101
|
García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci 2017; 512:249-259. [PMID: 29073466 DOI: 10.1016/j.jcis.2017.10.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs), which have been widely used for the delivery of photosensitizers for photodynamic therapy (PDT) of cancer, can be dispersed in aqueous solutions improving the delivery of the hydrophobic photosensitizer into the body. Furthermore, the large surface of AuNPs can be functionalized with a variety of ligands, including proteins, nucleic acids and carbohydrates, that allow selective targeting to cancer tissue. In this study, gold nanoparticles were functionalized with a mixed monolayer of a zinc phthalocyanine and a lactose derivative. For the first time, a carbohydrate was used with a dual purpose, as the stabilizing agent of the gold nanoparticles in aqueous solutions and as the targeting agent for breast cancer cells. The functionalization of the phthalocyanine-AuNPs with lactose led to the production of water-dispersible nanoparticles that are able to generate singlet oxygen and effect cell death upon irradiation. The targeting ability of lactose of the lactose-phthalocyanine functionalized AuNPs was studied in vitro towards the galectin-1 receptor on the surface of breast cancer cells. The targeting studies showed the exciting potential of lactose as a specific targeting agent for galactose-binding receptors overexpressed on breast cancer cells.
Collapse
Affiliation(s)
- Paula García Calavia
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Isabelle Chambrier
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Michael J Cook
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alan H Haines
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David A Russell
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
102
|
Fanfone D, Despretz N, Stanicki D, Rubio-Magnieto J, Fossépré M, Surin M, Rorive S, Salmon I, Vander Elst L, Laurent S, Muller RN, Saussez S, Burtea C. Toward a new and noninvasive diagnostic method of papillary thyroid cancer by using peptide vectorized contrast agents targeted to galectin-1. Med Oncol 2017; 34:184. [PMID: 28986753 DOI: 10.1007/s12032-017-1042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 11/24/2022]
Abstract
The incidence of papillary thyroid cancer has increased these last decades due to a better detection. High prevalence of nodules combined with the low incidence of thyroid cancers constitutes an important diagnostic challenge. We propose to develop an alternative diagnostic method to reduce the number of useless and painful thyroidectomies using a vectorized contrast agent for magnetic resonance imaging. Galectin-1 (gal-1), a protein overexpressed in well-differentiated thyroid cancer, has been targeted with a randomized linear 12-mer peptide library using the phage display technique. Selected peptides have been conjugated to ultrasmall superparamagnetic particles of iron oxide (USPIO). Peptides and their corresponding contrast agents have been tested in vitro for their specific binding and toxicity. Two peptides (P1 and P7) were selected according to their affinity toward gal-1. Their binding has been revealed by immunohistochemistry on human thyroid cancer biopsies, and they were co-localized with gal-1 by immunofluorescence on TPC-1 cell line. Both peptides induce a decrease in TPC-1 cells' adhesion to gal-1 immobilized on culture plates. After coupling to USPIO, the peptides preserved their affinity toward gal-1. Their specific binding has been corroborated by co-localization with gal-1 expressed by TPC-1 cells and by their ability to compete with anti-gal-1 antibody. The peptides and their USPIO derivatives produce no toxicity in HepaRG cells as determined by MTT assay. The vectorized contrast agents are potential imaging probes for thyroid cancer diagnosis. Moreover, the two gal-1-targeted peptides prevent cancer cell adhesion by interacting with the carbohydrate-recognition domain of gal-1.
Collapse
Affiliation(s)
- Deborah Fanfone
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Nadège Despretz
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Jenifer Rubio-Magnieto
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons, Avenue Victor Maistriau, 19, 7000, Mons, Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons, Avenue Victor Maistriau, 19, 7000, Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons, Avenue Victor Maistriau, 19, 7000, Mons, Belgium
| | - Sandrine Rorive
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, University of Mons, Avenue du Champ de Mars, 6, 7000, Mons, Belgium
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium.
| |
Collapse
|
103
|
Predictive role of galectin-1 and integrin α5β1 in cisplatin-based neoadjuvant chemotherapy of bulky squamous cervical cancer. Biosci Rep 2017; 37:BSR20170958. [PMID: 28842515 PMCID: PMC5617914 DOI: 10.1042/bsr20170958] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 11/17/2022] Open
Abstract
Although galectin-1 and integrin α5β1 confer chemoresistance to certain types of cancer, whether their expression predicts the response to cisplatin-based neoadjuvant chemotherapy (NACT) in squamous cervical cancer remains unclear. Paired tumor samples (pre- and post-chemotherapy) were obtained from 35 bulky squamous cervical cancer patients treated with cisplatin-based NACT and radical hysterectomy at our hospital between January 2007 and August 2014. The expression of galectin-1 and integrin α5β1 in tumor cells and stromal cells was analyzed by immunohistochemistry. The correlation between galectin-1/integrin α5β1 and apoptosis-associated markers was investigated by using the The Cancer Genome Atlas (TCGA) RNA-sequencing data. Seventeen patients were identified as chemotherapy responders and 18 as non-responders. Galectin-1 and integrin α5β1-positive immunostaining was more frequently observed in stromal cells than its in tumor cells. The expression of galectin-1 and integrin α5β1 in stromal and tumor cells was significantly down-regulated in postchemotherapy cervical cancer tissues. High levels of galectin-1 and integrin α5β1 in stromal were associated with a negative chemotherapy response in squamous cervical cancer patients treated with cisplatin-based NACT. Additionally, the expression of galectin-1 and integrin α5 correlated negatively with caspase 3/caspase 8 by using the TCGA RNA-sequencing data. Galectin-1 and integrin α5β1 expression in stromal may serve as a prediction of the responses to cisplatin-based NACT for patients with bulky squamous cervical cancer. Galectin-1 and integrin α5β1 may be implicated in the development of chemoresistance in cervical cancer via suppressing apoptosis.
Collapse
|
104
|
Bacigalupo ML, Carabias P, Troncoso MF. Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression. World J Gastroenterol 2017; 23:5266-5281. [PMID: 28839427 PMCID: PMC5550776 DOI: 10.3748/wjg.v23.i29.5266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer is a group of tumors that affect multiple sites of the digestive system, including the stomach, liver, colon and pancreas. These cancers are very aggressive and rapidly metastasize, thus identifying effective targets is crucial for treatment. Galectin-1 (Gal-1) belongs to a family of glycan-binding proteins, or lectins, with the ability to cross-link specific glycoconjugates. A variety of biological activities have been attributed to Gal-1 at different steps of tumor progression. Herein, we summarize the current literature regarding the roles of Gal-1 in gastrointestinal malignancies. Accumulating evidence shows that Gal-1 is drastically up-regulated in human gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic ductal adenocarcinoma tissues, both in tumor epithelial and tumor-associated stromal cells. Moreover, Gal-1 makes a crucial contribution to the pathogenesis of gastrointestinal malignancies, favoring tumor development, aggressiveness, metastasis, immunosuppression and angiogenesis. We also highlight that alterations in Gal-1-specific glycoepitopes may be relevant for gastrointestinal cancer progression. Despite the findings obtained so far, further functional studies are still required. Elucidating the precise molecular mechanisms modulated by Gal-1 underlying gastrointestinal tumor progression, might lead to the development of novel Gal-1-based diagnostic methods and/or therapies.
Collapse
|
105
|
Sun Y, Li Y, Wu Y, Xiong L, Li C, Wang C, Li D, Lan J, Zhang Z, Jing B, Gu X, Xie Y, Lai W, Peng X, Yang G. Fatty-binding protein and galectin of Baylisascaris schroederi: Prokaryotic expression and preliminary evaluation of serodiagnostic potential. PLoS One 2017; 12:e0182094. [PMID: 28750056 PMCID: PMC5531546 DOI: 10.1371/journal.pone.0182094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Baylisascaris schroederi is a common parasite of captive giant pandas. The diagnosis of this ascariasis is normally carried out by a sedimentation-floatation method or PCR to detect eggs in feces, but neither method is suitable for early diagnosis. Fatty acid-binding protein (FABP) and galectin (GAL) exist in various animals and participate in important biology of parasites. Because of their good immunogenicity, they are seen as potential antigens for the diagnosis of parasitic diseases. In this study, we cloned and expressed recombinant FABP and GAL from B. schroederi (rBs-FABP and rBs-GAL) and developed indirect enzyme-linked immunosorbent assays (ELISAs) to evaluate their potential for diagnosing ascariasis in giant pandas. Immunolocalization showed that Bs-FABP and Bs-GAL were widely distributed in adult worms. The ELISA based on rBs-FABP showed sensitivity of 95.8% (23/24) and specificity of 100% (12/12), and that based on rBs-GAL had sensitivity of 91.7% (22/24) and specificity of 100% (12/12).
Collapse
Affiliation(s)
- Ying Sun
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiran Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Caiwu Li
- China Conservation and Research Center for Giant Panda, Wolong, China
| | - Chengdong Wang
- China Conservation and Research Center for Giant Panda, Wolong, China
| | - Desheng Li
- China Conservation and Research Center for Giant Panda, Wolong, China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Zhihe Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobing Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- * E-mail:
| |
Collapse
|
106
|
Posada IM, Lectez B, Sharma M, Oetken-Lindholm C, Yetukuri L, Zhou Y, Aittokallio T, Abankwa D. Rapalogs can promote cancer cell stemness in vitro in a Galectin-1 and H-ras-dependent manner. Oncotarget 2017; 8:44550-44566. [PMID: 28562352 PMCID: PMC5546501 DOI: 10.18632/oncotarget.17819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/22/2017] [Indexed: 01/05/2023] Open
Abstract
Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they complicate drug targeting.Here, we describe a novel H-ras specific feedback, which leads to an inadvertent rapalog induced activation of tumorigenicity in Ras transformed cells. We find that rapalogs specifically increase nanoscale clustering (nanoclustering) of oncogenic H-ras but not K-ras on the plasma membrane. This increases H-ras signaling output, promotes mammosphere numbers in a H-ras-dependent manner and tumor growth in ovo. Surprisingly, also other FKBP12 binders, but not mTor-inhibitors, robustly decrease FKBP12 levels after prolonged (>2 days) exposure. This leads to an upregulation of the nanocluster scaffold galectin-1 (Gal-1), which is responsible for the rapamycin-induced increase in H-ras nanoclustering and signaling output. We provide evidence that Gal-1 promotes stemness features in tumorigenic cells. Therefore, it may be necessary to block inadvertent induction of stemness traits in H-ras transformed cells by specific Gal-1 inhibitors that abrogate its effect on H-ras nanocluster. On a more general level, our findings may add an important mechanistic explanation to the pleiotropic physiological effects that are observed with rapalogs.
Collapse
Affiliation(s)
- Itziar M.D. Posada
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | - Benoit Lectez
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | - Mukund Sharma
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | | | - Laxman Yetukuri
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Daniel Abankwa
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| |
Collapse
|
107
|
Bertleff-Zieschang N, Bechold J, Grimm C, Reutlinger M, Schneider P, Schneider G, Seibel J. Exploring the Structural Space of the Galectin-1-Ligand Interaction. Chembiochem 2017; 18:1477-1481. [DOI: 10.1002/cbic.201700251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Nadja Bertleff-Zieschang
- Institute of Organic Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Julian Bechold
- Institute of Organic Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Clemens Grimm
- Biozentrum der Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Michael Reutlinger
- Eidgenössische Technische Hochschule (ETH); Department Chemie und Angewandte Biowissenschaften; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Petra Schneider
- Eidgenössische Technische Hochschule (ETH); Department Chemie und Angewandte Biowissenschaften; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Gisbert Schneider
- Eidgenössische Technische Hochschule (ETH); Department Chemie und Angewandte Biowissenschaften; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Jürgen Seibel
- Institute of Organic Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
108
|
Bone Marrow Mesenchymal Stem Cells Inhibit the Function of Dendritic Cells by Secreting Galectin-1. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3248605. [PMID: 28713822 PMCID: PMC5497648 DOI: 10.1155/2017/3248605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/14/2017] [Indexed: 01/21/2023]
Abstract
This study aimed to investigate whether bone marrow-derived mesenchymal stem cells (BM-MSCs) can inhibit function of dendritic cells (DCs) by secreting Galectin-1 (Gal-1). BM-MSCs have been shown to inhibit the maturation and function of DCs, further inhibiting the activation and proliferation of T cells. However, the detailed mechanism remains unknown. In this current study, MSCs and DCs derived from mouse bone marrow were cocultured using Transwell culture plates under different in vitro conditions. The results showed that as the ratio of MSC to DC of the coculture system increased and the coculture time of the two cells prolonged, the concentrations of Gal-1, interleukin- (IL-) 10, and IL-12 in the supernatants were increased and the protein expression of Gal-1 on and within DCs was also enhanced. The phosphorylation of extracellular signal-regulated kinase (ERK) pathway in DCs was boosted, whereas p38 mitogen-activated protein kinase (MAPK) pathway phosphorylation was weakened. Meanwhile, the expression of costimulatory molecules on the surface of DCs was decreased, and the proliferative effect of DCs on allogeneic T cells was also decreased. Therefore, this present study indicated that Gal-1 secreted from MSCs upregulated expression of Gal-1 and stimulated formation of tolerance immunophenotype on DCs, where the underlying mechanism was the regulation of the MAPK signaling pathway in DCs, thereby inhibiting the function of DCs.
Collapse
|
109
|
Schulz H, Schmoeckel E, Kuhn C, Hofmann S, Mayr D, Mahner S, Jeschke U. Galectins-1, -3, and -7 Are Prognostic Markers for Survival of Ovarian Cancer Patients. Int J Mol Sci 2017; 18:ijms18061230. [PMID: 28594391 PMCID: PMC5486053 DOI: 10.3390/ijms18061230] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 02/01/2023] Open
Abstract
There is a tremendous need for developing new useful prognostic factors in ovarian cancer. Galectins are a family of carbohydrate binding proteins which have been suggested to serve as prognostic factors for various cancer types. In this study, the presence of Galectin-1, -3, and -7 was investigated in 156 ovarian cancer specimens by immunochemical staining. Staining was evaluated in the cytoplasm and nucleus of cancer cells as well as the peritumoral stroma using a semi quantitative score (Remmele (IR) score). Patients’ overall survival was compared between different groups of Galectin expression. Galectin (Gal)-1 and -3 staining was observed in the peritumoral stroma as well as the nucleus and cytoplasm of tumor cells, while Gal-7 was only present in the cytoplasm of tumor cells. Patients with Gal-1 expression in the cytoplasm or high Gal-1 expression in the peritumoral stroma showed reduced overall survival. Nuclear Gal-3 staining correlated with a better outcome. We observed a significantly reduced overall survival for cases with high Gal-7 expression and a better survival for Gal-7 negative cases, when compared to cases with low expression of Gal-7. We were able to show that both tumor and stroma staining of Gal-1 could serve as negative prognostic factors for ovarian cancer. We were able to confirm cytoplasmic Gal-7 as a negative prognostic factor. Gal-3 staining in the nucleus could be a new positive prognosticator for ovarian cancer.
Collapse
Affiliation(s)
- Heiko Schulz
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, Munich 80337, Germany.
| | - Elisa Schmoeckel
- LMU Munich, Department of Pathology, Ludwig Maximilians University of Munich, Thalkirchner Str. 142, Munich 80337, Germany.
| | - Christina Kuhn
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, Munich 80337, Germany.
| | - Simone Hofmann
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, Munich 80337, Germany.
| | - Doris Mayr
- LMU Munich, Department of Pathology, Ludwig Maximilians University of Munich, Thalkirchner Str. 142, Munich 80337, Germany.
| | - Sven Mahner
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, Munich 80337, Germany.
| | - Udo Jeschke
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, Munich 80337, Germany.
| |
Collapse
|
110
|
Yang N, Zhang W, He T, Xing Y. Silencing of galectin-1 inhibits retinal neovascularization and ameliorates retinal hypoxia in a murine model of oxygen-induced ischemic retinopathy. Exp Eye Res 2017; 159:1-15. [DOI: 10.1016/j.exer.2017.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/08/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
|
111
|
Wu X, Li J, Connolly EM, Liao X, Ouyang J, Giobbie-Hurder A, Lawrence D, McDermott D, Murphy G, Zhou J, Piesche M, Dranoff G, Rodig S, Shipp M, Hodi FS. Combined Anti-VEGF and Anti-CTLA-4 Therapy Elicits Humoral Immunity to Galectin-1 Which Is Associated with Favorable Clinical Outcomes. Cancer Immunol Res 2017; 5:446-454. [PMID: 28473314 DOI: 10.1158/2326-6066.cir-16-0385] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023]
Abstract
The combination of anti-VEGF blockade (bevacizumab) with immune checkpoint anti-CTLA-4 blockade (ipilimumab) in a phase I study showed tumor endothelial activation and immune cell infiltration that were associated with favorable clinical outcomes in patients with metastatic melanoma. To identify potential immune targets responsible for these observations, posttreatment plasma from long-term responding patients were used to screen human protein arrays. We reported that ipilimumab plus bevacizumab therapy elicited humoral immune responses to galectin-1 (Gal-1), which exhibits protumor, proangiogenesis, and immunosuppressive activities in 37.2% of treated patients. Gal-1 antibodies purified from posttreatment plasma suppressed the binding of Gal-1 to CD45, a T-cell surface receptor that transduces apoptotic signals upon binding to extracellular Gal-1. Antibody responses to Gal-1 were found more frequently in the group of patients with therapeutic responses and correlated with improved overall survival. In contrast, another subgroup of treated patients had increased circulating Gal-1 protein instead, and they had reduced overall survival. Our findings suggest that humoral immunity to Gal-1 may contribute to the efficacy of anti-VEGF and anti-CTLA-4 combination therapy. Gal-1 may offer an additional therapeutic target linking anti-angiogenesis and immune checkpoint blockade. Cancer Immunol Res; 5(6); 446-54. ©2017 AACR.
Collapse
Affiliation(s)
- Xinqi Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jingjing Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Erin M Connolly
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xiaoyun Liao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Donald Lawrence
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - George Murphy
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jun Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Scott Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Margaret Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. .,Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
112
|
Kathiriya JJ, Nakra N, Nixon J, Patel PS, Vaghasiya V, Alhassani A, Tian Z, Allen-Gipson D, Davé V. Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis. Cell Death Discov 2017; 3:17010. [PMID: 28417017 PMCID: PMC5385413 DOI: 10.1038/cddiscovery.2017.10] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by lung remodeling arising from epithelial injury, aberrant fibroblast growth, and excessive deposition of extracellular matrix. Repeated epithelial injury elicits abnormal wound repair and lung remodeling, often associated with alveolar collapse and edema, leading to focal hypoxia. Here, we demonstrate that hypoxia is a physiological insult that contributes to pulmonary fibrosis (PF) and define its molecular roles in profibrotic activation of lung epithelial cells. Hypoxia increased transcription of profibrotic genes and altered the proteomic signatures of lung epithelial cells. Network analysis of the hypoxic epithelial proteome revealed a crosstalk between transforming growth factor-β1 and FAK1 (focal adhesion kinase-1) signaling, which regulated transcription of galectin-1, a profibrotic molecule. Galectin-1 physically interacted with and activated FAK1 in lung epithelial cells. We developed a novel model of exacerbated PF wherein hypoxia, as a secondary insult, caused PF in mice injured with subclinical levels of bleomycin. Hypoxia elevated expression of phosphorylated FAK1, galectin-1, and α-smooth muscle actin and reduced caspase-3 activation, suggesting aberrant injury repair. Galectin-1 inhibition caused apoptosis in the lung parenchyma and reduced FAK1 activation, preventing the development of hypoxia-induced PF. Galectin-1 inhibition also attenuated fibrosis-associated lung function decline. Further, galectin-1 transcript levels were increased in the lungs of IPF patients. In summary, we have identified a profibrotic role of galectin-1 in hypoxia signaling driving PF.
Collapse
Affiliation(s)
- Jaymin J Kathiriya
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Niyati Nakra
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jenna Nixon
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Puja S Patel
- University of Miami, Coral Gables, FL 33124, USA
| | - Vijay Vaghasiya
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ahmed Alhassani
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Zhi Tian
- University of Miami, Coral Gables, FL 33124, USA
| | - Diane Allen-Gipson
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Cancer Biology and Evolution, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
113
|
Suppression of Retinal Neovascularization by Inhibition of Galectin-1 in a Murine Model of Oxygen-Induced Retinopathy. J Ophthalmol 2017; 2017:5053035. [PMID: 28428895 PMCID: PMC5385917 DOI: 10.1155/2017/5053035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/28/2016] [Accepted: 02/19/2017] [Indexed: 12/19/2022] Open
Abstract
Galectin-1 (Gal-1) has been proved to be an important factor in the process of tumor angiogenesis recently. As a small molecule, OTX008 serves as a selective inhibitor of Gal-1. In this study, the role of Gal-1 and the antiangiogenic effect of OTX008 on retinal neovascularization (RNV) were investigated using a mouse model of oxygen-induced retinopathy. The outcome indicated that Gal-1 was overexpressed and closely related to retinal neovessels in OIR. After intravitreal injection of OTX008 at P12, the RNV was significantly reduced at P17, measuring by cross-sectional H&E staining and whole-mount fluorescence. Our results demonstrate the inhibitory function of OTX008 on RNV, which provides a promising strategy of treating retinal angiogenic diseases such as retinopathy of prematurity and proliferative diabetic retinopathy.
Collapse
|
114
|
Goldfinger LE, Michael JV. Regulation of Ras signaling and function by plasma membrane microdomains. Biosci Trends 2017; 11:23-40. [PMID: 28179601 DOI: 10.5582/bst.2016.01220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Together H-, N- and KRAS mutations are major contributors to ~30% of all human cancers. Thus, Ras inhibition remains an important anti-cancer strategy. The molecular mechanisms of isotypic Ras oncogenesis are still not completely understood. Monopharmacological therapeutics have not been successful in the clinic. These disappointing outcomes have led to attempts to target elements downstream of Ras, mainly targeting either the Phosphatidylinositol 3-Kinase (PI3K) or Mitogen-Activated Protein Kinase (MAPK) pathways. While several such approaches are moderately effective, recent efforts have focused on preclinical evaluation of combination therapies to improve efficacies. This review will detail current understanding of the contributions of plasma membrane microdomain targeting of Ras to mitogenic and tumorigenic signaling and tumor progression. Moreover, this review will outline novel approaches to target Ras in cancers, including targeting schemes for new drug development, as well as putative re-purposing of drugs in current use to take advantage of blunting Ras signaling by interfering with Ras plasma membrane microdomain targeting and retention.
Collapse
Affiliation(s)
- Lawrence E Goldfinger
- Department of Anatomy & Cell Biology and The Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, and Cancer Biology Program, Fox Chase Cancer Center
| | | |
Collapse
|
115
|
Saupe F, Reichel M, Huijbers EJM, Femel J, Markgren PO, Andersson CE, Deindl S, Danielson UH, Hellman LT, Olsson AK. Development of a novel therapeutic vaccine carrier that sustains high antibody titers against several targets simultaneously. FASEB J 2016; 31:1204-1214. [PMID: 27993994 DOI: 10.1096/fj.201600820r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023]
Abstract
With the aim to improve the efficacy of therapeutic vaccines that target self-antigens, we have developed a novel fusion protein vaccine on the basis of the C-terminal multimerizing end of the variable lymphocyte receptor B (VLRB), the Ig equivalent in jawless fishes. Recombinant vaccines were produced in Escherichia coli by fusing the VLRB sequence to 4 different cancer-associated target molecules. The anti-self-immune response generated in mice that were vaccinated with VLRB vaccines was compared with the response in mice that received vaccines that contained bacterial thioredoxin (TRX), previously identified as an efficient carrier. The anti-self-Abs were analyzed with respect to titers, binding properties, and duration of response. VLRB-vaccinated mice displayed a 2- to 10-fold increase in anti-self-Ab titers and a substantial decrease in Abs against the foreign part of the fusion protein compared with the response in TRX-vaccinated mice (P < 0.01). VLRB-generated Ab response had duration similar to the corresponding TRX-generated Abs, but displayed a higher diversity in binding characteristics. Of importance, VLRB vaccines could sustain an immune response against several targets simultaneously. VLRB vaccines fulfill several key criteria for an efficient therapeutic vaccine that targets self-antigens as a result of its small size, its multimerizing capacity, and nonexposed foreign sequences in the fusion protein.-Saupe, F., Reichel, M., Huijbers, E. J. M., Femel, J., Markgren, P.-O., Andersson, C. E., Deindl, S., Danielson, U. H., Hellman, L. T., Olsson, A.-K. Development of a novel therapeutic vaccine carrier that sustains high antibody titers against several targets simultaneously.
Collapse
Affiliation(s)
- Falk Saupe
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthias Reichel
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elisabeth J M Huijbers
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia Femel
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Olof Markgren
- Department of Chemistry-BMC, Biomedical Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - C Evalena Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - U Helena Danielson
- Department of Chemistry-BMC, Biomedical Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars T Hellman
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
116
|
Chong Y, Tang D, Gao J, Jiang X, Xu C, Xiong Q, Huang Y, Wang J, Zhou H, Shi Y, Wang D. Galectin-1 induces invasion and the epithelial-mesenchymal transition in human gastric cancer cells via non-canonical activation of the hedgehog signaling pathway. Oncotarget 2016; 7:83611-83626. [PMID: 27835885 PMCID: PMC5347792 DOI: 10.18632/oncotarget.13201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
Galectin-1 (Gal-1) has been reported to be an independent prognostic indicator of poor survival in gastric cancer and overexpression of Gal-1 enhances the invasiveness of gastric cancer cells. However, the downstream mechanisms by which Gal-1 promotes invasion remains unclear. Moreover, the function of Gal-1 in the epithelial-mesenchymal transition (EMT) in gastric cancer has not yet been elucidated. In this study, we observed Gal-1 expression was upregulated and positively associated with metastasis and EMT markers in 162 human gastric cancer tissue specimens. In vitro studies showed Gal-1 induced invasion, the EMT phenotype and activated the non-canonical hedgehog (Hh) pathway in gastric cancer cell lines. Furthermore, our data revealed that Gal-1 modulated the non-canonical Hh pathway by increasing the transcription of glioma-associated oncogene-1 (Gli-1) via a Smoothened (SMO)-independent manner, and that upregulation of Gal-1 was strongly associated with gastric cancer metastasis. We conclude that Gal-1 promotes invasion and the EMT in gastric cancer cells via activation of the non-canonical Hh pathway, suggesting Gal-1 could represent a promising therapeutic target for the prevention and treatment of gastric cancer metastasis.
Collapse
Affiliation(s)
- Yang Chong
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Dong Tang
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Jun Gao
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Xuetong Jiang
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Chuanqi Xu
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Qingquan Xiong
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Yuqin Huang
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Jie Wang
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Huaicheng Zhou
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Youquan Shi
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Daorong Wang
- 1 Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| |
Collapse
|
117
|
Cousin JM, Cloninger MJ. The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. Int J Mol Sci 2016; 17:ijms17091566. [PMID: 27649167 PMCID: PMC5037834 DOI: 10.3390/ijms17091566] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/24/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
This review discusses the role of galectin-1 in the tumor microenvironment. First, the structure and function of galectin-1 are discussed. Galectin-1, a member of the galectin family of lectins, is a functionally dimeric galactoside-binding protein. Although galectin-1 has both intracellular and extracellular functions, the defining carbohydrate-binding role occurs extracellularly. In this review, the extracellular roles of galectin-1 in cancer processes are discussed. In particular, the importance of multivalent interactions in galectin-1 mediated cellular processes is reviewed. Multivalent interactions involving galectin-1 in cellular adhesion, mobility and invasion, tumor-induced angiogenesis, and apoptosis are presented. Although the mechanisms of action of galectin-1 in these processes are still not well understood, the overexpression of galectin-1 in cancer progression indicates that the role of galectin-1 is significant. To conclude this review, synthetic frameworks that have been used to modulate galectin-1 processes are reviewed. Small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers are presented. These synthetic multivalent systems serve as important tools for studying galectin-1 mediated cancer cellular functions.
Collapse
Affiliation(s)
- Jonathan M Cousin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
118
|
Shen KH, Li CF, Chien LH, Huang CH, Su CC, Liao AC, Wu TF. Role of galectin-1 in urinary bladder urothelial carcinoma cell invasion through the JNK pathway. Cancer Sci 2016; 107:1390-1398. [PMID: 27440446 PMCID: PMC5084672 DOI: 10.1111/cas.13016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/28/2016] [Accepted: 07/17/2016] [Indexed: 01/06/2023] Open
Abstract
Human galectin-1 is a member of the galectin family, proteins with conserved carbohydrate-recognition domains that bind galactoside. Galectin-1 is highly expressed in various tumors and participates in various oncogenic processes. However, detailed descriptions of the function of galectin-1 in urinary bladder urothelial carcinoma have not been reported. Our previous cohort investigation showed that galectin-1 is associated with tumor invasiveness and is a possible independent prognostic marker of urinary bladder urothelial carcinoma. The present study aimed to clarify the relevance of galectin-1 expression level to tumor progression and invasion. In order to decipher a mechanism for the contribution of galectin-1 to the malignant behavior of urinary bladder urothelial carcinoma, two bladder cancer cell lines (T24 and J82) were established with knockdown of galectin-1 expression by shRNA. Bladder cancer cells with LGALS1 gene silencing showed reduced cell proliferation, lower invasive capability, and lower clonogenicity. Extensive signaling pathway studies indicated that galectin-1 participated in bladder cancer cell invasion by mediating the activity of MMP9 through the Ras-Rac1-MEKK4-JNK-AP1 signaling pathway. Our functional analyses of galectin-1 in urinary bladder urothelial carcinoma provided novel insights into the critical role of galectin-1 in tumor progression and invasion. These results revealed that silencing the galectin-1-mediated MAPK signaling pathway presented a novel strategy for bladder cancer therapy.
Collapse
Affiliation(s)
- Kun-Hung Shen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Urology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Urology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Feng Li
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan.,Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.,National Institute of Cancer Research, National Health Research Institute, Miaoli, Taiwan
| | - Lan-Hsiang Chien
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | | | - Chia-Cheng Su
- Department of Urology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Alex C Liao
- Department of Urology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ting-Feng Wu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
119
|
Desai S, Srambikkal N, Yadav HD, Shetake N, Balla MMS, Kumar A, Ray P, Ghosh A, Pandey BN. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model. PLoS One 2016; 11:e0161662. [PMID: 27561007 PMCID: PMC4999205 DOI: 10.1371/journal.pone.0161662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022] Open
Abstract
Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about the damaging RIBE in an in vivo tumor model, which may have significant implication in improvement of cancer radiotherapy.
Collapse
Affiliation(s)
- Sejal Desai
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nishad Srambikkal
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Hansa D. Yadav
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Neena Shetake
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Murali M. S. Balla
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Amit Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Pritha Ray
- Advanced Centre for Training, Research and Education of Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Anu Ghosh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - B. N. Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- * E-mail: ;
| |
Collapse
|
120
|
de Aquino PF, Carvalho PC, Nogueira FCS, da Fonseca CO, de Souza Silva JCT, Carvalho MDGDC, Domont GB, Zanchin NIT, Fischer JDSDG. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme. Front Oncol 2016; 6:183. [PMID: 27597932 PMCID: PMC4992702 DOI: 10.3389/fonc.2016.00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022] Open
Abstract
Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient’s GBM but obtained from two surgeries a year’s time apart. Our analysis also included GBM‘s fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor’s anatomical region. Nevertheless, we report differentially abundant proteins from GBM’s fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique.
Collapse
Affiliation(s)
- Priscila F de Aquino
- Laboratory of Microbial Diversity from Amazon with Importance for Health, Instituto Leônidas e Maria Deane, Fiocruz , Manaus, Amazonas , Brazil
| | - Paulo Costa Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil; Laboratory of Toxinology, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory for Protein Chemistry, Chemistry Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Clovis Orlando da Fonseca
- Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University , Rio de Janeiro , Brazil
| | | | - Maria da Gloria da Costa Carvalho
- Laboratory of Molecular Pathology, Department of Pathology, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Gilberto B Domont
- Laboratory for Protein Chemistry, Chemistry Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Nilson I T Zanchin
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz , Curitiba, Paraná , Brazil
| | | |
Collapse
|
121
|
Wu Y, Liu M, Li Z, Wu XB, Wang Y, Wang Y, Nie M, Huang F, Ju J, Ma C, Tan R, Zen K, Zhang CY, Fu K, Chen YG, Wang MR, Zhao Q. LYAR promotes colorectal cancer cell mobility by activating galectin-1 expression. Oncotarget 2016; 6:32890-901. [PMID: 26413750 PMCID: PMC4741737 DOI: 10.18632/oncotarget.5335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanisms of CRC pathogenesis are not fully understood. In this study, we report the characterization of LYAR (Ly-1 antibody reactive clone) as a key regulator of the migration and invasion of human CRC cells. Immunohistochemistry analysis demonstrated that LYAR is expressed at a higher level in metastatic CRC tissues. We found that LYAR promoted the migratory and invasive capabilities of CRC cells. Gene expression profile analysis of CRC cells showed that LGALS1, which encodes the galectin-1 protein, was a potential target of LYAR. The ChIP assay and gene reporter assays indicated that LYAR directly bound to the LGALS1 promoter. The ectopic expression of galectin-1 partially restored the mobile potential of LYAR knocked-down cells, which suggests that galectin-1 contributed to the LYAR-promoted cell migration and invasion of CRC cells. Thus, this study revealed a novel mechanism by which the transcription factor LYAR may promote tumor cell migration and invasion by upregulating galectin-1 gene expression in CRC.
Collapse
Affiliation(s)
- Yupeng Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China.,Anhui Research Institute for Family Planning, Anhui Research Center for Population and Birth Control, Hefei, 230031, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Zhuchen Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Xiao-Bin Wu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Yadong Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Min Nie
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Feifei Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Chi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Chen-Yu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Keqin Fu
- Anhui Research Institute for Family Planning, Anhui Research Center for Population and Birth Control, Hefei, 230031, China
| | - Yu-Gen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ming-Rong Wang
- The State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| |
Collapse
|
122
|
Noda Y, Kishino M, Sato S, Hirose K, Sakai M, Fukuda Y, Murakami S, Toyosawa S. Galectin-1 expression is associated with tumour immunity and prognosis in gingival squamous cell carcinoma. J Clin Pathol 2016; 70:126-133. [PMID: 28108653 DOI: 10.1136/jclinpath-2016-203754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 01/26/2023]
Abstract
AIMS Galectin-1 (Gal-1) is a β-galactoside-binding protein that overexpresses in cancer and plays pivotal roles in tumour progression. Gal-1 regulates angiogenesis and invasiveness, and suppresses tumour immunity by inducing T cell apoptosis. Several studies have examined the relationship between Gal-1 and tumour immunosuppression in vivo, but they have not examined the clinicopathological relationship between Gal-1 expression and apoptotic T cell number in human tissue. In this study, we investigated the association between Gal-1 expression and apoptotic T cells of gingival squamous cell carcinoma (GSCC), as well as other clinicopathological factors. METHODS Immunohistochemical investigation of 80 GSCC specimens using anti-Gal-1, anti-CD3, anti-CD4, anti-CD8, anti-CD34, antipodoplanin and anticleaved caspase-3 (CC-3) antibodies was performed. Relative expression levels of CD3 and CC-3, as well as CD8 and CC-3 were assessed simultaneously by double immunostaining. Gal-1 expression and T cell apoptosis were evaluated in 6 high-power fields (3 in the tumour and 3 in the stroma). RESULTS Gal-1 expression in GSCC was significantly correlated with T cell infiltration (p=0.036), and apoptosis of CD3+ and CD8+ T cells (p<0.001). Moreover, Gal-1 expression was significantly correlated with lymph node metastasis (p=0.021), histological differentiation (p<0.001) and overall survival rate (p=0.021). CONCLUSIONS These findings suggest that Gal-1 plays an important role in immune escape of GSCC cells, and Gal-1 expression level may be a useful clinicopathological prognostic marker for GSCC.
Collapse
Affiliation(s)
- Yuri Noda
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Mitsunobu Kishino
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Sunao Sato
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Katsutoshi Hirose
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Manabu Sakai
- Clinical Laboratory, Osaka University Dental Hospital, Suita, Japan
| | - Yasuo Fukuda
- Clinical Laboratory, Osaka University Dental Hospital, Suita, Japan
| | - Shumei Murakami
- Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
123
|
Kalantari R, Hicks JA, Li L, Gagnon KT, Sridhara V, Lemoff A, Mirzaei H, Corey DR. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA (NEW YORK, N.Y.) 2016; 22:1085-98. [PMID: 27198507 PMCID: PMC4911916 DOI: 10.1261/rna.056499.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/25/2016] [Indexed: 05/25/2023]
Abstract
Argonaute 2 (AGO2), the catalytic engine of RNAi, is typically associated with inhibition of translation in the cytoplasm. AGO2 has also been implicated in nuclear processes including transcription and splicing. There has been little insight into AGO2's nuclear interactions or how they might differ relative to cytoplasm. Here we investigate the interactions of cytoplasmic and nuclear AGO2 using semi-quantitative mass spectrometry. Mass spectrometry often reveals long lists of candidate proteins, complicating efforts to rigorously discriminate true interacting partners from artifacts. We prioritized candidates using orthogonal analytical strategies that compare replicate mass spectra of proteins associated with Flag-tagged and endogenous AGO2. Interactions with TRNC6A, TRNC6B, TNRC6C, and AGO3 are conserved between nuclei and cytoplasm. TAR binding protein interacted stably with cytoplasmic AGO2 but not nuclear AGO2, consistent with strand loading in the cytoplasm. Our data suggest that interactions between functionally important components of RNAi machinery are conserved between the nucleus and cytoplasm but that accessory proteins differ. Orthogonal analysis of mass spectra is a powerful approach to streamlining identification of protein partners.
Collapse
Affiliation(s)
- Roya Kalantari
- Department of Pharmacology, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jessica A Hicks
- Department of Pharmacology, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Liande Li
- Department of Pharmacology, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Keith T Gagnon
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Viswanadham Sridhara
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - David R Corey
- Department of Pharmacology, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
124
|
Noda Y, Kondo Y, Sakai M, Sato S, Kishino M. Galectin-1 is a useful marker for detecting neoplastic squamous cells in oral cytology smears. Hum Pathol 2016; 52:101-9. [DOI: 10.1016/j.humpath.2016.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/26/2023]
|
125
|
Yan B, Zhao D, Yao Y, Bao Z, Lu G, Zhou J. Deguelin Induces the Apoptosis of Lung Squamous Cell Carcinoma Cells through Regulating the Expression of Galectin-1. Int J Biol Sci 2016; 12:850-60. [PMID: 27313498 PMCID: PMC4910603 DOI: 10.7150/ijbs.14773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality around the world. Despite advances in the targeted therapy, patients with lung squamous cell carcinoma(SCC) still benefit few from it, and the search for potential effective therapies is imperative. Here, we demonstrated that deguelin induced significant apoptosis of lung SCC cells in vitro. Importantly, we found deguelin down-regulated the expression of galectin-1, which was involved in a wide range of tumorous physiologic process. Thus, we both over-expressed and down-regulated galectin-1 to perform its role in deguelin-induced apoptosis. We found that increased galectin-1 attenuated apoptosis of SCC cells exposed to deguelin, while galectin-1 knockdown sensitized lung cancer cells to deguelin treatment. Additionally, we observed that down-regulation of galectin-1 resulted in suppression of Ras/Raf/ERK pathway which was involved in deguelin-induced cell apoptosis. We also found that deguelin had a significant anti-tumor ability with decline of galectin-1 in vivo. In conclusion, these findings confirm that deguelin may act as a new chemo-preventive agent through inducing apoptosis of lung SCC cells in a galectin-1 dependent manner.
Collapse
Affiliation(s)
- Bing Yan
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dejian Zhao
- 2. Department of Clinical Laboratory, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhang Bao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
126
|
Cagnoni AJ, Pérez Sáez JM, Rabinovich GA, Mariño KV. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer. Front Oncol 2016; 6:109. [PMID: 27242953 PMCID: PMC4865499 DOI: 10.3389/fonc.2016.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to limit cancer progression by targeting lectin–glycan interactions.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
127
|
Zhu X, Wang K, Zhang K, Xu F, Yin Y, Zhu L, Zhou F. Galectin-1 knockdown in carcinoma-associated fibroblasts inhibits migration and invasion of human MDA-MB-231 breast cancer cells by modulating MMP-9 expression. Acta Biochim Biophys Sin (Shanghai) 2016; 48:462-7. [PMID: 27025601 DOI: 10.1093/abbs/gmw019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/02/2016] [Indexed: 01/10/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) play central roles in facilitating tumor progression and metastasis in breast cancer. Galectin-1 (Gal-1), a marker of CAFs, was previously reported to be associated with tumorigenesis and metastasis of various types of tumors. The aim of this study is to investigate the role of Gal-1 in CAF-mediated breast cancer metastasis and its underlying molecular mechanisms. Our results showed that CAFs isolated from human breast tumor tissues expressed higher level of Gal-1 compared with paired normal fibroblasts, and the conditioned medium (CM) of CAFs significantly induced the migration and invasion of human MDA-MB-231 breast cancer cells. Knockdown of Gal-1 in CAFs dramatically inhibited CAF-CM-induced cell migration and invasion, probably by inhibiting the expression of matrix metalloprotein 9 (MMP-9). Our findings demonstrate that Gal-1-regulated CAFs activation promotes breast cancer cell metastasis by upregulating MMP-9 expression, which indicated that Gal-1 in CAFs might be a potential novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Fei Xu
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Ling Zhu
- Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
128
|
Aggarwal S, Das SN. Thiodigalactoside shows antitumour activity by beta-galactoside-binding protein and regulatory T cells inhibition in oral squamous cell carcinoma. Oral Dis 2016; 22:445-53. [PMID: 27004748 DOI: 10.1111/odi.12479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Thiodigalactoside (TDG), a synthetic inhibitor of β-galactoside-binding protein (β-GBP) suppresses tumour growth by inhibiting multiple cancer enhancing activities of β-GBP. Hence, we attempted to understand whether disruption of β-GBP functions and indirect inhibition of Treg cells by TDG affect the growth and establishment of oral cancer cells. METHOD The growth, morphology, cell cycle regulation, apoptosis induction and angiogenesis of oral cancer cell lines (SCC-4, SCC-9, SCC-25) via MACS-purified Treg cells were performed by MTT, propidium iodide (PI) staining, annexin-V-binding assay and ELISA respectively. RESULTS Treatment with β-GBP showed growth-promoting effects on Tregs and oral cancer cells. However, the treatment with its inhibitor TDG resulted in inhibition of Treg subsets and also decreased the frequency of IL10(+) and IL35(+) Tregs indicating its immunomodulatory effects. Additionally, TDG treatment significantly (P < 0.001) inhibited the growth of OSCC cells with a concomitant induction of apoptosis, cell cycle arrest and anti-angiogenesis. CONCLUSION It appears that TDG concurrently prevents many tumour-promoting effects of β-GBP in oral cancer cells possibly by Treg inhibition. This offers a preclinical proof of the concept that therapeutic targeting of β-GBP can overcome Treg -mediated tumour promotion and immunosuppression in oral cancer patients.
Collapse
Affiliation(s)
- S Aggarwal
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - S N Das
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
129
|
Zhang PF, Li KS, Shen YH, Gao PT, Dong ZR, Cai JB, Zhang C, Huang XY, Tian MX, Hu ZQ, Gao DM, Fan J, Ke AW, Shi GM. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis 2016; 7:e2201. [PMID: 27100895 PMCID: PMC4855644 DOI: 10.1038/cddis.2015.324] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
Galectin-1 (Gal-1) is involved in several pathological activities associated with tumor progression and chemoresistance, however, the role and molecular mechanism of Gal-1 activity in hepatocellular carcinoma (HCC) epithelial–mesenchymal transition (EMT) and sorafenib resistance remain enigmatic. In the present study, forced Gal-1 expression promoted HCC progression and sorafenib resistance. Gal-1 elevated αvβ3-integrin expression, leading to AKT activation. Moreover, Gal-1 overexpression induced HCC cell EMT via PI3K/AKT cascade activation. Clinically, our data revealed that Gal-1 overexpression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that Gal-1 may be a potential therapeutic target for HCC and a biomarker for predicting response to sorafenib treatment.
Collapse
Affiliation(s)
- P-F Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - K-S Li
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Y-H Shen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - P-T Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Z-R Dong
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - J-B Cai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - C Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - X-Y Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - M-X Tian
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Z-Q Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - D-M Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - J Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China.,Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - A-W Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - G-M Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
130
|
Blaževitš O, Mideksa YG, Šolman M, Ligabue A, Ariotti N, Nakhaeizadeh H, Fansa EK, Papageorgiou AC, Wittinghofer A, Ahmadian MR, Abankwa D. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering. Sci Rep 2016; 6:24165. [PMID: 27087647 PMCID: PMC4834570 DOI: 10.1038/srep24165] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling.
Collapse
Affiliation(s)
- Olga Blaževitš
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Yonatan G. Mideksa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Maja Šolman
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Alessio Ligabue
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hossein Nakhaeizadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eyad K. Fansa
- Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | | | | | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| |
Collapse
|
131
|
Blanchard H, Bum-Erdene K, Bohari MH, Yu X. Galectin-1 inhibitors and their potential therapeutic applications: a patent review. Expert Opin Ther Pat 2016; 26:537-54. [PMID: 26950805 DOI: 10.1517/13543776.2016.1163338] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Galectins have affinity for β-galactosides. Human galectin-1 is ubiquitously expressed in the body and its expression level can be a marker in disease. Targeted inhibition of galectin-1 gives potential for treatment of inflammatory disorders and anti-cancer therapeutics. AREAS COVERED This review discusses progress in galectin-1 inhibitor discovery and development. Patent applications pertaining to galectin-1 inhibitors are categorised as monovalent- and multivalent-carbohydrate-based inhibitors, peptides- and peptidomimetics. Furthermore, the potential of galectin-1 protein as a therapeutic is discussed along with consideration of the unique challenges that galectin-1 presents, including its monomer-dimer equilibrium and oxidized and reduced forms, with regard to delivering an intact protein to a pathologically relevant site. EXPERT OPINION Significant evidence implicates galectin-1's involvement in cancer progression, inflammation, and host-pathogen interactions. Conserved sequence similarity of the carbohydrate-binding sites of different galectins makes design of specific antagonists (blocking agents/inhibitors of function) difficult. Key challenges pertaining to the therapeutic use of galectin-1 are its monomer-dimer equilibrium, its redox state, and delivery of intact galectin-1 to the desired site. Developing modified forms of galectin-1 has resulted in increased stability and functional potency. Gene and protein therapy approaches that deliver the protein toward the target are under exploration as is exploitation of different inhibitor scaffolds.
Collapse
Affiliation(s)
- Helen Blanchard
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | - Khuchtumur Bum-Erdene
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | | | - Xing Yu
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| |
Collapse
|
132
|
Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, Saksela O, Hölttä E. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget 2016; 7:15065-92. [PMID: 26918341 PMCID: PMC4924771 DOI: 10.18632/oncotarget.7604] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/31/2016] [Indexed: 02/04/2023] Open
Abstract
Melanoma is notorious for its high tendency to metastasize and its refractoriness to conventional treatments after metastasis, and the responses to most targeted therapies are short-lived. A better understanding of the molecular mechanisms behind melanoma development and progression is needed to develop more effective therapies and to identify new markers to predict disease behavior. Here, we compared the gene expression profiles of benign nevi, and non-metastatic and metastatic primary melanomas to identify any common changes in disease progression. We identified several genes associated with inflammation, angiogenesis, and extracellular matrix modification to be upregulated in metastatic melanomas. We selected one of these genes, collagen triple helix repeat containing 1 (CTHRC1), for detailed analysis, and found that CTHRC1 was expressed in both melanoma cells and the associated fibroblasts, as well as in the endothelium of tumor blood vessels. Knockdown of CTHRC1 expression by shRNAs in melanoma cells inhibited their migration in Transwell assays and their invasion in three-dimensional collagen and Matrigel matrices. We also elucidated the possible down-stream effectors of CTHRC1 by gene expression profiling of the CTHRC1-knockdown cells. Our analyses showed that CTHRC1 is regulated coordinately with fibronectin and integrin β3 by the pro-invasive and -angiogenic transcription factor NFATC2. We also found CTHRC1 to be a target of TFGβ and BRAF. These data highlight the importance of tumor stroma in melanoma progression. Furthermore, CTHRC1 was recognized as an important mediator of melanoma cell migration and invasion, providing together with its regulators-NFATC2, TGFβ, and BRAF-attractive therapeutic targets against metastatic melanomas.
Collapse
Affiliation(s)
- Johanna Eriksson
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Vadim Le Joncour
- University of Helsinki, Research Programs Unit, Translational Cancer Biology, Biomedicum Helsinki, FI-00014 Helsinki, Finland
| | - Pirjo Nummela
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tiina Jahkola
- Department of Plastic Surgery, Helsinki University Central Hospital, FI-00029 Helsinki, Finland
| | - Susanna Virolainen
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pirjo Laakkonen
- University of Helsinki, Research Programs Unit, Translational Cancer Biology, Biomedicum Helsinki, FI-00014 Helsinki, Finland
| | - Olli Saksela
- Department of Dermatology, Helsinki University Central Hospital, FI-00029 Helsinki, Finland
| | - Erkki Hölttä
- Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
133
|
Becht E, de Reyniès A, Giraldo NA, Pilati C, Buttard B, Lacroix L, Selves J, Sautès-Fridman C, Laurent-Puig P, Fridman WH. Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin Cancer Res 2016; 22:4057-66. [PMID: 26994146 DOI: 10.1158/1078-0432.ccr-15-2879] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/08/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE The tumor microenvironment is formed by many distinct and interacting cell populations, and its composition may predict patients' prognosis and response to therapies. Colorectal cancer is a heterogeneous disease in which immune classifications and four consensus molecular subgroups (CMS) have been described. Our aim was to integrate the composition of the tumor microenvironment with the consensus molecular classification of colorectal cancer. EXPERIMENTAL DESIGN We retrospectively analyzed the composition and the functional orientation of the immune, fibroblastic, and angiogenic microenvironment of 1,388 colorectal cancer tumors from three independent cohorts using transcriptomics. We validated our findings using immunohistochemistry. RESULTS We report that colorectal cancer molecular subgroups and microenvironmental signatures are highly correlated. Out of the four molecular subgroups, two highly express immune-specific genes. The good-prognosis microsatellite instable-enriched subgroup (CMS1) is characterized by overexpression of genes specific to cytotoxic lymphocytes. In contrast, the poor-prognosis mesenchymal subgroup (CMS4) expresses markers of lymphocytes and of cells of monocytic origin. The mesenchymal subgroup also displays an angiogenic, inflammatory, and immunosuppressive signature, a coordinated pattern that we also found in breast (n = 254), ovarian (n = 97), lung (n = 80), and kidney (n = 143) cancers. Pathologic examination revealed that the mesenchymal subtype is characterized by a high density of fibroblasts that likely produce the chemokines and cytokines that favor tumor-associated inflammation and support angiogenesis, resulting in a poor prognosis. In contrast, the canonical (CMS2) and metabolic (CMS3) subtypes with intermediate prognosis exhibit low immune and inflammatory signatures. CONCLUSIONS The distinct immune orientations of the colorectal cancer molecular subtypes pave the way for tailored immunotherapies. Clin Cancer Res; 22(16); 4057-66. ©2016 AACR.
Collapse
Affiliation(s)
- Etienne Becht
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Nicolas A Giraldo
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - Camilla Pilati
- Université Paris Descartes, Paris, France. INSERM, UMR_S1147, Paris, France
| | - Bénédicte Buttard
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - Laetitia Lacroix
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - Janick Selves
- Centre de Recherche en Cancérologie de Toulouse, Unité Mixte de Recherche, 1037 INSERM - Université Toulouse III, Toulouse, France. Department of Pathology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Catherine Sautès-Fridman
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France
| | | | - Wolf Herman Fridman
- INSERM UMR_S 1138, Cancer, Immune Control and Escape, Cordeliers Research Centre, Paris, France. Université Paris Descartes, Paris, France. Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
134
|
Zhao Y, Tong L, Li Y, Pan H, Zhang W, Guan M, Li W, Chen Y, Li Q, Li Z, Wang H, Yu XF, Chu PK. Lactose-Functionalized Gold Nanorods for Sensitive and Rapid Serological Diagnosis of Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5813-20. [PMID: 26883478 DOI: 10.1021/acsami.5b11192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Timely and accurate diagnosis of cancer is crucial to cancer treatment. However, serological diagnosis of cancer still faces great challenge because the conventional methodology based on the enzyme-linked immune sorbent assay (ELISA) is costly, time-consuming, and complicated, involving multiple steps. Herein, lactose-functionalized gold nanorods (Lac-GNRs) are fabricated as efficient biosensors to detect cancerous conditions based on the unique surface plasmon resonance properties of GNRs and high specificity of lactose to the galectin-1 cancer biomarker. A trace concentration of galectin-1 as small as 10(-13) M can be detected by Lac-GNRs. The comparative study among BSA, galectin-3, and galectin-1 demonstrates the good specificity of Lac-GNRs to galectin-1 either in aqueous solutions or in the complex and heterogeneous serum specimens. Clinical tests show that the Lac-GNRs biosensors can readily distinguish the serums of cancer patients from those of healthy persons simply by using a microplate reader or even direct visual observation. The Lac-GNRs biosensing platform is highly efficient and easy to use and have great potential in rapid screening of cancer patients.
Collapse
Affiliation(s)
- Yuetao Zhao
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, Guangdong, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, Guangdong, China
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yong Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, Guangdong, China
| | - Haobo Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, Guangdong, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Min Guan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, Guangdong, China
| | - Weihao Li
- Shenzhen People's Hospital/Second Clinical Medical College of Jinan University , Shenzhen 518020, China
| | - Yixin Chen
- Shenzhen People's Hospital/Second Clinical Medical College of Jinan University , Shenzhen 518020, China
| | - Qing Li
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Zhongjun Li
- The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, Guangdong, China
| | - Xue-Feng Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, Guangdong, China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
135
|
Mukherjee R, Yun JW. Pharmacological inhibition of galectin-1 by lactulose alleviates weight gain in diet-induced obese rats. Life Sci 2016; 148:112-7. [PMID: 26880535 DOI: 10.1016/j.lfs.2016.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/31/2016] [Accepted: 02/05/2016] [Indexed: 12/28/2022]
Abstract
AIMS Galectin-1 (GAL1) is an important member of the lectin family with a carbohydrate recognition domain and has recently been demonstrated to be involved in adipose metabolism. In the present study, we investigated the effects of targeted inhibition of GAL1 by its binding inhibitor lactulose under high fat diet (HFD)-induced obesity. MAIN METHODS Effects of targeted inhibition of GAL1 by lactulose on lipid metabolism were investigated in vitro and in vivo. Changes in lipogenic capacity in lactulose-treated adipocytes were demonstrated by Oil Red O staining, triglyceride quantification and major adipogenic marker expression patterns. After lactulose treatment in Sprague-Dawley rats, various important body weight parameters, food efficiency, plasma metabolic parameters (glucose, ALT, free fatty acid, triglycerides, leptin, and insulin) and metabolic protein expression patterns were evaluated. KEY FINDINGS Lactulose treatment reduced adipogenesis and fat accumulation in vitro by down-regulation of major adipogenic transcription factors such as C/EBPα and PPARγ. In vivo treatment of lactulose to 5-week-old Sprague-Dawley male rats significantly alleviated HFD-induced body weight gain and food efficiency as well as improved plasma and other metabolic parameters. In addition, lactulose treatment down-regulated major adipogenic marker proteins (C/EBPα and PPARγ) in adipose tissue as well as stimulated expression of proteins involved in energy expenditure and lipolysis (ATP5B, COXIV, HSL, and CPT1). SIGNIFICANCE In conclusion, reduced adipogenesis and increased energy expenditure mediated by lactulose treatment synergistically contribute to alleviation of HFD-induced body weight gain. Therefore, pharmaceutical targeting of GAL1 using lactulose would be a novel therapeutic approach for the treatment of obesity.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea.
| |
Collapse
|
136
|
Chawla S, Warren TA, Wockner LF, Lambie DLJ, Brown IS, Martin TPC, Khanna R, Leggatt GR, Panizza BJ. Galectin-1 is associated with poor prognosis in patients with cutaneous head and neck cancer with perineural spread. Cancer Immunol Immunother 2016; 65:213-22. [PMID: 26759008 PMCID: PMC11028814 DOI: 10.1007/s00262-015-1788-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 12/23/2015] [Indexed: 12/18/2022]
Abstract
Spread of head and neck cancer along the cranial nerves is often a lethal complication of this tumour. Current treatment options include surgical resection and/or radiotherapy, but recurrence is a frequent event suggesting that our understanding of this tumour and its microenvironment is incomplete. In this study, we have analysed the nature of the perineural tumour microenvironment by immunohistochemistry with particular focus on immune cells and molecules, which might impair anti-tumour immunity. Moderate to marked lymphocyte infiltrates were present in 58.8% of the patient cohort including T cells, B cells and FoxP3-expressing T cells. While human leukocyte antigen (HLA) class I and more variably HLA class II were expressed on the tumour cells, this did not associate with patient survival or recurrence. In contrast, galectin-1 staining within lymphocyte areas of the tumour was significantly associated with a poorer patient outcome. Given the known role of galectin-1 in immune suppression, the data suggest that galectin inhibitors might improve the prognosis of patients with perineural spread of cancer.
Collapse
Affiliation(s)
- Sharad Chawla
- Department of Otolaryngology - Head and Neck Surgery, Princess Alexandra Hospital, 237 Ipswich Road, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Timothy A Warren
- Department of Otolaryngology - Head and Neck Surgery, Princess Alexandra Hospital, 237 Ipswich Road, Woolloongabba, Brisbane, QLD, 4102, Australia
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD, Australia
- The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Leesa F Wockner
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD, Australia
| | - Duncan L J Lambie
- The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
- IQ Pathology, Brisbane, QLD, Australia
| | | | - Thomas P C Martin
- Department of Otolaryngology - Head and Neck Surgery, Princess Alexandra Hospital, 237 Ipswich Road, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Rajiv Khanna
- QIMR Berghofer Institute of Medical Research, Brisbane, QLD, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Benedict J Panizza
- Department of Otolaryngology - Head and Neck Surgery, Princess Alexandra Hospital, 237 Ipswich Road, Woolloongabba, Brisbane, QLD, 4102, Australia.
- The University of Queensland School of Medicine, Brisbane, QLD, Australia.
| |
Collapse
|
137
|
Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H. Structural characterisation of human galectin-4 N-terminal carbohydrate recognition domain in complex with glycerol, lactose, 3'-sulfo-lactose, and 2'-fucosyllactose. Sci Rep 2016; 6:20289. [PMID: 26828567 PMCID: PMC4734333 DOI: 10.1038/srep20289] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 01/02/2023] Open
Abstract
Galectin-4 is a tandem-repeat galectin with two distinct carbohydrate recognition domains (CRD). Galectin-4 is expressed mainly in the alimentary tract and is proposed to function as a lipid raft and adherens junction stabilizer by its glycan cross-linking capacity. Galectin-4 plays divergent roles in cancer and inflammatory conditions, either promoting or inhibiting each disease progression, depending on the specific pathological condition. The study of galectin-4's ligand-binding profile may help decipher its roles under specific conditions. Here we present the X-ray structures of human galectin-4 N-terminal CRD (galectin-4N) bound to different saccharide ligands. Galectin-4's overall fold and its core interactions to lactose are similar to other galectin CRDs. Galectin-4N recognises the sulfate cap of 3'-sulfated glycans by a weak interaction through Arg45 and two water-mediated hydrogen bonds via Trp84 and Asn49. When galectin-4N interacts with the H-antigen mimic, 2'-fucosyllactose, an interaction is formed between the ring oxygen of fucose and Arg45. The extended binding site of galectin-4N may not be well suited to the A/B-antigen determinants, α-GalNAc/α-Gal, specifically due to clashes with residue Phe47. Overall, galectin-4N favours sulfated glycans whilst galectin-4C prefers blood group determinants. However, the two CRDs of galectin-4 can, to a less extent, recognise each other's ligands.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, BMC-C1228b, Klinikgatan 28, SE-22184 Lund, Sweden
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
138
|
Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, Wang J, Li B, Yin W, Wang D. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol 2016; 37:1889-99. [PMID: 26323258 DOI: 10.1007/s13277-015-3942-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Galectin-1, an evolutionarily conserved glycan-binding protein with angiogenic potential, was recently identified as being overexpressed in cancer-associated fibroblasts (CAFs) of gastric cancer. The role of endogenous CAF-derived galectin-1 on angiogenesis in gastric cancer and the mechanism involved remain unknown. METHODS Immunohistochemical staining was used to investigate the correlation between galectin-1 and vascular endothelial growth factor (VEGF) and CD31 expression in gastric cancer tissues and normal gastric tissues. Galectin-1 was knocked down in CAFs isolated from gastric cancer using small interfering ribonucleic acid (RNA), or overexpressed using recombinant lentiviruses, and the CAFs were co-cultured with human umbilical vein endothelial cells (HUVECs) or cancer cells. Subsequently, proliferation, migration, tube formation, and VEGF/VEGF receptor (VEGFR) 2 expression were detected. The role of CAF-derived galectin-1 in tumor angiogenesis in vivo was studied using the chick chorioallantoic membrane (CAM) assay. RESULTS Galectin-1 was highly expressed in the CAFs and was positively associated with VEGF and CD31 expression. In the co-culture, high expression of galectin-1 in the CAFs increased HUVEC proliferation, migration, tube formation, and VEGFR2 phosphorylation and enhanced VEGF expression in gastric cancer cells. The CAM assay indicated that high expression of galectin-1 in the CAFs accelerated tumor growth and promoted angiogenesis. In contrast, galectin-1 knockdown in the CAFs significantly inhibited this effect. CONCLUSION CAF-derived galectin-1 significantly promotes angiogenesis in gastric cancer and may be a target for angiostatic therapy.
Collapse
Affiliation(s)
- Dong Tang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Jun Gao
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Sen Wang
- College of Clinical Medicine, Nanjing Medical University (the First Affiliated Hospital of Nanjing Medical University), Nanjing, 211166, People's Republic of China
| | - Nianyuan Ye
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Yang Chong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Yuqin Huang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Jie Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Bin Li
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Wei Yin
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Daorong Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
139
|
Kanda A, Noda K, Saito W, Ishida S. Aflibercept Traps Galectin-1, an Angiogenic Factor Associated with Diabetic Retinopathy. Sci Rep 2015; 5:17946. [PMID: 26648523 PMCID: PMC4673700 DOI: 10.1038/srep17946] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor (VEGF)-A-driven angiogenesis contributes to various disorders including cancer and proliferative diabetic retinopathy (PDR). Among several VEGF-A blockers clinically used is aflibercept, a chimeric VEGFR1/VEGFR2-based decoy receptor fused to the Fc fragment of IgG1 (i.e., VEGFR1/VEGFR2-Fc). Here, we revealed a novel anti-angiogenic function for aflibercept beyond its antagonism against VEGF family members. Immunoprecipitation and mass spectrometry analyses identified galectin-1 as an aflibercept-interacting protein. Biolayer interferometry revealed aflibercept binding to galectin-1 with higher affinity than VEGFR1-Fc and VEGFR2-Fc, which was abolished by deglycosylation of aflibercept with peptide:N-glycosidase F. Retinal LGALS1/Galectin-1 mRNA expression was enhanced in vitro by hypoxic stimulation and in vivo by induction of diseases including diabetes. Galectin-1 immunoreactivity co-localized with VEGFR2 in neovascular tissues surgically excised from human eyes with PDR. Compared with non-diabetic controls, intravitreal galectin-1 protein levels were elevated in PDR eyes, showing no correlation with increased VEGF-A levels. Preoperative injection of bevacizumab, a monoclonal antibody to VEGF-A, reduced the VEGF-A, but not galectin-1, levels. Galectin-1 application to human retinal microvascular endothelial cells up-regulated VEGFR2 phosphorylation, which was eliminated by aflibercept. Our present findings demonstrated the neutralizing efficacy of aflibercept against galectin-1, an angiogenic factor associated with PDR independently of VEGF-A.
Collapse
Affiliation(s)
- Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.,Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.,Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Wataru Saito
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.,Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
140
|
Zhou B, Long Y, Song G, Li Q, Cui Z. Molecular characterization of the lgals1 gene in large scale loach Paramisgurnus dabryanus. Gene 2015; 577:65-74. [PMID: 26611526 DOI: 10.1016/j.gene.2015.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Galectins constitute a group of lectins with binding specificity for β-galactoside sugars. Galectin-1 is a prototype galectin and the multifunctionality of mammalian galectin-1s is well-known, but only a few of fish galectin-1s have been identified. In this study, we obtained the full-length cDNA and genomic sequence of the galectin-1 gene (designated as Pdlgals1) from large scale loach (Paramisgurnus dabryanus), performed phylogenetic analysis, and characterized the expression pattern and the transcriptional activity of its 5' flanking region. The Pdlgals1 gene contains 4 exons that encode a peptide of 132 amino acids with all the galectin signature motifs. Phylogenetic analysis and sequence alignment indicated that Pdlgals1 is a homologue of human LGALS1. RT-PCR and whole-mount in situ hybridization revealed that Pdlgals1 is mainly expressed in the skin, muscle, intestine and cavum oropharyngeum. Transcriptional activity assays demonstrated that the basal promoter of Pdlgals1 is located in a region from -500bp to its transcriptional start site. Potential binding sites for transcription factors including C/EBP, AP-1, GATA, Oct-1, δEF1, NF-κB, c-Myb, SP-1, AP-2, AML-1α, and AP-4 were identified in the basal promoter, suggesting that these factors are associated with the regulation of Pdlgals1. These results provided clues for further investigation of galectin-1 functions in loaches.
Collapse
Affiliation(s)
- Bolan Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of the Chinese Academy of Sciences, Beijing, PR China
| | - Yong Long
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.
| | - Guili Song
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Qing Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Zongbin Cui
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.
| |
Collapse
|
141
|
Redox state influence on human galectin-1 function. Biochimie 2015; 116:8-16. [DOI: 10.1016/j.biochi.2015.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/19/2015] [Indexed: 11/22/2022]
|
142
|
Sirko S, Irmler M, Gascón S, Bek S, Schneider S, Dimou L, Obermann J, De Souza Paiva D, Poirier F, Beckers J, Hauck SM, Barde YA, Götz M. Astrocyte reactivity after brain injury-: The role of galectins 1 and 3. Glia 2015; 63:2340-61. [PMID: 26250529 PMCID: PMC5042059 DOI: 10.1002/glia.22898] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 01/18/2023]
Abstract
Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring stem cell properties in vitro. In order to identify novel regulators of this subset, we performed genomewide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the gray matter of adult mouse cerebral cortex. The expression pattern was compared with astrocytes from intact cortex and adult neural stem cells (NSCs) isolated from the subependymal zone (SEZ). These comparisons revealed a set of genes expressed at higher levels in both endogenous NSCs and reactive astrocytes, including two lectins-Galectins 1 and 3. These results and the pattern of Galectin expression in the lesioned brain led us to examine the functional significance of these lectins in brains of mice lacking Galectins 1 and 3. Following stab wound injury, astrocyte reactivity including glial fibrillary acidic protein expression, proliferation and neurosphere-forming capacity were found significantly reduced in mutant animals. This phenotype could be recapitulated in vitro and was fully rescued by addition of Galectin 3, but not of Galectin 1. Thus, Galectins 1 and 3 play key roles in regulating the proliferative and NSC potential of a subset of reactive astrocytes.
Collapse
Affiliation(s)
- Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sergio Gascón
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sarah Bek
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Sarah Schneider
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jara Obermann
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Daisylea De Souza Paiva
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Francoise Poirier
- Institut Jacques Monod, CNRS-University Paris Diderot, Paris, France
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
143
|
Parikh NU, Aalinkeel R, Reynolds JL, Nair BB, Sykes DE, Mammen MJ, Schwartz SA, Mahajan SD. Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: Neuroprotective role in maintaining blood brain barrier integrity. Brain Res 2015; 1624:175-187. [PMID: 26236024 DOI: 10.1016/j.brainres.2015.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/19/2015] [Accepted: 07/07/2015] [Indexed: 11/18/2022]
Abstract
Methamphetamine (Meth) abuse can lead to the breakdown of the blood-brain barrier (BBB) integrity leading to compromised CNS function. The role of Galectins in the angiogenesis process in tumor-associated endothelial cells (EC) is well established; however no data are available on the expression of Galectins in normal human brain microvascular endothelial cells and their potential role in maintaining BBB integrity. We evaluated the basal gene/protein expression levels of Galectin-1, -3 and -9 in normal primary human brain microvascular endothelial cells (BMVEC) that constitute the BBB and examined whether Meth altered Galectin expression in these cells, and if Galectin-1 treatment impacted the integrity of an in-vitro BBB. Our results showed that BMVEC expressed significantly higher levels of Galectin-1 as compared to Galectin-3 and -9. Meth treatment increased Galectin-1 expression in BMVEC. Meth induced decrease in TJ proteins ZO-1, Claudin-3 and adhesion molecule ICAM-1 was reversed by Galectin-1. Our data suggests that Galectin-1 is involved in BBB remodeling and can increase levels of TJ proteins ZO-1 and Claudin-3 and adhesion molecule ICAM-1 which helps maintain BBB tightness thus playing a neuroprotective role. Galectin-1 is thus an important regulator of immune balance from neurodegeneration to neuroprotection, which makes it an important therapeutic agent/target in the treatment of drug addiction and other neurological conditions.
Collapse
Affiliation(s)
- Neil U Parikh
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - R Aalinkeel
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - J L Reynolds
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - B B Nair
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - D E Sykes
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - M J Mammen
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - S A Schwartz
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - S D Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
144
|
Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H. Structural characterization of human galectin-4 C-terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens. FEBS J 2015; 282:3348-67. [DOI: 10.1111/febs.13348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023]
Affiliation(s)
| | - Hakon Leffler
- Section MIG; Department of Laboratory Medicine; Lund University; Sweden
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis; Department of Chemistry; Lund University; Sweden
| | | |
Collapse
|
145
|
Parray HA, Yun JW. Proteomic Identification of Target Proteins of Thiodigalactoside in White Adipose Tissue from Diet-Induced Obese Rats. Int J Mol Sci 2015; 16:14441-63. [PMID: 26121299 PMCID: PMC4519851 DOI: 10.3390/ijms160714441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Previously, galectin-1 (GAL1) was found to be up-regulated in obesity-prone subjects, suggesting that use of a GAL1 inhibitor could be a novel therapeutic approach for treatment of obesity. We evaluated thiodigalactoside (TDG) as a potent inhibitor of GAL1 and identified target proteins of TDG by performing comparative proteome analysis of white adipose tissue (WAT) from control and TDG-treated rats fed a high fat diet (HFD) using two dimensional gel electrophoresis (2-DE) combined with MALDI-TOF-MS. Thirty-two spots from a total of 356 matched spots showed differential expression between control and TDG-treated rats, as identified by peptide mass fingerprinting. These proteins were categorized into groups such as carbohydrate metabolism, tricarboxylic acid (TCA) cycle, signal transduction, cytoskeletal, and mitochondrial proteins based on functional analysis using Protein Annotation Through Evolutionary Relationship (PANTHER) and Database for Annotation, Visualization, Integrated Discovery (DAVID) classification. One of the most striking findings of this study was significant changes in Carbonic anhydrase 3 (CA3), Voltage-dependent anion channel 1 (VDAC1), phosphatidylethanolamine-binding protein 1 (PEBP1), annexin A2 (ANXA2) and lactate dehydrogenase A chain (LDHA) protein levels between WAT from control and TDG-treated groups. In addition, we confirmed increased expression of thermogenic proteins as well as reduced expression of lipogenic proteins in response to TDG treatment. These results suggest that TDG may effectively prevent obesity, and TDG-responsive proteins can be used as novel target proteins for obesity treatment.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Korea.
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Korea.
| |
Collapse
|
146
|
Mukherjee R, Yun JW. Lactobionic acid reduces body weight gain in diet-induced obese rats by targeted inhibition of galectin-1. Biochem Biophys Res Commun 2015; 463:1311-6. [PMID: 26116537 DOI: 10.1016/j.bbrc.2015.06.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Abstract
Galectin-1 (GAL1), an animal lectin with a carbohydrate recognition domain, is known for its roles in cancer, tumor progression, as well as obesity and related complications. Here, we investigated the anti-obesity effect of lactobionic acid (LBA), a GAL1 inhibitor, both in vitro and in vivo. LBA treatment significantly reduced lipogenic capacity of both 3T3-L1 and HIB1B adipocytes through down-regulation of major adipogenic transcription factors at both mRNA and protein levels. Moreover, oral administration and intraperitoneal injection of LBA in Sprague-Dawley male rats fed a high fat diet caused marked reduction of body weight gain as well as improvement of related metabolic parameters. Important lipogenic transcription factors were also down-regulated in LBA-treated rats, resulting in attenuated lipogenesis and fat accumulation. Collectively, pharmaceutical targeting of GAL1 using LBA would be a novel therapeutic approach for the treatment of obesity.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, 712-714, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, 712-714, Republic of Korea.
| |
Collapse
|
147
|
Advedissian T, Deshayes F, Poirier F, Grandjean C, Viguier M. [Galectins, a class of unconventional lectins]. Med Sci (Paris) 2015; 31:499-505. [PMID: 26059300 DOI: 10.1051/medsci/20153105011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galectins constitute a family of soluble animal lectins defined by their evolutionary conserved carbohydrate recognition domain and their affinity for β-galactosides containing glycoconjugates. Each galectin is characterized by a specific spatio-temporal distribution and a unique set of ligands and molecular partners. Interestingly, galectins are found both extracellularly and intracellularly and modulate various cellular processes. Knock-out mutant mice for galectins-1, 3 or 7 are viable but display a wide range of defects under various stress conditions. Indeed, galectins are multifunctional proteins involved in cell-cell and cell-extracellular matrix interactions, organization of membrane domains, cell signalling and also in intracellular trafficking, apoptosis, regulation of cell cycle. Galectins represent potential therapeutic targets, especially in the context of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Tamara Advedissian
- Institut Jacques Monod, UMR 7592 CNRS, université Paris-Diderot, équipe morphogenèse, homéostasie et pathologies, 15, rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Frédérique Deshayes
- Institut Jacques Monod, UMR 7592 CNRS, université Paris-Diderot, équipe morphogenèse, homéostasie et pathologies, 15, rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Françoise Poirier
- Institut Jacques Monod, UMR 7592 CNRS, université Paris-Diderot, équipe morphogenèse, homéostasie et pathologies, 15, rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Cyrille Grandjean
- Équipe ingénierie moléculaire et glycobiologie, UMR CNRS 6286, unité fonctionnalité et ingénierie des protéines, faculté des sciences et techniques de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Mireille Viguier
- Institut Jacques Monod, UMR 7592 CNRS, université Paris-Diderot, équipe morphogenèse, homéostasie et pathologies, 15, rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
148
|
Cousin JM, Cloninger MJ. Glycodendrimers: tools to explore multivalent galectin-1 interactions. Beilstein J Org Chem 2015; 11:739-47. [PMID: 26124876 PMCID: PMC4464428 DOI: 10.3762/bjoc.11.84] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/04/2015] [Indexed: 11/23/2022] Open
Abstract
Four generations of lactose-functionalized polyamidoamine (PAMAM) were employed to further the understanding of multivalent galectin-1 mediated interactions. Dynamic light scattering and fluorescence microscopy were used to study the multivalent interaction of galectin-1 with the glycodendrimers in solution, and glycodendrimers were observed to organize galectin-1 into nanoparticles. In the presence of a large excess of galectin-1, glycodendrimers nucleated galectin-1 into nanoparticles that were remarkably homologous in size (400-500 nm). To understand augmentation of oncologic cellular aggregation by galectin-1, glycodendrimers were used in cell-based assays with human prostate carcinoma cells (DU145). The results revealed that glycodendrimers provided competitive binding sites for galectin-1, which diverted galectin-1 from its typical function in cellular aggregation of DU145 cells.
Collapse
Affiliation(s)
- Jonathan M Cousin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
149
|
González-Miguel J, Morchón R, Siles-Lucas M, Oleaga A, Simón F. Surface-displayed glyceraldehyde 3-phosphate dehydrogenase and galectin from Dirofilaria immitis enhance the activation of the fibrinolytic system of the host. Acta Trop 2015; 145:8-16. [PMID: 25666684 DOI: 10.1016/j.actatropica.2015.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/17/2023]
Abstract
Cardiopulmonary dirofilariosis is a cosmopolitan disease caused by Dirofilaria immitis, a filaroid parasite whose adult worms live for years in the vascular system of its host. Previous studies have shown that D. immitis can use their excretory/secretory (ES) and surface antigens to enhance fibrinolysis, which could limit the formation of clots in its surrounding environment. Moreover, several isoforms of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and galectin (GAL) were identified in both antigenic extracts as plasminogen-binding proteins. The aim of this work is to study the interaction of the GAPDH and GAL of D. immitis with the fibrinolytic system of the host. This study includes the cloning, sequencing and expression of the recombinant forms of the GAPDH and GAL of D. immitis (rDiGAPDH and rDiGAL) and the analysis of their capacity as plasminogen-binding proteins. The results indicate that rDiGAPDH and rDiGAL are able to bind plasminogen and stimulate plasmin generation by tissue plasminogen activator (tPA). This interaction needs the involvement of lysine residues, many of which are located externally in both proteins as have been shown by the molecular modeling of their secondary structures. In addition, we show that rDiGAPDH and rDiGAL enhance the expression of the urokinase-type plasminogen activator (uPA) on canine endothelial cells in culture and that both proteins are expressed on the surface of D. immitis in close contact with the blood of the host. These data suggest that D. immitis could use the associated surface GAPDH and GAL as physiological plasminogen receptors to shift the fibrinolytic balance towards the generation of plasmin, which might constitute a survival mechanism to avoid the clot formation in its intravascular habitat.
Collapse
Affiliation(s)
- Javier González-Miguel
- Faculty of Pharmacy, Laboratory of Parasitology, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain.
| | - Rodrigo Morchón
- Faculty of Pharmacy, Laboratory of Parasitology, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | | | - Ana Oleaga
- Laboratory of Parasitology, IRNASA, CSIC, Salamanca, Spain
| | - Fernando Simón
- Faculty of Pharmacy, Laboratory of Parasitology, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
150
|
Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats. Int J Obes (Lond) 2015. [DOI: 10.1038/ijo.2015.74] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|