101
|
Chandrasekaran A, Upadhyaya A, Papoian GA. Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling. PLoS Comput Biol 2019; 15:e1007156. [PMID: 31287817 PMCID: PMC6615854 DOI: 10.1371/journal.pcbi.1007156] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Bundled actin structures play a key role in maintaining cellular shape, in aiding force transmission to and from extracellular substrates, and in affecting cellular motility. Recent studies have also brought to light new details on stress generation, force transmission and contractility of actin bundles. In this work, we are primarily interested in the question of what determines the stability of actin bundles and what network geometries do unstable bundles eventually transition to. To address this problem, we used the MEDYAN mechano-chemical force field, modeling several micron-long actin bundles in 3D, while accounting for a comprehensive set of chemical, mechanical and transport processes. We developed a hierarchical clustering algorithm for classification of the different long time scale morphologies in our study. Our main finding is that initially unipolar bundles are significantly more stable compared with an apolar initial configuration. Filaments within the latter bundles slide easily with respect to each other due to myosin activity, producing a loose network that can be subsequently severely distorted. At high myosin concentrations, a morphological transition to aster-like geometries was observed. We also investigated how actin treadmilling rates influence bundle dynamics, and found that enhanced treadmilling leads to network fragmentation and disintegration, while this process is opposed by myosin and crosslinking activities. Interestingly, treadmilling bundles with an initial apolar geometry eventually evolve to a whole gamut of network morphologies based on relative positions of filament ends, such as sarcomere-like organization. We found that apolar bundles show a remarkable sensitivity to environmental conditions, which may be important in enabling rapid cytoskeletal structural reorganization and adaptation in response to intracellular and extracellular cues.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Department of Physics, University of Maryland, College Park, United States of America
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
102
|
Krueger D, Quinkler T, Mortensen SA, Sachse C, De Renzis S. Cross-linker-mediated regulation of actin network organization controls tissue morphogenesis. J Cell Biol 2019; 218:2743-2761. [PMID: 31253650 PMCID: PMC6683744 DOI: 10.1083/jcb.201811127] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/29/2019] [Accepted: 06/04/2019] [Indexed: 11/22/2022] Open
Abstract
Spatio-temporal organization of actomyosin contraction during epithelial morphogenesis in Drosophila is regulated by the developmental modulation of actin cross-linking through induction of Bottleneck. Bottleneck protein restrains contractility by promoting actin bundling, functioning in a similar way to Filamin and in an opposite way to Fimbrin. Contraction of cortical actomyosin networks driven by myosin activation controls cell shape changes and tissue morphogenesis during animal development. In vitro studies suggest that contractility also depends on the geometrical organization of actin filaments. Here we analyze the function of actomyosin network topology in vivo using optogenetic stimulation of myosin-II in Drosophila embryos. We show that early during cellularization, hexagonally arrayed actomyosin fibers are resilient to myosin-II activation. Actomyosin fibers then acquire a ring-like conformation and become contractile and sensitive to myosin-II. This transition is controlled by Bottleneck, a Drosophila unique protein expressed for only a short time during early cellularization, which we show regulates actin bundling. In addition, it requires two opposing actin cross-linkers, Filamin and Fimbrin. Filamin acts synergistically with Bottleneck to facilitate hexagonal patterning, while Fimbrin controls remodeling of the hexagonal network into contractile rings. Thus, actin cross-linking regulates the spatio-temporal organization of actomyosin contraction in vivo, which is critical for tissue morphogenesis.
Collapse
Affiliation(s)
- Daniel Krueger
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for joint PhD degree between European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Theresa Quinkler
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simon Arnold Mortensen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Ernst-Ruska Center for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Jülich, Germany
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
103
|
Hu S, Grobe H, Guo Z, Wang YH, Doss BL, Pan M, Ladoux B, Bershadsky AD, Zaidel-Bar R. Reciprocal regulation of actomyosin organization and contractility in nonmuscle cells by tropomyosins and alpha-actinins. Mol Biol Cell 2019; 30:2025-2036. [PMID: 31216217 PMCID: PMC6727768 DOI: 10.1091/mbc.e19-02-0082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Contractile arrays of actin and myosin II filaments drive many essential processes in nonmuscle cells, including migration and adhesion. Sequential organization of actin and myosin along one dimension is followed by expansion into a two-dimensional network of parallel actomyosin fibers, in which myosin filaments are aligned to form stacks. The process of stack formation has been studied in detail. However, factors that oppose myosin stack formation have not yet been described. Here, we show that tropomyosins act as negative regulators of myosin stack formation. Knockdown of any or all tropomyosin isoforms in rat embryonic fibroblasts resulted in longer and more numerous myosin stacks and a highly ordered actomyosin organization. The molecular basis for this, we found, is the competition between tropomyosin and alpha-actinin for binding actin. Surprisingly, excessive order in the actomyosin network resulted in smaller focal adhesions, lower tension within the network, and smaller traction forces. Conversely, disordered actomyosin bundles induced by alpha-actinin knockdown led to higher than normal tension and traction forces. Thus, tropomyosin acts as a check on alpha-actinin to achieve intermediate levels of myosin stacks matching the force requirements of the cell.
Collapse
Affiliation(s)
- Shiqiong Hu
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Hanna Grobe
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Yafo 6997801, Israel
| | - Zhenhuan Guo
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Yu-Hsiu Wang
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Bryant L Doss
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Meng Pan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Benoit Ladoux
- Institut Jacques Monod, Université de Paris and CNRS, 75205 Paris CEDEX 13, France
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronen Zaidel-Bar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Yafo 6997801, Israel
| |
Collapse
|
104
|
Mangione MC, Gould KL. Molecular form and function of the cytokinetic ring. J Cell Sci 2019; 132:132/12/jcs226928. [PMID: 31209062 DOI: 10.1242/jcs.226928] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal cells, amoebas and yeast divide using a force-generating, actin- and myosin-based contractile ring or 'cytokinetic ring' (CR). Despite intensive research, questions remain about the spatial organization of CR components, the mechanism by which the CR generates force, and how other cellular processes are coordinated with the CR for successful membrane ingression and ultimate cell separation. This Review highlights new findings about the spatial relationship of the CR to the plasma membrane and the arrangement of molecules within the CR from studies using advanced microscopy techniques, as well as mechanistic information obtained from in vitro approaches. We also consider advances in understanding coordinated cellular processes that impact the architecture and function of the CR.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
105
|
Bolger-Munro M, Choi K, Scurll JM, Abraham L, Chappell RS, Sheen D, Dang-Lawson M, Wu X, Priatel JJ, Coombs D, Hammer JA, Gold MR. Arp2/3 complex-driven spatial patterning of the BCR enhances immune synapse formation, BCR signaling and B cell activation. eLife 2019; 8:e44574. [PMID: 31157616 PMCID: PMC6591008 DOI: 10.7554/elife.44574] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
When B cells encounter antigens on the surface of an antigen-presenting cell (APC), B cell receptors (BCRs) are gathered into microclusters that recruit signaling enzymes. These microclusters then move centripetally and coalesce into the central supramolecular activation cluster of an immune synapse. The mechanisms controlling BCR organization during immune synapse formation, and how this impacts BCR signaling, are not fully understood. We show that this coalescence of BCR microclusters depends on the actin-related protein 2/3 (Arp2/3) complex, which nucleates branched actin networks. Moreover, in murine B cells, this dynamic spatial reorganization of BCR microclusters amplifies proximal BCR signaling reactions and enhances the ability of membrane-associated antigens to induce transcriptional responses and proliferation. Our finding that Arp2/3 complex activity is important for B cell responses to spatially restricted membrane-bound antigens, but not for soluble antigens, highlights a critical role for Arp2/3 complex-dependent actin remodeling in B cell responses to APC-bound antigens.
Collapse
Affiliation(s)
- Madison Bolger-Munro
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| | - Kate Choi
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| | - Joshua M Scurll
- Department of Mathematics, Institute of Applied MathematicsUniversity of British ColumbiaVancouverCanada
| | - Libin Abraham
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
- Department of Mathematics, Institute of Applied MathematicsUniversity of British ColumbiaVancouverCanada
| | - Rhys S Chappell
- Department of Mathematics, Institute of Applied MathematicsUniversity of British ColumbiaVancouverCanada
| | - Duke Sheen
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| | - May Dang-Lawson
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| | - Xufeng Wu
- Cell Biology and Physiology CenterNational Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - John J Priatel
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
- BC Children’s Hospital Research InstituteVancouverCanada
| | - Daniel Coombs
- Department of Mathematics, Institute of Applied MathematicsUniversity of British ColumbiaVancouverCanada
| | - John A Hammer
- Cell Biology and Physiology CenterNational Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Michael R Gold
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, I3 Research GroupUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
106
|
Miller CJ, LaFosse PK, Asokan SB, Haugh JM, Bear JE, Elston TC. Emergent spatiotemporal dynamics of the actomyosin network in the presence of chemical gradients. Integr Biol (Camb) 2019; 11:280-292. [PMID: 31365063 PMCID: PMC6686739 DOI: 10.1093/intbio/zyz023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 01/11/2023]
Abstract
We used particle-based computer simulations to study the emergent properties of the actomyosin cytoskeleton. Our model accounted for biophysical interactions between filamentous actin and non-muscle myosin II and was motivated by recent experiments demonstrating that spatial regulation of myosin activity is required for fibroblasts responding to spatial gradients of platelet derived growth factor (PDGF) to undergo chemotaxis. Our simulations revealed the spontaneous formation of actin asters, consistent with the punctate actin structures observed in chemotacting fibroblasts. We performed a systematic analysis of model parameters to identify biochemical steps in myosin activity that significantly affect aster formation and performed simulations in which model parameter values vary spatially to investigate how the model responds to chemical gradients. Interestingly, spatial variations in motor stiffness generated time-dependent behavior of the actomyosin network, in which actin asters continued to spontaneously form and dissociate in different regions of the gradient. Our results should serve as a guide for future experimental investigations.
Collapse
Affiliation(s)
- Callie J Miller
- Department of Engineering, James Madison University, Harrisonburg, VA, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul K LaFosse
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sreeja B Asokan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
107
|
Network Contractility During Cytokinesis-from Molecular to Global Views. Biomolecules 2019; 9:biom9050194. [PMID: 31109067 PMCID: PMC6572417 DOI: 10.3390/biom9050194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis is the last stage of cell division, which partitions the mother cell into two daughter cells. It requires the assembly and constriction of a contractile ring that consists of a filamentous contractile network of actin and myosin. Network contractility depends on network architecture, level of connectivity and myosin motor activity, but how exactly is the contractile ring network organized or interconnected and how much it depends on motor activity remains unclear. Moreover, the contractile ring is not an isolated entity; rather, it is integrated into the surrounding cortex. Therefore, the mechanical properties of the cell cortex and cortical behaviors are expected to impact contractile ring functioning. Due to the complexity of the process, experimental approaches have been coupled to theoretical modeling in order to advance its global understanding. While earlier coarse-grained descriptions attempted to provide an integrated view of the process, recent models have mostly focused on understanding the behavior of an isolated contractile ring. Here we provide an overview of the organization and dynamics of the actomyosin network during cytokinesis and discuss existing theoretical models in light of cortical behaviors and experimental evidence from several systems. Our view on what is missing in current models and should be tested in the future is provided.
Collapse
|
108
|
Malik-Garbi M, Ierushalmi N, Jansen S, Abu-Shah E, Goode BL, Mogilner A, Keren K. Scaling behaviour in steady-state contracting actomyosin networks. NATURE PHYSICS 2019; 15:509-516. [PMID: 31754369 PMCID: PMC6871652 DOI: 10.1038/s41567-018-0413-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/20/2018] [Indexed: 05/25/2023]
Abstract
Contractile actomyosin network flows are crucial for many cellular processes including cell division and motility, morphogenesis and transport. How local remodeling of actin architecture tunes stress production and dissipation and regulates large-scale network flows remains poorly understood. Here, we generate contracting actomyosin networks with rapid turnover in vitro, by encapsulating cytoplasmic Xenopus egg extracts into cell-sized 'water-in-oil' droplets. Within minutes, the networks reach a dynamic steady-state with continuous inward flow. The networks exhibit homogeneous, density-independent contraction for a wide range of physiological conditions, implying that the myosin-generated stress driving contraction and the effective network viscosity have similar density dependence. We further find that the contraction rate is roughly proportional to the network turnover rate, but this relation breaks down in the presence of excessive crosslinking or branching. Our findings suggest that cells use diverse biochemical mechanisms to generate robust, yet tunable, actin flows by regulating two parameters: turnover rate and network geometry.
Collapse
Affiliation(s)
- Maya Malik-Garbi
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Niv Ierushalmi
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Silvia Jansen
- Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO, USA
| | - Enas Abu-Shah
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, NY 10012, USA
| | - Kinneret Keren
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratories and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
109
|
Matsuda A, Li J, Brumm P, Adachi T, Inoue Y, Kim T. Mobility of Molecular Motors Regulates Contractile Behaviors of Actin Networks. Biophys J 2019; 116:2161-2171. [PMID: 31103238 DOI: 10.1016/j.bpj.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/04/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Cells generate mechanical forces primarily from interactions between F-actin, cross-linking proteins, myosin motors, and other actin-binding proteins in the cytoskeleton. To understand how molecular interactions between the cytoskeletal elements generate forces, a number of in vitro experiments have been performed but are limited in their ability to accurately reproduce the diversity of motor mobility. In myosin motility assays, myosin heads are fixed on a surface and glide F-actin. By contrast, in reconstituted gels, the motion of both myosin and F-actin is unrestricted. Because only these two extreme conditions have been used, the importance of mobility of motors for network behaviors has remained unclear. In this study, to illuminate the impacts of motor mobility on the contractile behaviors of the actin cytoskeleton, we employed an agent-based computational model based on Brownian dynamics. We find that if motors can bind to only one F-actin like myosin I, networks are most contractile at intermediate mobility. In this case, less motor mobility helps motors stably pull F-actins to generate tensile forces, whereas higher motor mobility allows F-actins to aggregate into larger clustering structures. The optimal intermediate motor mobility depends on the stall force and affinity of motors that are regulated by mechanochemical rates. In addition, we find that the role of motor mobility can vary drastically if motors can bind to a pair of F-actins. A network can exhibit large contraction with high motor mobility because motors bound to antiparallel pairs of F-actins can exert similar forces regardless of their mobility. Results from this study imply that the mobility of molecular motors may critically regulate contractile behaviors of actin networks in cells.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Peter Brumm
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Taiji Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan
| | - Yasuhiro Inoue
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan.
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
110
|
Hu J, Cheng S, Wang H, Li X, Liu S, Wu M, Liu Y, Wang X. Distinct roles of two myosins in C. elegans spermatid differentiation. PLoS Biol 2019; 17:e3000211. [PMID: 30990821 PMCID: PMC6485759 DOI: 10.1371/journal.pbio.3000211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/26/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022] Open
Abstract
During spermatogenesis, interconnected haploid spermatids segregate undesired cellular contents into residual bodies (RBs) before detaching from RBs. It is unclear how this differentiation process is controlled to produce individual spermatids or motile spermatozoa. Here, we developed a live imaging system to visualize and investigate this process in C. elegans. We found that non-muscle myosin 2 (NMY-2)/myosin II drives incomplete cytokinesis to generate connected haploid spermatids, which are then polarized to segregate undesired cellular contents into RBs under the control of myosin II and myosin VI. NMY-2/myosin II extends from the pseudo-cleavage furrow formed between two haploid spermatids to the spermatid poles, thus promoting RB expansion. In the meantime, defective spermatogenesis 15 (SPE-15)/myosin VI migrates from spermatids towards the expanding RB to promote spermatid budding. Loss of myosin II or myosin VI causes distinct cytoplasm segregation defects, while loss of both myosins completely blocks RB formation. We found that the final separation of spermatids from RBs is achieved through myosin VI-mediated cytokinesis, while myosin II is dispensable at this step. SPE-15/myosin VI and F-actin form a detergent-resistant actomyosin VI ring that undergoes continuous contraction to promote membrane constriction between spermatid and RB. We further identified that RGS-GAIP-interacting protein C terminus (GIPC)-1 and GIPC-2 cooperate with myosin VI to regulate contractile ring formation and spermatid release. Our study reveals distinct roles of myosin II and myosin VI in spermatid differentiation and uncovers a novel myosin VI-mediated cytokinesis process that controls spermatid release.
Collapse
Affiliation(s)
- Junyan Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiya Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Sun Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yubing Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
111
|
Letort G, Bennabi I, Dmitrieff S, Nedelec F, Verlhac MH, Terret ME. A computational model of the early stages of acentriolar meiotic spindle assembly. Mol Biol Cell 2019; 30:863-875. [PMID: 30650011 PMCID: PMC6589792 DOI: 10.1091/mbc.e18-10-0644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 11/11/2022] Open
Abstract
The mitotic spindle is an ensemble of microtubules responsible for the repartition of the chromosomal content between the two daughter cells during division. In metazoans, spindle assembly is a gradual process involving dynamic microtubules and recruitment of numerous associated proteins and motors. During mitosis, centrosomes organize and nucleate the majority of spindle microtubules. In contrast, oocytes lack canonical centrosomes but are still able to form bipolar spindles, starting from an initial ball that self-organizes in several hours. Interfering with early steps of meiotic spindle assembly can lead to erroneous chromosome segregation. Although not fully elucidated, this process is known to rely on antagonistic activities of plus end- and minus end-directed motors. We developed a model of early meiotic spindle assembly in mouse oocytes, including key factors such as microtubule dynamics and chromosome movement. We explored how the balance between plus end- and minus end-directed motors, as well as the influence of microtubule nucleation, impacts spindle morphology. In a refined model, we added spatial regulation of microtubule stability and minus-end clustering. We could reproduce the features of early stages of spindle assembly from 12 different experimental perturbations and predict eight additional perturbations. With its ability to characterize and predict chromosome individualization, this model can help deepen our understanding of spindle assembly.
Collapse
Affiliation(s)
- Gaelle Letort
- CIRB, Collège de France, UMR7241/U1050, F-75005 Paris, France
| | - Isma Bennabi
- CIRB, Collège de France, UMR7241/U1050, F-75005 Paris, France
| | - Serge Dmitrieff
- Institut Jacques Monod, UMR7592 and Université Paris-Diderot, F-75205 Paris, France
| | - François Nedelec
- Centre de Recherche Interdisciplinaire, F-75004 Paris, France
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
112
|
Azote S, Müller-Nedebock KK. Density fields for branching, stiff networks in rigid confining regions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:23. [PMID: 30788631 DOI: 10.1140/epje/i2019-11784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
We develop a formalism to describe the equilibrium distributions for segments of confined branched networks consisting of stiff filaments. This is applicable to certain situations of cytoskeleton in cells, such as for example actin filaments with branching due to the Arp2/3 complex. We develop a grand ensemble formalism that enables the computation of segment density and polarisation profiles within the confines of the cell. This is expressed in terms of the solution to nonlinear integral equations for auxiliary functions. We find three specific classes of behaviour depending on filament length, degree of branching and the ratio of persistence length to the dimensions of the geometry. Our method allows a numerical approach for semi-flexible filaments that are networked.
Collapse
Affiliation(s)
- Somiéalo Azote
- Institute of Theoretical Physics, Department of Physics, Stellenbosch University, Stellenbosch, South Africa.
| | - Kristian K Müller-Nedebock
- Institute of Theoretical Physics, Department of Physics, Stellenbosch University, Stellenbosch, South Africa
- National Institute for Theoretical Physics, Stellenbosch, South Africa
| |
Collapse
|
113
|
Cortes DB, Dawes A, Liu J, Nickaeen M, Strychalski W, Maddox AS. Unite to divide - how models and biological experimentation have come together to reveal mechanisms of cytokinesis. J Cell Sci 2018; 131:131/24/jcs203570. [PMID: 30563924 DOI: 10.1242/jcs.203570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokinesis is the fundamental and ancient cellular process by which one cell physically divides into two. Cytokinesis in animal and fungal cells is achieved by contraction of an actomyosin cytoskeletal ring assembled in the cell cortex, typically at the cell equator. Cytokinesis is essential for the development of fertilized eggs into multicellular organisms and for homeostatic replenishment of cells. Correct execution of cytokinesis is also necessary for genome stability and the evasion of diseases including cancer. Cytokinesis has fascinated scientists for well over a century, but its speed and dynamics make experiments challenging to perform and interpret. The presence of redundant mechanisms is also a challenge to understand cytokinesis, leaving many fundamental questions unresolved. For example, how does a disordered cytoskeletal network transform into a coherent ring? What are the long-distance effects of localized contractility? Here, we provide a general introduction to 'modeling for biologists', and review how agent-based modeling and continuum mechanics modeling have helped to address these questions.
Collapse
Affiliation(s)
- Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, 407 Fordham Hall, Chapel Hill, NC 27599, USA
| | - Adriana Dawes
- Departments of Mathematics and of Molecular Genetics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210, USA
| | - Jian Liu
- National Heart, Lung and Blood Institute, Biochemistry and Biophysics Center, 50 South Drive, NIH, Bethesda, MD 20892, USA
| | - Masoud Nickaeen
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Wanda Strychalski
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, 407 Fordham Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
114
|
|
115
|
Seara DS, Yadav V, Linsmeier I, Tabatabai AP, Oakes PW, Tabei SMA, Banerjee S, Murrell MP. Entropy production rate is maximized in non-contractile actomyosin. Nat Commun 2018; 9:4948. [PMID: 30470750 PMCID: PMC6251913 DOI: 10.1038/s41467-018-07413-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022] Open
Abstract
The actin cytoskeleton is an active semi-flexible polymer network whose non-equilibrium properties coordinate both stable and contractile behaviors to maintain or change cell shape. While myosin motors drive the actin cytoskeleton out-of-equilibrium, the role of myosin-driven active stresses in the accumulation and dissipation of mechanical energy is unclear. To investigate this, we synthesize an actomyosin material in vitro whose active stress content can tune the network from stable to contractile. Each increment in activity determines a characteristic spectrum of actin filament fluctuations which is used to calculate the total mechanical work and the production of entropy in the material. We find that the balance of work and entropy does not increase monotonically and the entropy production rate is maximized in the non-contractile, stable state of actomyosin. Our study provides evidence that the origins of entropy production and activity-dependent dissipation relate to disorder in the molecular interactions between actin and myosin.
Collapse
Affiliation(s)
- Daniel S Seara
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Vikrant Yadav
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
| | - Ian Linsmeier
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
| | - A Pasha Tabatabai
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
| | - Patrick W Oakes
- Department of Physics & Astronomy, and Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - S M Ali Tabei
- Physics Department, University of Northern Iowa, Cedar Falls, IA, 50614, USA
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Michael P Murrell
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
116
|
Yu Q, Li J, Murrell MP, Kim T. Balance between Force Generation and Relaxation Leads to Pulsed Contraction of Actomyosin Networks. Biophys J 2018; 115:2003-2013. [PMID: 30389091 PMCID: PMC6303541 DOI: 10.1016/j.bpj.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
Actomyosin contractility regulates various biological processes, including cell migration and cytokinesis. The cell cortex underlying the membrane of eukaryote cells exhibits dynamic contractile behaviors facilitated by actomyosin contractility. Interestingly, the cell cortex shows reversible aggregation of actin and myosin called "pulsed contraction" in diverse cellular phenomena, such as embryogenesis and tissue morphogenesis. Although contractile behaviors of actomyosin machinery have been studied extensively in several in vitro experiments and computational studies, none of them successfully reproduced the pulsed contraction observed in vivo. Recent experiments have suggested the pulsed contraction is dependent upon the spatiotemporal expression of a small GTPase protein called RhoA. This only indicates the significance of biochemical signaling pathways during the pulsed contraction. In this study, we reproduced the pulsed contraction with only the mechanical and dynamic behaviors of cytoskeletal elements. First, we observed that small pulsed clusters or clusters with fluctuating sizes may appear when there is subtle balance between force generation from motors and force relaxation induced by actin turnover. However, the size and duration of these clusters differ from those of clusters observed during the cellular phenomena. We found that clusters with physiologically relevant size and duration can appear only with both actin turnover and angle-dependent F-actin severing resulting from buckling induced by motor activities. We showed how parameters governing F-actin severing events regulate the size and duration of pulsed clusters. Our study sheds light on the underestimated significance of F-actin severing for the pulsed contraction observed in physiological processes.
Collapse
Affiliation(s)
- Qilin Yu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
117
|
Kreten FH, Hoffmann C, Riveline D, Kruse K. Active bundles of polar and bipolar filaments. Phys Rev E 2018; 98:012413. [PMID: 30110807 DOI: 10.1103/physreve.98.012413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 11/07/2022]
Abstract
Bundles of actin filaments and molecular motors of the myosin family are a common subcellular organizational motif. Typically, such bundles are under contractile stress resulting from interactions between the filaments and the motors. This holds in particular for contractile rings that appear in the late stages of cell division in animal cells and that cleave the mother into two daughter cells. It was recently shown that myosin organizes into regularly spaced clusters along rings in mammalian cells, whereas myosin clusters in fission yeast travel along the perimeter of actomyosin rings [Wollrab et al., Nat. Commun. 7, 11860 (2016)2041-172310.1038/ncomms11860]. A mechanism based on the association of the structurally polar actin filaments into bipolar structures was shown to provide a common explanation for both observations. Here, we analyze the dynamics of this mechanism in detail. We find a rich phase diagram depending on the actomyosin interaction strength and the stability of the bipolar structures. The system can notably organize into traveling waves. Furthermore, we identify the nature of the bifurcations connecting the various patterns as parameters are changed. Finally, we report experimental patterns observed in cytokinetic rings in fission yeast and link them to solutions of our dynamic equations. Our analysis highlights the possible role played by local polarity sorting of actin filaments for the dynamics and functionality of actomyosin networks.
Collapse
Affiliation(s)
- F H Kreten
- Theoretische Physik, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Ch Hoffmann
- Theoretische Physik, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - D Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; and Université de Strasbourg, Illkirch, France
| | - K Kruse
- NCCR Chemical Biology, Departments of Biochemistry and Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
118
|
Agarwal P, Zaidel-Bar R. Principles of Actomyosin Regulation In Vivo. Trends Cell Biol 2018; 29:150-163. [PMID: 30385150 DOI: 10.1016/j.tcb.2018.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
The actomyosin cytoskeleton is responsible for most force-driven processes in cells and tissues. How it assembles into the necessary structures at the right time and place is an important question. Here, we focus on molecular mechanisms of actomyosin regulation recently elucidated in animal models, and highlight several common principles that emerge. The architecture of the actomyosin network - an important determinant of its function - results from actin polymerization, crosslinking and turnover, localized myosin activation, and contractility-driven self-organization. Spatiotemporal regulation is achieved by tissue-specific expression and subcellular localization of Rho GTPase regulators. Subcellular anchor points of actomyosin structures control the outcome of their contraction, and molecular feedback mechanisms dictate whether they are transient, cyclic, or persistent.
Collapse
Affiliation(s)
- Priti Agarwal
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
119
|
Freedman SL, Hocky GM, Banerjee S, Dinner AR. Nonequilibrium phase diagrams for actomyosin networks. SOFT MATTER 2018; 14:7740-7747. [PMID: 30204203 PMCID: PMC6192427 DOI: 10.1039/c8sm00741a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Living cells dynamically modulate the local morphologies of their actin networks to perform biological functions, including force transduction, intracellular transport, and cell division. A major challenge is to understand how diverse structures of the actin cytoskeleton are assembled from a limited set of molecular building blocks. Here we study the spontaneous self-assembly of a minimal model of cytoskeletal materials, consisting of semiflexible actin filaments, crosslinkers, and molecular motors. Using coarse-grained simulations, we demonstrate that by changing concentrations and kinetics of crosslinkers and motors, as well as filament lengths, we can generate three distinct structural phases of actomyosin assemblies: bundled, polarity-sorted, and contracted. We introduce new metrics to distinguish these structural phases and demonstrate their functional roles. We find that the binding kinetics of motors and crosslinkers can be tuned to optimize contractile force generation, motor transport, and mechanical response. By quantitatively characterizing the relationships between the modes of cytoskeletal self-assembly, the resulting structures, and their functional consequences, our work suggests new principles for the design of active materials.
Collapse
Affiliation(s)
- Simon L. Freedman
- Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Glen M. Hocky
- James Franck Institute & Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA, Chicago, IL, USA;
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E-6BT
| | - Aaron R. Dinner
- James Franck Institute & Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA, Chicago, IL, USA;
| |
Collapse
|
120
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
121
|
Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex. PLoS Comput Biol 2018; 14:e1006344. [PMID: 30222728 PMCID: PMC6171965 DOI: 10.1371/journal.pcbi.1006344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Filamentous actin (F-actin) and non-muscle myosin II motors drive cell motility and cell shape changes that guide large scale tissue movements during embryonic morphogenesis. To gain a better understanding of the role of actomyosin in vivo, we have developed a two-dimensional (2D) computational model to study emergent phenomena of dynamic unbranched actomyosin arrays in the cell cortex. These phenomena include actomyosin punctuated contractions, or "actin asters" that form within quiescent F-actin networks. Punctuated contractions involve both formation of high intensity aster-like structures and disassembly of those same structures. Our 2D model allows us to explore the kinematics of filament polarity sorting, segregation of motors, and morphology of F-actin arrays that emerge as the model structure and biophysical properties are varied. Our model demonstrates the complex, emergent feedback between filament reorganization and motor transport that generate as well as disassemble actin asters. Since intracellular actomyosin dynamics are thought to be controlled by localization of scaffold proteins that bind F-actin or their myosin motors we also apply our 2D model to recapitulate in vitro studies that have revealed complex patterns of actomyosin that assemble from patterning filaments and motor complexes with microcontact printing. Although we use a minimal representation of filament, motor, and cross-linker biophysics, our model establishes a framework for investigating the role of other actin binding proteins, how they might alter actomyosin dynamics, and makes predictions that can be tested experimentally within live cells as well as within in vitro models. Recent genetic and mechanical studies of embryonic development reveal a critical role for intracellular scaffolds in generating the shape of the embryo and constructing internal organs. In this paper we developed computer simulations of these scaffolds, composed of filamentous actin (F-actin), a rod-like protein polymer, and mini-thick filaments, composed of non-muscle myosin II, forming a two headed spring-like complex of motor proteins that can walk on, and remodel F-actin networks. Using simulations of these dynamic interactions, we can carry out virtual experiments where we change the physics and chemistry of F-actin polymers, their associated myosin motors, and cross-linkers and observe the changes in scaffolds that emerge. For example, by modulating the motor stiffness of the myosin motors in our model we can observe the formation or loss of large aster-like structures. Such fine-grained control over the physical properties of motors or filaments within simulations are not currently possible with biological experiments, even where mutant proteins or small molecule inhibitors can be targeted to specific sites on filaments or motors. Our approach reflects a growing adoption of simulation methods to investigate microscopic features that shape actomyosin arrays and the mesoscale effects of molecular scale processes. We expect predictions from these models will drive more refined experimental approaches to expose the many roles of actomyosin in development.
Collapse
|
122
|
Colin A, Singaravelu P, Théry M, Blanchoin L, Gueroui Z. Actin-Network Architecture Regulates Microtubule Dynamics. Curr Biol 2018; 28:2647-2656.e4. [PMID: 30100343 DOI: 10.1016/j.cub.2018.06.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 03/13/2018] [Accepted: 06/14/2018] [Indexed: 11/25/2022]
Abstract
Coordination between actin filaments and microtubules is critical to complete important steps during cell division. For instance, cytoplasmic actin filament dynamics play an active role in the off-center positioning of the spindle during metaphase I in mouse oocytes [1-3] or in gathering the chromosomes to ensure proper spindle formation in starfish oocytes [4, 5], whereas cortical actin filaments control spindle rotation and positioning in adherent cells or in mouse oocytes [6-9]. Several molecular effectors have been found to facilitate anchoring between the meiotic spindle and the cortical actin [10-14]. In vitro reconstitutions have provided detailed insights in the biochemical and physical interactions between microtubules and actin filaments [15-20]. Yet how actin meshwork architecture affects microtubule dynamics is still unclear. Here, we reconstituted microtubule aster in the presence of a meshwork of actin filaments using confined actin-intact Xenopus egg extracts. We found that actin filament branching reduces the lengths and growth rates of microtubules and constrains the mobility of microtubule asters. By reconstituting the interaction between dynamic actin filaments and microtubules in a minimal system based on purified proteins, we found that the branching of actin filaments is sufficient to block microtubule growth and trigger microtubule disassembly. In a further exploration of Xenopus egg extracts, we found that dense and static branched actin meshwork perturbs monopolar spindle assembly by constraining the motion of the spindle pole. Interestingly, monopolar spindle assembly was not constrained in conditions supporting dynamic meshwork rearrangements. We propose that branched actin filament meshwork provides physical barriers that limit microtubule growth.
Collapse
Affiliation(s)
- Alexandra Colin
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pavithra Singaravelu
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France
| | - Manuel Théry
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France; Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Laurent Blanchoin
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France; Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 1 Avenue Claude Vellefaux, 75010 Paris, France.
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
123
|
Kemp JP, Brieher WM. The actin filament bundling protein α-actinin-4 actually suppresses actin stress fibers by permitting actin turnover. J Biol Chem 2018; 293:14520-14533. [PMID: 30049798 DOI: 10.1074/jbc.ra118.004345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/21/2018] [Indexed: 01/07/2023] Open
Abstract
Cells organize actin filaments into contractile bundles known as stress fibers that resist mechanical stress, increase cell adhesion, remodel the extracellular matrix, and maintain tissue integrity. α-actinin is an actin filament bundling protein that is thought to be essential for stress fiber formation and stability. However, previous studies have also suggested that α-actinin might disrupt fibers, making the true function of this biomolecule unclear. Here we use fluorescence imaging to show that kidney epithelial cells depleted of α-actinin-4 via shRNA or CRISPR/Cas9, or expressing a disruptive mutant make more massive stress fibers that are less dynamic than those in WT cells, leading to defects in cell motility and wound healing. The increase in stress fiber mass and stability can be explained, in part, by increased loading of the filament component tropomyosin onto stress fibers in the absence of α-actinin, as monitored via immunofluorescence. We show using imaging and cosedimentation that α-actinin and tropomyosin compete for binding to F-actin and that tropomyosin shields actin filaments from cofilin-mediated disassembly in vitro and in cells. Perturbing tropomyosin in cells lacking α-actinin-4 results in a complete loss of stress fibers. Our results with α-actinin-4 on stress fiber organization are the opposite of what might have been predicted from previous in vitro biochemistry and further highlight how the complex interactions of multiple proteins competing for filament binding lead to unexpected functions for actin-binding proteins in cells.
Collapse
Affiliation(s)
| | - William M Brieher
- From the Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
124
|
Abstract
Precisely controlled cell deformations are key to cell migration, division and tissue morphogenesis, and have been implicated in cell differentiation during development, as well as cancer progression. In animal cells, shape changes are primarily driven by the cellular cortex, a thin actomyosin network that lies directly underneath the plasma membrane. Myosin-generated forces create tension in the cortical network, and gradients in tension lead to cellular deformations. Recent studies have provided important insight into the molecular control of cortical tension by progressively unveiling cortex composition and organization. In this Cell Science at a Glance article and the accompanying poster, we review our current understanding of cortex composition and architecture. We then discuss how the microscopic properties of the cortex control cortical tension. While many open questions remain, it is now clear that cortical tension can be modulated through both cortex composition and organization, providing multiple levels of regulation for this key cellular property during cell and tissue morphogenesis. Summary: A summary of the composition, architecture, mechanics and function of the cellular actin cortex, which determines the shape of animal cells, and, thus, provides the foundation for cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
125
|
Affiliation(s)
- Fanlong Meng
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, U.K
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Eugene M. Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
126
|
Tan TH, Malik-Garbi M, Abu-Shah E, Li J, Sharma A, MacKintosh FC, Keren K, Schmidt CF, Fakhri N. Self-organized stress patterns drive state transitions in actin cortices. SCIENCE ADVANCES 2018; 4:eaar2847. [PMID: 29881775 PMCID: PMC5990313 DOI: 10.1126/sciadv.aar2847] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
Biological functions rely on ordered structures and intricately controlled collective dynamics. This order in living systems is typically established and sustained by continuous dissipation of energy. The emergence of collective patterns of motion is unique to nonequilibrium systems and is a manifestation of dynamic steady states. Mechanical resilience of animal cells is largely controlled by the actomyosin cortex. The cortex provides stability but is, at the same time, highly adaptable due to rapid turnover of its components. Dynamic functions involve regulated transitions between different steady states of the cortex. We find that model actomyosin cortices, constructed to maintain turnover, self-organize into distinct nonequilibrium steady states when we vary cross-link density. The feedback between actin network structure and organization of stress-generating myosin motors defines the symmetries of the dynamic steady states. A marginally cross-linked state displays divergence-free long-range flow patterns. Higher cross-link density causes structural symmetry breaking, resulting in a stationary converging flow pattern. We track the flow patterns in the model actomyosin cortices using fluorescent single-walled carbon nanotubes as novel probes. The self-organization of stress patterns we have observed in a model system can have direct implications for biological functions.
Collapse
Affiliation(s)
- Tzer Han Tan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maya Malik-Garbi
- Department of Physics, Technion—Israel Institute of Technology, Haifa, Israel
| | - Enas Abu-Shah
- Department of Physics, Technion—Israel Institute of Technology, Haifa, Israel
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Junang Li
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abhinav Sharma
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, Netherlands
- Third Institute of Physics—Biophysics, University of Göttingen, Göttingen, Germany
| | - Fred C. MacKintosh
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, Netherlands
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biophysics, Rice University, Houston, TX 77005, USA
| | - Kinneret Keren
- Department of Physics, Technion—Israel Institute of Technology, Haifa, Israel
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa, Israel
- Network Biology Research Laboratories, Technion—Israel Institute of Technology, Haifa, Israel
- Corresponding author. (K.K.); (C.F.S.); (N.F.)
| | - Christoph F. Schmidt
- Third Institute of Physics—Biophysics, University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
- Department of Physics, Duke University, Durham, NC 27708, USA
- Corresponding author. (K.K.); (C.F.S.); (N.F.)
| | - Nikta Fakhri
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (K.K.); (C.F.S.); (N.F.)
| |
Collapse
|
127
|
Nguyen LT, Swulius MT, Aich S, Mishra M, Jensen GJ. Coarse-grained simulations of actomyosin rings point to a nodeless model involving both unipolar and bipolar myosins. Mol Biol Cell 2018; 29:1318-1331. [PMID: 29851561 PMCID: PMC5994903 DOI: 10.1091/mbc.e17-12-0736] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytokinesis in many eukaryotic cells is orchestrated by a contractile actomyosin ring. While many of the proteins involved are known, the mechanism of constriction remains unclear. Informed by the existing literature and new three-dimensional (3D) molecular details from electron cryotomography, here we develop 3D coarse-grained models of actin filaments, unipolar and bipolar myosins, actin cross-linkers, and membranes and simulate their interactions. Assuming that local force on the membrane results in inward growth of the cell wall, we explored a matrix of possible actomyosin configurations and found that node-based architectures like those presently described for ring assembly result in membrane puckers not seen in electron microscope images of real cells. Instead, the model that best matches data from fluorescence microscopy, electron cryotomography, and biochemical experiments is one in which actin filaments transmit force to the membrane through evenly distributed, membrane-attached, unipolar myosins, with bipolar myosins in the ring driving contraction. While at this point this model is only favored (not proven), the work highlights the power of coarse-grained biophysical simulations to compare complex mechanistic hypotheses.
Collapse
Affiliation(s)
- Lam T Nguyen
- California Institute of Technology, Pasadena, CA 91125.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Matthew T Swulius
- California Institute of Technology, Pasadena, CA 91125.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Samya Aich
- Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Grant J Jensen
- California Institute of Technology, Pasadena, CA 91125.,Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
128
|
Loison O, Weitkunat M, Kaya-Çopur A, Nascimento Alves C, Matzat T, Spletter ML, Luschnig S, Brasselet S, Lenne PF, Schnorrer F. Polarization-resolved microscopy reveals a muscle myosin motor-independent mechanism of molecular actin ordering during sarcomere maturation. PLoS Biol 2018; 16:e2004718. [PMID: 29702642 PMCID: PMC5955565 DOI: 10.1371/journal.pbio.2004718] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/16/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Sarcomeres are stereotyped force-producing mini-machines of striated muscles. Each sarcomere contains a pseudocrystalline order of bipolar actin and myosin filaments, which are linked by titin filaments. During muscle development, these three filament types need to assemble into long periodic chains of sarcomeres called myofibrils. Initially, myofibrils contain immature sarcomeres, which gradually mature into their pseudocrystalline order. Despite the general importance, our understanding of myofibril assembly and sarcomere maturation in vivo is limited, in large part because determining the molecular order of protein components during muscle development remains challenging. Here, we applied polarization-resolved microscopy to determine the molecular order of actin during myofibrillogenesis in vivo. This method revealed that, concomitantly with mechanical tension buildup in the myotube, molecular actin order increases, preceding the formation of immature sarcomeres. Mechanistically, both muscle and nonmuscle myosin contribute to this actin order gain during early stages of myofibril assembly. Actin order continues to increase while myofibrils and sarcomeres mature. Muscle myosin motor activity is required for the regular and coordinated assembly of long myofibrils but not for the high actin order buildup during sarcomere maturation. This suggests that, in muscle, other actin-binding proteins are sufficient to locally bundle or cross-link actin into highly regular arrays.
Collapse
Affiliation(s)
| | - Manuela Weitkunat
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | - Aynur Kaya-Çopur
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | | | - Till Matzat
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Maria L. Spletter
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | - Stefan Luschnig
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
| | - Sophie Brasselet
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | | | - Frank Schnorrer
- Aix Marseille Université, CNRS, IBDM, Marseille, France
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| |
Collapse
|
129
|
Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol 2018; 50:79-85. [PMID: 29482169 DOI: 10.1016/j.ceb.2018.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 01/03/2023]
Abstract
Myosin-driven contraction of the actin cytoskeleton is at the base of cell and tissue morphogenesis. At the molecular level, myosin motors drive contraction by sliding actin filaments past one another using energy produced by ATP hydrolysis. How this microscopic sliding activity gives rise to cell-scale contractions has been an active research question first in muscle cells, and over the last few decades in non-muscle cells. While many early investigations focused on myosin motor activity, increasingly, the nanoscale architecture of the actin network emerges as a key regulator of contractility. Here we review theoretical and in vitro reconstitution studies that have uncovered some of the key mechanisms by which actin network organization controls contractile tension generation. We then discuss recent findings indicating that similar principles apply in cells.
Collapse
|
130
|
Wollrab V, Belmonte JM, Baldauf L, Leptin M, Nédeléc F, Koenderink GH. Polarity sorting drives remodeling of actin-myosin networks. J Cell Sci 2018; 132:jcs.219717. [DOI: 10.1242/jcs.219717] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
Cytoskeletal networks of actin filaments and myosin motors drive many dynamic cell processes. A key characteristic of these networks is their contractility. Despite intense experimental and theoretical efforts, it is not clear what mechanism favors network contraction over expansion. Recent work points to a dominant role for the nonlinear mechanical response of actin filaments, which can withstand stretching but buckle upon compression. Here we present an alternative mechanism. We study how interactions between actin and myosin-2 at the single filament level translate into contraction at the network scale by performing time-lapse imaging on reconstituted quasi-2D-networks mimicking the cell cortex. We observe myosin end-dwelling after it runs processively along actin filaments. This leads to transport and clustering of actin filament ends and the formation of transiently stable bipolar structures. Further we show that myosin-driven polarity sorting produces polar actin asters, which act as contractile nodes that drive contraction in crosslinked networks. Computer simulations comparing the roles of the end-dwelling mechanism and a buckling-dependent mechanism show that the relative contribution of end-dwelling contraction increases as the network mesh-size decreases.
Collapse
Affiliation(s)
| | - Julio M. Belmonte
- EMBL, Cell Biology and Developmental Biology Unit and Director's Research Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - Lucia Baldauf
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - Maria Leptin
- EMBL, Cell Biology and Developmental Biology Unit and Director's Research Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - François Nédeléc
- EMBL, Cell Biology and Developmental Biology Unit and Director's Research Unit, Meyerhofstraße 1, Heidelberg, Germany
| | | |
Collapse
|
131
|
Descovich CP, Cortes DB, Ryan S, Nash J, Zhang L, Maddox PS, Nedelec F, Maddox AS. Cross-linkers both drive and brake cytoskeletal remodeling and furrowing in cytokinesis. Mol Biol Cell 2017; 29:622-631. [PMID: 29282285 PMCID: PMC6004588 DOI: 10.1091/mbc.e17-06-0392] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
Cell shape changes such as cytokinesis are driven by the actomyosin contractile cytoskeleton. The molecular rearrangements that bring about contractility in nonmuscle cells are currently debated. Specifically, both filament sliding by myosin motors, as well as cytoskeletal cross-linking by myosins and nonmotor cross-linkers, are thought to promote contractility. Here we examined how the abundance of motor and nonmotor cross-linkers affects the speed of cytokinetic furrowing. We built a minimal model to simulate contractile dynamics in the Caenorhabditis elegans zygote cytokinetic ring. This model predicted that intermediate levels of nonmotor cross-linkers are ideal for contractility; in vivo, intermediate levels of the scaffold protein anillin allowed maximal contraction speed. Our model also demonstrated a nonlinear relationship between the abundance of motor ensembles and contraction speed. In vivo, thorough depletion of nonmuscle myosin II delayed furrow initiation, slowed F-actin alignment, and reduced maximum contraction speed, but partial depletion allowed faster-than-expected kinetics. Thus, cytokinetic ring closure is promoted by moderate levels of both motor and nonmotor cross-linkers but attenuated by an over-abundance of motor and nonmotor cross-linkers. Together, our findings extend the growing appreciation for the roles of cross-linkers in cytokinesis and reveal that they not only drive but also brake cytoskeletal remodeling.
Collapse
Affiliation(s)
- Carlos Patino Descovich
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 32377.,Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 32377
| | - Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 32377
| | - Sean Ryan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 32377
| | - Jazmine Nash
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 32377
| | - Li Zhang
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC H3C 3T5, Canada
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 32377
| | - Francois Nedelec
- Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 32377
| |
Collapse
|
132
|
Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex. PLoS Comput Biol 2017. [DOI: 10.1371/journal.pcbi.1005811 doi:10.1371/journal.pcbi.1005811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
133
|
McFadden WM, McCall PM, Gardel ML, Munro EM. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex. PLoS Comput Biol 2017; 13:e1005811. [PMID: 29253848 PMCID: PMC5757993 DOI: 10.1371/journal.pcbi.1005811] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/08/2018] [Accepted: 10/09/2017] [Indexed: 11/23/2022] Open
Abstract
Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how local remodeling tunes stress production and dissipation, and how this in turn shapes long range flow, remains poorly understood. Here, we study a computational model for a cross-linked network with active motors based on minimal requirements for production and dissipation of contractile stress: Asymmetric filament compliance, spatial heterogeneity of motor activity, reversible cross-links and filament turnover. We characterize how the production and dissipation of network stress depend, individually, on cross-link dynamics and filament turnover, and how these dependencies combine to determine overall rates of cortical flow. Our analysis predicts that filament turnover is required to maintain active stress against external resistance and steady state flow in response to external stress. Steady state stress increases with filament lifetime up to a characteristic time τm, then decreases with lifetime above τm. Effective viscosity increases with filament lifetime up to a characteristic time τc, and then becomes independent of filament lifetime and sharply dependent on crosslink dynamics. These individual dependencies of active stress and effective viscosity define multiple regimes of steady state flow. In particular our model predicts that when filament lifetimes are shorter than both τc and τm, the dependencies of effective viscosity and steady state stress on filament turnover cancel one another, such that flow speed is insensitive to filament turnover, and shows a simple dependence on motor activity and crosslink dynamics. These results provide a framework for understanding how animal cells tune cortical flow through local control of network remodeling.
Collapse
Affiliation(s)
- William M. McFadden
- Biophysical Sciences Program, University of Chicago, Chicago, Illinois, United States of America
| | - Patrick M. McCall
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
| | - Margaret L. Gardel
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
- James Franck Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Edwin M. Munro
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
134
|
Filament rigidity and connectivity tune the deformation modes of active biopolymer networks. Proc Natl Acad Sci U S A 2017; 114:E10037-E10045. [PMID: 29114058 DOI: 10.1073/pnas.1708625114] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular motors embedded within collections of actin and microtubule filaments underlie the dynamics of cytoskeletal assemblies. Understanding the physics of such motor-filament materials is critical to developing a physical model of the cytoskeleton and designing biomimetic active materials. Here, we demonstrate through experiments and simulations that the rigidity and connectivity of filaments in active biopolymer networks regulates the anisotropy and the length scale of the underlying deformations, yielding materials with variable contractility. We find that semiflexible filaments can be compressed and bent by motor stresses, yielding materials that undergo predominantly biaxial deformations. By contrast, rigid filament bundles slide without bending under motor stress, yielding materials that undergo predominantly uniaxial deformations. Networks dominated by biaxial deformations are robustly contractile over a wide range of connectivities, while networks dominated by uniaxial deformations can be tuned from extensile to contractile through cross-linking. These results identify physical parameters that control the forces generated within motor-filament arrays and provide insight into the self-organization and mechanics of cytoskeletal assemblies.
Collapse
|
135
|
Spira F, Cuylen-Haering S, Mehta S, Samwer M, Reversat A, Verma A, Oldenbourg R, Sixt M, Gerlich DW. Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments. eLife 2017; 6. [PMID: 29106370 PMCID: PMC5673306 DOI: 10.7554/elife.30867] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.
Collapse
Affiliation(s)
- Felix Spira
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Sara Cuylen-Haering
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Shalin Mehta
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
| | - Matthias Samwer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Anne Reversat
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Amitabh Verma
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
| | - Rudolf Oldenbourg
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
136
|
Belmonte JM, Leptin M, Nédélec F. A theory that predicts behaviors of disordered cytoskeletal networks. Mol Syst Biol 2017; 13:941. [PMID: 28954810 PMCID: PMC5615920 DOI: 10.15252/msb.20177796] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Morphogenesis in animal tissues is largely driven by actomyosin networks, through tensions generated by an active contractile process. Although the network components and their properties are known, and networks can be reconstituted in vitro, the requirements for contractility are still poorly understood. Here, we describe a theory that predicts whether an isotropic network will contract, expand, or conserve its dimensions. This analytical theory correctly predicts the behavior of simulated networks, consisting of filaments with varying combinations of connectors, and reveals conditions under which networks of rigid filaments are either contractile or expansile. Our results suggest that pulsatility is an intrinsic behavior of contractile networks if the filaments are not stable but turn over. The theory offers a unifying framework to think about mechanisms of contractions or expansion. It provides the foundation for studying a broad range of processes involving cytoskeletal networks and a basis for designing synthetic networks.
Collapse
Affiliation(s)
- Julio M Belmonte
- Directors's Research/Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors's Research/Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
137
|
Rubinstein BY, Mogilner A. Myosin Clusters of Finite Size Develop Contractile Stress in 1D Random Actin Arrays. Biophys J 2017; 113:937-947. [PMID: 28834729 DOI: 10.1016/j.bpj.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Myosin-powered force generation and contraction in nonmuscle cells underlies many cell biological processes and is based on contractility of random actin arrays. This contractility must rely on a microscopic asymmetry, the precise mechanism of which is not completely clear. A number of models of mechanical and structural asymmetries in actomyosin contraction have been posited. Here, we examine a contraction mechanism based on a finite size of myosin clusters and anisotropy of force generation by myosin heads at the ends of the myosin clusters. We use agent-based numerical simulations to demonstrate that if average lengths of actin filaments and myosin clusters are similar, then the proposed microscopic asymmetry leads to effective contraction of random 1D actomyosin arrays. We discuss the model's implication for mechanics of contractile rings and stress fibers.
Collapse
Affiliation(s)
- Boris Y Rubinstein
- Stowers Institute, Kansas City, Missouri, New York University, New York, New York
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, New York; Department of Biology, New York University, New York, New York.
| |
Collapse
|
138
|
Alvarado J, Sheinman M, Sharma A, MacKintosh FC, Koenderink GH. Force percolation of contractile active gels. SOFT MATTER 2017; 13:5624-5644. [PMID: 28812094 DOI: 10.1039/c7sm00834a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and molecular motors inside cells. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (∼nN and greater) on cellular, tissue, and organismal length scales. Here we review experimental and theoretical studies on contractile active gels composed of actin filaments and myosin motors. Unlike other active soft matter systems, which tend to form ordered patterns, actin-myosin systems exhibit a generic tendency to contract. Experimental studies of reconstituted actin-myosin model systems have long suggested that a mechanical interplay between motor activity and the network's connectivity governs this contractile behavior. Recent theoretical models indicate that this interplay can be understood in terms of percolation models, extended to include effects of motor activity on the network connectivity. Based on concepts from percolation theory, we propose a state diagram that unites a large body of experimental observations. This framework provides valuable insights into the mechanisms that drive cellular shape changes and also provides design principles for synthetic active materials.
Collapse
Affiliation(s)
- José Alvarado
- Systems Biophysics Department, AMOLF, 1098 XG Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
139
|
Freedman SL, Banerjee S, Hocky GM, Dinner AR. A Versatile Framework for Simulating the Dynamic Mechanical Structure of Cytoskeletal Networks. Biophys J 2017; 113:448-460. [PMID: 28746855 DOI: 10.1016/j.bpj.2017.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
Computer simulations can aid in understanding how collective materials properties emerge from interactions between simple constituents. Here, we introduce a coarse-grained model that enables simulation of networks of actin filaments, myosin motors, and cross-linking proteins at biologically relevant time and length scales. We demonstrate that the model qualitatively and quantitatively captures a suite of trends observed experimentally, including the statistics of filament fluctuations, and mechanical responses to shear, motor motilities, and network rearrangements. We use the simulation to predict the viscoelastic scaling behavior of cross-linked actin networks, characterize the trajectories of actin in a myosin motility assay, and develop order parameters to measure contractility of a simulated actin network. The model can thus serve as a platform for interpretation and design of cytoskeletal materials experiments, as well as for further development of simulations incorporating active elements.
Collapse
Affiliation(s)
- Simon L Freedman
- Department of Physics, University of Chicago, Chicago, Illinois; James Franck Institute, University of Chicago, Chicago, Illinois
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, University College London, London, United Kingdom; Institute for Physics of Living Systems, University College London, London, United Kingdom
| | - Glen M Hocky
- James Franck Institute, University of Chicago, Chicago, Illinois; Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Aaron R Dinner
- James Franck Institute, University of Chicago, Chicago, Illinois; Department of Chemistry, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois.
| |
Collapse
|
140
|
Lappalainen P. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks. Mol Biol Cell 2017; 27:2519-22. [PMID: 27528696 PMCID: PMC4985253 DOI: 10.1091/mbc.e15-10-0728] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022] Open
Abstract
The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
141
|
|
142
|
Kurzawa L, Vianay B, Senger F, Vignaud T, Blanchoin L, Théry M. Dissipation of contractile forces: the missing piece in cell mechanics. Mol Biol Cell 2017; 28:1825-1832. [PMID: 28684608 PMCID: PMC5526557 DOI: 10.1091/mbc.e16-09-0672] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics.
Collapse
Affiliation(s)
- Laetitia Kurzawa
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Benoit Vianay
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| | - Fabrice Senger
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Timothée Vignaud
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| | - Manuel Théry
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| |
Collapse
|
143
|
Chew TG, Huang J, Palani S, Sommese R, Kamnev A, Hatano T, Gu Y, Oliferenko S, Sivaramakrishnan S, Balasubramanian MK. Actin turnover maintains actin filament homeostasis during cytokinetic ring contraction. J Cell Biol 2017; 216:2657-2667. [PMID: 28655757 PMCID: PMC5584170 DOI: 10.1083/jcb.201701104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/04/2017] [Accepted: 06/01/2017] [Indexed: 11/30/2022] Open
Abstract
Many cytokinetic actomyosin ring components undergo dynamic turnover, but its function is unclear. Chew et al. show that continuous actin polymerization ensures crucial F-actin homeostasis during ring contraction, without which ring proteins organize into noncontractile clusters. Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, using Schizosaccharomyces japonicus, we investigate the role of turnover of actin and myosin II in its contraction. Actomyosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially.
Collapse
Affiliation(s)
- Ting Gang Chew
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Junqi Huang
- Warwick Medical School, University of Warwick, Coventry, UK .,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | | | - Ruth Sommese
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN
| | - Anton Kamnev
- Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Ying Gu
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Snezhana Oliferenko
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Francis Crick Institute, London, UK
| | | | | |
Collapse
|
144
|
Chugh P, Clark AG, Smith MB, Cassani DAD, Dierkes K, Ragab A, Roux PP, Charras G, Salbreux G, Paluch EK. Actin cortex architecture regulates cell surface tension. Nat Cell Biol 2017; 19:689-697. [PMID: 28530659 PMCID: PMC5536221 DOI: 10.1038/ncb3525] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 04/04/2017] [Indexed: 12/16/2022]
Abstract
Animal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.
Collapse
Affiliation(s)
- Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Andrew G. Clark
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Matthew B. Smith
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Davide A. D. Cassani
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Kai Dierkes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anan Ragab
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | - Ewa K. Paluch
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| |
Collapse
|
145
|
Chanet S, Miller CJ, Vaishnav ED, Ermentrout B, Davidson LA, Martin AC. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Nat Commun 2017; 8:15014. [PMID: 28504247 PMCID: PMC5440693 DOI: 10.1038/ncomms15014] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/17/2017] [Indexed: 12/23/2022] Open
Abstract
Sculpting organism shape requires that cells produce forces with proper directionality. Thus, it is critical to understand how cells orient the cytoskeleton to produce forces that deform tissues. During Drosophila gastrulation, actomyosin contraction in ventral cells generates a long, narrow epithelial furrow, termed the ventral furrow, in which actomyosin fibres and tension are directed along the length of the furrow. Using a combination of genetic and mechanical perturbations that alter tissue shape, we demonstrate that geometrical and mechanical constraints act as cues to orient the cytoskeleton and tension during ventral furrow formation. We developed an in silico model of two-dimensional actomyosin meshwork contraction, demonstrating that actomyosin meshworks exhibit an inherent force orienting mechanism in response to mechanical constraints. Together, our in vivo and in silico data provide a framework for understanding how cells orient force generation, establishing a role for geometrical and mechanical patterning of force production in tissues. Large-scale tissue reorganization requires the generation of directional tension, which requires orientation of the cytoskeleton. Here Chanet et al. alter tissue shape and tension in the Drosophila embryo to show that geometric and mechanical constraints act as cues to orient the cytoskeleton and tension.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Callie J Miller
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Eeshit Dhaval Vaishnav
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
146
|
Li J, Biel T, Lomada P, Yu Q, Kim T. Buckling-induced F-actin fragmentation modulates the contraction of active cytoskeletal networks. SOFT MATTER 2017; 13:3213-3220. [PMID: 28398452 PMCID: PMC5524573 DOI: 10.1039/c6sm02703b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Actomyosin contractility originating from interactions between F-actin and myosin facilitates various structural reorganizations of the actin cytoskeleton. Cross-linked actomyosin networks show a tendency to contract to single or multiple foci, which has been investigated extensively in numerous studies. Recently, it was suggested that suppression of F-actin buckling via an increase in bending rigidity significantly reduces network contraction. In this study, we demonstrate that networks may show the largest contraction at intermediate bending rigidity, not at the lowest rigidity, if filaments are severed by buckling arising from myosin activity as demonstrated in recent experiments; if filaments are very flexible, frequent severing events can severely deteriorate network connectivity, leading to the formation of multiple small foci and low network contraction. By contrast, if filaments are too stiff, the networks exhibit minimal contraction due to the inhibition of filament buckling. This study reveals that buckling-induced filament severing can modulate the contraction of active cytoskeletal networks, which has been neglected to date.
Collapse
Affiliation(s)
- Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
147
|
Ding WY, Ong HT, Hara Y, Wongsantichon J, Toyama Y, Robinson RC, Nédélec F, Zaidel-Bar R. Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis. J Cell Biol 2017; 216:1371-1386. [PMID: 28400443 PMCID: PMC5412556 DOI: 10.1083/jcb.201603070] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 01/11/2017] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
The cell cortex is essential to maintain animal cell shape, and contractile forces generated within it by nonmuscle myosin II (NMY-2) drive cellular morphogenetic processes such as cytokinesis. The role of actin cross-linking proteins in cortical dynamics is still incompletely understood. Here, we show that the evolutionarily conserved actin bundling/cross-linking protein plastin is instrumental for the generation of potent cortical actomyosin contractility in the Caenorhabditis elegans zygote. PLST-1 was enriched in contractile structures and was required for effective coalescence of NMY-2 filaments into large contractile foci and for long-range coordinated contractility in the cortex. In the absence of PLST-1, polarization was compromised, cytokinesis was delayed or failed, and 50% of embryos died during development. Moreover, mathematical modeling showed that an optimal amount of bundling agents enhanced the ability of a network to contract. We propose that by increasing the connectivity of the F-actin meshwork, plastin enables the cortex to generate stronger and more coordinated forces to accomplish cellular morphogenesis.
Collapse
Affiliation(s)
- Wei Yung Ding
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yusuke Hara
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Jantana Wongsantichon
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
148
|
Coravos JS, Mason FM, Martin AC. Actomyosin Pulsing in Tissue Integrity Maintenance during Morphogenesis. Trends Cell Biol 2017; 27:276-283. [PMID: 27989655 PMCID: PMC5367975 DOI: 10.1016/j.tcb.2016.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022]
Abstract
The actomyosin cytoskeleton is responsible for many changes in cell and tissue shape. For a long time, the actomyosin cytoskeleton has been known to exhibit dynamic contractile behavior. Recently, discrete actomyosin assembly/disassembly cycles have also been observed in cells. These so-called actomyosin pulses have been observed in a variety of contexts, including cell polarization and division, and in epithelia, where they occur during tissue contraction, folding, and extension. In epithelia, evidence suggests that actomyosin pulsing, and more generally, actomyosin turnover, is required to maintain tissue integrity during contractile processes. This review explores possible functions for pulsing in the many instances during which pulsing has been observed, and also highlights proposed molecular mechanisms that drive pulsing.
Collapse
Affiliation(s)
- Jonathan S Coravos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Frank M Mason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
149
|
Christensen JR, Hocky GM, Homa KE, Morganthaler AN, Hitchcock-DeGregori SE, Voth GA, Kovar DR. Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks. eLife 2017; 6. [PMID: 28282023 PMCID: PMC5404920 DOI: 10.7554/elife.23152] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks. DOI:http://dx.doi.org/10.7554/eLife.23152.001 Cells use a protein called actin to provide shape, to generate the forces needed for cells to divide, and for many other essential processes. Inside a cell, individual actin proteins join up to form long filaments. These actin filaments are organized in different ways to make networks that have distinct properties, each tailored for a specific process. For instance, bundles of straight actin filaments help a cell to divide, whereas a network of branched actin filaments allows cells to move. The different proteins that bind to actin filaments influence how quickly actin filaments are assembled and organized into networks. Therefore, many of the properties of an actin filament network are due to the actin binding proteins that are associated with it. Two actin binding proteins called fimbrin and cofilin associate with a type of actin filament network known as the actin patch. A third actin binding protein called tropomyosin associates with a different network that forms a ring. It is not known how particular actin binding proteins choose to associate with one actin network instead of another. Christensen et al. used a fluorescence microscopy technique to study how fimbrin, cofilin and tropomyosin associate with different actin networks in a single-celled organism called fission yeast. This technique involved incubating actin and actin binding proteins together in a microscope chamber. The experiments show that some actin binding proteins, like tropomyosin, cooperate to bind to actin. Individual tropomyosin molecules find it difficult to bind actin filaments on their own, but once one tropomyosin molecule is attached to the filament, others rapidly join to coat the filament. On the other hand, some actin-binding proteins compete for binding to filaments. For example, the binding of fimbrin to actin filaments causes tropomyosin to be removed from the actin network. Further experiments revealed that fimbrin and cofilin work with each other to rapidly generate a dense actin network and displace tropomyosin. Together, the findings of Christensen et al. suggest that competitions between actin binding proteins determine which actin binding proteins are associated with an actin network. The next challenge is to understand how the most competitive actin-binding proteins are kept off actin networks where they do not belong. Further studies will shed light on how these interactions cause large changes in how the cell is organized. DOI:http://dx.doi.org/10.7554/eLife.23152.002
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Glen M Hocky
- Department of Chemistry, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Alisha N Morganthaler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Sarah E Hitchcock-DeGregori
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, United States
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States.,Computation Institute, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
150
|
Geometry and network connectivity govern the mechanics of stress fibers. Proc Natl Acad Sci U S A 2017; 114:2622-2627. [PMID: 28213499 DOI: 10.1073/pnas.1606649114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actomyosin stress fibers (SFs) play key roles in driving polarized motility and generating traction forces, yet little is known about how tension borne by an individual SF is governed by SF geometry and its connectivity to other cytoskeletal elements. We now address this question by combining single-cell micropatterning with subcellular laser ablation to probe the mechanics of single, geometrically defined SFs. The retraction length of geometrically isolated SFs after cutting depends strongly on SF length, demonstrating that longer SFs dissipate more energy upon incision. Furthermore, when cell geometry and adhesive spacing are fixed, cell-to-cell heterogeneities in SF dissipated elastic energy can be predicted from varying degrees of physical integration with the surrounding network. We apply genetic, pharmacological, and computational approaches to demonstrate a causal and quantitative relationship between SF connectivity and mechanics for patterned cells and show that similar relationships hold for nonpatterned cells allowed to form cell-cell contacts in monolayer culture. Remarkably, dissipation of a single SF within a monolayer induces cytoskeletal rearrangements in cells long distances away. Finally, stimulation of cell migration leads to characteristic changes in network connectivity that promote SF bundling at the cell rear. Our findings demonstrate that SFs influence and are influenced by the networks in which they reside. Such higher order network interactions contribute in unexpected ways to cell mechanics and motility.
Collapse
|