101
|
Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome. G3-GENES GENOMES GENETICS 2016; 6:973-86. [PMID: 26888867 PMCID: PMC4825665 DOI: 10.1534/g3.115.025437] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types.
Collapse
|
102
|
Roellig D, Bronner ME. The epigenetic modifier DNMT3A is necessary for proper otic placode formation. Dev Biol 2016; 411:294-300. [PMID: 26826496 DOI: 10.1016/j.ydbio.2016.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 11/17/2022]
Abstract
Cranial placodes are thickenings in the ectoderm that give rise to sensory organs and peripheral ganglia of the vertebrate head. At gastrula and neurula stages, placodal precursors are intermingled in the neural plate border with future neural and neural crest cells. Here, we show that the epigenetic modifier, DNA methyl transferase (DNMT) 3A, expressed in the neural plate border region, influences development of the otic placode which will contribute to the ear. DNMT3A is expressed in the presumptive otic region at gastrula through neurula stages and later in the otic placode itself. Whereas neural plate border and non-neural ectoderm markers Erni, Dlx5, Msx1 and Six1 are unaltered, DNMT3A loss of function leads to early reduction in the expression of the key otic placode specifier genes Pax2 and Gbx2 and later otic markers Sox10 and Soho1. Reduction of Gbx2 was first observed at HH7, well before loss of other otic markers. Later, this translates to significant reduction in the size of the otic vesicle. Based on these results, we propose that DNMT3A is important for enabling the activation of Gbx2 expression, necessary for normal development of the inner ear.
Collapse
Affiliation(s)
- Daniela Roellig
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
103
|
Abstract
From the initial discovery of the neural crest over 150 years ago to the seminal studies of Le Douarin and colleagues in the latter part of the twentieth century, understanding of the neural crest has moved from the descriptive to the experimental. Now, in the twenty-first century, neural crest research has migrated into the genomic age. Here, we reflect upon the major advances in neural crest biology and the open questions that will continue to make research on this incredible vertebrate cell type an important subject in developmental biology for the century to come.
Collapse
Affiliation(s)
- Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Marcos Simões-Costa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
104
|
Le Douarin NM, Dupin E. The Pluripotency of Neural Crest Cells and Their Role in Brain Development. Curr Top Dev Biol 2016; 116:659-78. [PMID: 26970647 DOI: 10.1016/bs.ctdb.2015.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is, in the Chordate phylum, an innovation of vertebrates, which exhibits several original characteristics: its component cells are pluripotent and give rise to both ectodermal and mesodermal cell types. Moreover, during the early stages of neurogenesis, the NC cells exert a paracrine stimulating effect on the development of the preotic brain.
Collapse
Affiliation(s)
- Nicole M Le Douarin
- Collège de France, 3 rue d'Ulm, Paris, France; INSERM U968, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Paris, France.
| | - Elisabeth Dupin
- INSERM U968, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Paris, France
| |
Collapse
|
105
|
McEllin JA, Alexander TB, Tümpel S, Wiedemann LM, Krumlauf R. Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis-regulatory modules during vertebrate evolution. Dev Biol 2016; 409:530-42. [DOI: 10.1016/j.ydbio.2015.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
|
106
|
Isolation, expansion and neural differentiation of stem cells from human plucked hair: a further step towards autologous nerve recovery. Cytotechnology 2015; 68:1849-58. [PMID: 26702932 PMCID: PMC5023559 DOI: 10.1007/s10616-015-9938-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022] Open
Abstract
Stem cells from the adult hair follicle bulge can differentiate into neurons and glia, which is advantageous for the development of an autologous cell-based therapy for neurological diseases. Consequently, bulge stem cells from plucked hair may increase opportunities for personalized neuroregenerative therapy. Hairs were plucked from the scalps of healthy donors, and the bulges were cultured without prior tissue treatment. Shortly after outgrowth from the bulge, cellular protein expression was established immunohistochemically. The doubling time was calculated upon expansion, and the viability of expanded, cryopreserved cells was assessed after shear stress. The neuroglial differentiation potential was assessed from cryopreserved cells. Shortly after outgrowth, the cells were immunopositive for nestin, SLUG, AP-2α and SOX9, and negative for SOX10. Each bulge yielded approximately 1 × 104 cells after three passages. Doubling time was 3.3 (±1.5) days. Cellular viability did not differ significantly from control cells after shear stress. The cells expressed class III β-tubulin (TUBB3) and synapsin-1 after 3 weeks of neuronal differentiation. Glial differentiation yielded KROX20- and MPZ-immunopositive cells after 2 weeks. We demonstrated that human hair follicle bulge-derived stem cells can be cultivated easily, expanded efficiently and kept frozen until needed. After cryopreservation, the cells were viable and displayed both neuronal and glial differentiation potential.
Collapse
|
107
|
Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 2015; 27:129-39. [PMID: 26747371 DOI: 10.1016/j.cytogfr.2015.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.
Collapse
|
108
|
Waki K, Imai KS, Satou Y. Genetic pathways for differentiation of the peripheral nervous system in ascidians. Nat Commun 2015; 6:8719. [PMID: 26515371 PMCID: PMC4640076 DOI: 10.1038/ncomms9719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/24/2015] [Indexed: 11/17/2022] Open
Abstract
Ascidians belong to tunicates, the sister group of vertebrates. Peripheral nervous systems (PNSs) including epidermal sensory neurons (ESNs) in the trunk and dorsal tail regions of ascidian larvae are derived from cells adjacent to the neural plate, as in vertebrates. On the other hand, peripheral ESNs in the ventral tail region are derived from the ventral ectoderm under the control of BMP signalling, reminiscent of sensory neurons of amphioxus and protostomes. In this study, we show that two distinct mechanisms activate a common gene circuit consisting of Msx, Ascl.b, Tox, Delta.b and Pou4 in the dorsal and ventral regions to differentiate ESNs. Our results suggest that ventral ESNs of the ascidian larva are not directly homologous to vertebrate PNSs. The dorsal ESNs might have arisen via co-option of the original PNS gene circuit to the neural plate border in an ancestral chordate. The evolutionary origin of the peripheral nervous systems (PNSs) is poorly understood. Here, the authors show that two mechanisms activate gene circuits in ascidians to differentiate epidermal sensory neurons, which suggests that vertebrate PNSs arose via cooption of the ancient PNS gene circuit.
Collapse
Affiliation(s)
- Kana Waki
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kaoru S Imai
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,CREST, JST, Sakyo, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
109
|
Monsoro-Burq AH. PAX transcription factors in neural crest development. Semin Cell Dev Biol 2015; 44:87-96. [PMID: 26410165 DOI: 10.1016/j.semcdb.2015.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
The nine vertebrate PAX transcription factors (PAX1-PAX9) play essential roles during early development and organogenesis. Pax genes were identified in vertebrates using their homology with the Drosophila melanogaster paired gene DNA-binding domain. PAX1-9 functions are largely conserved throughout vertebrate evolution, in particular during central nervous system and neural crest development. The neural crest is a vertebrate invention, which gives rise to numerous derivatives during organogenesis, including neurons and glia of the peripheral nervous system, craniofacial skeleton and mesenchyme, the heart outflow tract, endocrine and pigment cells. Human and mouse spontaneous mutations as well as experimental analyses have evidenced the critical and diverse functions of PAX factors during neural crest development. Recent studies have highlighted the role of PAX3 and PAX7 in neural crest induction. Additionally, several PAX proteins - PAX1, 3, 7, 9 - regulate cell proliferation, migration and determination in multiple neural crest-derived lineages, such as cardiac, sensory, and enteric neural crest, pigment cells, glia, craniofacial skeleton and teeth, or in organs developing in close relationship with the neural crest such as the thymus and parathyroids. The diverse PAX molecular functions during neural crest formation rely on fine-tuned modulations of their transcriptional transactivation properties. These modulations are generated by multiple means, such as different roles for the various isoforms (formed by alternative splicing), or posttranslational modifications which alter protein-DNA binding, or carefully orchestrated protein-protein interactions with various co-factors which control PAX proteins activity. Understanding these regulations is the key to decipher the versatile roles of PAX transcription factors in neural crest development, differentiation and disease.
Collapse
Affiliation(s)
- Anne H Monsoro-Burq
- Univ. Paris Sud, Université Paris Saclay, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; UMR 3347 CNRS, U1021 Inserm, Université Paris Saclay, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France.
| |
Collapse
|
110
|
Homayounfar N, Park SS, Afsharinejad Z, Bammler TK, MacDonald JW, Farin FM, Mecham BH, Cunningham ML. Transcriptional analysis of human cranial compartments with different embryonic origins. Arch Oral Biol 2015; 60:1450-60. [PMID: 26188427 PMCID: PMC4750879 DOI: 10.1016/j.archoralbio.2015.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Previous investigations suggest that the embryonic origins of the calvarial tissues (neural crest or mesoderm) may account for the molecular mechanisms underlying sutural development. The aim of this study was to evaluate the differences in the gene expression of human cranial tissues and assess the presence of an expression signature reflecting their embryonic origins. METHODS Using microarray technology, we investigated global gene expression of cells from the frontal and parietal bones and the metopic and sagittal intrasutural mesenchyme (ISM) of four human foetal calvaria. qRT-PCR of a selected group of genes was done to validate the microarray analysis. Paired comparison and correlation analyses were performed on microarray results. RESULTS Of six paired comparisons, frontal and parietal compartments (distinct tissue types of calvaria, either bone or intrasutural mesenchyme) had the most different gene expression profiles despite being composed of the same tissue type (bone). Correlation analysis revealed two distinct gene expression profiles that separate frontal and metopic compartments from parietal and sagittal compartments. TFAP2A, TFAP2B, ICAM1, SULF1, TNC and FOXF2 were among differentially expressed genes. CONCLUSION Transcriptional profiles of two groups of tissues, frontal and metopic compartments vs. parietal and sagittal compartments, suggest differences in proliferation, differentiation and extracellular matrix production. Our data suggest that in the second trimester of human foetal development, a gene expression signature of neural crest origin still exists in frontal and metopic compartments while gene expression of parietal and sagittal compartments is more similar to mesoderm.
Collapse
Affiliation(s)
- Negar Homayounfar
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 - 9th Avenue, Seattle, WA 98101, United States; Department of Oral Health Sciences, Dental School, University of Washington, United States; Department of Endodontics, Prosthodontics and Operative Dentistry, School of Dentistry, University of Maryland, Baltimore, United States.
| | - Sarah S Park
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 - 9th Avenue, Seattle, WA 98101, United States
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - Theodor K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - Federico M Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - Brigham H Mecham
- Trialomics, 1700 7th Avenue, # 116, Seattle, WA 98101, United States
| | - Michael L Cunningham
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 - 9th Avenue, Seattle, WA 98101, United States; Seattle Children's Craniofacial Center, 4800 Sand Point Way NE, Seattle, WA 98105, United States
| |
Collapse
|
111
|
Shao M, Liu C, Song Y, Ye W, He W, Yuan G, Gu S, Lin C, Ma L, Zhang Y, Tian W, Hu T, Chen Y. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro. J Mol Cell Biol 2015; 7:441-54. [PMID: 26243590 DOI: 10.1093/jmcb/mjv052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration.
Collapse
Affiliation(s)
- Meiying Shao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yingnan Song
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Wenduo Ye
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Wei He
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guohua Yuan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Hubei-MOST KLOS and KLOBM School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuping Gu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Congxin Lin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| |
Collapse
|
112
|
Abstract
Traditional metazoan phylogeny classifies the Vertebrata as a subphylum of the phylum Chordata, together with two other subphyla, the Urochordata (Tunicata) and the Cephalochordata. The Chordata, together with the phyla Echinodermata and Hemichordata, comprise a major group, the Deuterostomia. Chordates invariably possess a notochord and a dorsal neural tube. Although the origin and evolution of chordates has been studied for more than a century, few authors have intimately discussed taxonomic ranking of the three chordate groups themselves. Accumulating evidence shows that echinoderms and hemichordates form a clade (the Ambulacraria), and that within the Chordata, cephalochordates diverged first, with tunicates and vertebrates forming a sister group. Chordates share tadpole-type larvae containing a notochord and hollow nerve cord, whereas ambulacrarians have dipleurula-type larvae containing a hydrocoel. We propose that an evolutionary occurrence of tadpole-type larvae is fundamental to understanding mechanisms of chordate origin. Protostomes have now been reclassified into two major taxa, the Ecdysozoa and Lophotrochozoa, whose developmental pathways are characterized by ecdysis and trochophore larvae, respectively. Consistent with this classification, the profound dipleurula versus tadpole larval differences merit a category higher than the phylum. Thus, it is recommended that the Ecdysozoa, Lophotrochozoa, Ambulacraria and Chordata be classified at the superphylum level, with the Chordata further subdivided into three phyla, on the basis of their distinctive characteristics.
Collapse
Affiliation(s)
- Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Daniel Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Teruaki Nishikawa
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
113
|
McCoy CR, Stadelman BS, Brumaghim JL, Liu JT, Bain LJ. Arsenic and Its Methylated Metabolites Inhibit the Differentiation of Neural Plate Border Specifier Cells. Chem Res Toxicol 2015; 28:1409-21. [PMID: 26024302 DOI: 10.1021/acs.chemrestox.5b00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exposure to arsenic in food and drinking water has been correlated with adverse developmental outcomes, such as reductions in birth weight and neurological deficits. Additionally, studies have shown that arsenic suppresses sensory neuron formation and skeletal muscle myogenesis, although the reason why arsenic targets both of these cell types in unclear. Thus, P19 mouse embryonic stem cells were used to investigate the mechanisms by which arsenic could inhibit cellular differentiation. P19 cells were exposed to 0, 0.1, or 0.5 μM sodium arsenite and induced to form embryoid bodies over a period of 5 days. The expression of transcription factors necessary to form neural plate border specifier (NPBS) cells, neural crest cells and their progenitors, and myocytes and their progenitors were examined. Early during differentiation, arsenic significantly reduced the transcript and protein expression of Msx1 and Pax3, both needed for NPBS cell formation. Arsenic also significantly reduced the protein expression of Sox 10, needed for neural crest progenitor cell production, by 31-50%, and downregulated the protein and mRNA levels of NeuroD1, needed for neural crest cell differentiation, in a time- and dose-dependent manner. While the overall protein expression of transcription factors in the skeletal muscle lineage was not changed, arsenic did alter their nuclear localization. MyoD nuclear translocation was significantly reduced on days 2-5 between 15 and 70%. At a 10-fold lower concentration, monomethylarsonous acid (MMA III) appeared to be just as potent as inorganic arsenic at reducing the mRNA levels Pax3 (79% vs84%), Sox10 (49% vs 65%), and Msx1 (56% vs 56%). Dimethylarsinous acid (DMA III) also reduced protein and transcript expression, but the changes were less dramatic than those with MMA or arsenite. All three arsenic species reduced the nuclear localization of MyoD and NeuroD1 in a similar manner. The early changes in the differentiation of neural plate border specifier cells may provide a mechanism for arsenic to suppress both neurogenesis and myogenesis.
Collapse
Affiliation(s)
- Christopher R McCoy
- †Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, United States
| | - Bradley S Stadelman
- ‡Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Julia L Brumaghim
- ‡Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Jui-Tung Liu
- §Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, United States
| | - Lisa J Bain
- †Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, United States.,§Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, United States
| |
Collapse
|
114
|
The deuterostome context of chordate origins. Nature 2015; 520:456-65. [PMID: 25903627 DOI: 10.1038/nature14434] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/03/2015] [Indexed: 01/08/2023]
Abstract
Our understanding of vertebrate origins is powerfully informed by comparative morphology, embryology and genomics of chordates, hemichordates and echinoderms, which together make up the deuterostome clade. Striking body-plan differences among these phyla have historically hindered the identification of ancestral morphological features, but recent progress in molecular genetics and embryology has revealed deep similarities in body-axis formation and organization across deuterostomes, at stages before morphological differences develop. These developmental genetic features, along with robust support of pharyngeal gill slits as a shared deuterostome character, provide the foundation for the emergence of chordates.
Collapse
|
115
|
Evolution of vertebrates as viewed from the crest. Nature 2015; 520:474-482. [PMID: 25903629 DOI: 10.1038/nature14436] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural-crest-specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analysis of the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives.
Collapse
|
116
|
Pentimento: Neural Crest and the origin of mesectoderm. Dev Biol 2015; 401:37-61. [DOI: 10.1016/j.ydbio.2014.12.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/28/2014] [Accepted: 12/30/2014] [Indexed: 11/17/2022]
|
117
|
Simões-Costa M, Bronner ME. Establishing neural crest identity: a gene regulatory recipe. Development 2015; 142:242-57. [PMID: 25564621 DOI: 10.1242/dev.105445] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neural crest is a stem/progenitor cell population that contributes to a wide variety of derivatives, including sensory and autonomic ganglia, cartilage and bone of the face and pigment cells of the skin. Unique to vertebrate embryos, it has served as an excellent model system for the study of cell behavior and identity owing to its multipotency, motility and ability to form a broad array of cell types. Neural crest development is thought to be controlled by a suite of transcriptional and epigenetic inputs arranged hierarchically in a gene regulatory network. Here, we examine neural crest development from a gene regulatory perspective and discuss how the underlying genetic circuitry results in the features that define this unique cell population.
Collapse
Affiliation(s)
- Marcos Simões-Costa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
118
|
Kam MKM, Lui VCH. Roles of Hoxb5 in the development of vagal and trunk neural crest cells. Dev Growth Differ 2015; 57:158-68. [PMID: 25703667 DOI: 10.1111/dgd.12199] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 12/22/2022]
Abstract
Neural crest cells (NC) are a group of multipotent stem cells uniquely present in vertebrates. They are destined to form various organs according to their anterior-posterior (A-P) levels of origin in the neural tube (NT). They develop into a wide spectrum of cell lineages under the influence of signaling cascades, neural plate border genes and NC specifier genes. Although this complex gene regulatory network (GRN) specifies the fate of NC and the combinatory action of Hox genes executed at the time of NC induction governs the patterning of NC for the formation of specific structures along the A-P axis, not much information on how GRN and Hox genes directly interact and orchestrate is available. This review summarizes recent findings on the multiple roles of Hoxb5 on the survival and cell lineage differentiation of vagal and trunk NC cells during early development, by direct transcriptional regulation of NC specifier genes (Sox9 and Foxd3) of the GRN. We will also review findings on the transcriptional regulation of Ret by Hoxb5 in the population of the vagal NC that are committed to the enteric neuron and glia lineages. Functional redundancy between Hox proteins (Hoxa5 and Hoxc5) from the same paralogue group as Hoxb5, and the cooperative effects of Hox cofactors, collaborators and transcription factors in the Hoxb5 transcriptional regulation of target genes will also be discussed.
Collapse
Affiliation(s)
- Mandy K M Kam
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | | |
Collapse
|
119
|
Tien CL, Jones A, Wang H, Gerigk M, Nozell S, Chang C. Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. Development 2015; 142:722-31. [PMID: 25617436 PMCID: PMC4325378 DOI: 10.1242/dev.111997] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 12/11/2014] [Indexed: 12/25/2022]
Abstract
Neural crest cells arise from the border of the neural plate and epidermal ectoderm, migrate extensively and differentiate into diverse cell types during vertebrate embryogenesis. Although much has been learnt about growth factor signals and gene regulatory networks that regulate neural crest development, limited information is available on how epigenetic mechanisms control this process. In this study, we show that Polycomb repressive complex 2 (PRC2) cooperates with the transcription factor Snail2/Slug to modulate neural crest development in Xenopus. The PRC2 core components Eed, Ezh2 and Suz12 are expressed in the neural crest cells and are required for neural crest marker expression. Knockdown of Ezh2, the catalytic subunit of PRC2 for histone H3K27 methylation, results in defects in neural crest specification, migration and craniofacial cartilage formation. EZH2 interacts directly with Snail2, and Snail2 fails to expand the neural crest domains in the absence of Ezh2. Chromatin immunoprecipitation analysis shows that Snail2 regulates EZH2 occupancy and histone H3K27 trimethylation levels at the promoter region of the Snail2 target E-cadherin. Our results indicate that Snail2 cooperates with EZH2 and PRC2 to control expression of the genes important for neural crest specification and migration during neural crest development.
Collapse
Affiliation(s)
- Chih-Liang Tien
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue S., Birmingham, AL 35294, USA
| | - Amanda Jones
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1720 2nd Avenue S., Birmingham, AL 35294, USA
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1720 2nd Avenue S., Birmingham, AL 35294, USA
| | - Magda Gerigk
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue S., Birmingham, AL 35294, USA
| | - Susan Nozell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue S., Birmingham, AL 35294, USA
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue S., Birmingham, AL 35294, USA
| |
Collapse
|
120
|
Abstract
Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; George Washington University Institute for Neuroscience, Washington, DC, USA.
| | - Anthony-Samuel LaMantia
- George Washington University Institute for Neuroscience, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
121
|
Muñoz WA, Trainor PA. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell. Curr Top Dev Biol 2015; 111:3-26. [PMID: 25662256 DOI: 10.1016/bs.ctdb.2014.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths.
Collapse
Affiliation(s)
- William A Muñoz
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
122
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
123
|
Engraftable neural crest stem cells derived from cynomolgus monkey embryonic stem cells. Biomaterials 2015; 39:75-84. [DOI: 10.1016/j.biomaterials.2014.10.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/19/2014] [Indexed: 12/29/2022]
|
124
|
Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development. PLoS One 2014; 9:e115165. [PMID: 25531524 PMCID: PMC4274032 DOI: 10.1371/journal.pone.0115165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/19/2014] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the neural plate border (NPB) is established by a group of transcription factors including Dlx3, Msx1 and Zic1. The crosstalk between these NPB specifiers governs the separation of the NPB region into placode and neural crest (NC) territories and also their further differentiation. Understanding the mechanisms of NPB formation and NC development is critical for our knowledge of related human diseases. Here we identified Nkx6.3, a transcription factor of the Nkx family, as a new NPB specifier required for neural crest development in Xenopus embryos. XNkx6.3 is expressed in the ectoderm of the neural plate border region at neurula stages, covering the epidermis, placode and neural crest territories, but not the neural plate. Inhibition of Nkx6.3 by dominant negative construct or specific morpholino leads to neural crest defects, while overexpression of Nkx6.3 induces ectopic neural crest in the anterior neural fold. In animal caps, Nkx6.3 alone is able to initiate the whole neural crest regulatory network and induces neural crest fate robustly. We showed that overexpression of Nkx6.3 affects multiple signaling pathways, creating a high-Wnt, low-BMP environment required for neural crest development. Gain- and loss-of-function of Nkx6.3 have compound effects on the expression of known NPB genes, which is largely opposite to that of Dlx3. Overexpression of Dlx3 blocks the NC inducing activity of Nkx6.3. The crosstalk between Nkx6.3, Dlx3 and Msx1 is likely crucial for proper NPB formation and neural crest development in Xenopus.
Collapse
|
125
|
Hsu SH, Huang GS, Ho TT, Feng F. Efficient Gene Silencing in Mesenchymal Stem Cells by Substrate-Mediated RNA Interference. Tissue Eng Part C Methods 2014; 20:916-30. [DOI: 10.1089/ten.tec.2013.0780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Guo-Shiang Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Tung-Tso Ho
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Fuh Feng
- Forward Dental Group, Taichung, Taiwan, Republic of China
| |
Collapse
|
126
|
Epigenetic regulation in neural crest development. Dev Biol 2014; 396:159-68. [PMID: 25446277 DOI: 10.1016/j.ydbio.2014.09.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
The neural crest is a migratory and multipotent cell population that plays a crucial role in many aspects of embryonic development. In all vertebrate embryos, these cells emerge from the dorsal neural tube then migrate long distances to different regions of the body, where they contribute to formation of many cell types and structures. These include much of the peripheral nervous system, craniofacial skeleton, smooth muscle, and pigmentation of the skin. The best-studied regulatory events guiding neural crest development are mediated by transcription factors and signaling molecules. In recent years, however, growing evidence supports an important role for epigenetic regulation as an additional mechanism for controlling the timing and level of gene expression at different stages of neural crest development. Here, we summarize the process of neural crest formation, with focus on the role of epigenetic regulation in neural crest specification, migration, and differentiation as well as in neural crest related birth defects and diseases.
Collapse
|
127
|
Ohtsuka Y, Matsumoto J, Katsuyama Y, Okamura Y. Nodal signaling regulates specification of ascidian peripheral neurons through control of the BMP signal. Development 2014; 141:3889-99. [PMID: 25231764 DOI: 10.1242/dev.110213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neural crest and neurogenic placodes are thought to be a vertebrate innovation that gives rise to much of the peripheral nervous system (PNS). Despite their importance for understanding chordate evolution and vertebrate origins, little is known about the evolutionary origin of these structures. Here, we investigated the mechanisms underlying the development of ascidian trunk epidermal sensory neurons (ESNs), which are thought to function as mechanosensory neurons in the rostral-dorsal trunk epidermis. We found that trunk ESNs are derived from the anterior and lateral neural plate border, as is the case in the vertebrate PNS. Pharmacological experiments indicated that intermediate levels of bone morphogenetic protein (BMP) signal induce formation of ESNs from anterior ectodermal cells. Gene knockdown experiments demonstrated that HrBMPa (60A-subclass BMP) and HrBMPb (dpp-subclass BMP) act to induce trunk ESNs at the tailbud stage and that anterior trunk ESN specification requires Chordin-mediated antagonism of the BMP signal, but posterior trunk ESN specification does not. We also found that Nodal functions as a neural plate border inducer in ascidians. Nodal signaling regulates expression of HrBMPs and HrChordin in the lateral neural plate, and consequently specifies trunk ESNs. Collectively, these findings show that BMP signaling that is regulated spatiotemporally by Nodal signaling is required for trunk ESN specification, which clearly differs from the BMP gradient model proposed for vertebrate neural induction.
Collapse
Affiliation(s)
- Yukio Ohtsuka
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Jun Matsumoto
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - You Katsuyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Yasushi Okamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
128
|
Keyte AL, Alonzo-Johnsen M, Hutson MR. Evolutionary and developmental origins of the cardiac neural crest: building a divided outflow tract. ACTA ACUST UNITED AC 2014; 102:309-23. [PMID: 25227322 DOI: 10.1002/bdrc.21076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
The cardiac neural crest cells (CNCCs) have played an important role in the evolution and development of the vertebrate cardiovascular system: from reinforcement of the developing aortic arch arteries early in vertebrate evolution, to later orchestration of aortic arch artery remodeling into the great arteries of the heart, and finally outflow tract septation in amniotes. A critical element necessary for the evolutionary advent of outflow tract septation was the co-evolution of the cardiac neural crest cells with the second heart field. This review highlights the major transitions in vertebrate circulatory evolution, explores the evolutionary developmental origins of the CNCCs from the third stream cranial neural crest, and explores candidate signaling pathways in CNCC and outflow tract evolution drawn from our knowledge of DiGeorge Syndrome.
Collapse
Affiliation(s)
- Anna L Keyte
- Brumley Neonatal Perinatal Research Institute, Department of Pediatrics, Duke University, Durham, North Carolina
| | | | | |
Collapse
|
129
|
Kam MKM, Cheung M, Zhu JJ, Cheng WWC, Sat EWY, Tam PKH, Lui VCH. Homeobox b5 (Hoxb5) regulates the expression of Forkhead box D3 gene (Foxd3) in neural crest. Int J Biochem Cell Biol 2014; 55:144-52. [PMID: 25220476 DOI: 10.1016/j.biocel.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/18/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022]
Abstract
Patterning of neural crest (NC) for the formation of specific structures along the anterio-posterior (A-P) body axis is governed by a combinatorial action of Hox genes, which are expressed in the neuroepithelium at the time of NC induction. Hoxb5 was expressed in NC at both induction and migratory stages, and our previous data suggested that Hoxb5 played a role in the NC development. However, the underlying mechanisms by which Hoxb5 regulates the early NC development are largely unknown. Current study showed that both the human and mouse Foxd3 promoters were bound and trans-activated by Hoxb5 in NC-derived neuroblastoma cells. The binding of Hoxb5 to Foxd3 promoter in vivo was further confirmed in the brain and neural tube of mouse embryos. Moreover, Wnt1-Cre mediated perturbation of Hoxb5 signaling at the dorsal neural tube in mouse embryos resulted in Foxd3 down-regulation. In ovo, Foxd3 alleviated the apoptosis of neural cells induced by perturbed Hoxb5 signaling, and Hoxb5 induced ectopic Foxd3 expression in the chick neural tube. This study demonstrated that Hoxb5 (an A-P patterning gene) regulated the NC development by directly inducing Foxd3 (a NC specifier and survival gene).
Collapse
Affiliation(s)
- Mandy Ka Man Kam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Martin Cheung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; Centre for Reproduction, Development & Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Joe Jiang Zhu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; Faculty of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
| | - William Wai Chun Cheng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Eric Wai Yin Sat
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Paul Kwong Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; Centre for Reproduction, Development & Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Vincent Chi Hang Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; Centre for Reproduction, Development & Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
130
|
Schlosser G. Early embryonic specification of vertebrate cranial placodes. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:349-63. [PMID: 25124756 DOI: 10.1002/wdev.142] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Cranial placodes contribute to many sensory organs and ganglia of the vertebrate head. The olfactory, otic, and lateral line placodes form the sensory receptor cells and neurons of the nose, ear, and lateral line system; the lens placode develops into the lens of the eye; epibranchial, profundal, and trigeminal placodes contribute sensory neurons to cranial nerve ganglia; and the adenohypophyseal placode gives rise to the anterior pituitary, a major endocrine control organ. Despite these differences in fate, all placodes are now known to originate from a common precursor, the preplacodal ectoderm (PPE). The latter is a horseshoe-shaped domain of ectoderm surrounding the anterior neural plate and neural crest and is defined by expression of transcription factor Six1, its cofactor Eya1, and other members of the Six and Eya families. Studies in zebrafish, Xenopus, and chick reveal that the PPE is specified together with other ectodermal territories (epidermis, neural crest, and neural plate) during early embryogenesis. During gastrulation, domains of ventrally (e.g., Dlx3/Dlx5, GATA2/GATA3, AP2, Msx1, FoxI1, and Vent1/Vent2) and dorsally (e.g., Zic1, Sox3, and Geminin) restricted transcription factors are established in response to a gradient of BMP and help to define non-neural and neural competence territories, respectively. At neural plate stages, the PPE is then induced in the non-neural competence territory by signals from the adjacent neural plate and mesoderm including FGF, BMP inhibitors, and Wnt inhibitors. Subsequently, signals from more localized signaling centers induce restricted expression domains of various transcription factors within the PPE, which specify multiplacodal areas and ultimately individual placodes. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The author has declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
131
|
Abstract
Neural crest cells are a fascinating embryonic cell type, unique to vertebrates, which arise within the central nervous system but emigrate soon after its formation and migrate to numerous and sometimes distant locations in the periphery. Following their migratory phase, they differentiate into diverse derivatives ranging from peripheral neurons and glia to skin melanocytes and craniofacial cartilage and bone. The molecular underpinnings underlying initial induction of prospective neural crest cells at the neural plate border to their migration and differentiation have been modeled in the form of a putative gene regulatory network. This review describes experiments performed in my laboratory in the past few years aimed to test and elaborate this gene regulatory network from both an embryonic and evolutionary perspective. The rapid advances in genomic technology in the last decade have greatly expanded our knowledge of important transcriptional inputs and epigenetic influences on neural crest development. The results reveal new players and new connections in the neural crest gene regulatory network and suggest that it has an ancient origin at the base of the vertebrate tree.
Collapse
|
132
|
Gong SG. Cranial neural crest: migratory cell behavior and regulatory networks. Exp Cell Res 2014; 325:90-5. [PMID: 24680987 DOI: 10.1016/j.yexcr.2014.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/16/2014] [Accepted: 03/18/2014] [Indexed: 12/19/2022]
Abstract
Defects of the head and neck region account for a substantial portion of all human birth disorders. The high incidence of malformations in this region may be attributed in part to the intricate means by which the facial region is assembled during embryonic development. The starting constituent for the majority of skeletal and connective tissues in the face is a pluripotent population of cells, the cranial neural crest (CNC) cells. This population of cells exhibit remarkable migratory abilities and diversity of potential cell types. This review draws on extensive research that has been done in the field, focusing specifically on findings generated in the last decade on cell behavior and the gene regulatory networks of migratory CNC cells. In the later part of this review, the importance of the CNC cells in the overall development of the craniofacial region will be illustrated with a discussion of a craniofacial birth defect, the Treacher Collins syndrome. The next decade will most likely herald in an era of greater understanding of the integrative molecular networks at different stages of the development of the CNC cells. Such new information is essential towards a better understanding the etiology and pathogenesis of the many craniofacial birth defects and will ultimately lead to new therapeutic modalities.
Collapse
Affiliation(s)
- Siew-Ging Gong
- Department of Orthodontics, Dental Research Institute, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, Canada M5G 1G6.
| |
Collapse
|
133
|
Juarez M, Reyes M, Coleman T, Rotenstein L, Sao S, Martinez D, Jones M, Mackelprang R, De Bellard ME. Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum. J Comp Neurol 2014; 521:3303-20. [PMID: 23640803 DOI: 10.1002/cne.23351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 12/12/2022]
Abstract
The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates.
Collapse
Affiliation(s)
- Marilyn Juarez
- Biology Department, California State University Northridge, Northridge, California 91330, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Hong CS, Devotta A, Lee YH, Park BY, Saint-Jeannet JP. Transcription factor AP2 epsilon (Tfap2e) regulates neural crest specification in Xenopus. Dev Neurobiol 2014; 74:894-906. [PMID: 24616412 DOI: 10.1002/dneu.22173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/24/2014] [Accepted: 02/13/2014] [Indexed: 02/01/2023]
Abstract
Transcription factors Pax3 and Zic1 are two important regulators of cell fate decision at the neural plate border, where they act synergistically to promote neural crest (NC) formation. To understand the role of these factors in NC development, we performed a microarray analysis to identify downstream targets of Pax3 and Zic1 in Xenopus embryos. Among the genes identified was a member of transcription factor activator protein 2 (Tfap2) family, Tfap2 epsilon (Tfap2e). Tfap2e is first expressed at early neurula stage in NC progenitors and Rohon-Beard sensory neurons, and persists in a subset of migrating cranial NC cells as they populate the pharyngeal arches. This is in contrast to other species in which Tfap2e is not detected in the early NC lineage. Tfap2e morpholino-mediated knockdown results in a loss of NC progenitors and an expansion of the neural plate. Tfap2e is also sufficient to activate NC-specific genes in animal cap explants, and gain-of-function experiments in the whole embryo indicate that Tfap2e can promote NC formation. We propose that Tfap2e is a novel player in the gene regulatory network controlling NC specification in Xenopus downstream of Pax3 and Zic1.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea; Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York
| | | | | | | | | |
Collapse
|
135
|
Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 2014; 389:13-27. [PMID: 24576539 DOI: 10.1016/j.ydbio.2014.02.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
Abstract
Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provide the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities.
Collapse
Affiliation(s)
- Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th Street, New York City, NY 10010, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
136
|
Neural crest cell signaling pathways critical to cranial bone development and pathology. Exp Cell Res 2014; 325:138-47. [PMID: 24509233 DOI: 10.1016/j.yexcr.2014.01.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/17/2014] [Indexed: 01/08/2023]
Abstract
Neural crest cells appear early during embryogenesis and give rise to many structures in the mature adult. In particular, a specific population of neural crest cells migrates to and populates developing cranial tissues. The ensuing differentiation of these cells via individual complex and often intersecting signaling pathways is indispensible to growth and development of the craniofacial complex. Much research has been devoted to this area of development with particular emphasis on cell signaling events required for physiologic development. Understanding such mechanisms will allow researchers to investigate ways in which they can be exploited in order to treat a multitude of diseases affecting the craniofacial complex. Knowing how these multipotent cells are driven towards distinct fates could, in due course, allow patients to receive regenerative therapies for tissues lost to a variety of pathologies. In order to realize this goal, nucleotide sequencing advances allowing snapshots of entire genomes and exomes are being utilized to identify molecular entities associated with disease states. Once identified, these entities can be validated for biological significance with other methods. A crucial next step is the integration of knowledge gleaned from observations in disease states with normal physiology to generate an explanatory model for craniofacial development. This review seeks to provide a current view of the landscape on cell signaling and fate determination of the neural crest and to provide possible avenues of approach for future research.
Collapse
|
137
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
138
|
Simões-Costa M, Tan-Cabugao J, Antoshechkin I, Sauka-Spengler T, Bronner ME. Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Res 2014; 24:281-90. [PMID: 24389048 PMCID: PMC3912418 DOI: 10.1101/gr.161182.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The neural crest is an embryonic stem cell population that gives rise to a multitude of derivatives. In particular, the cranial neural crest (CNC) is unique in its ability to contribute to both facial skeleton and peripheral ganglia. To gain further insight into the molecular underpinnings that distinguish the CNC from other embryonic tissues, we have utilized a CNC-specific enhancer as a tool to isolate a pure, region-specific NC subpopulation for transcriptional profiling. The resulting data set reveals previously unknown transcription factors and signaling pathways that may influence the CNC's ability to migrate and/or differentiate into unique derivatives. To elaborate on the CNC gene regulatory network, we evaluated the effects of knocking down known neural plate border genes and early neural crest specifier genes on selected neural crest-enriched transcripts. The results suggest that ETS1 and SOX9 may act as pan-neural crest regulators of the migratory CNC. Taken together, our analysis provides unprecedented characterization of the migratory CNC transcriptome and identifies new links in the gene regulatory network responsible for development of this critical cell population.
Collapse
Affiliation(s)
- Marcos Simões-Costa
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
139
|
Noisa P, Lund C, Kanduri K, Lund R, Lähdesmäki H, Lahesmaa R, Lundin K, Chokechuwattanalert H, Otonkoski T, Tuuri T, Raivio T. Notch signaling regulates neural crest differentiation from human pluripotent stem cells. J Cell Sci 2014; 127:2083-94. [DOI: 10.1242/jcs.145755] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neural crest (NC) cells are specified at the border of neural plate and epiderm. They are capable of differentiating into various somatic cell types, including craniofacial and peripheral nerve tissues. Notch signaling plays significant roles during neurogenesis; however, its function during human NC development is poorly understood. Here, we generated self-renewing premigratory NC-like cells (pNCCs) from human pluripotent stem cells and investigated the roles of Notch signaling during the NC differentiation. pNCCs expressed various NC specifier genes, including SLUG, SOX10 and TWIST1, and were able to differentiate into most NC derivatives. Blocking Notch signaling during the pNCC differentiation suppressed the expression of NC specifier genes. In contrast, ectopic expression of activated Notch1 intracellular domain (NICD1) augmented the expression of NC specifier genes, and NICD1 was found to bind at their promoter regions. Notch activity was also required for the maintenance of premigratory NC state, and suppression of Notch led to generation of NC-derived neurons. Taken together, we provide a protocol for the generation of pNCCs, and show that Notch signaling regulates the formation, migration and differentiation of NC from hPSCs.
Collapse
|
140
|
Green SA, Bronner ME. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 2014; 87:44-51. [PMID: 24560767 PMCID: PMC3995830 DOI: 10.1016/j.diff.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/26/2014] [Accepted: 02/04/2014] [Indexed: 11/15/2022]
Abstract
Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates.
Collapse
Affiliation(s)
- Stephen A Green
- California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Marianne E Bronner
- California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA.
| |
Collapse
|
141
|
Eroglu B, Min JN, Zhang Y, Szurek E, Moskophidis D, Eroglu A, Mivechi NF. An essential role for heat shock transcription factor binding protein 1 (HSBP1) during early embryonic development. Dev Biol 2013; 386:448-60. [PMID: 24380799 DOI: 10.1016/j.ydbio.2013.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
Heat shock factor binding protein 1 (HSBP1) is a 76 amino acid polypeptide that contains two arrays of hydrophobic heptad repeats and was originally identified through its interaction with the oligomerization domain of heat shock factor 1 (Hsf1), suppressing Hsf1's transcriptional activity following stress. To examine the function of HSBP1 in vivo, we generated mice with targeted disruption of the hsbp1 gene and examined zebrafish embryos treated with HSBP1-specific morpholino oligonucleotides. Our results show that hsbp1 is critical for preimplantation embryonic development. Embryonic stem (ES) cells deficient in hsbp1 survive and proliferate normally into the neural lineage in vitro; however, lack of hsbp1 in embryoid bodies (EBs) leads to disorganization of the germ layers and a reduction in the endoderm-specific markers (such as α-fetoprotein). We further show that hsbp1-deficient mouse EBs and knockdown of HSBP1 in zebrafish leads to an increase in the expression of the neural crest inducers Snail2, Tfap2α and Foxd3, suggesting a potential role for HSBP1 in the Wnt pathway. The hsbp1-deficient ES cells, EBs and zebrafish embryos with reduced HSBP1 levels exhibit elevated levels of Hsf1 activity and expression of heat shock proteins (Hsps). We conclude that HSBP1 plays an essential role during early mouse and zebrafish embryonic development.
Collapse
Affiliation(s)
- Binnur Eroglu
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, United States; Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States
| | - Jin-Na Min
- Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States.
| | - Yan Zhang
- Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States.
| | - Edyta Szurek
- Institute of Molecular Medicine and Genetics, GRU, MCG, GA, United States
| | - Demetrius Moskophidis
- Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States
| | - Ali Eroglu
- Institute of Molecular Medicine and Genetics, GRU, MCG, GA, United States.
| | - Nahid F Mivechi
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, United States; Chaperone Biology, Georgia Regents University (GRU) Cancer Center, Medical College of Georgia (MCG), 1120 15th St., Augusta, GA 30912, United States.
| |
Collapse
|
142
|
Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers. Dev Biol 2013; 386:461-72. [PMID: 24360906 DOI: 10.1016/j.ydbio.2013.12.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 12/17/2022]
Abstract
Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.
Collapse
|
143
|
Fernández RM, Bleda M, Luzón-Toro B, García-Alonso L, Arnold S, Sribudiani Y, Besmond C, Lantieri F, Doan B, Ceccherini I, Lyonnet S, Hofstra RMW, Chakravarti A, Antiñolo G, Dopazo J, Borrego S. Pathways systematically associated to Hirschsprung's disease. Orphanet J Rare Dis 2013; 8:187. [PMID: 24289864 PMCID: PMC3879038 DOI: 10.1186/1750-1172-8-187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/19/2013] [Indexed: 02/08/2023] Open
Abstract
Despite it has been reported that several loci are involved in Hirschsprung's disease, the molecular basis of the disease remains yet essentially unknown. The study of collective properties of modules of functionally-related genes provides an efficient and sensitive statistical framework that can overcome sample size limitations in the study of rare diseases. Here, we present the extension of a previous study of a Spanish series of HSCR trios to an international cohort of 162 HSCR trios to validate the generality of the underlying functional basis of the Hirschsprung's disease mechanisms previously found. The Pathway-Based Analysis (PBA) confirms a strong association of gene ontology (GO) modules related to signal transduction and its regulation, enteric nervous system (ENS) formation and other processes related to the disease. In addition, network analysis recovers sub-networks significantly associated to the disease, which contain genes related to the same functionalities, thus providing an independent validation of these findings. The functional profiles of association obtained for patients populations from different countries were compared to each other. While gene associations were different at each series, the main functional associations were identical in all the five populations. These observations would also explain the reported low reproducibility of associations of individual disease genes across populations.
Collapse
Affiliation(s)
- Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Av. Manuel Siurot s/n, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Marta Bleda
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe (CIPF), c/Eduardo Primo Yufera, 3, Valencia, 46012, Spain
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Av. Manuel Siurot s/n, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Luz García-Alonso
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe (CIPF), c/Eduardo Primo Yufera, 3, Valencia, 46012, Spain
| | - Stacey Arnold
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yunia Sribudiani
- Department of Medical Genetics, University of Groningen, Groningen, The Netherlands
| | - Claude Besmond
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
| | | | - Betty Doan
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Robert MW Hofstra
- Department of Medical Genetics, University of Groningen, Groningen, The Netherlands
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Av. Manuel Siurot s/n, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Joaquín Dopazo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe (CIPF), c/Eduardo Primo Yufera, 3, Valencia, 46012, Spain
- Functional Genomics Node (INB), CIPF, Valencia, Spain
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Av. Manuel Siurot s/n, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| |
Collapse
|
144
|
Ono H, Kozmik Z, Yu JK, Wada H. A novel N-terminal motif is responsible for the evolution of neural crest-specific gene-regulatory activity in vertebrate FoxD3. Dev Biol 2013; 385:396-404. [PMID: 24252777 DOI: 10.1016/j.ydbio.2013.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/30/2013] [Accepted: 11/09/2013] [Indexed: 11/24/2022]
Abstract
The neural crest is unique to vertebrates and has allowed the evolution of their complicated craniofacial structures. During vertebrate evolution, the acquisition of the neural crest must have been accompanied by the emergence of a new gene regulatory network (GRN). Here, to investigate the role of protein evolution in the emergence of the neural crest GRN, we examined the neural crest cell (NCC) differentiation-inducing activity of chordate FoxD genes. Amphioxus and vertebrate (Xenopus) FoxD proteins both exhibited transcriptional repressor activity in Gal4 transactivation assays and bound to similar DNA sequences in vitro. However, whereas vertebrate FoxD3 genes induced the differentiation of ectopic NCCs when overexpressed in chick neural tube, neither amphioxus FoxD nor any other vertebrate FoxD paralogs exhibited this activity. Experiments using chimeric proteins showed that the N-terminal portion of the vertebrate FoxD3 protein is critical to its NCC differentiation-inducing activity. Furthermore, replacement of the N-terminus of amphioxus FoxD with a 39-amino-acid segment from zebrafish FoxD3 conferred neural crest-inducing activity on amphioxus FoxD or zebrafish FoxD1. Therefore, fixation of this N-terminal amino acid sequence may have been crucial in the evolutionary recruitment of FoxD3 to the vertebrate neural crest GRN.
Collapse
Affiliation(s)
- Hiroki Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
145
|
Regad T. Molecular and cellular pathogenesis of melanoma initiation and progression. Cell Mol Life Sci 2013; 70:4055-65. [PMID: 23532409 PMCID: PMC11113476 DOI: 10.1007/s00018-013-1324-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/12/2022]
Abstract
Melanoma is a malignant tumor of melanocytes that can spread to other organs of the body, resulting in severe and/or lethal malignancies. Melanocytes are pigment-producing cells found in the deep layer of the epidermis and are originated from melanocytes stem cells through a cellular process called melanogenesis. Several genes and epigenetic and micro-environmental factors are involved in this process via the regulation and maintenance of the balance between melanocytes stem cells proliferation and their differentiation into melanocytes. Dysregulation of this balance through gain or loss of function of key genes implicated in the control and regulation of cell cycle progression and/or differentiation results in melanoma initiation and progression. This review aims to provide a comprehensive overview about the origin of melanocytes, the oncogenic events involved in melanocytes stem cells transformation, and the mechanisms implicated in the perpetuation of melanoma malignant phenotype.
Collapse
Affiliation(s)
- Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK,
| |
Collapse
|
146
|
Vadasz S, Marquez J, Tulloch M, Shylo NA, García-Castro MI. Pax7 is regulated by cMyb during early neural crest development through a novel enhancer. Development 2013; 140:3691-702. [PMID: 23942518 DOI: 10.1242/dev.088328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neural crest (NC) is a migratory population of cells unique to vertebrates that generates many diverse derivatives. NC cells arise during gastrulation at the neural plate border (NPB), which is later elevated as the neural folds (NFs) form and fuse in the dorsal region of the closed neural tube, from where NC cells emigrate. In chick embryos, Pax7 is an early marker, and necessary component of NC development. Unlike other early NPB markers, which are co-expressed in lateral ectoderm, medial neural plate or posterior-lateral mesoderm, Pax7 early expression seems more restricted to the NPB. However, the molecular mechanisms controlling early Pax7 expression remain poorly understood. Here, we identify a novel enhancer of Pax7 in avian embryos that replicates the expression of Pax7 associated with early NC development. Expression from this enhancer is found in early NPB, NFs and early emigrating NC, but unlike Pax7, which is also expressed in mesodermal derivatives, this enhancer is not active in somites. Further analysis demonstrates that cMyb is able to interact with this enhancer and modulates reporter and endogenous early Pax7 expression; thus, cMyb is identified as a novel regulator of Pax7 in early NC development.
Collapse
Affiliation(s)
- Stephanie Vadasz
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | |
Collapse
|
147
|
Simões-Costa M, Bronner ME. Insights into neural crest development and evolution from genomic analysis. Genome Res 2013; 23:1069-80. [PMID: 23817048 PMCID: PMC3698500 DOI: 10.1101/gr.157586.113] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neural crest is an excellent model system for the study of cell type diversification during embryonic development due to its multipotency, motility, and ability to form a broad array of derivatives ranging from neurons and glia, to cartilage, bone, and melanocytes. As a uniquely vertebrate cell population, it also offers important clues regarding vertebrate origins. In the past 30 yr, introduction of recombinant DNA technology has facilitated the dissection of the genetic program controlling neural crest development and has provided important insights into gene regulatory mechanisms underlying cell migration and differentiation. More recently, new genomic approaches have provided a platform and tools that are changing the depth and breadth of our understanding of neural crest development at a “systems” level. Such advances provide an insightful view of the regulatory landscape of neural crest cells and offer a new perspective on developmental as well as stem cell and cancer biology.
Collapse
Affiliation(s)
- Marcos Simões-Costa
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
148
|
Hermsen SA, Pronk TE, van den Brandhof EJ, van der Ven LT, Piersma AH. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation. Toxicol Appl Pharmacol 2013; 272:161-71. [DOI: 10.1016/j.taap.2013.05.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/01/2013] [Accepted: 05/22/2013] [Indexed: 11/15/2022]
|
149
|
Identification and dissection of a key enhancer mediating cranial neural crest specific expression of transcription factor, Ets-1. Dev Biol 2013; 382:567-75. [PMID: 23969311 DOI: 10.1016/j.ydbio.2013.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
Neural crest cells form diverse derivatives that vary according to their level of origin along the body axis, with only cranial neural crest cells contributing to facial skeleton. Interestingly, the transcription factor Ets-1 is uniquely expressed in cranial but not trunk neural crest, where it functions as a direct input into neural crest specifier genes, Sox10 and FoxD3. We have isolated and interrogated a cis-regulatory element, conserved between birds and mammals, that drives reporter expression in a manner that recapitulates that of endogenous Ets-1 expression in the neural crest. Within a minimal Ets-1 enhancer region, mutation of putative binding sites for SoxE, homeobox, Ets, TFAP2 or Fox proteins results in loss or reduction of neural crest enhancer activity. Morpholino-mediated loss-of-function experiments show that Sox9, Pax7, Msx1/2, Ets-1, TFAP2A and FoxD3, all are required for enhancer activity. In contrast, mutation of a putative cMyc/E-box sequence augments reporter expression, consistent with this being a repressor binding site. Taken together, these results uncover new inputs into Ets-1, revealing critical links in the cranial neural crest gene regulatory network.
Collapse
|
150
|
Vieux-Rochas M, Mascrez B, Krumlauf R, Duboule D. Combined function of HoxA and HoxB clusters in neural crest cells. Dev Biol 2013; 382:293-301. [PMID: 23850771 DOI: 10.1016/j.ydbio.2013.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
The evolution of chordates was accompanied by critical anatomical innovations in craniofacial development, along with the emergence of neural crest cells. The potential of these cells to implement a craniofacial program in part depends upon the (non-)expression of Hox genes. For instance, the development of jaws requires the inhibition of Hox genes function in the first pharyngeal arch. In contrast, Hox gene products induce craniofacial structures in more caudal territories. To further investigate which Hox gene clusters are involved in this latter role, we generated HoxA;HoxB cluster double mutant animals in cranial neural crest cells. We observed the appearance of a supernumerary dentary-like bone with an endochondral ossification around a neo-Meckel's cartilage matrix and an attachment of neo-muscle demonstrating that HoxB genes enhance the phenotype induced by the deletion of the HoxA cluster alone. In addition, a cervical and hypertrophic thymus was associated with the supernumerary dentary-like bone, which may reflect its ancestral position near the filtrating system. Altogether these results show that the HoxA and HoxB clusters cooperated during evolution to lead to present craniofacial diversity.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- School of Life Sciences, Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | | | | | | |
Collapse
|