101
|
Liu PW, Xu JB, Dong YQ, Chen XG, Gu JB. Use of a Recombinant Mosquito Densovirus As a Gene Delivery Vector for the Functional Analysis of Genes in Mosquito Larvae. J Vis Exp 2017. [PMID: 29053694 DOI: 10.3791/56121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In vivo microinjection is the most commonly used gene transfer technique for analyzing the gene functions in individual mosquitoes. However, this method requires a more technically demanding operation and involves complicated procedures, especially when used in larvae due to their small size, relatively thin and fragile cuticle, and high mortality, which limit its application. In contrast, viral vectors for gene delivery have been developed to surmount extracellular and intracellular barriers. These systems have the advantages of easy manipulation, high gene transduction efficiency, long-term maintenance of gene expression, and the ability to produce persistent effects in vivo. Mosquito densoviruses (MDVs) are mosquito-specific, small single-stranded DNA viruses that can effectively deliver foreign nucleic acids into mosquito cells; however, the replacement or insertion of foreign genes to create recombinant viruses typically causes a loss of packaging and/or replication abilities, which is a barrier to the development of these viruses as delivery vectors. Herein, we report using an artificial intronic small-RNA expression strategy to develop a non-defective recombinant Aedes aegypti densovirus (AaeDV) in vivo delivery system. Detailed procedures for the construction, packaging and quantitative analysis of the rAaeDV vectors, and for larval infection are described. This study demonstrates, for the first time, the feasibility of developing a non-defective recombinant MDV micro RNA (miRNA) expression system, and thus providing a powerful tool for the functional analysis of genes in mosquito and establishing a basis for the application of viral paratransgenesis for controlling mosquito-borne diseases. We demonstrated that Aedes albopictus 1st instar larvae could be easily and effectively infected by introducing the virus into the water body of the larvae breeding site and that the developed rAaeDVs could be used to overexpress or knock down the expression of a specific target gene in larvae, providing a tool for the functional analysis of mosquito genes.
Collapse
Affiliation(s)
- Pei-Wen Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University
| | - Jia-Bao Xu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University
| | - Yun-Qiao Dong
- Reproductive Medical Centre of Guangdong Women and Children's Hospital
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University
| | - Jin-Bao Gu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University;
| |
Collapse
|
102
|
Ravichandran NK, Wijesinghe RE, Lee SY, Choi KS, Jeon M, Jung HY, Kim J. Non-Destructive Analysis of the Internal Anatomical Structures of Mosquito Specimens Using Optical Coherence Tomography. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1897. [PMID: 28817086 PMCID: PMC5580080 DOI: 10.3390/s17081897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022]
Abstract
The study of mosquitoes and analysis of their behavior are of crucial importance in the on-going efforts to control the alarming increase in mosquito-borne diseases. Furthermore, a non-destructive and real-time imaging technique to study the anatomical features of mosquito specimens can greatly aid the study of mosquitoes. In this study, we demonstrate the three-dimensional imaging capabilities of optical coherence tomography (OCT) for structural analysis of Anopheles sinensis mosquitoes. The anatomical features of An. sinensis head, thorax, and abdominal regions, along with the morphology of internal structures, such as foregut, midgut, and hindgut, were studied using OCT imaging. Two-dimensional and three-dimensional OCT images, used in conjunction with histological images, proved useful for anatomical analysis of mosquito specimens. By presenting this work as an initial study, we demonstrate the applicability of OCT for future mosquito-related entomological research, and also in identifying changes in mosquito anatomical structure.
Collapse
Affiliation(s)
- Naresh Kumar Ravichandran
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Ruchire Eranga Wijesinghe
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Seung-Yeol Lee
- School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Kwang Shik Choi
- School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Mansik Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Hee-Young Jung
- School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Jeehyun Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| |
Collapse
|
103
|
Abstract
In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an efficient tool for arthropod identification. Its application for field monitoring of adult mosquitoes was demonstrated, but identification of larvae has been limited to laboratory-reared specimens. Study aim was to test the success of MALDI-TOF MS in correctly identifying mosquito larvae collected in the field. Collections were performed at 13 breeding sites in urban areas of Marseille, a city in the South of France. A total of 559 larvae were collected. Of these, 73 were accurately morphologically identified, with confirmation either by molecular identification (n = 31) or analysis with MALDI-TOF MS (n = 31) and 11 were tested using both methods. The larvae identified belonged to six species including Culiseta longiareolata, Culex pipiens pipiens, Culex hortensis, Aedes albopictus, Ochlerotatus caspius and Anopheles maculipennis. A high intra-species reproducibility and inter-species specificity of whole larva MS spectra was obtained and was independent of breeding site. More than 92% of the remaining 486 larvae were identified in blind tests against the MS spectra database. Identification rates were lower for early and pupal stages, which is attributed to lower protein abundance and metamorphosis, respectively. The suitability of MALDI-TOF MS for mosquito larvae identification from the field has been confirmed.
Collapse
|
104
|
|
105
|
The p53 gene with emphasis on its paralogues in mosquitoes. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:747-754. [PMID: 28690024 DOI: 10.1016/j.jmii.2017.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/31/2017] [Accepted: 06/21/2017] [Indexed: 01/21/2023]
Abstract
The p53 gene is highly important in human cancers, as it serves as a tumor-suppressor gene. Subsequently, two p53 homologues, i.e., p73 and p63, with high identity of amino acids were identified, leading to construction of the p53 family. The p53 gene is highly important in human cancer because it usually transcribes genes that function by causing apoptosis in mammalian cells. In contrast, p63 and p73 tend to be more important in modulating development than inducing cell death, even though they share similar protein structures. Relatively recently, p53 was also identified in mosquitoes and many other insect species. Uniquely, its structure lacks the sterile alpha motif domain which is a putative protein-protein interaction domain and exclusively exists at the C-terminal region in p73 and p63 in mammals. A phylogenetic analysis revealed that the p53 gene derived from mosquitoes is composed of two paralogues, p53-1 and p53-2. Of these, only p53-2 is responsively upregulated by dengue 2 virus (DENV2) in C6/36 cells which usually survive the infection. This indicates that the p53 gene is closely related to DENV infection in mosquito cells. The specific significance of p53-2's involvement in cell survival from virus-induced stress is described and briefly discussed in this report.
Collapse
|
106
|
Liang SY, Chu HL, Guo XL, Wang W, Chen HN, Zhang YF, Chen Y, Wu T, Bao CJ, Zhou MH. Experimental infections of mosquitoes with severe fever with thrombocytopenia syndrome virus. Infect Dis Poverty 2017; 6:78. [PMID: 28569189 PMCID: PMC5452404 DOI: 10.1186/s40249-017-0282-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/09/2017] [Indexed: 11/17/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is a newly identified emerging infectious disease, which is caused by a novel bunyavirus (termed SFTSV) in Asia. Although mosquitoes have not been identified as the primary vectors, as revealed by epidemiological surveys, their role in transmitting this SFTSV as a suspicious vector has not been validated. Findings In this study, we conducted experimental infections of mosquitoes with SFTSV to examine the role of mosquitoes in the transmission of the virus. We did not detect viral replication in Culex pipiens pallens, Aedes aegyptis and Anopheles sinensis as revealed by qRT-PCR assay. In addition, we failed to isolate SFTSV from the Vero cells cultured with suspensions of SFTSV-infected mosquitoes. Conclusion The results of the present study demonstrate little possibility that mosquitoes act as vectors for the emerging pathogen SFTSV. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0282-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shu-Yi Liang
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, People's Republic of China
| | - Hong-Liang Chu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, People's Republic of China
| | - Xi-Ling Guo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, People's Republic of China
| | - Wei Wang
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi, People's Republic of China
| | - Hong-Na Chen
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, People's Republic of China
| | - Yu-Fu Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, People's Republic of China
| | - Yin Chen
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, People's Republic of China
| | - Tao Wu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, People's Republic of China
| | - Chang-Jun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, People's Republic of China
| | - Ming-Hao Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, People's Republic of China.
| |
Collapse
|
107
|
Houldcroft CJ, Ramond JB, Rifkin RF, Underdown SJ. Migrating microbes: what pathogens can tell us about population movements and human evolution. Ann Hum Biol 2017; 44:397-407. [PMID: 28511559 DOI: 10.1080/03014460.2017.1325515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. METHODS This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. RESULTS Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. CONCLUSIONS Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- a Department of Archaeology and Anthropology, Division of Biological Anthropology , University of Cambridge , Cambridge , UK.,b McDonald Institute of Archaeological Research, University of Cambridge , Cambridge , UK
| | - Jean-Baptiste Ramond
- c Department of Genetics , Centre for Microbial Ecology and Genomics, Genomic Research Institute, University of Pretoria , Hatfield , South Africa
| | - Riaan F Rifkin
- c Department of Genetics , Centre for Microbial Ecology and Genomics, Genomic Research Institute, University of Pretoria , Hatfield , South Africa
| | - Simon J Underdown
- d Department of Anthropology & Geography, Human Origins and Palaeoenvironmental Research Group (HOPE) , Oxford Brookes University , Oxford , UK.,e Leverhulme Centre for Human Evolutionary Studies , Henry Wellcome Building , Cambridge , UK
| |
Collapse
|
108
|
Alkhaibari AM, Carolino AT, Bull JC, Samuels RI, Butt TM. Differential Pathogenicity of Metarhizium Blastospores and Conidia Against Larvae of Three Mosquito Species. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:696-704. [PMID: 28399202 DOI: 10.1093/jme/tjw223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
Biorational insecticides are being increasingly used in integrated pest management programs. In laboratory bioassays, the pathogenicity of blastospores and conidia of the entomopathogenic fungus Metarhizium brunneum ARSEF 4556 was evaluated against larvae of three mosquito species. Three propagule concentrations (1 × 106, 1 × 107, and 1 × 108 spores ml - 1) were used in the bioassays. Results showed that Aedes aegypti had lower survival rates when exposed to blastospores than when exposed to conidia, whereas the converse was true for Culex quinquefasciatus larvae. Anopheles stephensi larvae survival rates were similar when exposed to blastospores and conidia, except at the higher doses, where blastospores were more virulent. Several assays showed little difference in mortalities when using either 1 × 107 or 1 × 108 spores ml - 1, suggesting a threshold above which no higher control levels or economic benefit would be achieved. When tested at the lowest dose, the LT50 of Cx. quinquefasciatus using blastospores, wet conidia, and dry conidia was 3.2, 1.9, and 4.4 d, respectively. The LT50 of Ae. aegypti using blastospores, wet conidia, and dry conidia was 1.3, 3.3, and 6.2 d, respectively. The LT50 of An. stephensi using blastospores, wet conidia, and dry conidia was 2.0, 1.9, and 2.1 d, respectively. These observations suggest that for optimized control, two different formulations of the fungus may be needed when treating areas where there are mixed populations of Aedes, Anopheles, and Culex.
Collapse
Affiliation(s)
- A M Alkhaibari
- Department of Biosciences College of Science, Swansea University Singleton Park, Swansea SA2 8PP, UK (; ; )
| | - A T Carolino
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro 28016-602, Brazil (; )
| | - J C Bull
- Department of Biosciences College of Science, Swansea University Singleton Park, Swansea SA2 8PP, UK (; ; )
| | - R I Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro 28016-602, Brazil (; )
| | - T M Butt
- Department of Biosciences College of Science, Swansea University Singleton Park, Swansea SA2 8PP, UK (; ; )
| |
Collapse
|
109
|
Du MH, Yan ZW, Hao YJ, Yan ZT, Si FL, Chen B, Qiao L. Suppression of Laccase 2 severely impairs cuticle tanning and pathogen resistance during the pupal metamorphosis of Anopheles sinensis (Diptera: Culicidae). Parasit Vectors 2017; 10:171. [PMID: 28376914 PMCID: PMC5381134 DOI: 10.1186/s13071-017-2118-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023] Open
Abstract
Background Phenol oxidases (POs) catalyze the oxidation of dopa and dopamine to melanin, which is crucial for cuticle formation and innate immune maintenance in insects. Although, Laccase 2, a member of the PO family, has been reported to be a requirement for melanin-mediated cuticle tanning in the development stages of some insects, whether it participates in cuticle construction and other physiological processes during the metamorphosis of mosquito pupae is unclear. Methods The association between the phenotype and the expression profile of Anopheles sinensis Laccase 2 (AsLac2) was assessed from pupation to adult eclosion. Individuals showing an expression deficiency of AsLac2 that was produced by RNAi and their phenotypic defects and physiological characterizations were compared in detail with the controls. Results During the dominant expression period, knockdown of AsLac2 in pupae caused the cuticle to be unpigmented, and produced thin and very soft cuticles, which further impeded the eclosion rate of adults as well as their fitness. Moreover, melanization immune responses in the pupae were sharply decreased, leading to poor resistance to microorganism infection. Both the high conservation among Laccase 2 homologs and a very similar genomic synteny of the neighborhood in Anopheles genus implies a conservative function in the pupal stage. Conclusions To our knowledge, this is the first study to report the serious phenotypic defects in mosquito pupae caused by the dysfunction of Laccase 2. Our findings strongly suggest that Laccase 2 is crucial for Anopheles cuticle construction and melanization immune responses to pathogen infections during pupal metamorphosis. This irreplaceability provides valuable information on the application of Lacccase 2 and/or other key genes in the melanin metabolism pathway for developing mosquito control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2118-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Hui Du
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology; College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zheng-Wen Yan
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology; College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - You-Jin Hao
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology; College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology; College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology; College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology; College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology; College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
110
|
Essential oils and their components as an alternative in the control of mosquito vectors of disease. BIOMEDICA 2017; 37:224-243. [PMID: 29161495 DOI: 10.7705/biomedica.v37i0.3475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/27/2017] [Indexed: 11/21/2022]
Abstract
More than half of the human population is exposed to mosquito-borne infections. Climate change and the emergence of strains resistant to traditionally used insecticides have motivated the search of new agents for mosquito population control. Essential oils have been effective repellents and larvicidal agents.The aim of this work was to review research studies conducted in recent years on the larvicidal activity of essential oils and their components against Aedes, Anopheles and Culex mosquitoes, as well as the latest reports about their possible mechanism of action.
Collapse
|
111
|
Lwande OW, Bucht G, Ahlm C, Ahlm K, Näslund J, Evander M. Mosquito-borne Inkoo virus in northern Sweden - isolation and whole genome sequencing. Virol J 2017; 14:61. [PMID: 28330505 PMCID: PMC5362992 DOI: 10.1186/s12985-017-0725-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Inkoo virus (INKV) is a less known mosquito-borne virus belonging to Bunyaviridae, genus Orthobunyavirus, California serogroup. Studies indicate that INKV infection is mainly asymptomatic, but can cause mild encephalitis in humans. In northern Europe, the sero-prevalence against INKV is high, 41% in Sweden and 51% in Finland. Previously, INKV RNA has been detected in adult Aedes (Ae.) communis, Ae. hexodontus and Ae. punctor mosquitoes and Ae. communis larvae, but there are still gaps of knowledge regarding mosquito vectors and genetic diversity. Therefore, we aimed to determine the occurrence of INKV in its mosquito vector and characterize the isolates. METHODS About 125,000 mosquitoes were collected during a mosquito-borne virus surveillance in northern Sweden during the summer period of 2015. Of these, 10,000 mosquitoes were processed for virus isolation and detection using cell culture and RT-PCR. Virus isolates were further characterized by whole genome sequencing. Genetic typing of mosquito species was conducted by cytochrome oxidase subunit I (COI) gene amplification and sequencing (genetic barcoding). RESULTS Several Ae. communis mosquitoes were found positive for INKV RNA and two isolates were obtained. The first complete sequences of the small (S), medium (M), and large (L) segments of INKV in Sweden were obtained. Phylogenetic analysis showed that the INKV genome was most closely related to other INKV isolates from Sweden and Finland. Of the three INKV genome segments, the INKV M segment had the highest frequency of non-synonymous mutations. The overall G/C-content of INKV genes was low for the N/NSs genes (43.8-45.5%), polyprotein (Gn/Gc/NSm) gene (35.6%) and the RNA polymerase gene (33.8%) This may be due to the fact that INKV in most instances utilized A or T in the third codon position. CONCLUSIONS INKV is frequently circulating in northern Sweden and Ae. communis is the key vector. The high mutation rate of the INKV M segment may have consequences on virulence.
Collapse
Affiliation(s)
| | - Göran Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Kristoffer Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Jonas Näslund
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
112
|
Norris EJ, Coats JR. Current and Future Repellent Technologies: The Potential of Spatial Repellents and Their Place in Mosquito-Borne Disease Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020124. [PMID: 28146066 PMCID: PMC5334678 DOI: 10.3390/ijerph14020124] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/31/2022]
Abstract
Every year, approximately 700,000 people die from complications associated with etiologic disease agents transmitted by mosquitoes. While insecticide-based vector control strategies are important for the management of mosquito-borne diseases, insecticide-resistance and other logistical hurdles may lower the efficacy of this approach, especially in developing countries. Repellent technologies represent another fundamental aspect of preventing mosquito-borne disease transmission. Among these technologies, spatial repellents are promising alternatives to the currently utilized contact repellents and may significantly aid in the prevention of mosquito-borne disease if properly incorporated into integrated pest management approaches. As their deployment would not rely on prohibitively expensive or impractical novel accessory technologies and resources, they have potential utility in developing countries where the burden of mosquito-borne disease is most prevalent. This review aims to describe the history of various repellent technologies, highlight the potential of repellent technologies in preventing the spread of mosquito-borne disease, and discuss currently known mechanisms that confer resistance to current contact and spatial repellents, which may lead to the failures of these repellents. In the subsequent section, current and future research projects aimed at exploring long-lasting non-pyrethroid spatial repellent molecules along with new paradigms and rationale for their development will be discussed.
Collapse
Affiliation(s)
- Edmund J Norris
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Joel R Coats
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
113
|
Roopan SM, Bharathi A, Al-Dhabi NA, Arasu MV, Madhumitha G. Synthesis and insecticidal activity of acridone derivatives to Aedes aegypti and Culex quinquefasciatus larvae and non-target aquatic species. Sci Rep 2017; 7:39753. [PMID: 28059104 PMCID: PMC5216327 DOI: 10.1038/srep39753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022] Open
Abstract
A serious Mosquito borne yellow fever is one of the grave diseases which affect the major population. Since there is no specific treatment for yellow fever, there is a necessity to develop an effective agent. The series of acridinone analogues 3 to 5 were synthesized with help of non-conventional microwave heating and confirmed by respective spectral characterization. 5c and 3b showed highest activity to kill 90% of larvae against A. aegypti and C. quinquefasciatus, respectively. Also the active products were treated to check the mortality of non-target aquatic species. Through the reports of the larvicidal bioassay, compounds 3b against C. quinquefasciatus whereas 5c against A. aegypti were found to be more active. By keeping this as a platform, further extension of the work can be done to find out a valuable drug for controlling disease vectors.
Collapse
Affiliation(s)
- Selvaraj Mohana Roopan
- Chemistry of Heterocycles &Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-632014, Tamil Nadu, India
| | - Annadurai Bharathi
- Chemistry of Heterocycles &Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-632014, Tamil Nadu, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - G Madhumitha
- Chemistry of Heterocycles &Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
114
|
Prud'homme SM, Chaumot A, Cassar E, David JP, Reynaud S. Impact of micropollutants on the life-history traits of the mosquito Aedes aegypti: On the relevance of transgenerational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:242-254. [PMID: 27667679 DOI: 10.1016/j.envpol.2016.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Hazard assessment of chemical contaminants often relies on short term or partial life-cycle ecotoxicological tests, while the impact of low dose throughout the entire life cycle of species across multiple generations has been neglected. This study aimed at identifying the individual and population-level consequences of chronic water contamination by environmental concentrations of three organic micropollutants, ibuprofen, bisphenol A and benzo[a]pyrene, on Aedes aegypti mosquito populations in experimental conditions. Life-history assays spanning the full life-cycle of exposed individuals and their progeny associated with population dynamics modelling evidenced life-history traits alterations in unexposed progenies of individuals chronically exposed to 1 μg/L ibuprofen or 0.6 μg/L benzo[a]pyrene. The progeny of individuals exposed to ibuprofen showed an accelerated development while the progeny of individuals exposed to benzo[a]pyrene showed a developmental acceleration associated with an increase in mortality rate during development. These life-history changes due to pollutants exposure resulted in relatively shallow increase of Ae. aegypti asymptotic population growth rate. Multigenerational exposure for six generations revealed an evolution of population response to ibuprofen and benzo[a]pyrene across generations, leading to a loss of previously identified transgenerational effects and to the emergence of a tolerance to the bioinsecticide Bacillus turingiensis israelensis (Bti). This study shed light on the short and long term impact of environmentally relevant doses of ibuprofen and benzo[a]pyrene on Ae. aegypti life-history traits and insecticide tolerance, raising unprecedented perspectives about the influence of surface water pollution on vector-control strategies. Overall, our approach highlights the importance of considering the entire life cycle of organisms, and the necessity to assess the transgenerational effects of pollutants in ecotoxicological studies for ecological risk assessment. Finally, this multi-generational study gives new insight about the influence of surface water pollution on microevolutionary processes.
Collapse
Affiliation(s)
- Sophie M Prud'homme
- CNRS Laboratoire d'Ecologie Alpine (LECA), UMR 5553, BP 53, 2233 rue de la Piscine, 38041 Grenoble Cedex 9, France; Université Grenoble Alpes, Grenoble, France.
| | - Arnaud Chaumot
- IRSTEA, UR MALY, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| | - Eva Cassar
- CNRS Laboratoire d'Ecologie Alpine (LECA), UMR 5553, BP 53, 2233 rue de la Piscine, 38041 Grenoble Cedex 9, France; Université Grenoble Alpes, Grenoble, France.
| | - Jean-Philippe David
- CNRS Laboratoire d'Ecologie Alpine (LECA), UMR 5553, BP 53, 2233 rue de la Piscine, 38041 Grenoble Cedex 9, France; Université Grenoble Alpes, Grenoble, France.
| | - Stéphane Reynaud
- CNRS Laboratoire d'Ecologie Alpine (LECA), UMR 5553, BP 53, 2233 rue de la Piscine, 38041 Grenoble Cedex 9, France; Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
115
|
D'Silva NM, Patrick ML, O'Donnell MJ. Effects of rearing salinity on expression and function of ion motive ATPases and ion transport across the gastric caecum of Aedes aegypti larvae. J Exp Biol 2017; 220:3172-3180. [DOI: 10.1242/jeb.163170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/26/2017] [Indexed: 01/15/2023]
Abstract
Larvae of Aedes aegypti, the yellow fever vector, inhabit a variety of aquatic habitats ranging from fresh water to brackish water. This study focuses on the gastric caecum of the larvae, an organ that has not been widely studied. We provide the first measurements of H+, K+, and Na+ fluxes at the distal and proximal gastric caecum, and have shown that they differ in the two regions, consistent with previously reported regionalization of ion transporters. Moreover we have shown that the regionalization of vacuolar H+-ATPase and Na+/K+ -ATPase is altered when larvae are reared in brackish water (30% seawater) relative to fresh water. Measurements of luminal Na+ and K+ concentrations also show a 5-fold increase in Na+/K+ ratio in the caecal lumen in larvae reared in brackish water relative to fresh water, whereas transepithelial potential and luminal pH were unchanged. Calculated electrochemical potentials reveal changes in the active accumulation of Na+ and K+ in the lumen of the gastric caecum of fresh water versus brackish water larvae. Together with the results of previous studies of the larval midgut, our results show that the caecum is functionally distinct from the adjacent anterior midgut, and may play an important role in osmoregulation as well as uptake of nutrients.
Collapse
|
116
|
Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Sci Rep 2016; 6:38770. [PMID: 27934910 PMCID: PMC5146937 DOI: 10.1038/srep38770] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
Rickettsiales are important zoonotic pathogens, causing severe disease in humans globally. Although mosquitoes are an important vector for diverse pathogens, with the exception of members of the genus Wolbachia little is known about their role in the transmission of Rickettsiales. Herein, Rickettsiales were identified by PCR in five species of mosquitoes (Anopheles sinensis, Armigeres subalbatus, Aedes albopictus, Culex quinquefasciatus and Cu. tritaeniorhynchus) collected from three Chinese provinces during 2014–2015. Subsequent phylogenetic analyses of the rrs, groEL and gltA genes revealed the presence of Anaplasma, Ehrlichia, Candidatus Neoehrlichia, and Rickettsia bacteria in mosquitoes, comprising nine documented and five tentative species bacteria, as well as three symbionts/endosybionts. In addition, bacteria were identified in mosquito eggs, larvae, and pupae sampled from aquatic environments. Hence, these data suggest that Rickettsiales circulate widely in mosquitoes in nature. Also of note was that Ehrlichia and Rickettsia bacteria were detected in each life stage of laboratory cultured mosquitoes, suggesting that Rickettsiales may be maintained in mosquitoes through both transstadial and transovarial transmission. In sum, these data indicate that mosquitoes may have played an important role in the transmission and evolution of Rickettsiales in nature.
Collapse
|
117
|
Rajah MM, Pardy RD, Condotta SA, Richer MJ, Sagan SM. Zika Virus: Emergence, Phylogenetics, Challenges, and Opportunities. ACS Infect Dis 2016; 2:763-772. [PMID: 27704772 DOI: 10.1021/acsinfecdis.6b00161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne pathogen that has recently gained notoriety due to its rapid and ongoing geographic expansion and its novel association with neurological complications. Reports of ZIKV-associated Guillain-Barré syndrome as well as fetal microcephaly place emphasis on the need to develop preventative measures and therapeutics to combat ZIKV infection. Thus, it is imperative that models to study ZIKV replication and pathogenesis and the immune response are developed in conjunction with integrated vector control strategies to mount an efficient response to the pandemic. This paper summarizes the current state of knowledge on ZIKV, including the clinical features, phylogenetic analyses, pathogenesis, and the immune response to infection. Potential challenges in developing diagnostic tools, treatment, and prevention strategies are also discussed.
Collapse
Affiliation(s)
- Maaran M. Rajah
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Ryan D. Pardy
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Stephanie A. Condotta
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Martin J. Richer
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Selena M. Sagan
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| |
Collapse
|
118
|
Govindarajan M, Benelli G. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:395-402. [PMID: 27504617 DOI: 10.1016/j.ecoenv.2016.07.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic organisms.
Collapse
Affiliation(s)
- Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India.
| | - Giovanni Benelli
- Insect Behavior Group, Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
119
|
Haenchen SD, Hayden MH, Dickinson KL, Walker K, Jacobs EE, Brown HE, Gunn JKL, Kohler LN, Ernst KC. Mosquito Avoidance Practices and Knowledge of Arboviral Diseases in Cities with Differing Recent History of Disease. Am J Trop Med Hyg 2016; 95:945-953. [PMID: 27527634 PMCID: PMC5062805 DOI: 10.4269/ajtmh.15-0732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/15/2016] [Indexed: 12/24/2022] Open
Abstract
As the range of dengue virus (DENV) transmission expands, an understanding of community uptake of prevention and control strategies is needed both in geographic areas where the virus has recently been circulating and in areas with the potential for DENV introduction. Personal protective behaviors such as the use of mosquito repellent to limit human-vector contact and the reduction of vector density through elimination of oviposition sites are the primary control methods for Aedes aegypti, the main vector of DENV. Here, we examined personal mosquito control measures taken by individuals in Key West, FL, in 2012, which had experienced a recent outbreak of DENV, and Tucson, AZ, which has a high potential for introduction but has not yet experienced autochthonous transmission. In both cities, there was a positive association between the numbers of mosquitoes noticed outdoors and the overall number of avoidance behaviors, use of repellent, and removal of standing water. Increased awareness and perceived risk of DENV were associated with increases in one of the most effective household prevention behaviors, removal of standing water, but only in Key West.
Collapse
Affiliation(s)
| | - Mary H Hayden
- National Center of Atmospheric Research, Boulder, Colorado.
| | - Katherine L Dickinson
- National Center of Atmospheric Research, Boulder, Colorado. University of Colorado Boulder, Boulder, Colorado
| | | | - Elizabeth E Jacobs
- University of Arizona, Tucson, Arizona. University of Arizona Cancer Center, Tucson, Arizona
| | | | | | | | | |
Collapse
|
120
|
Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res 2016; 115:4649-4661. [DOI: 10.1007/s00436-016-5257-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022]
|
121
|
Bichara D, Castillo-Chavez C. Vector-borne diseases models with residence times - A Lagrangian perspective. Math Biosci 2016; 281:128-138. [PMID: 27622812 DOI: 10.1016/j.mbs.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 02/03/2023]
Abstract
A multi-patch and multi-group modeling framework describing the dynamics of a class of diseases driven by the interactions between vectors and hosts structured by groups is formulated. Hosts' dispersal is modeled in terms of patch-residence times with the nonlinear dynamics taking into account the effective patch-host size. The residence times basic reproduction number R0 is computed and shown to depend on the relative environmental risk of infection. The model is robust, that is, the disease free equilibrium is globally asymptotically stable (GAS) if R0≤1 and a unique interior endemic equilibrium is shown to exist that is GAS whenever R0>1 whenever the configuration of host-vector interactions is irreducible. The effects of patchiness and groupness, a measure of host-vector heterogeneous structure, on the basic reproduction number R0, are explored. Numerical simulations are carried out to highlight the effects of residence times on disease prevalence.
Collapse
Affiliation(s)
- Derdei Bichara
- Department of Mathematics, California State University, Fullerton, United States; Center for Computational and Applied Mathematics, 800 N. State College Blvd, Fullerton, CA 92831, United States.
| | - Carlos Castillo-Chavez
- Simon A. Levin Mathematical, Computational and Modeling Science Center, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
122
|
Abstract
It is estimated that over a million people die each year from infectious diseases of zoonotic origin and hundreds of millions suffer from these pervasive threats to human well-being. In light of the emergent global concern over the Zika virus, evidence that it has not one but two competent mosquito vector species in the Aedes family, and that both can be co-infected with other pathogens including dengue and chikungunya, this paper examines research suggesting the prospect of significant twenty-first-century outbreaks of arbovirus syndemics. Uniting the concepts 'synergy' with 'epidemic', a syndemics approach recognises that diseases in a population occur neither independent of social and ecological conditions, nor in isolation from other diseases. Assessment of the potential for arbovirus syndemics entails a review of the human role in the global spread of Aedes mosquitoes, the socio-environmental conditions of Aedes diffusion, the increasing likelihood of co-transmission of arbovirus diseases, evidence of co-infection and concern about the adverse health effects of arbovirus syndemic interaction, and the need for an appropriate environment-sensitive framework for effective public health responses. Called Planetary Health, this emergent framework confronts conceptual, knowledge, and governance challenges created by the dramatic shifts in environments, climates, people, vectors, and pathogens in the world.
Collapse
Affiliation(s)
- Merrill Singer
- a Departments of Anthropology and Community Medicine , University of Connecticut , Storrs , CT , USA
| |
Collapse
|
123
|
RAIMUNDO SILVIAMARTORANO, YANG HYUNMO, MASSAD EDUARDO. MODELING VACCINE PREVENTABLE VECTOR-BORNE INFECTIONS: YELLOW FEVER AS A CASE STUDY. J BIOL SYST 2016. [DOI: 10.1142/s0218339016500108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we propose and simulate a deterministic model for a vector-borne disease in the presence of a vaccine. The model allows the assessment of the impact of an imperfect vaccine with various characteristics, which include waning protective immunity, incomplete vaccine-induced protection and adverse events. We find three threshold parameters which govern the existence and stability of the equilibrium points. Our stability analysis suggests that the reduction in the mosquito fertility theoretically is the most effective factor of reducing disease prevalence in both low and high transmission areas. To illustrate the theoretical results, the model is simulated by the example of yellow fever. We also perform sensitivity analyses to determine the importance of both vaccine-induced mortality rate and disease-induced mortality rate for determining a control strategy. We found that there is an optimum vaccination rate, above which people die by the vaccination and below which people die by the disease.
Collapse
Affiliation(s)
- SILVIA MARTORANO RAIMUNDO
- School of Medicine, University of São Paulo and LIM01-HCFMUSP, Dr Arnaldo 455, São Paulo, SP, 01246-903, Brazil
| | - HYUN MO YANG
- Department of Applied Mathematics, University of Campinas, Praça Sérgio Buarque de Holanda 651, Campinas, SP, 13083-859, Brazil
| | - EDUARDO MASSAD
- School of Medicine, University of São Paulo and LIM01-HCFMUSP, Dr Arnaldo 455, São Paulo, SP, 01246-903, Brazil
| |
Collapse
|
124
|
Clinical Update on Dengue, Chikungunya, and Zika: What We Know at the Time of Article Submission. Disaster Med Public Health Prep 2016; 11:290-299. [PMID: 27572514 DOI: 10.1017/dmp.2016.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Mosquito-borne diseases pose a threat to individual health and population health on both a local and a global level. The threat is even more exaggerated during disasters, whether manmade or environmental. With the recent Zika virus outbreak, it is important to highlight other infections that can mimic the Zika virus and to better understand what can be done as public health officials and health care providers. METHODS This article reviews the recent literature on the Zika virus as well as chikungunya virus and dengue virus. RESULTS The present findings give a better understanding of the similarities and differences between the 3 infections in terms of their characteristics, clinical presentation, diagnosis methodology, and treatment and what can be done for prevention. Additionally, the article highlights a special population that has received much focus in the latest outbreak, the pregnant individual. CONCLUSION Education and training are instrumental in controlling the outbreak, and early detection can be lifesaving. (Disaster Med Public Health Preparedness. 2017;11:290-299).
Collapse
|
125
|
Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitol Res 2016; 115:4345-4351. [PMID: 27530515 DOI: 10.1007/s00436-016-5218-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
The Culex quinquefaciatus Say, commonly known as the southern house mosquito, is well known for biting nuisance and vectoring of some fatal diseases. Synthetic chemicals have been relied upon as the major control measure to control mosquitoes. Therefore, we have evaluated 21 insecticides belonging to different chemical classes for their toxicity to C. quinquefaciatus females. Chlorfenapyr was the most toxic adulticide among all the tested insecticides. Among pyrethroids, deltamethrin was the least toxic adulticide, and all other have same toxicity. In case of organophosphates, the chlorpyrifos was the most toxic insecticide. Neonicotinoids such as acetamiprid, nitenpyram, and clothianidin have similar toxicity based on overlapping of 95 % confidence intervals (CI) and were more toxic when compared with the imidacloprid. The spinetoram was more toxic as compared with the spinosad (based on non-overlapping 95 % Cl). In case of ketoenoles, spirotetrament was more toxic as compared with the spiromesifen. Emamectin benzoate was the most toxic insecticide when compared with fipronil and indoxacarb. We also have tested four insect growth regulators (IGRS) including lufenuron, methoxyfenozide, pyriproxyfen, and cyromazine as larvicides. The lufenuron and pyriproxyfen have similar toxicity based upon their overlapping 95 % CI and were more toxic as compared with the methoxyfenozide and cyromazine. The methoxyfenozide was the moderately toxic among all the tested IGRS, and cyromazine was the least toxic among all the tested IGRS. These results will prove helpful in effectuating an effective integrated vector management program for C. quinquefaciatus.
Collapse
|
126
|
Qiao L, Du M, Liang X, Hao Y, He X, Si F, Mei T, Chen B. Tyrosine Hydroxylase is crucial for maintaining pupal tanning and immunity in Anopheles sinensis. Sci Rep 2016; 6:29835. [PMID: 27416870 PMCID: PMC4945905 DOI: 10.1038/srep29835] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/31/2016] [Indexed: 11/09/2022] Open
Abstract
Tyrosine hydroxylase (TH), the initial enzyme in the melanin pathway, catalyzes tyrosine conversion into Dopa. Although expression and regulation of TH have been shown to affect cuticle pigmentation in insects, no direct functional studies to date have focused on the specific physiological processes involving the enzyme during mosquito development. In the current study, silencing of AsTH during the time period of continuous high expression in Anopheles sinensis pupae led to significant impairment of cuticle tanning and thickness, imposing a severe obstacle to eclosion in adults. Meanwhile, deficiency of melanin in interference individuals led to suppression of melanization, compared to control individuals. Consequently, the ability to defend exogenous microorganisms declined sharply. Accompanying down-regulation of the basal expression of five antimicrobial peptide genes resulted in further significant weakening of immunity. TH homologs as well as the composition of upstream transcription factor binding sites at the pupal stage are highly conserved in the Anopheles genus, implying that the TH-mediated functions are crucial in Anopheles. The collective evidence strongly suggests that TH is essential for Anopheles pupae tanning and immunity and provides a reference for further studies to validate the utility of the key genes involved in the melanization pathway in controlling mosquito development.
Collapse
Affiliation(s)
- Liang Qiao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Minghui Du
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xin Liang
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Youjin Hao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xiu He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Fengling Si
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ting Mei
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
127
|
Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep 2016; 6:29002. [PMID: 27373794 PMCID: PMC4931447 DOI: 10.1038/srep29002] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control.
Collapse
|
128
|
Alkhaibari AM, Carolino AT, Yavasoglu SI, Maffeis T, Mattoso TC, Bull JC, Samuels RI, Butt TM. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality. PLoS Pathog 2016; 12:e1005715. [PMID: 27389584 PMCID: PMC4936676 DOI: 10.1371/journal.ppat.1005715] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/01/2016] [Indexed: 11/19/2022] Open
Abstract
Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae in a relatively short time (12-24hrs), significantly quicker than when larvae were exposed to conidia. This study shows that selecting the appropriate form of inoculum is important for efficacious control of disease vectors such as Ae. aegypti.
Collapse
Affiliation(s)
- Abeer M. Alkhaibari
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Aline T. Carolino
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Sare I. Yavasoglu
- Department of Biology, Faculty of Arts & Sciences, Adnan Menderes University, Aydin, Turkey
| | - Thierry Maffeis
- College of Engineering, Swansea University, Swansea, United Kingdom
| | - Thalles C. Mattoso
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - James C. Bull
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Richard I. Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Tariq M. Butt
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom
| |
Collapse
|
129
|
Surya W, Chooduang S, Choong YK, Torres J, Boonserm P. Binary Toxin Subunits of Lysinibacillus sphaericus Are Monomeric and Form Heterodimers after In Vitro Activation. PLoS One 2016; 11:e0158356. [PMID: 27341696 PMCID: PMC4920411 DOI: 10.1371/journal.pone.0158356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022] Open
Abstract
The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. An activation step shortens both subunits BinA and BinB before their interaction with membranes and internalization in midgut cells, but the precise role of this activation step is unknown. Herein, we show conclusively using three orthogonal biophysical techniques that protoxin subunits form only monomers in aqueous solution. However, in vitro activated toxins readily form heterodimers. This oligomeric state did not change after incubation of these heterodimers with detergent. These results are consistent with the evidence that maximal toxicity in mosquito larvae is achieved when the two subunits, BinA and BinB, are in a 1:1 molar ratio, and directly link proteolytic activation to heterodimerization. Formation of a heterodimer must thus be necessary for subsequent steps, e.g., interaction with membranes, or with a suitable receptor in susceptible mosquito species. Lastly, despite existing similarities between BinB C-terminal domain with domains 3 and 4 of pore-forming aerolysin, no aerolysin-like SDS-resistant heptameric oligomers were observed when the activated Bin subunits were incubated in the presence of detergents or lipidic membranes.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sivadatch Chooduang
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| | - Yeu Khai Choong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Persiaran Universiti, Putra Nilai, Nilai, Negeri Sembilan, Malaysia
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (JT); (PB)
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
- * E-mail: (JT); (PB)
| |
Collapse
|
130
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
131
|
Exposure to Aedes aegypti Bites Induces a Mixed-Type Allergic Response following Salivary Antigens Challenge in Mice. PLoS One 2016; 11:e0155454. [PMID: 27203689 PMCID: PMC4874626 DOI: 10.1371/journal.pone.0155454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/28/2016] [Indexed: 01/13/2023] Open
Abstract
Classical studies have shown that Aedes aegypti salivary secretion is responsible for the sensitization to mosquito bites and many of the components present in saliva are immunogenic and capable of inducing an intense immune response. Therefore, we have characterized a murine model of adjuvant-free systemic allergy induced by natural exposure to mosquito bites. BALB/c mice were sensitized by exposure to A. aegypti mosquito bites and intranasally challenged with phosphate-buffered saline only or the mosquito’s salivary gland extract (SGE). Blood, bronchoalveolar lavage (BAL) and lung were collected and evaluated for cellularity, histopathological analyses, cytokines and antibody determination. Respiratory pattern was analyzed by Penh measurements and tracheal segments were obtained to study in vitro reactivity to methacholine. BAL recovered from sensitized mice following challenge with SGE showed an increased number of eosinophils and Th2 cytokines such as IL-4, IL-5 and IL-13. Peribronchoalveolar eosinophil infiltration, mucus and collagen were also observed in lung parenchyma of sensitized mice, suggesting the development of a typical Th2 response. However, the antibody profile in serum of these mice evidenced a mixed-type response with presence of both, IgG1/IgE (Th2-related) and IgG2a (Th1-related) isotypes. In addition, changes in breathing pattern and tracheal reactivity to methacholine were not found. Taken together, our results show that A. aegypti bites trigger an atypical allergic reaction, with some classical cellular and soluble Th2 components in the lung, but also systemic Th1 and Th2 antibody isotypes and no change in either the respiratory pattern or the trachea responsiveness to agonist.
Collapse
|
132
|
Puglise JM, Estep AS, Becnel JJ. Expression Profiles and RNAi Silencing of Inhibitor of Apoptosis Transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:304-14. [PMID: 26659858 DOI: 10.1093/jme/tjv191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Effective mosquito control is vital to curtail the devastating health effects of many vectored diseases. RNA interference (RNAi)-mediated control of mosquitoes is an attractive alternative to conventional chemical pesticides. Previous studies have suggested that transcripts for inhibitors of apoptosis (IAPs) may be good RNAi targets. To revisit and extend previous reports, we examined the expression of Aedes aegypti (L.) IAPs (AaeIAPs) 1, 2, 5, 6, 9, and a viral IAP-associated factor (vIAF) as well as Anopheles quadrimaculatus Say and Culex quinquefasciatus Say IAP1 homologs (AquIAP1 and CquIAP1) in adult females. Expression profiles of IAPs suggested that some older female mosquitoes had significantly higher IAP mRNA levels when compared to the youngest ones. Minor differences in expression of AaeIAPs were observed in mosquitoes that imbibed a bloodmeal, but the majority of the time points (up to 48 h) were not significantly different. Although in vitro experiments with the Ae. aegypti Aag-2 cell line demonstrated that the various AaeIAPs could be effectively knocked down within one day after dsRNA treatment, only Aag-2 cells treated with dsIAP1 displayed apoptotic morphology. Gene silencing and mortality were also evaluated after topical application and microinjection of the same dsRNAs into female Ae. aegypti. In contrast to previous reports, topical administration of dsRNA against AaeIAP1 did not yield a significant reduction in gene expression or increased mortality. Knockdown of IAP1 and other IAPs by microinjection did not result in significant mortality. In toto, our findings suggest that IAPs may not be suitable RNAi targets for controlling adult mosquito populations.
Collapse
|
133
|
Liu P, Li X, Gu J, Dong Y, Liu Y, Santhosh P, Chen X. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus. Sci Rep 2016; 6:20979. [PMID: 26879823 PMCID: PMC4754678 DOI: 10.1038/srep20979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control.
Collapse
Affiliation(s)
- Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaocong Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yunqiao Dong
- Reproductive Medical Center of Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511442, China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Puthiyakunnon Santhosh
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
134
|
Sharakhov IV, Artemov GN, Sharakhova MV. Chromosome evolution in malaria mosquitoes inferred from physically mapped genome assemblies. J Bioinform Comput Biol 2016; 14:1630003. [PMID: 27021248 DOI: 10.1142/s0219720016300033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polymorphic inversions in mosquitoes are distributed nonrandomly among chromosomes and are associated with ecological, behavioral, and physiological adaptations related to pathogen transmission. Despite their significance, the patterns and mechanism of genome rearrangements are not well understood. Recent sequencing and physical mapping of the genomes for 16 Anopheles mosquito species provided an opportunity to study chromosome evolution at the highest resolution. New studies revealed that fixed rearrangement accumulated [Formula: see text]3 times faster on the X chromosome than on autosomes. The highest densities of transposable elements (TEs) and satellites of different sizes have also been found on the X chromosome, suggesting a mechanism for the inversion generation. The high rate of X chromosome rearrangements is in sharp contrast with the paucity of polymorphic inversions on the X in the majority of anopheline species. This paper highlights the advances in understanding chromosome evolution in malaria vectors and discusses possible future directions in studying mechanisms and biological roles of genome rearrangements.
Collapse
Affiliation(s)
- Igor V Sharakhov
- 1 Department of Entomology, Virginia Tech, Blacksburg, Virginia 24061, USA.,2 Tomsk State University, Tomsk 634050, Russia
| | | | - Maria V Sharakhova
- 1 Department of Entomology, Virginia Tech, Blacksburg, Virginia 24061, USA.,2 Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
135
|
Santos CF, Borges M. Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest. Rev Soc Bras Med Trop 2016; 48:474-8. [PMID: 26312939 DOI: 10.1590/0037-8682-0022-2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/31/2015] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil. METHODS Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models. RESULTS Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition. CONCLUSIONS This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.
Collapse
Affiliation(s)
- Cleandson Ferreira Santos
- Laboratório de Ecologia e Controle Biológico de Insetos, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, BR
| | - Magno Borges
- Laboratório de Ecologia e Controle Biológico de Insetos, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, BR
| |
Collapse
|
136
|
Dantas-Torres F, Otranto D. Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans. Trends Parasitol 2016; 32:43-55. [DOI: 10.1016/j.pt.2015.09.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/03/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
|
137
|
Anbalagan S, Arunprasanna V, Kannan M, Dinakaran S, Krishnan M. Spatio-temporal dynamics of mosquitoes in stream pools of a biosphere reserve of Southern Western Ghats, India. Acta Trop 2015; 152:228-236. [PMID: 26434940 DOI: 10.1016/j.actatropica.2015.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 11/17/2022]
Abstract
The spatial and temporal dynamics of mosquitoes in stream pools were examined in a biosphere reserve of the Southern Western Ghats, India. The immature mosquitoes in stream pools were collected from stream substrates of bedrock pool, boulder cavity and sand puddle. The collected larvae and pupae were reared and identified. In total, 16 species from four genera of mosquitoes were collected. The mosquito species from Culex and Anopheles were predominantly occurred. The bedrock pool had the highest diversity and abundance of mosquitoes. The statistical analyses showed that the substrate specificity and the seasons were positively related to the distribution of mosquitoes rather than spatial pattern. This study described the spatial and temporal pattern of mosquitoes in stream pools of the Southern Western Ghats. This information would be helpful to National Vector borne disease control program for surveillance and control.
Collapse
Affiliation(s)
- S Anbalagan
- Department of Zoology, Government Arts College (Affiliated to Periyar University), Salem, Tamil Nadu, India.
| | - V Arunprasanna
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - M Kannan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Dinakaran
- Department of Zoology, The Madura College, Madurai, Tamil Nadu, India
| | - M Krishnan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
138
|
Revay EE, Schlein Y, Tsabari O, Kravchenko V, Qualls W, De-Xue R, Beier JC, Traore SF, Doumbia S, Hausmann A, Müller GC. Formulation of attractive toxic sugar bait (ATSB) with safe EPA-exempt substance significantly diminishes the Anopheles sergentii population in a desert oasis. Acta Trop 2015; 150:29-34. [PMID: 26119042 DOI: 10.1016/j.actatropica.2015.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/14/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Attractive toxic sugar bait (ATSB) is a highly effective method which targets mosquitoes based on their sugar foraging behavior, by presenting baits of attractive compounds in combination with sugar and oral toxin to local mosquito populations. Environmental concerns and insecticide selection-pressure have prompted investigations of novel, ecologically-harmless substances which can be used as insecticides. This study examined the efficacy of microencapsulated garlic-oil as the oral toxin component of ATSB for controlling Anopheles sergentii populations inhabiting desert-surrounded wetlands in Israel. ATSB solution containing 0.4% encapsulated garlic oil was applied to local vegetation around a streamlet located in the lower Jordan Valley. To determine the propensity of bait ingestion, and assess the potential ecological impact of the method, mosquito and non-target specimens were collected and tested for the presence of natural plant- or attractive sugar bait (ASB)-derived sugars. Over the experimental period, biting-pressure values in the ATSB treatment site decreased by 97.5%, while at the control site, treated with non-toxic ASB, no significant changes were observed. Approximately 70% of the mosquitoes collected before both treatments, as well as those captured following the application of ASB at the control site, were found to have ingested sugar prior to capture. Non-target insects were minimally affected by the treatment when ATSB was applied to foliage of non-flowering plants. Of the non-Diptera species, only 0.7% of the sampled non-target insects were found to have ingested ASB-solution which was applied to green vegetation, compared with 8.5% which have foraged on ASB-derived sugars applied to flowering plants. Conversely, a high proportion of the non-target species belonging to the order Diptera, especially non-biting midges, were found to have ingested foliage-applied ASB, with more than 36% of the specimens collected determined to have foraged on bait-derived sugars. These results prove that food-grade, EPA-exempt microencapsulated garlic oil is a highly effective insecticide which can be utilized for mosquito population control. The relatively short half-life of this active ingredient makes it a suitable for use in areas where repeated application is possible, limiting the accumulation of deleterious compounds and ensuring minimal environmental impact when applied in accordance with label recommendations.
Collapse
|
139
|
Yang Y, Garver LS, Bingham KM, Hang J, Jochim RC, Davidson SA, Richardson JH, Jarman RG. Feasibility of Using the Mosquito Blood Meal for Rapid and Efficient Human and Animal Virus Surveillance and Discovery. Am J Trop Med Hyg 2015; 93:1377-82. [PMID: 26416112 DOI: 10.4269/ajtmh.15-0440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/03/2015] [Indexed: 11/07/2022] Open
Abstract
Mosquito blood meals taken from humans and animals potentially represent a useful source of blood for the detection of blood-borne pathogens. In this feasibility study, Anopheles stephensi mosquitoes were fed with blood meals spiked with dengue virus type 2 (DENV-2) and harvested at serial time points. These mosquitoes are not competent vectors, and the virus is not expected to replicate. Ingested blood was spotted on Whatman FTA cards and stored at room temperature. Mosquito abdomens were removed and stored at -80°C. Control blood meal aliquots were stored in vials or applied onto FTA cards. After 4 weeks of storage, the samples were extracted using beadbeating and QIAamp Viral RNA kit (Qiagen Sciences, Germantown, MD). Recovered viral RNA was analyzed by DENV-2 TaqMan RT-PCR assay and next-generation sequencing (NGS). Overall viral RNA recovery efficiency was 15% from the directly applied dried blood spots and approximately 20% or higher for dried blood spots made by blotting mosquito midgut on FTA cards. Viral RNA in mosquito-ingested blood decreases over time, but remains detectable 24 hours after blood feeding. The viral sequences in FTA-stored specimens can be maintained at room temperature. The strategy has the potential utility in expedited zoonotic virus discovery and blood-borne pathogen surveillance.
Collapse
Affiliation(s)
- Yu Yang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Lindsey S Garver
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Karen M Bingham
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Ryan C Jochim
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Silas A Davidson
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jason H Richardson
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
140
|
Calkins TL, Piermarini PM. Pharmacological and Genetic Evidence for Gap Junctions as Potential New Insecticide Targets in the Yellow Fever Mosquito, Aedes aegypti. PLoS One 2015; 10:e0137084. [PMID: 26325403 PMCID: PMC4556631 DOI: 10.1371/journal.pone.0137084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/13/2015] [Indexed: 12/02/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins) and invertebrate (innexins) animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine) into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides.
Collapse
Affiliation(s)
- Travis L. Calkins
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Peter M. Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
141
|
Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol Res 2015; 114:3835-53. [DOI: 10.1007/s00436-015-4614-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
|
142
|
Naumenko AN, Timoshevskiy VA, Kinney NA, Kokhanenko AA, deBruyn BS, Lovin DD, Stegniy VN, Severson DW, Sharakhov IV, Sharakhova MV. Mitotic-chromosome-based physical mapping of the Culex quinquefasciatus genome. PLoS One 2015; 10:e0115737. [PMID: 25768920 PMCID: PMC4358980 DOI: 10.1371/journal.pone.0115737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022] Open
Abstract
The genome assembly of southern house mosquito Cx. quinquefasciatus is represented by a high number of supercontigs with no order or orientation on the chromosomes. Although cytogenetic maps for the polytene chromosomes of this mosquito have been developed, their utilization for the genome mapping remains difficult because of the low number of high-quality spreads in chromosome preparations. Therefore, a simple and robust mitotic-chromosome-based approach for the genome mapping of Cx. quinquefasciatus still needs to be developed. In this study, we performed physical mapping of 37 genomic supercontigs using fluorescent in situ hybridization on mitotic chromosomes from imaginal discs of 4th instar larvae. The genetic linkage map nomenclature was adopted for the chromosome numbering based on the direct positioning of 58 markers that were previously genetically mapped. The smallest, largest, and intermediate chromosomes were numbered as 1, 2, and 3, respectively. For idiogram development, we analyzed and described in detail the morphology and proportions of the mitotic chromosomes. Chromosomes were subdivided into 19 divisions and 72 bands of four different intensities. These idiograms were used for mapping the genomic supercontigs/genetic markers. We also determined the presence of length polymorphism in the q arm of sex-determining chromosome 1 in Cx. quinquefasciatus related to the size of ribosomal locus. Our physical mapping and previous genetic linkage mapping resulted in the chromosomal assignment of 13% of the total genome assembly to the chromosome bands. We provided the first detailed description, nomenclature, and idiograms for the mitotic chromosomes of Cx. quinquefasciatus. Further application of the approach developed in this study will help to improve the quality of the southern house mosquito genome.
Collapse
Affiliation(s)
- Anastasia N. Naumenko
- Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vladimir A. Timoshevskiy
- Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Nicholas A. Kinney
- Department of Genomics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | | | - Becky S. deBruyn
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Diane D. Lovin
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | | | - David W. Severson
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Igor V. Sharakhov
- Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Maria V. Sharakhova
- Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
| |
Collapse
|
143
|
Sales-Campos H, de Souza PR, Basso PJ, Ramos AD, Nardini V, Chica JEL, Capurro ML, Sá-Nunes A, de Barros Cardoso CR. Aedes aegypti salivary gland extract ameliorates experimental inflammatory bowel disease. Int Immunopharmacol 2015; 26:13-22. [PMID: 25770821 DOI: 10.1016/j.intimp.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/18/2015] [Accepted: 03/01/2015] [Indexed: 02/07/2023]
Abstract
Current therapies for inflammatory bowel disease (IBD) are not totally effective, resulting in persistent and recurrent disease for many patients. Mosquito saliva contains immunomodulatory molecules and therein could represent a novel therapy for IBD. Here, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Aedes aegypti on dextran sulfate sodium (DSS)-induced colitis. For this purpose, C57BL/6 male mice were exposed to 3% DSS in drinking water and treated with SGE at early (days 3-5) or late (days 5-8) time points, followed by euthanasia on days 6 and 9, respectively, for sample collection. The results showed an improvement in clinical disease outcome and postmortem scores after SGE treatment, accompanied by the systemic reduction in peripheral blood lymphocytes, with no impact on bone marrow and mesenteric lymph nodes cellularity or macrophages toxicity. Moreover, a local diminishment of IFN-γ, TNF-α, IL-1β and IL-5 cytokines together with a reduction in the inflammatory area were observed in the colon of SGE-treated mice. Strikingly, early treatment with SGE led to mice protection from a late DSS re-challenging, as observed by decreased clinical and postmortem scores, besides reduced circulating lymphocytes, indicating that the mosquito saliva may present components able to prevent disease relapse. Indeed, high performance liquid chromatography (HPLC) experiments pointed to a major SGE pool fraction (F3) able to ameliorate disease signs. In conclusion, SGE and its components might represent a source of important immunomodulatory molecules with promising therapeutic activity for IBD.
Collapse
Affiliation(s)
- Helioswilton Sales-Campos
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas-Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patricia Reis de Souza
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas-Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Paulo José Basso
- Departamento de Bioquímica e Imunologia-Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Daniel Ramos
- Departamento de Imunologia-Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas-Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Javier Emílio Lazo Chica
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Margareth Lara Capurro
- Departamento de Parasitologia-Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Departamento de Imunologia-Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas-Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
144
|
Equilibrium analysis of a yellow Fever dynamical model with vaccination. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:482091. [PMID: 25834634 PMCID: PMC4365373 DOI: 10.1155/2015/482091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 12/11/2022]
Abstract
We propose an equilibrium analysis of a dynamical model of yellow fever transmission in the presence of a vaccine. The model considers both human and vector populations. We found thresholds parameters that affect the development of the disease and the infectious status of the human population in the presence of a vaccine whose protection may wane over time. In particular, we derived a threshold vaccination rate, above which the disease would be eradicated from the human population. We show that if the mortality rate of the mosquitoes is greater than a given threshold, then the disease is naturally (without intervention) eradicated from the population. In contrast, if the mortality rate of the mosquitoes is less than that threshold, then the disease is eradicated from the populations only when the growing rate of humans is less than another threshold; otherwise, the disease is eradicated only if the reproduction number of the infection after vaccination is less than 1. When this reproduction number is greater than 1, the disease will be eradicated from the human population if the vaccination rate is greater than a given threshold; otherwise, the disease will establish itself among humans, reaching a stable endemic equilibrium. The analysis presented in this paper can be useful, both to the better understanding of the disease dynamics and also for the planning of vaccination strategies.
Collapse
|
145
|
Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses. PLoS Negl Trop Dis 2014; 8:e3326. [PMID: 25522134 PMCID: PMC4270489 DOI: 10.1371/journal.pntd.0003326] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/07/2014] [Indexed: 02/02/2023] Open
Abstract
Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological impact of large scale use of topical repellents on arthropod borne diseases.
Collapse
|
146
|
Dieme C, Yssouf A, Vega-Rúa A, Berenger JM, Failloux AB, Raoult D, Parola P, Almeras L. Accurate identification of Culicidae at aquatic developmental stages by MALDI-TOF MS profiling. Parasit Vectors 2014; 7:544. [PMID: 25442218 PMCID: PMC4273427 DOI: 10.1186/s13071-014-0544-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/17/2014] [Indexed: 12/02/2022] Open
Abstract
Background The identification of mosquito vectors is generally based on morphological criteria, but for aquatic stages, morphological characteristics may be missing, leading to incomplete or incorrect identification. The high cost of molecular biology techniques requires the development of an alternative strategy. In the last decade, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has proved to be efficient for arthropod identification at the species level. Methods To investigate the usefulness of MALDI-TOF MS for the identification of mosquitoes at aquatic stages, optimizations of sample preparation, diet, body parts and storage conditions were tested. Protein extracts of whole specimens from second larval stage to pupae were selected for the creation of a reference spectra database. The database included a total of 95 laboratory-reared specimens of 6 mosquito species, including Anopheles gambiae (S form), Anopheles coluzzi (M form), Culex pipiens pipiens, Culex pipiens molestus, Aedes aegypti and 2 colonies of Aedes albopictus. Results The present study revealed that whole specimens at aquatic stages produced reproducible and singular spectra according to the mosquito species. Moreover, MS protein profiles appeared weakly affected by the diet provided. Despite the low diversity of some MS profiles, notably for cryptic species, clustering analyses correctly classified all specimens tested at the species level followed by the clustering of early vs. late aquatic developmental stages. Discriminant mass peaks were recorded for the 6 mosquito species analyzed at larval stage 3 and the pupal stage. Querying against the reference spectra database of 149 new specimens at different aquatic stages from the 6 mosquito species revealed that 147 specimens were correctly identified at the species level and that early and late developmental stages were also distinguished. Conclusions The present work highlights that MALDI-TOF MS profiling may be useful for the rapid and reliable identification of mosquito species at aquatic stages. With this proteomic tool, it becomes now conceivable to survey mosquito breeding sites prior to the mosquitoes’ emergence and to adapt anti-vectorial measures according to the mosquito fauna detected. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0544-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Constentin Dieme
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France. .,Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal.
| | - Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| | - Anubis Vega-Rúa
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France.
| | - Jean-Michel Berenger
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| | - Anna-Bella Failloux
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors, Paris, France.
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, WHO collaborative center for rickettsioses and other arthropod borne bacterial diseases, Faculté de Médecine, 27 bd Jean Moulin, 13385, Marseille cedex 5, France.
| |
Collapse
|
147
|
da Rocha Taranto MF, Pessanha JEM, dos Santos M, dos Santos Pereira Andrade AC, Camargos VN, Alves SN, Di Lorenzo Oliveira C, Taranto AG, dos Santos LL, de Magalhães JC, Kroon EG, Figueiredo LB, Drumond BP, Ferreira JMS. Dengue outbreaks in Divinopolis, south-eastern Brazil and the geographic and climatic distribution of Aedes albopictus and Aedes aegypti in 2011-2012. Trop Med Int Health 2014; 20:77-88. [PMID: 25328988 DOI: 10.1111/tmi.12402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To entomologically monitor Aedes spp. and correlate the presence of these vectors with the recent epidemic of dengue in Divinopolis, Minas Gerais State, Brazil. METHODS Ovitraps were installed at 44 points in the city, covering six urban areas, from May 2011 to May 2012. After collection, the eggs were incubated until hatching. In the 4th stage of development, the larvae were classified as Ae. aegypti or Ae. albopictus. RESULTS In total, 25 633 Aedes spp. eggs were collected. February was the month with the highest incidence, with 5635 eggs collected and a hatching rate of 46.7%. Ae. aegypti eggs had the highest hatching rate, at 72.3%, whereas Ae. albopictus eggs had 27.7%. Climate and population density influenced the number of eggs found. Indicators of vector presence were positively correlated with the occurrence of dengue cases. CONCLUSION These data reinforce the need for entomological studies, highlight the relevance of Ae. albopictus as a possible disease vector and demonstrate its adaptation. Ae. albopictus, most commonly found in forested areas, comprised a substantial proportion of the urban mosquito population.
Collapse
|
148
|
Castellanos J, Bello J, Velandia-Romero M. Manifestaciones neurológicas durante la infección por el virus del dengue. INFECTIO 2014. [DOI: 10.1016/j.infect.2014.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
149
|
Larvicidal Activity of Colocasia esculenta, Eclipta prostrata and Wrightia tinctoria Leaf Extract Against Culex quinquefasciatus. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40011-014-0423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
150
|
Involvement of ATP synthase β subunit in chikungunya virus entry into insect cells. Arch Virol 2014; 159:3353-64. [PMID: 25168043 DOI: 10.1007/s00705-014-2210-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
Chikungunya virus (CHIKV), the virus responsible for the disease chikungunya fever in humans, is transmitted by Aedes mosquitoes. While significant progress has been made in understanding the process by which CHIKV enters into mammalian cells, far less progress has been made in understanding the CHIKV entry process in insect cells. This study sought to identify mosquito-cell-expressed CHIKV-binding proteins through a combination of virus overlay protein binding assays (VOPBA) and mass spectroscopy. A 50-kDa CHIKV-binding protein was identified as the ATP synthase β subunit (ATPSβ). Co-immunoprecipitation studies confirmed the interaction, and colocalization analysis showed cell-surface and intracellular co-localization between CHIKV and ATPSβ. Both antibody inhibition and siRNA-mediated downregulation experiments targeted to ATPSβ showed a significant reduction in viral entry and virus production. These results suggest that ATPSβ is a CHIKV-binding protein capable of mediating the entry of CHIKV into insect cells.
Collapse
|