes disease.
Collapse
|
129
|
Champagne DP, Hatle KM, Fortner KA, D'Alessandro A, Thornton TM, Yang R, Torralba D, Tomás-Cortázar J, Jun YW, Ahn KH, Hansen KC, Haynes L, Anguita J, Rincon M. Fine-Tuning of CD8(+) T Cell Mitochondrial Metabolism by the Respiratory Chain Repressor MCJ Dictates Protection to Influenza Virus. Immunity 2016; 44:1299-311. [PMID: 27234056 DOI: 10.1016/j.immuni.2016.02.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022]
Abstract
Mitochondrial respiration is regulated in CD8(+) T cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) T cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) T cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by MCJ deficiency selectively increased the secretion, but not expression, of interferon-γ. MCJ also adapted effector CD8(+) T cell metabolism during the contraction phase. Consequently, memory CD8(+) T cells lacking MCJ provided superior protection against influenza virus infection. Thus, MCJ offers a mechanism for fine-tuning CD8(+) T cell mitochondrial metabolism as an alternative to modulating mitochondrial mass, an energetically expensive process. MCJ could be a therapeutic target to enhance CD8(+) T cell responses.
Collapse
Affiliation(s)
- Devin P Champagne
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Ketki M Hatle
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Karen A Fortner
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Tina M Thornton
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Rui Yang
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Daniel Torralba
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Julen Tomás-Cortázar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio 48160 Bizkaia, Spain
| | - Yong Woong Jun
- Department of Chemistry, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 790-784 Gyeongbuk, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 790-784 Gyeongbuk, Republic of Korea
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Laura Haynes
- Center on Aging and Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Juan Anguita
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio 48160 Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Mercedes Rincon
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA.
| |
Collapse
|
130
|
Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus. J Bacteriol 2016; 198:1401-13. [PMID: 26903416 DOI: 10.1128/jb.00055-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Oxidative phosphorylation using multiple-component, membrane-associated protein complexes is the most effective way for a cell to generate energy. Here, we systematically investigated the multiple protein-protein interactions of the denitrification apparatus of the pathogenic bacterium Pseudomonas aeruginosa During denitrification, nitrate (Nar), nitrite (Nir), nitric oxide (Nor), and nitrous oxide (Nos) reductases catalyze the reaction cascade of NO(3-)→ NO(2-)→ NO → N2O → N2 Genetic experiments suggested that the nitric oxide reductase NorBC and the regulatory protein NosR are the nucleus of the denitrification protein network. We utilized membrane interactomics in combination with electron microscopy colocalization studies to elucidate the corresponding protein-protein interactions. The integral membrane proteins NorC, NorB, and NosR form the core assembly platform that binds the nitrate reductase NarGHI and the periplasmic nitrite reductase NirS via its maturation factor NirF. The periplasmic nitrous oxide reductase NosZ is linked via NosR. The nitrate transporter NarK2, the nitrate regulatory system NarXL, various nitrite reductase maturation proteins, NirEJMNQ, and the Nos assembly lipoproteins NosFL were also found to be attached. A number of proteins associated with energy generation, including electron-donating dehydrogenases, the complete ATP synthase, almost all enzymes of the tricarboxylic acid (TCA) cycle, and the Sec system of protein transport, among many other proteins, were found to interact with the denitrification proteins. This deduced nitrate respirasome is presumably only one part of an extensive cytoplasmic membrane-anchored protein network connecting cytoplasmic, inner membrane, and periplasmic proteins to mediate key activities occurring at the barrier/interface between the cytoplasm and the external environment. IMPORTANCE The processes of cellular energy generation are catalyzed by large multiprotein enzyme complexes. The molecular basis for the interaction of these complexes is poorly understood. We employed membrane interactomics and electron microscopy to determine the protein-protein interactions involved. The well-investigated enzyme complexes of denitrification of the pathogenic bacterium Pseudomonas aeruginosa served as a model. Denitrification is one essential step of the universal N cycle and provides the bacterium with an effective alternative to oxygen respiration. This process allows the bacterium to form biofilms, which create low-oxygen habitats and which are a key in the infection mechanism. Our results provide new insights into the molecular basis of respiration, as well as opening a new window into the infection strategies of this pathogen.
Collapse
|
131
|
Sánchez-Caballero L, Guerrero-Castillo S, Nijtmans L. Unraveling the complexity of mitochondrial complex I assembly: A dynamic process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:980-90. [PMID: 27040506 DOI: 10.1016/j.bbabio.2016.03.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Mammalian complex I is composed of 44 different subunits and its assembly requires at least 13 specific assembly factors. Proper function of the mitochondrial respiratory chain enzyme is of crucial importance for cell survival due to its major participation in energy production and cell signaling. Complex I assembly depends on the coordination of several crucial processes that need to be tightly interconnected and orchestrated by a number of assembly factors. The understanding of complex I assembly evolved from simple sequential concept to the more sophisticated modular assembly model describing a convoluted process. According to this model, the different modules assemble independently and associate afterwards with each other to form the final enzyme. In this review, we aim to unravel the complexity of complex I assembly and provide the latest insights in this fundamental and fascinating process. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Laura Sánchez-Caballero
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Sergio Guerrero-Castillo
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo Nijtmans
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
132
|
Kovářová N, Pecina P, Nůsková H, Vrbacký M, Zeviani M, Mráček T, Viscomi C, Houštěk J. Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect. Data Brief 2016; 7:1004-9. [PMID: 27408912 PMCID: PMC4927972 DOI: 10.1016/j.dib.2016.03.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 11/13/2022] Open
Abstract
This paper describes data related to a research article entitled “Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects” [1]. This paper includes data of the quantitative analysis of individual forms of respiratory chain complexes I, III and IV present in SURF1 knockout (SURF1−/−) and control (SURF1+/+) mouse fibroblasts and tissues and in fibroblasts of human control and patients with SURF1 gene mutation. Also it includes data demonstrating response of complex IV, cytochrome c oxidase (COX), to reversible inhibition of mitochondrial translation in SURF1−/− mouse and SURF1 patient fibroblast cell lines.
Collapse
Affiliation(s)
- Nikola Kovářová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Petr Pecina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Hana Nůsková
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Marek Vrbacký
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Massimo Zeviani
- Molecular Neurogenetics Unit, Instituto Neurologico "C. Besta", via Temolo 4, 20126 Milan, Italy; MRC-Mitochondrial Biology Unit, Wellcome Trust MRC Bldg, Addenbrookes Hospital Hills Rd, Cambridge CB2 0XY, UK
| | - Tomáš Mráček
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Carlo Viscomi
- MRC-Mitochondrial Biology Unit, Wellcome Trust MRC Bldg, Addenbrookes Hospital Hills Rd, Cambridge CB2 0XY, UK
| | - Josef Houštěk
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| |
Collapse
|
133
|
Jha P, Wang X, Auwerx J. Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE). ACTA ACUST UNITED AC 2016; 6:1-14. [PMID: 26928661 DOI: 10.1002/9780470942390.mo150182] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mitochondria are cellular organelles that harvest energy in the form of ATP through a process termed oxidative phosphorylation (OXPHOS), which occurs via the protein complexes of the electron transport chain (ETC). In recent years it has become unequivocally clear that mitochondrial complexes of the ETC are not static entities in the inner mitochondrial membrane. These complexes are dynamic and in mammals they aggregate in different stoichiometric combinations to form supercomplexes (SCs) or respirasomes. It has been proposed that the net respiration is more efficient via SCs than via isolated complexes. However, it still needs to be determined whether the activity of a particular SC is associated with a disease etiology. Here we describe a simplified method to visualize and assess in-gel activity of SCs and the individual complexes with good resolution using blue native polyacrylamide gel electrophoresis (BN-PAGE).
Collapse
Affiliation(s)
- Pooja Jha
- Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xu Wang
- Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
134
|
Poché RA, Zhang M, Rueda EM, Tong X, McElwee ML, Wong L, Hsu CW, Dejosez M, Burns AR, Fox DA, Martin JF, Zwaka TP, Dickinson ME. RONIN Is an Essential Transcriptional Regulator of Genes Required for Mitochondrial Function in the Developing Retina. Cell Rep 2016; 14:1684-1697. [PMID: 26876175 DOI: 10.1016/j.celrep.2016.01.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/14/2015] [Accepted: 01/10/2016] [Indexed: 11/28/2022] Open
Abstract
A fundamental principle governing organ size and function is the fine balance between cell proliferation and cell differentiation. Here, we identify RONIN (THAP11) as a key transcriptional regulator of retinal progenitor cell (RPC) proliferation. RPC-specific loss of Ronin results in a phenotype strikingly similar to that resulting from the G1- to S-phase arrest and photoreceptor degeneration observed in the Cyclin D1 null mutants. However, we determined that, rather than regulating canonical cell-cycle genes, RONIN regulates a cohort of mitochondrial genes including components of the electron transport chain (ETC), which have been recently implicated as direct regulators of the cell cycle. Coincidentally, with premature cell-cycle exit, Ronin mutants exhibited deficient ETC activity, reduced ATP levels, and increased oxidative stress that we ascribe to specific loss of subunits within complexes I, III, and IV. These data implicate RONIN as a positive regulator of mitochondrial gene expression that coordinates mitochondrial activity and cell-cycle progression.
Collapse
Affiliation(s)
- Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Min Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda M Rueda
- College of Optometry, University of Houston, Houston, TX 77004, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melissa L McElwee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leeyean Wong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marion Dejosez
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77004, USA
| | - Donald A Fox
- College of Optometry, University of Houston, Houston, TX 77004, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA; Department of Pharmacology, University of Houston, Houston, TX 77004, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA
| | - Thomas P Zwaka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
135
|
Cruz-Bermúdez A, Vicente-Blanco RJ, Hernández-Sierra R, Montero M, Alvarez J, González Manrique M, Blázquez A, Martín MA, Ayuso C, Garesse R, Fernández-Moreno MA. Functional Characterization of Three Concomitant MtDNA LHON Mutations Shows No Synergistic Effect on Mitochondrial Activity. PLoS One 2016; 11:e0146816. [PMID: 26784702 PMCID: PMC4718627 DOI: 10.1371/journal.pone.0146816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA) molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's hereditary optic neuropathy (LHON)-associated mutations (m.11778G>A, m.14484T>C, m.11253T>C) and the analysis of its genetic, biochemical and molecular characterization in transmitochondrial cells (cybrids). Extensive characterization of cybrid cell lines harboring either the 3 mutations or the single classic m.11778G>A and m.14484T>C mutations revealed no differences in mitochondrial function, demonstrating the absence of a synergistic effect in this model system. These molecular results are in agreement with the ophthalmological characteristics found in the triple mutant patient, which were similar to those carrying single mtDNA LHON mutations.
Collapse
Affiliation(s)
- Alberto Cruz-Bermúdez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ramiro J. Vicente-Blanco
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosana Hernández-Sierra
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mayte Montero
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Javier Alvarez
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | | | - Alberto Blázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel Angel Martín
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, IIS-Fundacion Jimenez Diaz University Hospital (IIS-FJD, UAM), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail: (RG); (MAF-M)
| | - Miguel A. Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail: (RG); (MAF-M)
| |
Collapse
|
136
|
Kovářová N, Pecina P, Nůsková H, Vrbacký M, Zeviani M, Mráček T, Viscomi C, Houštěk J. Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects. Biochim Biophys Acta Mol Basis Dis 2016; 1862:705-715. [PMID: 26804654 PMCID: PMC4793088 DOI: 10.1016/j.bbadis.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein SURF1 is a specific assembly factor of cytochrome c oxidase (COX), but its function is poorly understood. SURF1 gene mutations cause a severe COX deficiency manifesting as the Leigh syndrome in humans, whereas in mice SURF1−/− knockout leads only to a mild COX defect. We used SURF1−/− mouse model for detailed analysis of disturbed COX assembly and COX ability to incorporate into respiratory supercomplexes (SCs) in different tissues and fibroblasts. Furthermore, we compared fibroblasts from SURF1−/− mouse and SURF1 patients to reveal interspecies differences in kinetics of COX biogenesis using 2D electrophoresis, immunodetection, arrest of mitochondrial proteosynthesis and pulse-chase metabolic labeling. The crucial differences observed are an accumulation of abundant COX1 assembly intermediates, low content of COX monomer and preferential recruitment of COX into I–III2–IVn SCs in SURF1 patient fibroblasts, whereas SURF1−/− mouse fibroblasts were characterized by low content of COX1 assembly intermediates and milder decrease in COX monomer, which appeared more stable. This pattern was even less pronounced in SURF1−/− mouse liver and brain. Both the control and SURF1−/− mice revealed only negligible formation of the I–III2–IVn SCs and marked tissue differences in the contents of COX dimer and III2–IV SCs, also less noticeable in liver and brain than in heart and muscle. Our studies support the view that COX assembly is much more dependent on SURF1 in humans than in mice. We also demonstrate markedly lower ability of mouse COX to form I–III2–IVn supercomplexes, pointing to tissue-specific and species-specific differences in COX biogenesis. In SURF1 −/− mouse the decrease of COX amount and activity was tissue/cell specific. Assembly kinetics proceeded to the level of stable COX monomer in SURF1 −/− mouse. COX assembly intermediates were faster degraded/depleted in time in SURF1 −/− mouse. COX was preferentially recruited in supercomplex I–III2–IV1 in SURF1 patient cells. Newly synthesized COX monomer was unstable and rapidly degraded in SURF1 patient.
Collapse
Affiliation(s)
- Nikola Kovářová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Petr Pecina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Hana Nůsková
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Marek Vrbacký
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Massimo Zeviani
- Molecular Neurogenetics Unit, Instituto Neurologico "C. Besta", via Temolo 4, 20126 Milan, Italy; MRC-Mitochondrial Biology Unit, Wellcome Trust MRC Bldg, Addenbrookes Hospital Hills Rd, Cambridge CB2 0XY, UK
| | - Tomáš Mráček
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Carlo Viscomi
- MRC-Mitochondrial Biology Unit, Wellcome Trust MRC Bldg, Addenbrookes Hospital Hills Rd, Cambridge CB2 0XY, UK
| | - Josef Houštěk
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic.
| |
Collapse
|
137
|
Abstract
Since the discovery of the existence of superassemblies between mitochondrial respiratory complexes, such superassemblies have been the object of a passionate debate. It is accepted that respiratory supercomplexes are structures that occur in vivo, although which superstructures are naturally occurring and what could be their functional role remain open questions. The main difficulty is to make compatible the existence of superassemblies with the corpus of data that drove the field to abandon the early understanding of the physical arrangement of the mitochondrial respiratory chain as a compact physical entity (the solid model). This review provides a nonexhaustive overview of the evolution of our understanding of the structural organization of the electron transport chain from the original idea of a compact organization to a view of freely moving complexes connected by electron carriers. Today supercomplexes are viewed not as a revival of the old solid model but rather as a refined revision of the fluid model, which incorporates a new layer of structural and functional complexity.
Collapse
Affiliation(s)
- José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| |
Collapse
|
138
|
Tofolean IT, Ganea C, Ionescu D, Filippi A, Garaiman A, Goicea A, Gaman MA, Dimancea A, Baran I. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells. Pharmacol Res 2015; 103:300-17. [PMID: 26687095 DOI: 10.1016/j.phrs.2015.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/17/2022]
Abstract
We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain.
Collapse
Affiliation(s)
- Ioana Teodora Tofolean
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Constanta Ganea
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Diana Ionescu
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Filippi
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Garaiman
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Goicea
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Mihnea-Alexandru Gaman
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Dimancea
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Irina Baran
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania.
| |
Collapse
|
139
|
Wang Y, Javed I, Liu Y, Lu S, Peng G, Zhang Y, Qing H, Deng Y. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel. J Proteome Res 2015; 15:29-37. [PMID: 26523826 DOI: 10.1021/acs.jproteome.5b00777] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins.
Collapse
Affiliation(s)
- Yun Wang
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Iqbal Javed
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yahui Liu
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Song Lu
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Guang Peng
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yongqian Zhang
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Hong Qing
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yulin Deng
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| |
Collapse
|
140
|
Zouein FA, Altara R, Chen Q, Lesnefsky EJ, Kurdi M, Booz GW. Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues. Front Cardiovasc Med 2015; 2:36. [PMID: 26664907 PMCID: PMC4671345 DOI: 10.3389/fcvm.2015.00036] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022] Open
Abstract
The transcription factor, signal transducer and activator of transcription 3 (STAT3), has been implicated in protecting the heart from acute ischemic injury under both basal conditions and as a crucial component of pre- and post-conditioning protocols. A number of anti-oxidant and antiapoptotic genes are upregulated by STAT3 via canonical means involving phosphorylation on Y705 and S727, although other incompletely defined posttranslational modifications are involved. In addition, STAT3 is now known to be present in cardiac mitochondria and to exert actions that regulate the electron transport chain, reactive oxygen species production, and mitochondrial permeability transition pore opening. These non-canonical actions of STAT3 are enhanced by S727 phosphorylation. The molecular basis for the mitochondrial actions of STAT3 is poorly understood, but STAT3 is known to interact with a critical subunit of complex I and to regulate complex I function. Dysfunctional complex I has been implicated in ischemic injury, heart failure, and the aging process. Evidence also indicates that STAT3 is protective to the heart under chronic stress conditions, including hypertension, pregnancy, and advanced age. Paradoxically, the accumulation of unphosphorylated STAT3 (U-STAT3) in the nucleus has been suggested to drive pathological cardiac hypertrophy and inflammation via non-canonical gene expression, perhaps involving a distinct acetylation profile. U-STAT3 may also regulate chromatin stability. Our understanding of how the non-canonical genomic and mitochondrial actions of STAT3 in the heart are regulated and coordinated with the canonical actions of STAT3 is rudimentary. Here, we present an overview of what is currently known about the pleotropic actions of STAT3 in the heart in order to highlight controversies and unresolved issues.
Collapse
Affiliation(s)
- Fouad A Zouein
- American University of Beirut Faculty of Medicine , Beirut , Lebanon
| | - Raffaele Altara
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; McGuire Department of Veterans Affairs Medical Center , Richmond, VA , USA
| | - Mazen Kurdi
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA ; Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University , Hadath , Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| |
Collapse
|
141
|
Melo AMP, Teixeira M. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:190-7. [PMID: 26546715 DOI: 10.1016/j.bbabio.2015.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Aerobic respiratory chains from all life kingdoms are composed by several complexes that have been deeply characterized in their isolated form. These membranous complexes link the oxidation of reducing substrates to the reduction of molecular oxygen, in a process that conserves energy by ion translocation between both sides of the mitochondrial or prokaryotic cytoplasmatic membranes. In recent years there has been increasing evidence that those complexes are organized as supramolecular structures, the so-called supercomplexes and respirasomes, being available for eukaryotes strong data namely obtained by electron microscopy and single particle analysis. A parallel study has been developed for prokaryotes, based on blue native gels and mass spectrometry analysis, showing that in these more simple unicellular organisms such supercomplexes also exist, involving not only typical aerobic-respiration associated complexes, but also anaerobic-linked enzymes. After a short overview of the data on eukaryotic supercomplexes, we will analyse comprehensively the different types of prokaryotic aerobic respiratory supercomplexes that have been thus far suggested, in both bacteria and archaea. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
142
|
Lukyanova LD, Kirova YI. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front Neurosci 2015; 9:320. [PMID: 26483619 PMCID: PMC4589588 DOI: 10.3389/fnins.2015.00320] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/27/2015] [Indexed: 01/06/2023] Open
Abstract
The article is focused on the role of the cell bioenergetic apparatus, mitochondria, involved in development of immediate and delayed molecular mechanisms for adaptation to hypoxic stress in brain cortex. Hypoxia induces reprogramming of respiratory chain function and switching from oxidation of NAD-related substrates (complex I) to succinate oxidation (complex II). Transient, reversible, compensatory activation of respiratory chain complex II is a major mechanism of immediate adaptation to hypoxia necessary for (1) succinate-related energy synthesis in the conditions of oxygen deficiency and formation of urgent resistance in the body; (2) succinate-related stabilization of HIF-1α and initiation of its transcriptional activity related with formation of long-term adaptation; (3) succinate-related activation of the succinate-specific receptor, GPR91. This mechanism participates in at least four critical regulatory functions: (1) sensor function related with changes in kinetic properties of complex I and complex II in response to a gradual decrease in ambient oxygen concentration; this function is designed for selection of the most efficient pathway for energy substrate oxidation in hypoxia; (2) compensatory function focused on formation of immediate adaptive responses to hypoxia and hypoxic resistance of the body; (3) transcriptional function focused on activated synthesis of HIF-1 and the genes providing long-term adaptation to low pO2; (4) receptor function, which reflects participation of mitochondria in the intercellular signaling system via the succinate-dependent receptor, GPR91. In all cases, the desired result is achieved by activation of the succinate-dependent oxidation pathway, which allows considering succinate as a signaling molecule. Patterns of mitochondria-controlled activation of GPR-91- and HIF-1-dependent reaction were considered, and a possibility of their participation in cellular-intercellular-systemic interactions in hypoxia and adaptation was proved.
Collapse
Affiliation(s)
- Ludmila D. Lukyanova
- Laboratory for Bioenergetics and Hypoxia, Institute of General Pathology and PathophysiologyMoscow, Russia
| | | |
Collapse
|
143
|
Al-Furoukh N, Ianni A, Nolte H, Hölper S, Krüger M, Wanrooij S, Braun T. ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2580-91. [DOI: 10.1016/j.bbamcr.2015.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/09/2015] [Accepted: 06/27/2015] [Indexed: 02/06/2023]
|
144
|
RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model. Sci Rep 2015. [PMID: 26220011 PMCID: PMC4518240 DOI: 10.1038/srep12697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial respiratory supercomplexes (mtRSCs) are stoichiometric assemblies of electron transport chain (ETC) complexes in the inner mitochondrial membrane. They are hypothesized to regulate electron flow, the generation of reactive oxygen species (ROS) and to stabilize ETC complexes. Using the fungal ageing model Podospora anserina, we investigated the impact of homologues of the Saccharomyces cerevisiae respiratory supercomplex factors 1 and 2 (termed PaRCF1 and PaRCF2) on mtRSC formation, fitness and lifespan. Whereas PaRCF2’s role seems negligible, ablation of PaRCF1 alters size of monomeric complex IV, reduces the abundance of complex IV-containing supercomplexes, negatively affects vital functions and shortens lifespan. PaRcf1 overexpression slightly prolongs lifespan, though without appreciably influencing ETC organization. Overall, our results identify PaRCF1 as necessary yet not sufficient for mtRSC formation and demonstrate that PaRCF1-dependent stability of complex IV and associated supercomplexes is highly relevant for maintenance of the healthy lifespan in a eukaryotic model organism.
Collapse
|
145
|
Stroud DA, Maher MJ, Lindau C, Vögtle FN, Frazier AE, Surgenor E, Mountford H, Singh AP, Bonas M, Oeljeklaus S, Warscheid B, Meisinger C, Thorburn DR, Ryan MT. COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2. Hum Mol Genet 2015; 24:5404-15. [PMID: 26160915 DOI: 10.1093/hmg/ddv265] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/06/2015] [Indexed: 01/29/2023] Open
Abstract
Biogenesis of complex IV of the mitochondrial respiratory chain requires assembly factors for subunit maturation, co-factor attachment and stabilization of intermediate assemblies. A pathogenic mutation in COA6, leading to substitution of a conserved tryptophan for a cysteine residue, results in a loss of complex IV activity and cardiomyopathy. Here, we demonstrate that the complex IV defect correlates with a severe loss in complex IV assembly in patient heart but not fibroblasts. Complete loss of COA6 activity using gene editing in HEK293T cells resulted in a profound growth defect due to complex IV deficiency, caused by impaired biogenesis of the copper-bound mitochondrial DNA-encoded subunit COX2 and subsequent accumulation of complex IV assembly intermediates. We show that the pathogenic mutation in COA6 does not affect its import into mitochondria but impairs its maturation and stability. Furthermore, we show that COA6 has the capacity to bind copper and can associate with newly translated COX2 and the mitochondrial copper chaperone SCO1. Our data reveal that COA6 is intricately involved in the copper-dependent biogenesis of COX2.
Collapse
Affiliation(s)
- David A Stroud
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Caroline Lindau
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - F-Nora Vögtle
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
| | - Ann E Frazier
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, University of Melbourne and Department of Pediatrics, University of Melbourne, 3052 Melbourne, Australia and
| | - Elliot Surgenor
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia
| | - Hayley Mountford
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, University of Melbourne and Department of Pediatrics, University of Melbourne, 3052 Melbourne, Australia and
| | - Abeer P Singh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Matteo Bonas
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany, Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - David R Thorburn
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia,
| |
Collapse
|
146
|
Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S. Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 2015; 22:1563-86. [PMID: 25674814 PMCID: PMC4449630 DOI: 10.1089/ars.2014.6123] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC). CRITICAL ISSUES How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail. RECENT ADVANCES We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems. FUTURE DIRECTIONS Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Niraj Bhatt
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
147
|
Scheffler IE. Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency. J Inherit Metab Dis 2015; 38:405-15. [PMID: 25224827 DOI: 10.1007/s10545-014-9768-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 01/09/2023]
Abstract
Mitochondrial diseases due to a reduced capacity for oxidative phosphorylation were first identified more than 20 years ago, and their incidence is now recognized to be quite significant. In a large proportion of cases the problem can be traced to a complex I (NADH-CoQ oxidoreductase) deficiency (Phenotype MIM #252010). Because the complex consists of 44 subunits, there are many potential targets for pathogenic mutations, both on the nuclear and mitochondrial genomes. Surprisingly, however, almost half of the complex I deficiencies are due to defects in as yet unidentified genes that encode proteins other than the structural proteins of the complex. This review attempts to summarize what we know about the molecular basis of complex I deficiencies: mutations in the known structural genes, and mutations in an increasing number of genes encoding "assembly factors", that is, proteins required for the biogenesis of a functional complex I that are not found in the final complex I. More such genes must be identified before definitive genetic counselling can be applied in all cases of affected families.
Collapse
Affiliation(s)
- Immo E Scheffler
- Division of Biology (Molecular Biology Section), University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0322, USA,
| |
Collapse
|
148
|
Vartak R, Deng J, Fang H, Bai Y. Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1531-9. [PMID: 25887158 DOI: 10.1016/j.bbadis.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 02/03/2023]
Abstract
Respiratory Complex I deficiency is implicated in numerous degenerative and metabolic diseases. In particular, mutations in several mitochondrial DNA (mtDNA)-encoded Complex I subunits including ND4, ND5 and ND6 have been identified in several neurological diseases. We previously demonstrated that these subunits played essential roles in Complex I assembly which in turn affected mitochondrial function. Here, we carried out a comprehensive study of the Complex I assembly pathway. We identified a new Complex I intermediate containing both membrane and matrix arms at an early assembly stage. We find that lack of the ND6 subunit does not hinder membrane arm formation; instead it recruits ND1 and ND5 enters the intermediate. While ND4 is important for the formation of the newly identified intermediate, the addition of ND5 stabilizes the complex and is required for the critical transition from Complex I to supercomplex assembly. As a result, the Complex I assembly pathway has been redefined in this study.
Collapse
Affiliation(s)
- Rasika Vartak
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Janice Deng
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hezhi Fang
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
149
|
Fernández-Vizarra E, Zeviani M. Nuclear gene mutations as the cause of mitochondrial complex III deficiency. Front Genet 2015; 6:134. [PMID: 25914718 PMCID: PMC4391031 DOI: 10.3389/fgene.2015.00134] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/20/2015] [Indexed: 11/13/2022] Open
Abstract
Complex III (CIII) deficiency is one of the least common oxidative phosphorylation defects associated to mitochondrial disease. CIII constitutes the center of the mitochondrial respiratory chain, as well as a crossroad for several other metabolic pathways. For more than 10 years, of all the potential candidate genes encoding structural subunits and assembly factors, only three were known to be associated to CIII defects in human pathology. Thus, leaving many of these cases unresolved. These first identified genes were MT-CYB, the only CIII subunit encoded in the mitochondrial DNA; BCS1L, encoding an assembly factor, and UQCRB, a nuclear-encoded structural subunit. Nowadays, thanks to the fast progress that has taken place in the last 3-4 years, pathological changes in seven more genes are known to be associated to these conditions. This review will focus on the strategies that have permitted the latest discovery of mutations in factors that are necessary for a correct CIII assembly and activity, in relation with their function. In addition, new data further establishing the molecular role of LYRM7/MZM1L as a chaperone involved in CIII biogenesis are provided.
Collapse
Affiliation(s)
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council Cambridge, UK
| |
Collapse
|
150
|
Lau E, Huang D, Cao Q, Dincer TU, Black CM, Lin AJ, Lee JM, Wang D, Liem DA, Lam MP, Ping P. Spatial and temporal dynamics of the cardiac mitochondrial proteome. Expert Rev Proteomics 2015; 12:133-46. [PMID: 25752359 PMCID: PMC4721584 DOI: 10.1586/14789450.2015.1024227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial proteins alter in their composition and quantity drastically through time and space in correspondence to changing energy demands and cellular signaling events. The integrity and permutations of this dynamism are increasingly recognized to impact the functions of the cardiac proteome in health and disease. This article provides an overview on recent advances in defining the spatial and temporal dynamics of mitochondrial proteins in the heart. Proteomics techniques to characterize dynamics on a proteome scale are reviewed and the physiological consequences of altered mitochondrial protein dynamics are discussed. Lastly, we offer our perspectives on the unmet challenges in translating mitochondrial dynamics markers into the clinic.
Collapse
Affiliation(s)
- Edward Lau
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Derrick Huang
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Quan Cao
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - T. Umut Dincer
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Caitie M. Black
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Amanda J. Lin
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jessica M. Lee
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Ding Wang
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - David A. Liem
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Maggie P.Y. Lam
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Peipei Ping
- Departments of Physiology, The NHLBI Proteomics Center at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Departments of Medicine, and Bioinformatics, NIH Center of Excellence in Big Data Computing at UCLA, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|