101
|
Kasahara M, Menon DK, Salmond CH, Outtrim JG, Tavares JVT, Carpenter TA, Pickard JD, Sahakian BJ, Stamatakis EA. Traumatic brain injury alters the functional brain network mediating working memory. Brain Inj 2011; 25:1170-87. [DOI: 10.3109/02699052.2011.608210] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
102
|
Budisavljevic S, Ramnani N. Cognitive deficits from a cerebellar tumour: a historical case report from Luria's Laboratory. Cortex 2011; 48:26-35. [PMID: 21864837 DOI: 10.1016/j.cortex.2011.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 01/02/2023]
Abstract
In 1964 an original case report from A.R. Luria's Laboratory of Neuropsychology was published in Cortex, being one of the first to draw a link between cerebellum and cognition, by highlighting the manifestation of 'pseudo-frontal' symptoms resulting from a cerebellar tumour. The findings of Luria and his team seem more consistent with modern views about cerebellar interactions with the frontal lobe and its contributions to behaviour than the views prevalent at the time of publication. The paper was originally submitted in Russian, and translated into Italian for its publication by Cortex. However, Cortex did not preserve the original manuscript in Russian. With the passage of time, and available only to the Italian readership, this case report inevitably fell into obscurity. Hence, we present a translation in English based on the published Italian version of the manuscript and discuss it in the context of Luria's general thinking about information processing in the brain and our current understanding of cortico-cerebellar system. The publication of this article gives readers an opportunity to consider the substantial influence of Soviet neuropsychology on the field internationally under Luria's leadership in the 1960s. It also shows that time is the best judge of ones scientific endeavours, and what may seem implausible today might prove to be valid and worthy of exploration tomorrow.
Collapse
Affiliation(s)
- Sanja Budisavljevic
- Natbrainlab, Section of Brain Maturation, Department of Forensic and Neurodevelopmental Sciences, King's College London, Institute of Psychiatry, London, UK.
| | | |
Collapse
|
103
|
Passamonti L, Novellino F, Cerasa A, Chiriaco C, Rocca F, Matina MS, Fera F, Quattrone A. Altered cortical-cerebellar circuits during verbal working memory in essential tremor. ACTA ACUST UNITED AC 2011; 134:2274-86. [PMID: 21747127 DOI: 10.1093/brain/awr164] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Essential tremor is a common neurological disorder characterized by motor and cognitive symptoms including working memory deficits. Epidemiological research has shown that patients with essential tremor are at a higher risk to develop dementia relative to age-matched individuals; this demonstrates that cognitive impairments reflect specific, although poorly understood, disease mechanisms. Neurodegeneration of the cerebellum has been implicated in the pathophysiology of essential tremor itself; however, whether cerebellar dysfunctions relate to cognitive abnormalities is unclear. We addressed this issue using functional neuroimaging in 15 patients with essential tremor compared to 15 sex-, education- and age-matched healthy controls while executing a verbal working memory task. To remove confounding effects, patients with integrity of the nigrostriatal terminals, no dementia and abstinent from medications altering cognition were enrolled. We tested whether patients displayed abnormal activations of the cerebellum (posterior lobules) and other areas typically engaged in working memory (dorsolateral prefrontal cortex, parietal lobules). Between-groups differences in the interactions of these regions were also assessed with functional connectivity methods. Finally, we determined whether individual differences in neuropsychological and clinical measures modulated the magnitude of regional brain responses and functional connectivity data in patients with essential tremor. Despite similar behavioural performances, patients showed greater cerebellar response (crus I/lobule VI) compared to controls during attentional-demanding working memory trials (F = 8.8; P < 0.05, corrected). They also displayed altered functional connectivity between crus I/lobule VI and regions implicated in focusing attention (executive control circuit including dorsolateral prefrontal cortex, inferior parietal lobule, thalamus) and in generating distracting self-related thoughts (default mode network including precuneus, ventromedial prefrontal cortex and hippocampus) (T-values > 3.2; P < 0.05, corrected). These findings were modulated by the variability in neuropsychological measures: patients with low cognitive scores displayed reduced connectivity between crus I/lobule VI and the dorsolateral prefrontal cortex and enhanced connectivity between crus I/lobule VI and the precuneus (T-values > 3.7; P < 0.05, corrected). It is likely that cerebellar neurodegeneration underlying essential tremor is reflected in abnormal communications between key regions responsible for working memory and that adaptive mechanisms (enhanced response of crus I/lobule VI) occur to limit the expression of cognitive symptoms. The connectivity imbalance between the executive control circuit and the default mode network in patients with essential tremor with low cognitive scores may represent a dysfunction, driven by the cerebellum, in suppressing task irrelevant thoughts via focused attention. Overall, our results offer new insights into pathophysiological mechanisms of cognition in essential tremor and suggest a primary role of the cerebellum in mediating abnormal interactions between the executive control circuit and the default mode network.
Collapse
Affiliation(s)
- Luca Passamonti
- National Research Council, Neuroimaging Research Unit, Catanzaro, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Thürling M, Küper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, Timmann D. Activation of the dentate nucleus in a verb generation task: A 7T MRI study. Neuroimage 2011; 57:1184-91. [PMID: 21640191 DOI: 10.1016/j.neuroimage.2011.05.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence of a topographic organization within the human cerebellar cortex for motor and non-motor functions. Likewise, a subdivision of the dentate nucleus in a more dorsal and rostral motor domain and a more ventral and caudal non-motor domain has been proposed by Dum and Strick (2003) based on anatomical studies in monkey. In humans, however, very little is known about topographic organization within the dentate nucleus. Activation of the dentate nucleus in a verb generation task was examined in young and healthy subjects using ultra-highfield 7T functional magnetic resonance imaging (fMRI) with its increase in signal-to-noise ratio. Data of 17 subjects were included in statistical analysis. Subjects were asked to (i) read words (nouns) aloud presented on a screen, (ii) silently read the same nouns, (iii) silently generate the appropriate verbs to the same nouns and (iv) to silently repeat the names of the months. A block design was used. For image processing, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied. Activation related to motor speech (contrast aloud reading minus silent reading) was strongest in the rostral parts of the dentate nucleus. Dorsorostral activations were present bilaterally. Activation related to verb generation (contrast verb generation minus silent reading) was found in the ventrocaudal parts of the dentate nucleus on the right. The present findings are in good accordance with the anatomical data in monkeys and suggest that the human dentate nucleus can be subdivided into a rostral and more dorsal motor domain and a ventrocaudal non-motor domain.
Collapse
Affiliation(s)
- M Thürling
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
105
|
Foley JA, Della Sala S. Do shorter Cortex papers have greater impact? Cortex 2011; 47:635-42. [PMID: 21463860 DOI: 10.1016/j.cortex.2011.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 01/02/2023]
|
106
|
McMorris T, Sproule J, Turner A, Hale BJ. Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiol Behav 2010; 102:421-8. [PMID: 21163278 DOI: 10.1016/j.physbeh.2010.12.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to compare, using meta-analytic techniques, the effect of acute, intermediate intensity exercise on the speed and accuracy of performance of working memory tasks. It was hypothesized that acute, intermediate intensity exercise would have a significant beneficial effect on response time and that effect sizes for response time and accuracy data would differ significantly. Random-effects meta-analysis showed a significant, beneficial effect size for response time, g=-1.41 (p<0.001) but a significant detrimental effect size, g=0.40 (p<0.01), for accuracy. There was a significant difference between effect sizes (Z(diff)=3.85, p<0.001). It was concluded that acute, intermediate intensity exercise has a strong beneficial effect on speed of response in working memory tasks but a low to moderate, detrimental one on accuracy. There was no support for a speed-accuracy trade-off. It was argued that exercise-induced increases in brain concentrations of catecholamines result in faster processing but increases in neural noise may negatively affect accuracy.
Collapse
Affiliation(s)
- Terry McMorris
- Institute of Sport, PE and Health Sciences, University of Edinburgh, St. Leonard's Land, Holyrood Road, Edinburgh EH8 8AQ, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
107
|
Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev 2010; 20:271-9. [PMID: 20563894 PMCID: PMC2945881 DOI: 10.1007/s11065-010-9137-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/04/2010] [Indexed: 12/28/2022]
Abstract
Speech-both overt and covert-facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms.
Collapse
Affiliation(s)
- Cherie L Marvel
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall 2205B, Baltimore, MD 21205, USA.
| | | |
Collapse
|
108
|
Chanraud S, Pitel AL, Rohlfing T, Pfefferbaum A, Sullivan EV. Dual tasking and working memory in alcoholism: relation to frontocerebellar circuitry. Neuropsychopharmacology 2010; 35:1868-78. [PMID: 20410871 PMCID: PMC2919220 DOI: 10.1038/npp.2010.56] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/25/2010] [Accepted: 03/27/2010] [Indexed: 11/08/2022]
Abstract
Controversy exists regarding the role of cerebellar systems in cognition and whether working memory compromise commonly marking alcoholism can be explained by compromise of nodes of corticocerebellar circuitry. We tested 17 alcoholics and 31 age-matched controls with dual-task, working memory paradigms. Interference tasks competed with verbal and spatial working memory tasks using low (three item) or high (six item) memory loads. Participants also underwent structural MRI to obtain volumes of nodes of the frontocerebellar system. On the verbal working memory task, both groups performed equally. On the spatial working memory with the high-load task, the alcoholic group was disproportionately more affected by the arithmetic distractor than were controls. In alcoholics, volumes of the left thalamus and left cerebellar Crus I volumes were more robust predictors of performance in the spatial working memory task with the arithmetic distractor than the left frontal superior cortex. In controls, volumes of the right middle frontal gyrus and right cerebellar Crus I were independent predictors over the left cerebellar Crus I, left thalamus, right superior parietal cortex, or left middle frontal gyrus of spatial working memory performance with tracking interference. The brain-behavior correlations suggest that alcoholics and controls relied on the integrity of certain nodes of corticocerebellar systems to perform these verbal and spatial working memory tasks, but that the specific pattern of relationships differed by group. The resulting brain structure-function patterns provide correlational support that components of this corticocerebellar system not typically related to normal performance in dual-task conditions may be available to augment otherwise dampened performance by alcoholics.
Collapse
Affiliation(s)
- Sandra Chanraud
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Neuroscience Program, SRI International, Menlo Park, CA, USA
| | - Anne-Lise Pitel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Neuroscience Program, SRI International, Menlo Park, CA, USA
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
109
|
Küper M, Thürling M, Maderwald S, Ladd ME, Timmann D. Structural and Functional Magnetic Resonance Imaging of the Human Cerebellar Nuclei. THE CEREBELLUM 2010; 11:314-24. [DOI: 10.1007/s12311-010-0194-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
110
|
Kannurpatti SS, Motes MA, Rypma B, Biswal BB. Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling. Hum Brain Mapp 2010; 32:1125-40. [PMID: 20665721 DOI: 10.1002/hbm.21097] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 04/02/2010] [Accepted: 04/22/2010] [Indexed: 11/09/2022] Open
Abstract
In this report we demonstrate a hemodynamic scaling method with resting-state fluctuation of amplitude (RSFA) in healthy adult younger and older subject groups. We show that RSFA correlated with breath hold (BH) responses throughout the brain in groups of younger and older subjects which RSFA and BH performed comparably in accounting for age-related hemodynamic coupling changes, and yielded more veridical estimates of age-related differences in task-related neural activity. BOLD data from younger and older adults performing motor and cognitive tasks were scaled using RSFA and BH related signal changes. Scaling with RSFA and BH reduced the skew of the BOLD response amplitude distribution in each subject and reduced mean BOLD amplitude and variability in both age groups. Statistically significant differences in intrasubject amplitude variation across regions of activated cortex, and intersubject amplitude variation in regions of activated cortex were observed between younger and older subject groups. Intra- and intersubject variability differences were mitigated after scaling. RSFA, though similar to BH in minimizing skew in the unscaled BOLD amplitude distribution, attenuated the neural activity-related BOLD amplitude significantly less than BH. The amplitude and spatial extent of group activation were lower in the older than in the younger group before and after scaling. After accounting for vascular variability differences through scaling, age-related decreases in activation volume were observed during the motor and cognitive tasks. The results suggest that RSFA-scaled data yield age-related neural activity differences during task performance with negligible effects from non-neural (i.e., vascular) sources.
Collapse
Affiliation(s)
- Sridhar S Kannurpatti
- Department of Radiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|