101
|
Jorfi S, Ansa-Addo EA, Mariniello K, Warde P, Bin Senian AA, Stratton D, Bax BE, Levene M, Lange S, Inal JM. A Coxsackievirus B1-mediated nonlytic Extracellular Vesicle-to-cell mechanism of virus transmission and its possible control through modulation of EV release. J Gen Virol 2023; 104. [PMID: 37665326 DOI: 10.1099/jgv.0.001884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Like most non-enveloped viruses, CVB1 mainly uses cell lysis to spread. Details of a nonlytic virus transmission remain unclear. Extracellular Vesicles (EVs) transfer biomolecules between cells. We show that CVB1 entry into HeLa cells results in apoptosis and release of CVB1-induced 'medium-sized' EVs (CVB1i-mEVs). These mEVs (100-300 nm) harbour CVB1 as shown by immunoblotting with anti-CVB1-antibody; viral capsids were detected by transmission electron microscopy and RT-PCR revealed CVB1 RNA. The percentage of mEVs released from CVB1-infected HeLa cells harbouring virus was estimated from TEM at 34 %. Inhibition of CVB1i-mEV production, with calpeptin or siRNA knockdown of CAPNS1 in HeLa cells limited spread of CVB1 suggesting these vesicles disseminate CVB1 virions to new host cells by a nonlytic EV-to-cell mechanism. This was confirmed by detecting CVB1 virions inside HeLa cells after co-culture with CVB1i-mEVs; EV release may also prevent apoptosis of infected cells whilst spreading apoptosis to secondary sites of infection.
Collapse
Affiliation(s)
- Samireh Jorfi
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
| | - Ephraim Abrokwa Ansa-Addo
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Present address: Pelotonia Institute for Immuno-Oncology, The James, Ohio State University, Columbus, OH 43210, USA
| | - Katia Mariniello
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Present address: William Harvey Research Institute, Queen Mary, University of London, London, UK
| | - Purva Warde
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Ahmad Asyraf Bin Senian
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
- Present address: Clinical Research Centre, Sarawak General Hospital, Kuching, Malaysia
| | - Dan Stratton
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes MK7 6AE, UK
| | - Bridget E Bax
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, 116, New Cavendish St., London, UK
- University College London School of Pharmacy, Brunswick Sq., London, UK
| | - Jameel Malhador Inal
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| |
Collapse
|
102
|
Velázquez-Cervantes MA, Benítez-Zeferino YR, Flores-Pliego A, Helguera-Repetto AC, Meza-Sánchez DE, Maravillas-Montero JL, León-Reyes G, Mancilla-Ramírez J, Cerna-Cortés JF, Baeza-Ramírez MI, León-Juaárez M. A Review Study of the Participation of Late Domains in Sorting and Transport of Viral Factors to Exosomes. Life (Basel) 2023; 13:1842. [PMID: 37763246 PMCID: PMC10532540 DOI: 10.3390/life13091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular communication depends heavily on the participation of vesicular systems generated by most cells of an organism. Exosomes play central roles in this process. Today, these vesicles have been characterized, and it has been determined that the cargo they transport is not within a random system. In fact, it depends on various molecular signals and the recruitment of proteins that participate in the biogenesis of exosomes. It has also been shown that multiple viruses can recruit these vesicles to transport viral factors such as genomes or proteins. It has been shown that the late domains present in viral proteins are critical for the exosomal selection and biogenesis systems to recognize these viral proteins and introduce them into the exosomes. In this review, the researchers discuss the evidence related to the characterization of these late domains and their role in exosome recruitment during viral infection.
Collapse
Affiliation(s)
- Manuel Adrián Velázquez-Cervantes
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
- Laboratorio de Biomembranas, Departamento de Bioquimica, Escueala Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Yazmín Rocío Benítez-Zeferino
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.C.H.-R.)
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (A.F.-P.); (A.C.H.-R.)
| | - David Eduardo Meza-Sánchez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autonóma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 04510, Mexico; (D.E.M.-S.); (J.L.M.-M.)
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autonóma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 04510, Mexico; (D.E.M.-S.); (J.L.M.-M.)
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico;
| | - Javier Mancilla-Ramírez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 113440, Mexico;
- Hospital de la Mujer, Secretaría de Salud, Mexico City 11340, Mexico
| | - Jorge Francisco Cerna-Cortés
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - María Isabel Baeza-Ramírez
- Laboratorio de Biomembranas, Departamento de Bioquimica, Escueala Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Moises León-Juaárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (M.A.V.-C.); (Y.R.B.-Z.)
| |
Collapse
|
103
|
Sana A, Rossi IV, Sabatke B, Bonato LB, Medeiros LCS, Ramirez MI. An Improved Method to Enrich Large Extracellular Vesicles Derived from Giardia intestinalis through Differential Centrifugation. Life (Basel) 2023; 13:1799. [PMID: 37763203 PMCID: PMC10532800 DOI: 10.3390/life13091799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Giardia intestinalis is a flagellated unicellular protozoan that colonizes the small intestine, causing the diarrheal disease called giardiasis. The production of extracellular vesicles (EVs) by G. intestinalis and the role of these EVs in the parasite's interaction with the host have been described. According to biogenesis, EVs are grouped mainly into large (microvesicles-derived from the plasma membrane) and small (exosomes-derived from multivesicular bodies). Populations of EVs are heterogeneous, and improved methods to separate and study them are needed to understand their roles in cell physiology and pathologies. This work aimed to enrich the large extracellular vesicles (LEVs) of G. intestinalis in order to better understand the roles of these vesicles in the interaction of the parasite with the host. To achieve the enrichment of the LEVs, we have modified our previously described method and compared it by protein dosage and using Nano tracking analysis. Giardia intestinalis vesiculation was induced by incubation in a TYI-S-33 medium without serum, to which 1 mM of CaCl2 was added at 37 °C for 1 h. Then, the supernatant was centrifuged at 15,000× g for 1 h (15 K 1 h pellet), 15,000× g for 4 h (15 K 4 h pellet) and 100,000× g for 1.5 h (100 K 1h30 pellet). The pellet (containing EVs) was resuspended in 1× PBS and stored at 4 °C for later analysis. The EVs were quantified based on their protein concentrations using the Pierce BCA assay, and by nanoparticle tracking analysis (NTA), which reports the concentration and size distribution of the particles. The NTA showed that direct ultracentrifugation at 100,000× g for 1.5 h and centrifugation at 15,000× g for 4 h concentrated more EVs compared to centrifugation at 15,000× g for 1 h. Additionally, it revealed that centrifugation at 15,000× g 4 h was able to concentrate at the same particle concentration levels as a direct ultracentrifugation at 100,000× g for 1.5 h. As for the enrichment of LEVs, the NTA has shown a higher concentration of LEVs in direct ultracentrifugation at 100,000× g for 1.5 h, and in centrifugation at 15,000× g for 4 h, compared to centrifugation at 15,000× g for 1 h. Our results have shown that the most used method at 15,000× g for 1 h is not enough to obtain a representative population of large EVs, and we suggest that LEVs released by G. intestinalis can be better enriched by direct ultracentrifugation at 100,000× g for 1.5 h, or by centrifugation at 15,000× g for 4 h.
Collapse
Affiliation(s)
- Abel Sana
- EVAHPI—Extracellular Vesicles and Host–Parasite Interactions Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas-Fiocruz, Curitiba 81310-020, Brazil; (A.S.); (I.V.R.); (B.S.); (L.B.B.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, UFPR, Curitiba 81531-970, Brazil
| | - Izadora Volpato Rossi
- EVAHPI—Extracellular Vesicles and Host–Parasite Interactions Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas-Fiocruz, Curitiba 81310-020, Brazil; (A.S.); (I.V.R.); (B.S.); (L.B.B.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, UFPR, Curitiba 81531-970, Brazil
| | - Bruna Sabatke
- EVAHPI—Extracellular Vesicles and Host–Parasite Interactions Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas-Fiocruz, Curitiba 81310-020, Brazil; (A.S.); (I.V.R.); (B.S.); (L.B.B.)
- Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, UFPR, Curitiba 81531-970, Brazil
| | - Letícia Bassani Bonato
- EVAHPI—Extracellular Vesicles and Host–Parasite Interactions Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas-Fiocruz, Curitiba 81310-020, Brazil; (A.S.); (I.V.R.); (B.S.); (L.B.B.)
- Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, UFPR, Curitiba 81531-970, Brazil
| | | | - Marcel Ivan Ramirez
- EVAHPI—Extracellular Vesicles and Host–Parasite Interactions Research Group, Laboratório de Biologia Celular, Instituto Carlos Chagas-Fiocruz, Curitiba 81310-020, Brazil; (A.S.); (I.V.R.); (B.S.); (L.B.B.)
- Laboratório de Biologia Celular, Instituto Carlos Chagas-Fiocruz, Curitiba 81350-010, Brazil;
| |
Collapse
|
104
|
Gregory CD, Rimmer MP. Extracellular vesicles arising from apoptosis: forms, functions, and applications. J Pathol 2023; 260:592-608. [PMID: 37294158 PMCID: PMC10952477 DOI: 10.1002/path.6138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 μm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christopher D Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| | - Michael P Rimmer
- Centre for Reproductive HealthInstitute for Regeneration and Repair, University of EdinburghEdinburghUK
| |
Collapse
|
105
|
Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol 2023; 33:667-681. [PMID: 36737375 PMCID: PMC10363204 DOI: 10.1016/j.tcb.2023.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The study of extracellular vesicles (EVs) and nanoparticles (NPs) is rapidly expanding because recent discoveries have revealed a much greater complexity and diversity than was appreciated only a few years ago. New types of EVs and NPs have recently been described. Proteins and nucleic acids previously thought to be packaged in exosomes appear to be more enriched in different types of EVs and in two recently identified amembranous NPs, exomeres and supermeres. Thus, our understanding of the cell biology and intercellular communication facilitated by the release of EVs and NPs is in a state of flux. In this review, we describe the different types of EVs and NPs, highlight recent advances, and present major outstanding questions.
Collapse
Affiliation(s)
- Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
106
|
Das K, Paul S, Mukherjee T, Ghosh A, Sharma A, Shankar P, Gupta S, Keshava S, Parashar D. Beyond Macromolecules: Extracellular Vesicles as Regulators of Inflammatory Diseases. Cells 2023; 12:1963. [PMID: 37566042 PMCID: PMC10417494 DOI: 10.3390/cells12151963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammation is the defense mechanism of the immune system against harmful stimuli such as pathogens, toxic compounds, damaged cells, radiation, etc., and is characterized by tissue redness, swelling, heat generation, pain, and loss of tissue functions. Inflammation is essential in the recruitment of immune cells at the site of infection, which not only aids in the elimination of the cause, but also initiates the healing process. However, prolonged inflammation often brings about several chronic inflammatory disorders; hence, a balance between the pro- and anti-inflammatory responses is essential in order to eliminate the cause while producing the least damage to the host. A growing body of evidence indicates that extracellular vesicles (EVs) play a major role in cell-cell communication via the transfer of bioactive molecules in the form of proteins, lipids, DNA, RNAs, miRNAs, etc., between the cells. The present review provides a brief classification of the EVs followed by a detailed description of how EVs contribute to the pathogenesis of various inflammation-associated diseases and their implications as a therapeutic measure. The latter part of the review also highlights how EVs act as a bridging entity in blood coagulation disorders and associated inflammation. The findings illustrated in the present review may open a new therapeutic window to target EV-associated inflammatory responses, thereby minimizing the negative outcomes.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Tanmoy Mukherjee
- School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Anshul Sharma
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
107
|
Du S, Guan Y, Xie A, Yan Z, Gao S, Li W, Rao L, Chen X, Chen T. Extracellular vesicles: a rising star for therapeutics and drug delivery. J Nanobiotechnology 2023; 21:231. [PMID: 37475025 PMCID: PMC10360328 DOI: 10.1186/s12951-023-01973-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, natural, cell-derived vesicles that contain the same nucleic acids, proteins, and lipids as their source cells. Thus, they can serve as natural carriers for therapeutic agents and drugs, and have many advantages over conventional nanocarriers, including their low immunogenicity, good biocompatibility, natural blood-brain barrier penetration, and capacity for gene delivery. This review first introduces the classification of EVs and then discusses several currently popular methods for isolating and purifying EVs, EVs-mediated drug delivery, and the functionalization of EVs as carriers. Thereby, it provides new avenues for the development of EVs-based therapeutic strategies in different fields of medicine. Finally, it highlights some challenges and future perspectives with regard to the clinical application of EVs.
Collapse
Affiliation(s)
- Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Zhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Sijia Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China.
| |
Collapse
|
108
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
109
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
110
|
Ribovski L, Joshi B, Gao J, Zuhorn I. Breaking free: endocytosis and endosomal escape of extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:283-305. [PMID: 39697985 PMCID: PMC11648447 DOI: 10.20517/evcna.2023.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are natural micro-/nanoparticles that play an important role in intercellular communication. They are secreted by producer/donor cells and subsequent uptake by recipient/acceptor cells may result in phenotypic changes in these cells due to the delivery of cargo molecules, including lipids, RNA, and proteins. The process of endocytosis is widely described as the main mechanism responsible for cellular uptake of EVs, with endosomal escape of cargo molecules being a necessity for the functional delivery of EV cargo. Equivalent to synthetic micro-/nanoparticles, the properties of EVs, such as size and composition, together with environmental factors such as temperature, pH, and extracellular fluid composition, codetermine the interactions of EVs with cells, from binding to uptake, intracellular trafficking, and cargo release. Innovative assays for detection and quantification of the different steps in the EV formation and EV-mediated cargo delivery process have provided valuable insight into the biogenesis and cellular processing of EVs and their cargo, revealing the occurrence of EV recycling and degradation, next to functional cargo delivery, with the back fusion of the EV with the endosomal membrane standing out as a common cargo release pathway. In view of the significant potential for developing EVs as drug delivery systems, this review discusses the interaction of EVs with biological membranes en route to cargo delivery, highlighting the reported techniques for studying EV internalization and intracellular trafficking, EV-membrane fusion, endosomal permeabilization, and cargo delivery, including functional delivery of RNA cargo.
Collapse
Affiliation(s)
- Laís Ribovski
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
- Authors contributed equally
| | - Bhagyashree Joshi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, the Netherlands
- Authors contributed equally
| | - Jie Gao
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Inge Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| |
Collapse
|
111
|
Oh S, Lee CM, Kwon SH. Extracellular Vesicle MicroRNA in the Kidney. Compr Physiol 2023; 13:4833-4850. [PMID: 37358511 PMCID: PMC11514415 DOI: 10.1002/cphy.c220023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Most cells in our body release membrane-bound, nano-sized particles into the extracellular milieu through cellular metabolic processes. Various types of macromolecules, reflecting the physiological and pathological status of the producing cells, are packaged into such so-called extracellular vesicles (EVs), which can travel over a distance to target cells, thereby transmitting donor cell information. The short, noncoding ribonucleic acid (RNA) called microRNA (miRNA) takes a crucial part in EV-resident macromolecules. Notably, EVs transferring miRNAs can induce alterations in the gene expression profiles of the recipient cells, through genetically instructed, base-pairing interaction between the miRNAs and their target cell messenger RNAs (mRNAs), resulting in either nucleolytic decay or translational halt of the engaged mRNAs. As in other body fluids, EVs released in urine, termed urinary EVs (uEVs), carry specific sets of miRNA molecules, which indicate either normal or diseased states of the kidney, the principal source of uEVs. Studies have therefore been directed to elucidate the contents and biological roles of miRNAs in uEVs and moreover to utilize the gene regulatory properties of miRNA cargos in ameliorating kidney diseases through their delivery via engineered EVs. We here review the fundamental principles of the biology of EVs and miRNA as well as our current understanding of the biological roles and applications of EV-loaded miRNAs in the kidney. We further discuss the limitations of contemporary research approaches, suggesting future directions to overcome the difficulties to advance both the basic biological understanding of miRNAs in EVs and their clinical applications in treating kidney diseases. © 2023 American Physiological Society. Compr Physiol 13:4833-4850, 2023.
Collapse
Affiliation(s)
- Sekyung Oh
- Department of Medical Science, Catholic Kwandong University College of Medicine, Incheon 22711, South Korea
| | - Chang Min Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| |
Collapse
|
112
|
Levy-Myers R, Daudelin D, Na CH, Sockanathan S. An independent regulator of global release pathways in astrocytes generates a subtype of extracellular vesicles required for postsynaptic function. SCIENCE ADVANCES 2023; 9:eadg2067. [PMID: 37352348 PMCID: PMC10289663 DOI: 10.1126/sciadv.adg2067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/18/2023] [Indexed: 06/25/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous in size, composition, and function. We show that the six-transmembrane protein glycerophosphodiester phosphodiesterase 3 (GDE3) regulates actin remodeling, a global EV biogenic pathway, to release an EV subtype with distinct functions. GDE3 is necessary and sufficient for releasing EVs containing annexin A1 and GDE3 from the plasma membrane via Wiskott-Aldrich syndrome protein family member 3 (WAVE3), a major regulator of actin dynamics. GDE3 is expressed in astrocytes but not neurons, yet mice lacking GDE3 [Gde3 knockout (KO)] have decreased miniature excitatory postsynaptic current (mEPSC) amplitudes in hippocampal CA1 neurons. EVs from cultured wild-type astrocytes restore mEPSC amplitudes in Gde3 KOs, while EVs from Gde3 KO astrocytes or astrocytes inhibited for WAVE3 actin branching activity do not. Thus, GDE3-WAVE3 is a nonredundant astrocytic pathway that remodels actin to release a functionally distinct EV subtype, supporting the concept that independent regulation of global EV release pathways differentially regulates EV signaling within the cellular EV landscape.
Collapse
Affiliation(s)
- Reuben Levy-Myers
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, PCTB1004, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Daniel Daudelin
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, PCTB1004, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, MRB 706, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, PCTB1004, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
113
|
Gonçalves D, Pinto SN, Fernandes F. Extracellular Vesicles and Infection: From Hijacked Machinery to Therapeutic Tools. Pharmaceutics 2023; 15:1738. [PMID: 37376186 DOI: 10.3390/pharmaceutics15061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) comprise a broad range of secreted cell-derived membrane vesicles. Beyond their more well-characterized role in cell communication, in recent years, EVs have also been shown to play important roles during infection. Viruses can hijack the biogenesis of exosomes (which are small EVs) to promote viral spreading. Additionally, these exosomes are also important mediators in inflammation and immune responses during both bacterial and viral infections. This review summarizes these mechanisms while also describing the impact of bacterial EVs in regulating immune responses. Finally, the review also focuses on the potential and challenges of using EVs, in particular, to tackle infectious diseases.
Collapse
Affiliation(s)
- Diogo Gonçalves
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
114
|
Jia W, Yuan J, Cheng B, Ling C. Targeting tumor-derived exosome-mediated premetastatic niche formation: The metastasis-preventive value of traditional Chinese medicine. Cancer Lett 2023:216261. [PMID: 37302563 DOI: 10.1016/j.canlet.2023.216261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Tumor-derived exosome (TDE)-mediated premetastatic niche (PMN) formation is a potential mechanism underlying the organotropic metastasis of primary tumors. Traditional Chinese medicine (TCM) has shown considerable success in preventing and treating tumor metastasis. However, the underlying mechanisms remain elusive. In this review, we discussed PMN formation from the perspectives of TDE biogenesis, cargo sorting, and TDE recipient cell alterations, which are critical for metastatic outgrowth. We also reviewed the metastasis-preventive effects of TCM, which act by targeting the physicochemical materials and functional mediators of TDE biogenesis, regulating the cargo sorting machinery and secretory molecules in TDEs, and targeting the TDE-recipient cells involved in PMN formation.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Jiaying Yuan
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| |
Collapse
|
115
|
Wei J, Ou Z, Tong B, Liao Z, Yang C. Engineered extracellular vesicles as therapeutics of degenerative orthopedic diseases. Front Bioeng Biotechnol 2023; 11:1162263. [PMID: 37362216 PMCID: PMC10289007 DOI: 10.3389/fbioe.2023.1162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Degenerative orthopedic diseases, as a global public health problem, have made serious negative impact on patients' quality of life and socio-economic burden. Traditional treatments, including chemical drugs and surgical treatments, have obvious side effects and unsatisfactory efficacy. Therefore, biological therapy has become the focus of researches on degenerative orthopedic diseases. Extracellular vesicles (EVs), with superior properties of immunoregulatory, growth support, and drug delivery capabilities, have emerged as a new cell-free strategy for the treatment of many diseases, including degenerative orthopedic diseases. An increasing number of studies have shown that EVs can be engineered through cargo loading, surface modification, and chemical synthesis to improve efficiency, specificity, and safety. Herein, a comprehensive overview of recent advances in engineering strategies and applications of engineered EVs as well as related researches in degenerative orthopedic diseases, including osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration (IDD) and osteonecrosis of the femoral head (ONFH), is provided. In addition, we analyze the potential and challenges of applying engineered EVs to clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Cao Yang
- *Correspondence: Zhiwei Liao, ; Cao Yang,
| |
Collapse
|
116
|
Kira A, Tatsutomi I, Saito K, Murata M, Hattori I, Kajita H, Muraki N, Oda Y, Satoh S, Tsukamoto Y, Kimura S, Onoue K, Yonemura S, Arakawa S, Kato H, Hirashima T, Kawane K. Apoptotic extracellular vesicle formation via local phosphatidylserine exposure drives efficient cell extrusion. Dev Cell 2023:S1534-5807(23)00241-1. [PMID: 37315563 DOI: 10.1016/j.devcel.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 01/29/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Cell extrusion is a universal mode of cell removal from tissues, and it plays an important role in regulating cell numbers and eliminating unwanted cells. However, the underlying mechanisms of cell delamination from the cell layer are unclear. Here, we report a conserved execution mechanism of apoptotic cell extrusion. We found extracellular vesicle (EV) formation in extruding mammalian and Drosophila cells at a site opposite to the extrusion direction. Lipid-scramblase-mediated local exposure of phosphatidylserine is responsible for EV formation and is crucial for executing cell extrusion. Inhibition of this process disrupts prompt cell delamination and tissue homeostasis. Although the EV has hallmarks of an apoptotic body, its formation is governed by the mechanism of microvesicle formation. Experimental and mathematical modeling analysis illustrated that EV formation promotes neighboring cells' invasion. This study showed that membrane dynamics play a crucial role in cell exit by connecting the actions of the extruding cell and neighboring cells.
Collapse
Affiliation(s)
- Akihito Kira
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Ichiko Tatsutomi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Keisuke Saito
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Machiko Murata
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Izumi Hattori
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Haruna Kajita
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Naoko Muraki
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Yukako Oda
- Department of Cell Growth and Differentiation, Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| | - Saya Satoh
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Yuta Tsukamoto
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan; Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Satoko Arakawa
- Research Core, Institute of Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan.
| | - Kohki Kawane
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
117
|
Bhatia R, Chang J, Munoz JL, Walker ND. Forging New Therapeutic Targets: Efforts of Tumor Derived Exosomes to Prepare the Pre-Metastatic Niche for Cancer Cell Dissemination and Dormancy. Biomedicines 2023; 11:1614. [PMID: 37371709 PMCID: PMC10295689 DOI: 10.3390/biomedicines11061614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor-derived exosomes play a multifaceted role in preparing the pre-metastatic niche, promoting cancer dissemination, and regulating cancer cell dormancy. A brief review of three types of cells implicated in metastasis and an overview of other types of extracellular vesicles related to metastasis are described. A central focus of this review is on how exosomes influence cancer progression throughout metastatic disease. Exosomes are crucial mediators of intercellular communication by transferring their cargo to recipient cells, modulating their behavior, and promoting tumor pro-gression. First, their functional role in cancer cell dissemination in the peripheral blood by facilitating the establishment of a pro-angiogenic and pro-inflammatory niche is described during organotro-pism and in lymphatic-mediated metastasis. Second, tumor-derived exosomes can transfer molecular signals that induce cell cycle arrest, dormancy, and survival pathways in disseminated cells, promoting a dormant state are reviewed. Third, several studies highlight exosome involvement in maintaining cellular dormancy in the bone marrow endosteum. Finally, the clinical implications of exosomes as biomarkers or diagnostic tools for cancer progression are also outlined. Understanding the complex interplay between tumor-derived exosomes and the pre-metastatic niche is crucial for developing novel therapeutic strategies to target metastasis and prevent cancer recurrence. To that end, several examples of how exosomes or other nanocarriers are used as a drug delivery system to inhibit cancer metastasis are discussed. Strategies are discussed to alter exosome cargo content for better loading capacity or direct cell targeting by integrins. Further, pre-clinical models or Phase I clinical trials implementing exosomes or other nanocarriers to attack metastatic cancer cells are highlighted.
Collapse
Affiliation(s)
- Ranvir Bhatia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanna Chang
- Department of Biological Sciences, University of Maryland, Baltimore, MD 21250, USA
| | - Jessian L Munoz
- Division of Perinatal Surgery, Texas Children's Hospital, Houston, TX 77030, USA
- Division of Maternal Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nykia D Walker
- Department of Biological Sciences, University of Maryland, Baltimore, MD 21250, USA
| |
Collapse
|
118
|
Raposo G, Stahl PD. Extracellular vesicles - on the cusp of a new language in the biological sciences. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:240-254. [PMID: 38288044 PMCID: PMC10824536 DOI: 10.20517/evcna.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Extracellular vesicles (EVs) play a key role both in physiological balance and homeostasis and in disease processes through their ability to participate in intercellular signaling and communication. An ever-expanding knowledge pool and a myriad of functional properties ascribed to EVs point to a new language of communication in biological systems that has opened a path for the discovery and implementation of novel diagnostic applications. EVs originate in the endosomal network and via non-random shedding from the plasma membrane by mechanisms that allow the packaging of functional cargoes, including proteins, lipids, and genetic materials. Deciphering the molecular mechanisms that govern packaging, secretion and targeted delivery of extracellular vesicle-borne cargo will be required to establish EVs as important signaling entities, especially when ascribing functional properties to a heterogeneous population of vesicles. Several molecular cascades operate within the endosomal network and at the plasma membrane that recognize and segregate cargos as a prelude to vesicle budding and release. EVs are transferred between cells and operate as vehicles in biological fluids within tissues and within the microenvironment where they are responsible for short- and long-range targeted information. In this review, we focus on the remarkable capacity of EVs to establish a dialogue between cells and within tissues, often operating in parallel to the endocrine system, we highlight selected examples of past and recent studies on the functions of EVs in health and disease.
Collapse
Affiliation(s)
- Graca Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris 75005, France
| | - Philip D Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
119
|
Ferlizza E, Romaniello D, Borrelli F, Pagano F, Girone C, Gelfo V, Kuhre RS, Morselli A, Mazzeschi M, Sgarzi M, Filippini DM, D'Uva G, Lauriola M. Extracellular Vesicles and Epidermal Growth Factor Receptor Activation: Interplay of Drivers in Cancer Progression. Cancers (Basel) 2023; 15:cancers15112970. [PMID: 37296932 DOI: 10.3390/cancers15112970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Extracellular vesicles (EVs) are of great interest to study the cellular mechanisms of cancer development and to diagnose and monitor cancer progression. EVs are a highly heterogeneous population of cell derived particles, which include microvesicles (MVs) and exosomes (EXOs). EVs deliver intercellular messages transferring proteins, lipids, nucleic acids, and metabolites with implications for tumour progression, invasiveness, and metastasis. Epidermal Growth Factor Receptor (EGFR) is a major driver of cancer. Tumour cells with activated EGFR could produce EVs disseminating EGFR itself or its ligands. This review provides an overview of EVs (mainly EXOs and MVs) and their cargo, with a subsequent focus on their production and effects related to EGFR activation. In particular, in vitro studies performed in EGFR-dependent solid tumours and/or cell cultures will be explored, thus shedding light on the interplay between EGFR and EVs production in promoting cancer progression, metastases, and resistance to therapies. Finally, an overview of liquid biopsy approaches involving EGFR and EVs in the blood/plasma of EGFR-dependent tumour patients will also be discussed to evaluate their possible application as candidate biomarkers.
Collapse
Affiliation(s)
- Enea Ferlizza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Francesco Borrelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Federica Pagano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Cinzia Girone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Valerio Gelfo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Rikke Sofie Kuhre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Alessandra Morselli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Martina Mazzeschi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Michela Sgarzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Daria Maria Filippini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Gabriele D'Uva
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
120
|
Wang C, Yang Y, Zhang X, Shi Z, Gao H, Zhong M, Fan Y, Zhang H, Liu B, Qing G. Secreted endogenous macrosomes reduce Aβ burden and ameliorate Alzheimer's disease. SCIENCE ADVANCES 2023; 9:eade0293. [PMID: 37235655 DOI: 10.1126/sciadv.ade0293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Innovative therapeutic strategies are urgently needed for Alzheimer's disease (AD) due to the increasing size of the aging population and the lack of effective drug treatment. Here, we report the therapeutic effects of extracellular vesicles (EVs) secreted by microglia, including macrosomes and small EVs, on AD-associated pathology. Macrosomes strongly inhibited β-amyloid (Aβ) aggregation and rescued cells from Aβ misfolding-induced cytotoxicity. Furthermore, macrosome administration reduced Aβ plaques and ameliorated cognitive impairment in mice with AD. In contrast, small EVs slightly promoted Aβ aggregation and did not improve AD pathology. Proteomic analysis of small EVs and macrosomes revealed that macrosomes harbor several important neuroprotective proteins that inhibit Aβ misfolding. In particular, the small integral membrane protein 10-like protein 2B in macrosomes has been shown to inhibit Aβ aggregation. Our observations provide an alternative therapeutic strategy for the treatment of AD over conventional ineffective drug treatments.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Lingshui Road, Dalian 116024, P. R. China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yiming Yang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Lingshui Road, Dalian 116024, P. R. China
| | - Xiaoyu Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhenqiang Shi
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yonggang Fan
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System, China Medical University, Shenyang, 110122, P. R. China
| | - Hongyan Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Lingshui Road, Dalian 116024, P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
121
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
122
|
Encarnación-Medina J, Godoy L, Matta J, Ortiz-Sánchez C. Identification of Exo-miRNAs: A Summary of the Efforts in Translational Studies Involving Triple-Negative Breast Cancer. Cells 2023; 12:cells12091339. [PMID: 37174739 PMCID: PMC10177092 DOI: 10.3390/cells12091339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for about 10-15% of all breast cancers (BC) in the US and its diagnosis is associated with poor survival outcomes. A better understanding of the disease etiology is crucial to identify target treatment options to improve patient outcomes. The role of exo-miRNAs in TNBC has been studied for more than two decades. Although some studies have identified exo-miR candidates in TNBC using clinical samples, consensus regarding exo-miR candidates has not been achieved. The purpose of this review is to gather information regarding exo-miR candidates reported in TNBC translational studies along with the techniques used to isolate and validate the potential targets. The techniques suggested in this review are based on the use of commercially available materials for research and clinical laboratories. We expect that the information included in this review can add additional value to the recent efforts in the development of a liquid biopsy to identify TNBC cases and further improve their survival outcomes.
Collapse
Affiliation(s)
- Jarline Encarnación-Medina
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico
| | - Lenin Godoy
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico
| | - Carmen Ortiz-Sánchez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico
| |
Collapse
|
123
|
Li Z, Gao Y, Cao Y, He F, Jiang R, Liu H, Cai H, Zan T. Extracellular RNA in melanoma: Advances, challenges, and opportunities. Front Cell Dev Biol 2023; 11:1141543. [PMID: 37215082 PMCID: PMC10192583 DOI: 10.3389/fcell.2023.1141543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Melanoma, a malignant mass lesion that originates in melanocytes and has a high rate of malignancy, metastasis, and mortality, is defined by these characteristics. Malignant melanoma is a kind of highly malignant tumor that produces melanin and has a high mortality rate. Its incidence accounts for 1%-3% of all malignant tumors and shows an obvious upward trend. The discovery of biomolecules for the diagnosis and treatment of malignant melanoma has important application value. So far, the exact molecular mechanism of melanoma development relevant signal pathway still remains unclear. According to previous studies, extracellular RNAs (exRNAs) have been implicated in tumorigenesis and spread of melanoma. They can influence the proliferation, invasion and metastasis of melanoma by controlling the expression of target genes and can also influence tumor progression by participating in signal transduction mechanisms. Therefore, understanding the relationship between exRNA and malignant melanoma and targeting therapy is of positive significance for its prevention and treatment. In this review, we did an analysis of extracellular vesicles of melanoma which focused on the role of exRNAs (lncRNAs, miRNAs, and mRNAs) and identifies several potential therapeutic targets. In addition, we discuss the typical signaling pathways involved in exRNAs, advances in exRNA detection and how they affect the tumor immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Gao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Cao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifan He
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Runyi Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
124
|
Rädler J, Gupta D, Zickler A, Andaloussi SE. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol Ther 2023; 31:1231-1250. [PMID: 36805147 PMCID: PMC10188647 DOI: 10.1016/j.ymthe.2023.02.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are gaining increasing attention for diagnostic and therapeutic applications in various diseases. These natural nanoparticles benefit from favorable safety profiles and unique biodistribution capabilities, rendering them attractive drug-delivery modalities over synthetic analogs. However, the widespread use of EVs is limited by technological shortcomings and biological knowledge gaps that fail to unravel their heterogeneity. An in-depth understanding of their biogenesis is crucial to unlocking their full therapeutic potential. Here, we explore how knowledge about EV biogenesis can be exploited for EV bioengineering to load therapeutic protein or nucleic acid cargos into or onto EVs. We summarize more than 75 articles and discuss their findings on the formation and composition of exosomes and microvesicles, revealing multiple pathways that may be stimulation and/or cargo dependent. Our analysis further identifies key regulators of natural EV cargo loading and we discuss how this knowledge is integrated to develop engineered EV biotherapeutics.
Collapse
Affiliation(s)
- Julia Rädler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Dhanu Gupta
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Antje Zickler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Samir El Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden.
| |
Collapse
|
125
|
Wallen M, Aqil F, Spencer W, Gupta RC. Milk/colostrum exosomes: A nanoplatform advancing delivery of cancer therapeutics. Cancer Lett 2023; 561:216141. [PMID: 36963459 PMCID: PMC10155642 DOI: 10.1016/j.canlet.2023.216141] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Chemotherapeutics continue to play a central role in the treatment of a wide variety of cancers. Conventional chemotherapy involving bolus intravenous doses results in severe side effects - in some cases life threatening - delayed toxicity and compromised quality-of-life. Attempts to deliver small drug molecules using liposomes, polymeric nanoparticles, micelles, lipid nanoparticles, etc. have produced limited nanoformulations for clinical use, presumably due to a lack of biocompatibility of the material, costs, toxicity, scalability, and/or lack of effective administration. Naturally occurring small extracellular vesicles, or exosomes, may offer a solution and a viable system for delivering cancer therapeutics. Combined with their inherent trafficking ability and versatility of cargo capacity, exosomes can be engineered to specifically target cancerous cells, thereby minimizing off-target effects, and increasing the efficacy of cancer therapeutics. Exosomal formulations have mitigated the toxic effects of several drugs in murine cancer models. In this article, we review studies related to exosomal delivery of both small molecules and biologics, including siRNA to inhibit specific gene expression, in the pursuit of effective cancer therapeutics. We focus primarily on bovine milk and colostrum exosomes as the cancer therapeutic delivery vehicles based on their high abundance, cost effectiveness, scalability, high drug loading, functionalization of exosomes for targeted delivery, and lack of toxicity. While bovine milk exosomes may provide a new platform for drug delivery, extensive comparison to other nanoformulations and evaluation of long-term toxicity will be required to fully realize its potential.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Wendy Spencer
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
126
|
Salazar A, Chavarria V, Flores I, Ruiz S, Pérez de la Cruz V, Sánchez-García FJ, Pineda B. Abscopal Effect, Extracellular Vesicles and Their Immunotherapeutic Potential in Cancer Treatment. Molecules 2023; 28:molecules28093816. [PMID: 37175226 PMCID: PMC10180522 DOI: 10.3390/molecules28093816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.
Collapse
Affiliation(s)
- Aleli Salazar
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
- Immunoregulation Lab, Department of Immunology, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itamar Flores
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Samanta Ruiz
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | | | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| |
Collapse
|
127
|
Zhou W, Zhao L, Mao Z, Wang Z, Zhang Z, Li M. Bidirectional Communication Between the Brain and Other Organs: The Role of Extracellular Vesicles. Cell Mol Neurobiol 2023:10.1007/s10571-023-01345-5. [PMID: 37067749 PMCID: PMC10106324 DOI: 10.1007/s10571-023-01345-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
A number of substances released by the brain under physiological and pathological conditions exert effects on other organs. In turn, substances produced primarily by organs such as bone marrow, adipose tissue, or the heart may have an impact on the metabolism and function and metabolism of the healthy and diseased brain. Despite a mounting amount of evidence supports such bidirectional communication between the brain and other organs, research on the function of molecular mediators carried by extracellular vesicles (EVs) is in the early stages. In addition to being able to target or reach practically any organ, EVs have the ability to cross the blood-brain barrier to transport a range of substances (lipids, peptides, proteins, and nucleic acids) to recipient cells, exerting biological effects. Here, we review the function of EVs in bidirectional communication between the brain and other organs. In a small number of cases, the role has been explicitly proven; yet, in most cases, it relies on indirect evidence from EVs in cell culture or animal models. There is a dearth of research currently available on the function of EVs-carrying mediators in the bidirectional communication between the brain and bone marrow, adipose tissue, liver, heart, lungs, and gut. Therefore, more studies are needed to determine how EVs facilitate communication between the brain and other organs.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Lihong Zhao
- Department of Radiotherapy, Jilin Cancer Hospital, 1018 Huguang Street, Changchun, 130012, Jilin, China
| | - Zelu Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
128
|
Oshchepkova A, Zenkova M, Vlassov V. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges. Int J Mol Sci 2023; 24:ijms24087287. [PMID: 37108446 PMCID: PMC10139028 DOI: 10.3390/ijms24087287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
129
|
Fratantonio D, Munir J, Shu J, Howard K, Baier SR, Cui J, Zempleni J. The RNA cargo in small extracellular vesicles from chicken eggs is bioactive in C57BL/6 J mice and human peripheral blood mononuclear cells ex vivo. Front Nutr 2023; 10:1162679. [PMID: 37305095 PMCID: PMC10249500 DOI: 10.3389/fnut.2023.1162679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
Small extracellular vesicles (sEVs) and their RNA cargo in milk are bioavailable in humans, pigs, and mice, and their dietary depletion and supplementation elicits phenotypes. Little is known about the content and biological activity of sEVs in foods of animal origin other than milk. Here we tested the hypothesis that sEVs in chicken eggs (Gallus gallus) facilitate the transfer of RNA cargo from an avian species to humans and mice, and their dietary depletion elicits phenotypes. sEVs were purified from raw egg yolk by ultracentrifugation and authenticated by transmission electron microscopy, nano-tracking device, and immunoblots. The miRNA profile was assessed by RNA-sequencing. Bioavailability of these miRNAs in humans was assessed by egg feeding study in adults, and by culturing human peripheral blood mononuclear cells (PBMCs) with fluorophore-labeled egg sEVs ex vivo. To further assess bioavailability, fluorophore-labeled miRNAs, encapsulated in egg sEVs, were administered to C57BL/6 J mice by oral gavage. Phenotypes of sEV RNA cargo depletion were assessed by feeding egg sEV and RNA-defined diets to mice and using spatial learning and memory in the Barnes and water mazes as experimental readouts. Egg yolk contained 6.30 × 1010 ± 6.06 × 109 sEVs/mL, which harbored eighty-three distinct miRNAs. Human PBMCs internalized sEVs and their RNA cargo. Egg sEVs, loaded with fluorophore-labeled RNA and administered orally to mice, accumulated primarily in brain, intestine and lungs. Spatial learning and memory (SLM) was compromised in mice fed on egg sEV- and RNA-depleted diet compared to controls. Egg consumption elicited an increase of miRNAs in human plasma. We conclude that egg sEVs and their RNA cargo probably are bioavailable. The human study is registered as a clinical trial and accessible at https://www.isrctn.com/ISRCTN77867213.
Collapse
Affiliation(s)
- Deborah Fratantonio
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Javaria Munir
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Jiang Shu
- School of Computing, University of Nebraska, Lincoln, NE, United States
| | - Katherine Howard
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Scott R. Baier
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Juan Cui
- School of Computing, University of Nebraska, Lincoln, NE, United States
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
130
|
Yang M, Peng GH. The molecular mechanism of human stem cell-derived extracellular vesicles in retinal repair and regeneration. Stem Cell Res Ther 2023; 14:84. [PMID: 37046324 PMCID: PMC10100447 DOI: 10.1186/s13287-023-03319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Extracellular vesicles (EVs), including microvesicles (MVs) and exosomes, play a critical role in metabolic regulation and intracellular communication. Stem cell-derived EVs are considered to have the potential for regeneration, like stem cells, while simultaneously avoiding the risk of immune rejection or tumour formation. The therapeutic effect of stem cell-derived EVs has been proven in many diseases. However, the molecular mechanism of stem cell-derived EVs in retinal repair and regeneration has not been fully clarified. In this review, we described the biological characteristics of stem cell-derived EVs, summarized the current research on stem cell-derived EV treatment in retinal repair and regeneration, and discussed the potential and challenges of stem cell-derived EVs in translational medicine.
Collapse
Affiliation(s)
- Mei Yang
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
131
|
Dey H, Vasudevan K, Doss C. GP, Kumar SU, El Allali A, Alsamman AM, Zayed H. Integrated gene network analysis sheds light on understanding the progression of Osteosarcoma. Front Med (Lausanne) 2023; 10:1154417. [PMID: 37081847 PMCID: PMC10110863 DOI: 10.3389/fmed.2023.1154417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Osteosarcoma is a rare disorder among cancer, but the most frequently occurring among sarcomas in children and adolescents. It has been reported to possess the relapsing capability as well as accompanying collateral adverse effects which hinder the development process of an effective treatment plan. Using networks of omics data to identify cancer biomarkers could revolutionize the field in understanding the cancer. Cancer biomarkers and the molecular mechanisms behind it can both be understood by studying the biological networks underpinning the etiology of the disease. Methods In our study, we aimed to highlight the hub genes involved in gene-gene interaction network to understand their interaction and how they affect the various biological processes and signaling pathways involved in Osteosarcoma. Gene interaction network provides a comprehensive overview of functional gene analysis by providing insight into how genes cooperatively interact to elicit a response. Because gene interaction networks serve as a nexus to many biological problems, their employment of it to identify the hub genes that can serve as potential biomarkers remain widely unexplored. A dynamic framework provides a clear understanding of biological complexity and a pathway from the gene level to interaction networks. Results Our study revealed various hub genes viz. TP53, CCND1, CDK4, STAT3, and VEGFA by analyzing various topological parameters of the network, such as highest number of interactions, average shortest path length, high cluster density, etc. Their involvement in key signaling pathways, such as the FOXM1 transcription factor network, FAK-mediated signaling events, and the ATM pathway, makes them significant candidates for studying the disease. The study also highlighted significant enrichment in GO terms (Biological Processes, Molecular Function, and Cellular Processes), such as cell cycle signal transduction, cell communication, kinase binding, transcription factor activity, nucleoplasm, PML body, nuclear body, etc. Conclusion To develop better therapeutics, a specific approach toward the disease targeting the hub genes involved in various signaling pathways must have opted to unravel the complexity of the disease. Our study has highlighted the candidate hub genes viz. TP53, CCND1 CDK4, STAT3, VEGFA. Their involvement in the major signaling pathways of Osteosarcoma makes them potential candidates to be targeted for drug development. The highly enriched signaling pathways include FOXM1 transcription pathway, ATM signal-ling pathway, FAK mediated signaling events, Arf6 signaling events, mTOR signaling pathway, and Integrin family cell surface interactions. Targeting the hub genes and their associated functional partners which we have reported in our studies may be efficacious in developing novel therapeutic targets.
Collapse
Affiliation(s)
- Hrituraj Dey
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - S. Udhaya Kumar
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Alsamman M. Alsamman
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
132
|
Hill C, Dellar ER, Baena‐Lopez LA. Caspases help to spread the message via extracellular vesicles. FEBS J 2023; 290:1954-1972. [PMID: 35246932 PMCID: PMC10952732 DOI: 10.1111/febs.16418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
Cell-cell communication is an essential aspect of multicellular life, key for coordinating cell proliferation, growth, and death in response to environmental changes. Whilst caspases are well-known for facilitating apoptotic and pyroptotic cell death, several recent investigations are uncovering new roles for these enzymes in biological scenarios requiring long-range intercellular signalling mediated by extracellular vesicles (EVs). EVs are small membrane-bound nanoparticles released from cells that may carry and deliver cargo between distant cells, thus helping to coordinate their behaviour. Intriguingly, there is emerging evidence indicating a key contribution of caspases in the biogenesis of EVs, the selection of their cargo content, and EV uptake/function in recipient cells. Here, we discuss the latest findings supporting the interplay between caspases and EVs, and the biological relevance of this molecular convergence for cellular signalling, principally in non-apoptotic scenarios.
Collapse
Affiliation(s)
- Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | - Elizabeth R. Dellar
- Sir William Dunn School of PathologyUniversity of OxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
| | | |
Collapse
|
133
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
134
|
Huang X, Wang H, Wang C, Cao Z. The Applications and Potentials of Extracellular Vesicles from Different Cell Sources in Periodontal Regeneration. Int J Mol Sci 2023; 24:ijms24065790. [PMID: 36982864 PMCID: PMC10058679 DOI: 10.3390/ijms24065790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide that can cause damage to periodontal supporting tissues including gingiva, bone, cementum and periodontal ligament (PDL). The principle for the treatment of periodontitis is to control the inflammatory process. Achieving structural and functional regeneration of periodontal tissues is also essential and remains a major challenge. Though many technologies, products, and ingredients were applied in periodontal regeneration, most of the strategies have limited outcomes. Extracellular vesicles (EVs) are membranous particles with a lipid structure secreted by cells, containing a large number of biomolecules for the communication between cells. Numerous studies have demonstrated the beneficial effects of stem cell-derived EVs (SCEVs) and immune cell-derived EVs (ICEVs) on periodontal regeneration, which may be an alternative strategy for cell-based periodontal regeneration. The production of EVs is highly conserved among humans, bacteria and plants. In addition to eukaryocyte-derived EVs (CEVs), a growing body of literature suggests that bacterial/plant-derived EVs (BEVs/PEVs) also play an important role in periodontal homeostasis and regeneration. The purpose of this review is to introduce and summarize the potential therapeutic values of BEVs, CEVs and PEVs in periodontal regeneration, and discuss the current challenges and prospects for EV-based periodontal regeneration.
Collapse
Affiliation(s)
- Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
135
|
Spiers HVM, Stadler LKJ, Smith H, Kosmoliaptsis V. Extracellular Vesicles as Drug Delivery Systems in Organ Transplantation: The Next Frontier. Pharmaceutics 2023; 15:891. [PMID: 36986753 PMCID: PMC10052210 DOI: 10.3390/pharmaceutics15030891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Extracellular vesicles are lipid bilayer-delimited nanoparticles excreted into the extracellular space by all cells. They carry a cargo rich in proteins, lipids and DNA, as well as a full complement of RNA species, which they deliver to recipient cells to induce downstream signalling, and they play a key role in many physiological and pathological processes. There is evidence that native and hybrid EVs may be used as effective drug delivery systems, with their intrinsic ability to protect and deliver a functional cargo by utilising endogenous cellular mechanisms making them attractive as therapeutics. Organ transplantation is the gold standard for treatment for suitable patients with end-stage organ failure. However, significant challenges still remain in organ transplantation; prevention of graft rejection requires heavy immunosuppression and the lack of donor organs results in a failure to meet demand, as manifested by growing waiting lists. Pre-clinical studies have demonstrated the ability of EVs to prevent rejection in transplantation and mitigate ischemia reperfusion injury in several disease models. The findings of this work have made clinical translation of EVs possible, with several clinical trials actively recruiting patients. However, there is much to be uncovered, and it is essential to understand the mechanisms behind the therapeutic benefits of EVs. Machine perfusion of isolated organs provides an unparalleled platform for the investigation of EV biology and the testing of the pharmacokinetic and pharmacodynamic properties of EVs. This review classifies EVs and their biogenesis routes, and discusses the isolation and characterisation methods adopted by the international EV research community, before delving into what is known about EVs as drug delivery systems and why organ transplantation represents an ideal platform for their development as drug delivery systems.
Collapse
Affiliation(s)
- Harry V M Spiers
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lukas K J Stadler
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Hugo Smith
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
136
|
Liu ZY, Meng NH, Cao PP, Peng FP, Luo JY, Wang H, Jiang FJ, Lu J, Fu R. Detection of myeloma cell-derived microvesicles: a tool to monitor multiple myeloma load. Exp Hematol Oncol 2023; 12:26. [PMID: 36879302 PMCID: PMC9987071 DOI: 10.1186/s40164-023-00392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The persistence of tumor load in multiple myeloma (MM) lead to relapse in patients achieving complete remission (CR). Appropriate and effective methods of myeloma tumor load monitoring are important for guiding clinical management. This study aimed to clarify the value of microvesicles in monitoring MM tumor load. Microvesicles in bone marrow and peripheral blood were isolated by differential ultracentrifugation and detected by flow cytometry. Western blotting was applied to assess myosin light chain phosphorylation levels. Flow cytometry to detect Ps+CD41a-, Ps+CD41a-CD138+, Ps+CD41a-BCMA+ microvesicles from bone marrow can be used to predict myeloma burden, furthermore, Ps+CD41a- microvesicles may as a potential index to MRD test. Mechanistically, the releasing of microvesicles from MM cell was regulated by Pim-2 Kinase via Phosphorylation of MLC-2 protein.
Collapse
Affiliation(s)
- Zhao-Yun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, People's Republic of China
| | - Nan-Hao Meng
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, People's Republic of China
| | - Pan-Pan Cao
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, People's Republic of China
| | - Feng-Ping Peng
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, People's Republic of China
| | - Jing-Yi Luo
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, People's Republic of China
| | - Feng-Juan Jiang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, People's Republic of China
| | - Jin Lu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, 100044, People's Republic of China.,Innovative Center of Hematology, Soochow University, Suzhou, 215031, People's Republic of China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
137
|
Jainarayanan AK, Capera J, Céspedes PF, Conceição M, Elanchezhian M, Thomas T, Bonner S, Valvo S, Kurz E, Mahla RS, Berridge G, Hester S, Fischer R, Dustin LB, Wood MJA, Dustin ML. Comparison of different methods for isolating CD8 + T lymphocyte-derived extracellular vesicles and supramolecular attack particles. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e74. [PMID: 38938417 PMCID: PMC11080737 DOI: 10.1002/jex2.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/29/2024]
Abstract
CD8+ T lymphocytes play vital roles in killing infected or deranged host cells, recruiting innate immune cells, and regulating other aspects of immune responses. Like any other cell, CD8+ T cells also produce extracellular particles. These include extracellular vesicles (EVs) and non-vesicular extracellular particles (NVEPs). T cell-derived EVs are proposed to mediate cell-to-cell signalling, especially in the context of inflammatory responses, autoimmunity, and infectious diseases. CD8+ T cells also produce supramolecular attack particles (SMAPs), which are in the same size range as EVs and mediate a component of T cell mediated killing. The isolation technique selected will have a profound effect on yield, purity, biochemical properties and function of T cell-derived particles; making it important to directly compare different approaches. In this study, we compared commonly used techniques (membrane spin filtration, ultracentrifugation, or size exclusion liquid chromatography) to isolate particles from activated human CD8+ T cells and validated our results by single-particle methods, including nanoparticle tracking analysis, flow cytometry, electron microscopy and super-resolution microscopy of the purified sample as well as bulk proteomics and lipidomics analyses to evaluate the quality and nature of enriched T cell-derived particles. Our results show that there is a trade-off between the yield and the quality of T cell-derived particles. Furthermore, the protein and lipid composition of the particles is dramatically impacted by the isolation technique applied. We conclude that from the techniques evaluated, size exclusion liquid chromatography offers the highest quality of T cell derived EVs and SMAPs with acceptable yields for compositional and functional studies.
Collapse
Affiliation(s)
- Ashwin K. Jainarayanan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal SciencesUniversity of OxfordOxfordUK
- Interdisciplinary Bioscience Doctoral Training Program and Exeter CollegeUniversity of OxfordOxfordUK
| | - Jesusa Capera
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Pablo F. Céspedes
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | | | - Mirudula Elanchezhian
- Department of Biological SciencesIndian Institute of Science Education and ResearchMohaliIndia
| | - Tom Thomas
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal SciencesUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Scott Bonner
- Department of PaediatricsUniversity of OxfordOxfordUK
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Elke Kurz
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Ranjeet Singh Mahla
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Georgina Berridge
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Svenja Hester
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Lynn B. Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Matthew J. A. Wood
- Department of PaediatricsUniversity of OxfordOxfordUK
- MDUK Oxford Neuromuscular CentreUniversity of OxfordOxfordUK
- Oxford‐Harrington Rare Disease CentreUniversity of OxfordOxfordUK
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
138
|
Jiang Y, Lyu Z, Ralahy B, Liu J, Roussel T, Ding L, Tang J, Kosta A, Giorgio S, Tomasini R, Liang XJ, Dusetti N, Iovanna J, Peng L. Dendrimer nanosystems for adaptive tumor-assisted drug delivery via extracellular vesicle hijacking. Proc Natl Acad Sci U S A 2023; 120:e2215308120. [PMID: 36745793 PMCID: PMC9963653 DOI: 10.1073/pnas.2215308120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 02/08/2023] Open
Abstract
Drug delivery systems (DDSs) that can overcome tumor heterogeneity and achieve deep tumor penetration are challenging to develop yet in high demand for cancer treatment. We report here a DDS based on self-assembling dendrimer nanomicelles for effective and deep tumor penetration via in situ tumor-secreted extracellular vesicles (EVs), an endogenous transport system that evolves with tumor microenvironment. Upon arrival at a tumor, these dendrimer nanomicelles had their payload repackaged by the cells into EVs, which were further transported and internalized by other cells for delivery "in relay." Using pancreatic and colorectal cancer-derived 2D, 3D, and xenograft models, we demonstrated that the in situ-generated EVs mediated intercellular delivery, propagating cargo from cell to cell and deep within the tumor. Our study provides a new perspective on exploiting the intrinsic features of tumors alongside dendrimer supramolecular chemistry to develop smart and effective DDSs to overcome tumor heterogeneity and their evolutive nature thereby improving cancer therapy.
Collapse
Affiliation(s)
- Yifan Jiang
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, 13273Marseille, France
| | - Zhenbin Lyu
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Brigino Ralahy
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Juan Liu
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, 100190Beijing, China
- University of Chinese Academy of Sciences, 100049Beijing, China
| | - Tom Roussel
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Ling Ding
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Jingjie Tang
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Artemis Kosta
- Aix Marseille Université, CNRS, Mediterranean Institute of Microbiology,FR3479, 13009Marseille, France
| | - Suzanne Giorgio
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| | - Richard Tomasini
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, 13273Marseille, France
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, 100190Beijing, China
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, 13273Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, 13273Marseille, France
| | - Ling Peng
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288France
| |
Collapse
|
139
|
Sokolov D, Gorshkova A, Markova K, Milyutina Y, Pyatygina K, Zementova M, Korenevsky A, Mikhailova V, Selkov S. Natural Killer Cell Derived Microvesicles Affect the Function of Trophoblast Cells. MEMBRANES 2023; 13:213. [PMID: 36837716 PMCID: PMC9963951 DOI: 10.3390/membranes13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
Collapse
|
140
|
Heterogeneity of Extracellular Vesicles and Particles: Molecular Voxels in the Blood Borne "Hologram" of Organ Function, Disfunction and Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:5. [PMID: 36729313 DOI: 10.1007/s00005-023-00671-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/17/2022] [Indexed: 02/03/2023]
Abstract
Extracellular vesicles (EVs) and particles (EPs) serve as unique carriers of complex molecular information with increasingly recognized roles in health and disease. Individual EVs/EPs collectively contribute to the molecular fingerprint of their producing cell, reflecting its identity, state, function and phenotype. This property is of particular interest in cancer where enormous heterogeneity of cancer cells is compounded by the presence of altered stromal, vascular and immune cell populations, which is further complicated by systemic responses elicited by the disease in individual patients. These diverse and interacting cellular compartments are dynamically represented by myriads of EVs/EPs released into the circulating biofluids (blood) during cancer progression and treatment. Current approaches of liquid biopsy seek to follow specific elements of the EV/EP cargo that may have diagnostic utility (as biomarkers), such as cancer cell-derived mutant oncoproteins or nucleic acids. However, with emerging technologies enabling high-throughput EV/EP analysis at a single particle level, a more holistic approach may be on the horizon. Indeed, each EV/EP carries multidimensional information (molecular "voxel") that could be integrated across thousands of particles into a larger and unbiased landscape (EV/EP "hologram") reflecting the true cellular complexity of the disease, along with cellular interactions, systemic responses and effects of treatment. Thus, the longitudinal molecular mapping of EV/EP populations may add a new dimension to crucial aspects of cancer biology, personalized diagnostics, and therapy.
Collapse
|
141
|
Adamova P, Lotto RR, Powell AK, Dykes IM. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery. J Mol Med (Berl) 2023; 101:65-81. [PMID: 36538060 PMCID: PMC9977902 DOI: 10.1007/s00109-022-02278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 03/02/2023]
Abstract
Prenatal diagnosis of congenital disease improves clinical outcomes; however, as many as 50% of congenital heart disease cases are missed by current ultrasound screening methods. This indicates a need for improved screening technology. Extracellular vesicles (EVs) have attracted enormous interest in recent years for their potential in diagnostics. EVs mediate endocrine signalling in health and disease and are known to regulate aspects of embryonic development. Here, we critically evaluate recent evidence suggesting that EVs released from the foetus are able to cross the placenta and enter the maternal circulation. Furthermore, EVs from the mother appear to be transported in the reverse direction, whilst the placenta itself acts as a source of EVs. Experimental work utilising rodent models employing either transgenically encoded reporters or application of fluorescent tracking dyes provide convincing evidence of foetal-maternal crosstalk. This is supported by clinical data demonstrating expression of placental-origin EVs in maternal blood, as well as limited evidence for the presence of foetal-origin EVs. Together, this work raises the possibility that foetal EVs present in maternal blood could be used for the diagnosis of congenital disease. We discuss the challenges faced by researchers in translating these basic science findings into a clinical non-invasive prenatal test.
Collapse
Affiliation(s)
- Petra Adamova
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Robyn R Lotto
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.,School of Nursing and Allied Health, Liverpool John Moores University, Tithebarn St, Liverpool, L2 2ER, UK
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Iain M Dykes
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK. .,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
142
|
Karnas E, Dudek P, Zuba-Surma EK. Stem cell- derived extracellular vesicles as new tools in regenerative medicine - Immunomodulatory role and future perspectives. Front Immunol 2023; 14:1120175. [PMID: 36761725 PMCID: PMC9902918 DOI: 10.3389/fimmu.2023.1120175] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
In the last few decades, the practical use of stem cells (SCs) in the clinic has attracted significant attention in the regenerative medicine due to the ability of these cells to proliferate and differentiate into other cell types. However, recent findings have demonstrated that the therapeutic capacity of SCs may also be mediated by their ability to secrete biologically active factors, including extracellular vesicles (EVs). Such submicron circular membrane-enveloped vesicles may be released from the cell surface and harbour bioactive cargo in the form of proteins, lipids, mRNA, miRNA, and other regulatory factors. Notably, growing evidence has indicated that EVs may transfer their bioactive content into recipient cells and greatly modulate their functional fate. Thus, they have been recently envisioned as a new class of paracrine factors in cell-to-cell communication. Importantly, EVs may modulate the activity of immune system, playing an important role in the regulation of inflammation, exhibiting broad spectrum of the immunomodulatory activity that promotes the transition from pro-inflammatory to pro-regenerative environment in the site of tissue injury. Consequently, growing interest is placed on attempts to utilize EVs in clinical applications of inflammatory-related dysfunctions as potential next-generation therapeutic factors, alternative to cell-based approaches. In this review we will discuss the current knowledge on the biological properties of SC-derived EVs, with special focus on their role in the regulation of inflammatory response. We will also address recent findings on the immunomodulatory and pro-regenerative activity of EVs in several disease models, including in vitro and in vivo preclinical, as well as clinical studies. Finally, we will highlight the current perspectives and future challenges of emerging EV-based therapeutic strategies of inflammation-related diseases treatment.
Collapse
|
143
|
Clancy JW, D'Souza-Schorey C. Tumor-Derived Extracellular Vesicles: Multifunctional Entities in the Tumor Microenvironment. ANNUAL REVIEW OF PATHOLOGY 2023; 18:205-229. [PMID: 36202098 PMCID: PMC10410237 DOI: 10.1146/annurev-pathmechdis-031521-022116] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumor cells release extracellular vesicles (EVs) that can function as mediators of intercellular communication in the tumor microenvironment. EVs contain a host of bioactive cargo, including membrane, cytosolic, and nuclear proteins, in addition to noncoding RNAs, other RNA types, and double-stranded DNA fragments. These shed vesicles may deposit paracrine information and can also be taken up by stromal cells, causing the recipient cells to undergo phenotypic changes that profoundly impact diverse facets of cancer progression. For example, this unique form of cellular cross talk helps condition the premetastatic niche, facilitates evasion of the immune response, and promotes invasive and metastatic activity. These findings, coupled with those demonstrating that the number and content of EVs produced by tumors can vary depending on their tumor of origin, disease stage, or response to therapy, have raised the exciting possibility that EVs can be used for risk stratification, diagnostic, and even prognostic purposes. We summarize recent developments and the current knowledge of EV cargoes, their impact on disease progression, and implementation of EV-based liquid biopsies as tumor biomarkers.
Collapse
Affiliation(s)
- James W Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; ,
| | | |
Collapse
|
144
|
Biagiotti S, Abbas F, Montanari M, Barattini C, Rossi L, Magnani M, Papa S, Canonico B. Extracellular Vesicles as New Players in Drug Delivery: A Focus on Red Blood Cells-Derived EVs. Pharmaceutics 2023; 15:365. [PMID: 36839687 PMCID: PMC9961903 DOI: 10.3390/pharmaceutics15020365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The article is divided into several sections, focusing on extracellular vesicles' (EVs) nature, features, commonly employed methodologies and strategies for their isolation/preparation, and their characterization/visualization. This work aims to give an overview of advances in EVs' extensive nanomedical-drug delivery applications. Furthermore, considerations for EVs translation to clinical application are summarized here, before focusing the review on a special kind of extracellular vesicles, the ones derived from red blood cells (RBCEVs). Generally, employing EVs as drug carriers means managing entities with advantageous properties over synthetic vehicles or nanoparticles. Besides the fact that certain EVs also reveal intrinsic therapeutic characteristics, in regenerative medicine, EVs nanosize, lipidomic and proteomic profiles enable them to pass biologic barriers and display cell/tissue tropisms; indeed, EVs engineering can further optimize their organ targeting. In the second part of the review, we focus our attention on RBCEVs. First, we describe the biogenesis and composition of those naturally produced by red blood cells (RBCs) under physiological and pathological conditions. Afterwards, we discuss the current procedures to isolate and/or produce RBCEVs in the lab and to load a specific cargo for therapeutic exploitation. Finally, we disclose the most recent applications of RBCEVs at the in vitro and preclinical research level and their potential industrial exploitation. In conclusion, RBCEVs can be, in the near future, a very promising and versatile platform for several clinical applications and pharmaceutical exploitations.
Collapse
Affiliation(s)
- Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Faiza Abbas
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
- AcZon s.r.l., 40050 Monte San Pietro, BO, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| |
Collapse
|
145
|
Stejskal P, Goodarzi H, Srovnal J, Hajdúch M, van ’t Veer LJ, Magbanua MJM. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Mol Cancer 2023; 22:15. [PMID: 36681803 PMCID: PMC9862574 DOI: 10.1186/s12943-022-01710-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite advances in early detection and therapies, cancer is still one of the most common causes of death worldwide. Since each tumor is unique, there is a need to implement personalized care and develop robust tools for monitoring treatment response to assess drug efficacy and prevent disease relapse. MAIN BODY Recent developments in liquid biopsies have enabled real-time noninvasive monitoring of tumor burden through the detection of molecules shed by tumors in the blood. These molecules include circulating tumor nucleic acids (ctNAs), comprising cell-free DNA or RNA molecules passively and/or actively released from tumor cells. Often highlighted for their diagnostic, predictive, and prognostic potential, these biomarkers possess valuable information about tumor characteristics and evolution. While circulating tumor DNA (ctDNA) has been in the spotlight for the last decade, less is known about circulating tumor RNA (ctRNA). There are unanswered questions about why some tumors shed high amounts of ctNAs while others have undetectable levels. Also, there are gaps in our understanding of associations between tumor evolution and ctNA characteristics and shedding kinetics. In this review, we summarize current knowledge about ctNA biology and release mechanisms and put this information into the context of tumor evolution and clinical utility. CONCLUSIONS A deeper understanding of the biology of ctDNA and ctRNA may inform the use of liquid biopsies in personalized medicine to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Laura J. van ’t Veer
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| | - Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| |
Collapse
|
146
|
Benito-Martín A, Jasiulionis MG, García-Silva S. Extracellular vesicles and melanoma: New perspectives on tumor microenvironment and metastasis. Front Cell Dev Biol 2023; 10:1061982. [PMID: 36704194 PMCID: PMC9871288 DOI: 10.3389/fcell.2022.1061982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Secreted extracellular vesicles (EVs) are lipid bilayer particles without functional nucleus naturally released from cells which constitute an intercellular communication system. There is a broad spectrum of vesicles shed by cells based on their physical properties such as size (small EVs and large EVs), biogenesis, cargo and functions, which provide an increasingly heterogenous landscape. In addition, they are involved in multiple physiological and pathological processes. In cancer, EV release is opted by tumor cells as a beneficial process for tumor progression. Cutaneous melanoma is a cancer that originates from the melanocyte lineage and shows a favorable prognosis at early stages. However, when melanoma cells acquire invasive capacity, it constitutes the most aggressive and deadly skin cancer. In this context, extracellular vesicles have been shown their relevance in facilitating melanoma progression through the modulation of the microenvironment and metastatic spreading. In agreement with the melanosome secretory capacity of melanocytes, melanoma cells display an enhanced EV shedding activity that has contributed to the utility of melanoma models for unravelling EV cargo and functions within a cancer scenario. In this review, we provide an in-depth overview of the characteristics of melanoma-derived EVs and their role in melanoma progression highlighting key advances and remaining open questions in the field.
Collapse
Affiliation(s)
- Alberto Benito-Martín
- Facultad de Medicina, Unidad de Investigación Biomédica, Universidad Alfonso X El Sabio (UAX), Villanueva de la Cañada, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Miriam Galvonas Jasiulionis
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| |
Collapse
|
147
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
148
|
Louie HH, Mugisho OO, Chamley LW, Rupenthal ID. Extracellular Vesicles as Biomarkers and Therapeutics for Inflammatory Eye Diseases. Mol Pharm 2023; 20:23-40. [PMID: 36332193 DOI: 10.1021/acs.molpharmaceut.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracellular vesicles (EVs) are a group of cell-derived membrane vesicles of varying sizes that can be secreted by most cells. Depending on the type of cell they are derived from, EVs may contain a variety of cargo including proteins, lipids, miRNA, and DNA. Functionally, EVs play important roles in physiological and pathological processes through intercellular communication. While there has already been significant literature on the involvement of EVs in neurological and cardiovascular disease as well as cancer, recent evidence suggests that EVs may also play a role in mediating inflammatory eye diseases. This paper summarizes current advancements in ocular EV research as well as new ways by which EVs may be utilized as novel biomarkers of or therapeutics for inflammatory eye diseases.
Collapse
Affiliation(s)
- Henry H Louie
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lawrence W Chamley
- Hub for Extracellular Vesicle Investigations, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Department of Obstetrics & Gynaecology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
149
|
Wolf A, Tanguy E, Wang Q, Gasman S, Vitale N. Phospholipase D and cancer metastasis: A focus on exosomes. Adv Biol Regul 2023; 87:100924. [PMID: 36272918 DOI: 10.1016/j.jbior.2022.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 03/01/2023]
Abstract
In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.
Collapse
Affiliation(s)
- Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Qili Wang
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
150
|
Fonseca ÁYG, González-Giraldo Y, Santos JG, Aristizábal-Pachón AF. The hsa-miR-516a-5p and hsa-miR-516b-5p microRNAs reduce the migration and invasion on T98G glioblastoma cell line. Cancer Genet 2023; 270-271:12-21. [PMID: 36410106 DOI: 10.1016/j.cancergen.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/17/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
microRNAs (miRNAs) are involved in numerous functions and processes in the brain and other organs through the regulation of gene and protein expression. miRNA dysregulation is associated with the development of several diseases, including the brain and Central Nervous System cancer (CNS). The hsa-miR-516a-5p and hsa-miR-516b-5p are involved in proliferation, migration, and invasion in different tumor models, but their antitumor effect has not been evaluated in cancer of CNS. Therefore, we aimed to assess the effect of the miRNAs hsa-miR-516a-5p and miRNA hsa-miR-516b-5p on the Glioblastoma cell line (T98G). We used synthetic miRNA mimics to induce the overexpression of both miRNAs in the cell line, which was corroborated by RT-qPCR. Next, we evaluated the effect on proliferation, migration, and invasion using the CyQuant direct kit, ThinCert ™ inserts and invasion BioCoat ™ Matrigel® Invasion Chambers. We found upregulation of these miRNAs induced significant changes on the migration and invasion processes of T98G cells, but not affected the proliferation rate. These results suggest that both microRNAs could be playing an important role in the control of tumor progression towards metastasis. The bioinformatics analysis showed that target genes for these miRNAs are involved in different biological processes such as in cell adhesion molecule binding and cell junction disassembly, which are important for cancer progression. Further studies and experimental validation are needed to identify the genes regulated by microRNAs.
Collapse
Affiliation(s)
- Ángela Y García Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Jannet Gonzalez Santos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Andrés F Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia.
| |
Collapse
|