101
|
Abstract
During gastrulation, the mesoderm spreads out between ectoderm and endoderm to form a mesenchymal cell layer. Surprisingly the underlying principles of mesoderm layer formation are very similar in evolutionarily distant species like the fruit fly, Drosophila melanogaster, and the frog, Xenopus laevis, in which the molecular and the cellular basis of mesoderm layer formation have been extensively studied. Complementary expression of growth factors in the ectoderm and their receptors in the mesoderm act to orient cellular protrusive activities and direct cell movement, leading to radial cell intercalation and the spreading of the mesoderm layer. This mechanism is contrasted with generic physical mechanisms of tissue spreading that consider the adhesive and physical properties of the cells and tissues. Both mechanisms need to be integrated to orchestrate mesenchymal morphogenesis.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
102
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
103
|
Kumburegama S, Wijesena N, Xu R, Wikramanayake AH. Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/β-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): Implications for the evolution of gastrulation. EvoDevo 2011; 2:2. [PMID: 21255391 PMCID: PMC3035026 DOI: 10.1186/2041-9139-2-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 01/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastrulation is a uniquely metazoan character, and its genesis was arguably the key step that enabled the remarkable diversification within this clade. The process of gastrulation involves two tightly coupled events during embryogenesis of most metazoans. Morphogenesis produces a distinct internal epithelial layer in the embryo, and this epithelium becomes segregated as an endoderm/endomesodermal germ layer through the activation of a specific gene regulatory program. The developmental mechanisms that induced archenteron formation and led to the segregation of germ layers during metazoan evolution are unknown. But an increased understanding of development in early diverging taxa at the base of the metazoan tree may provide insights into the origins of these developmental mechanisms. RESULTS In the anthozoan cnidarian Nematostella vectensis, initial archenteron formation begins with bottle cell-induced buckling of the blastula epithelium at the animal pole. Here, we show that bottle cell formation and initial gut invagination in Nematostella requires NvStrabismus (NvStbm), a maternally-expressed core component of the Wnt/Planar Cell Polarity (PCP) pathway. The NvStbm protein is localized to the animal pole of the zygote, remains asymmetrically expressed through the cleavage stages, and becomes restricted to the apical side of invaginating bottle cells at the blastopore. Antisense morpholino-mediated NvStbm-knockdown blocks bottle cell formation and initial archenteron invagination, but it has no effect on Wnt/ß-catenin signaling-mediated endoderm cell fate specification. Conversely, selectively blocking Wnt/ß-catenin signaling inhibits endoderm cell fate specification but does not affect bottle cell formation and initial archenteron invagination. CONCLUSIONS Our results demonstrate that Wnt/PCP-mediated initial archenteron invagination can be uncoupled from Wnt/ß-catenin-mediated endoderm cell fate specification in Nematostella, and provides evidence that these two processes could have evolved independently during metazoan evolution. We propose a two-step model for the evolution of an archenteron and the evolution of endodermal germ layer segregation. Asymmetric accumulation and activation of Wnt/PCP components at the animal pole of the last common ancestor to the eumetazoa may have induced the cell shape changes that led to the initial formation of an archenteron. Activation of Wnt/ß-catenin signaling at the animal pole may have led to the activation of a gene regulatory network that specified an endodermal cell fate in the archenteron.
Collapse
Affiliation(s)
- Shalika Kumburegama
- Department of Biology, The University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
- Department of Zoology, 2538 McCarthy Mall, The University of Hawaii at Manoa, Honolulu, HI 96822, USA
- These authors contributed equally to the paper
| | - Naveen Wijesena
- Department of Biology, The University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
- These authors contributed equally to the paper
| | - Ronghui Xu
- Department of Zoology, 2538 McCarthy Mall, The University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Athula H Wikramanayake
- Department of Biology, The University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| |
Collapse
|
104
|
Orihara-Ono M, Toriya M, Nakao K, Okano H. Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Dev Biol 2011; 351:163-75. [PMID: 21215740 DOI: 10.1016/j.ydbio.2010.12.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
The first step in the development of the Drosophila optic medullar primordia is the expansion of symmetrically dividing neuroepithelial cells (NEs); this step is then followed by the appearance of asymmetrically dividing neuroblasts (NBs). However, the mechanisms responsible for the change from NEs to NBs remain unclear. Here, we performed detailed analyses demonstrating that individual NEs are converted into NBs. We also showed that this transition occurs during an elongated G1 phase. During this G1 phase, the morphological features and gene expressions of each columnar NE changed dynamically. Once the NE-to-NB transition was completed, the former NE changed its cell-cycling behavior, commencing asymmetric division. We also found that Notch signaling pathway was activated just before the transition and was rapidly downregulated. Furthermore, the clonal loss of the Notch wild copy in the NE region near the medial edge caused the ectopic accumulation of Delta, leading to the precocious onset of transition. Taken together, these findings indicate that the activation of Notch signaling during a finite window coordinates the proper timing of the NE-to-NB transition.
Collapse
Affiliation(s)
- Minako Orihara-Ono
- Department of Physiology, Faculty of Medicine, Keio University, Tokyo, Zip 160-8582, Japan
| | | | | | | |
Collapse
|
105
|
Abstract
Cortical forces drive a variety of cell shape changes and cell movements during tissue morphogenesis. While the molecular components underlying these forces have been largely identified, how they assemble and spatially and temporally organize at cell surfaces to promote cell shape changes in developing tissues are open questions. We present here different key aspects of cortical forces: their physical nature, some rules governing their emergence, and how their deployment at cell surfaces drives important morphogenetic movements in epithelia. We review a wide range of literature combining genetic/molecular, biophysical and modeling approaches, which explore essential features of cortical force generation and transmission in tissues.
Collapse
Affiliation(s)
- Matteo Rauzi
- IBDML, UMR6216 CNRS-Université de Méditerraneé, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | |
Collapse
|
106
|
Abstract
During morphogenesis, tissues are shaped by cell behaviors such as apical cell constriction and cell intercalation, which are the result of cell intrinsic forces, but are also shaped passively by forces acting on the cells. The latter extrinsic forces can be produced either within the deforming tissue by the tissue-scale integration of intrinsic forces, or outside the tissue by other tissue movements or by fluid flows. Here we review the intrinsic and extrinsic forces that sculpt the epithelium of early Drosophila embryos, focusing on three conserved morphogenetic processes: tissue internalization, axis extension, and segment boundary formation. Finally, we look at how the actomyosin cytoskeleton forms force-generating structures that power these three morphogenetic events at the cell and the tissue scales.
Collapse
|
107
|
The yolk syncytial layer in early zebrafish development. Trends Cell Biol 2010; 20:586-92. [DOI: 10.1016/j.tcb.2010.06.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/28/2010] [Accepted: 06/28/2010] [Indexed: 11/30/2022]
|
108
|
Sherrard K, Robin F, Lemaire P, Munro E. Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr Biol 2010; 20:1499-510. [PMID: 20691592 PMCID: PMC4088275 DOI: 10.1016/j.cub.2010.06.075] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/22/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Epithelial invagination is a fundamental morphogenetic behavior that transforms a flat cell sheet into a pit or groove. Previous studies of invagination have focused on the role of actomyosin-dependent apical contraction; other mechanisms remain largely unexplored. RESULTS We combined experimental and computational approaches to identify a two-step mechanism for endoderm invagination during ascidian gastrulation. During Step 1, which immediately precedes invagination, endoderm cells constrict their apices because of Rho/Rho-kinase-dependent apical enrichment of 1P-myosin. Our data suggest that endoderm invagination itself occurs during Step 2, without further apical shrinkage, via a novel mechanism we call collared rounding: Rho/Rho-kinase-independent basolateral enrichment of 1P-myosin drives apico-basal shortening, whereas Rho/Rho-kinase-dependent enrichment of 1P and 2P myosin in circumapical collars is required to prevent apical expansion and for deep invagination. Simulations show that boundary-specific tension values consistent with these distributions of active myosin can explain the cell shape changes observed during invagination both in normal embryos and in embryos treated with pharmacological inhibitors of either Rho-kinase or Myosin II ATPase. Indeed, we find that the balance of strong circumapical and basolateral tension is the only mechanism based on differential cortical tension that can explain ascidian endoderm invagination. Finally, simulations suggest that mesectoderm cells resist endoderm shape changes during both steps, and we confirm this prediction experimentally. CONCLUSIONS Our findings suggest that early ascidian gastrulation is driven by the coordinated apposition of circumapical and lateral endoderm contraction, working against a resisting mesectoderm. We propose that similar mechanisms may operate during other invaginations.
Collapse
Affiliation(s)
- Kristin Sherrard
- Center for Cell Dynamics, Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA
| | | | | | | |
Collapse
|
109
|
Zhang H, Gally C, Labouesse M. Tissue morphogenesis: how multiple cells cooperate to generate a tissue. Curr Opin Cell Biol 2010; 22:575-82. [PMID: 20822890 DOI: 10.1016/j.ceb.2010.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
Genetic analysis in model organisms has recently achieved a detailed molecular description of many key cellular processes controlling embryonic morphogenesis. To understand higher order tissue morphogenesis, we now need to define how these processes become integrated across different cell groups and cell layers. Here, we review progress in this fast moving area, which was to a large degree made possible by novel imaging methods and the increasingly frequent use of modeling. Discussing examples from Caenorhabditis elegans and Drosophila embryos, two powerful and simple models, we highlight novel principles relying in part on mechanical tension, and outline the role of junctions as signal integrators.
Collapse
Affiliation(s)
- Huimin Zhang
- IGBMC, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, BP. 10142, 67404 Illkirch CEDEX, France
| | | | | |
Collapse
|
110
|
Hammond LM, Hofmann GE. Thermal tolerance of Strongylocentrotus purpuratus early life history stages: mortality, stress-induced gene expression and biogeographic patterns. MARINE BIOLOGY 2010; 157:2677-2687. [PMID: 24391252 PMCID: PMC3873058 DOI: 10.1007/s00227-010-1528-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 08/01/2010] [Indexed: 06/01/2023]
Abstract
In this study, we examined the differential thermal tolerance of Strongylocentrotus purpuratus early life history stages by comparing high temperature-induced mortality and the relative levels of the stress-induced gene, hsp70, between S. purpuratus embryos and larvae from adults collected throughout the species range. There was no significant difference between gastrulae and 4-arm plutei mortality from all sites examined. Furthermore, there was little variability in temperature tolerance across the biogeographic range as southern gastrulae and 4-arm plutei exhibited similar tolerances to northern individuals. Relative levels of hsp70 mRNA expression did not differ overall between the two developmental stages at each site. Across sites, all gastrulae and 4-arm plutei exhibited maximum hsp70 expression at approximately 25°C; however, the range of hsp70 expression was narrower in southern individuals, suggesting they are living closer to their upper thermal limit than northern individuals.
Collapse
Affiliation(s)
- LaTisha M. Hammond
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9620 USA
| | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9620 USA
| |
Collapse
|
111
|
Maurel-Zaffran C, Pradel J, Graba Y. Reiterative use of signalling pathways controls multiple cellular events during Drosophila posterior spiracle organogenesis. Dev Biol 2010; 343:18-27. [PMID: 20403348 DOI: 10.1016/j.ydbio.2010.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 03/07/2010] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
Abstract
Organogenesis proceeds in multiple steps and events that need to be coordinated in time and space. Yet the genetic and molecular control of such coordination remains poorly understood. In this study we have investigated the contribution of three signalling pathways, Wnt/Wingless (Wg), Hedgehog (Hh), and epidermal growth factor receptor (EGFR), to posterior spiracle morphogenesis, an organ that forms under Abdominal-B (AbdB) control in the eighth abdominal segment. Using targeted signalling inactivation, we show that these pathways are reiteratively used to control multiple cellular events during posterior spiracle organogenesis, including cell survival and maintenance of cell polarity and adhesion required for tissue integrity. We propose that the reiterative use of the Wg, Hh, and EGFR signalling pathways serves to coordinate in time and space the sequential deployment of events that collectively allow proper organogenesis.
Collapse
Affiliation(s)
- Corinne Maurel-Zaffran
- Institut de Biologie du Développement de Marseille Luminy, IBDML, CNRS, Université de la Méditerranée, Parc Scientifique de Luminy, Case 907 13288 Marseille Cedex 09, France.
| | | | | |
Collapse
|
112
|
Martin AC, Gelbart M, Fernandez-Gonzalez R, Kaschube M, Wieschaus EF. Integration of contractile forces during tissue invagination. ACTA ACUST UNITED AC 2010; 188:735-49. [PMID: 20194639 PMCID: PMC2835944 DOI: 10.1083/jcb.200910099] [Citation(s) in RCA: 394] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription factor Twist promotes cell junctions to link individual cells into a contractile network responsible for the apical constriction pulses during epithelial morphogenesis. Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin meshwork contractions and a ratchet-like stabilization of cell shape drive apical constriction. Here, we investigate how contractile forces are integrated across the tissue. Reducing adherens junction (AJ) levels or ablating actomyosin meshworks causes tissue-wide epithelial tears, which release tension that is predominantly oriented along the anterior–posterior (a-p) embryonic axis. Epithelial tears allow cells normally elongated along the a-p axis to constrict isotropically, which suggests that apical constriction generates anisotropic epithelial tension that feeds back to control cell shape. Epithelial tension requires the transcription factor Twist, which stabilizes apical myosin II, promoting the formation of a supracellular actomyosin meshwork in which radial actomyosin fibers are joined end-to-end at spot AJs. Thus, pulsed actomyosin contractions require a supracellular, tensile meshwork to transmit cellular forces to the tissue level during morphogenesis.
Collapse
Affiliation(s)
- Adam C Martin
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
113
|
Bertet C, Rauzi M, Lecuit T. Repression of Wasp by JAK/STAT signalling inhibits medial actomyosin network assembly and apical cell constriction in intercalating epithelial cells. Development 2010; 136:4199-212. [PMID: 19934015 DOI: 10.1242/dev.040402] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue morphogenesis requires stereotyped cell shape changes, such as apical cell constriction in the mesoderm and cell intercalation in the ventrolateral ectoderm of Drosophila. Both processes require force generation by an actomyosin network. The subcellular localization of Myosin-II (Myo-II) dictates these different morphogenetic processes. In the intercalating ectoderm Myo-II is mostly cortical, but in the mesoderm Myo-II is concentrated in a medial meshwork. We report that apical constriction is repressed by JAK/STAT signalling in the lateral ectoderm independently of Twist. Inactivation of the JAK/STAT pathway causes germband extension defects because of apical constriction ventrolaterally. This is associated with ectopic recruitment of Myo-II in a medial web, which causes apical cell constriction as shown by laser nanosurgery. Reducing Myo-II levels rescues the JAK/STAT mutant phenotype, whereas overexpression of the Myo-II heavy chain (also known as Zipper), or constitutive activation of its regulatory light chain, does not cause medial accumulation of Myo-II nor apical constriction. Thus, JAK/STAT controls Myo-II localization by additional mechanisms. We show that regulation of actin polymerization by Wasp, but not by Dia, is important in this process. Constitutive activation of Wasp, a branched actin regulator, causes apical cell constriction and promotes medial 'web' formation. Wasp is inactivated at the cell cortex in the germband by JAK/STAT signalling. Lastly, wasp mutants rescue the normal cortical enrichment of Myo-II and inhibit apical constriction in JAK/STAT mutants, indicating that Wasp is an effector of JAK/STAT signalling in the germband. We discuss possible models for the role of Wasp activity in the regulation of Myo-II distribution.
Collapse
Affiliation(s)
- Claire Bertet
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy, case 907, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
114
|
Sun CJ, Zhang L, Zhang WY. Gene expression profiling of maternal blood in early onset severe preeclampsia: identification of novel biomarkers. J Perinat Med 2010; 37:609-16. [PMID: 19681734 DOI: 10.1515/jpm.2009.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIMS To investigate candidate genes in peripheral blood mononuclear cell (PBMC) that are associated with early onset severe preeclampsia (ES-PE) and to describe candidate genes function using microarrays and real-time polymerase chain reaction (PCR). METHODS PBMC RNA was extracted from six patients with ES-PE and five uncomplicated pregnancies. The HG_U133 plus 2.0 Affymetrix GeneChips that represented 47,000 genes were used to measure gene expression in each sample. Significance analysis of microarray identified potential signature genes characterizing ES-PE vs. uncomplicated pregnancies. Eight genes were selected for confirmation by real-time PCR of 32 patients with ES-PE and 24 uncomplicated pregnancies, matched for maternal age, parity, race and gestational weeks. RESULTS Using a whole-genome approach to study the molecular determinants of ES-PE, 72 genes were found to be differentially expressed between cases and controls, including 38 up-regulated genes and 34 down-regulated genes in the group of ES-PE. Killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2 (KIR3DL2), aldo-keto reductase family 1, member C3 (AKR1C3), churchill domain containing 1 (CHURC1), and solute carrier family 25, member 13 (SLC25A13) were validated to be down-regulated in the patients with ES-PE by real-time PCR. CONCLUSIONS Expression of genes with diverse function is associated with ES-PE risk, providing opportunities for the development of non-invasive diagnosis.
Collapse
Affiliation(s)
- Cheng-Juan Sun
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, PR China
| | | | | |
Collapse
|
115
|
Luxardi G, Marchal L, Thomé V, Kodjabachian L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 2010; 137:417-26. [PMID: 20056679 DOI: 10.1242/dev.039735] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate body plan is established in two major steps. First, mesendoderm induction singles out prospective endoderm, mesoderm and ectoderm progenitors. Second, these progenitors are spatially rearranged during gastrulation through numerous and complex movements to give rise to an embryo comprising three concentric germ layers, polarised along dorsoventral, anteroposterior and left-right axes. Although much is known about the molecular mechanisms of mesendoderm induction, signals controlling gastrulation movements are only starting to be revealed. In vertebrates, Nodal signalling is required to induce the mesendoderm, which has precluded an analysis of its potential role during the later process of gastrulation. Using time-dependent inhibition, we show that in Xenopus, Nodal signalling plays sequential roles in mesendoderm induction and gastrulation movements. Nodal activity is necessary for convergent extension in axial mesoderm and for head mesoderm migration. Using morpholino-mediated knockdown, we found that the Nodal ligands Xnr5 and Xnr6 are together required for mesendoderm induction, whereas Xnr1 and Xnr2 act later to control gastrulation movements. This control is operated via the direct regulation of key movement-effector genes, such as papc, has2 and pdgfralpha. Interestingly, however, Nodal does not appear to mobilise the Wnt/PCP pathway, which is known to control cell and tissue polarity. This study opens the way to the analysis of the genetic programme and cell behaviours that are controlled by Nodal signalling during vertebrate gastrulation. It also provides a good example of the sub-functionalisation that results from the expansion of gene families in evolution.
Collapse
Affiliation(s)
- Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216, CNRS-Université de la Méditerranée, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
116
|
Olovnikov AM. Biological evolution based on nonrandom variability regulated by the organism. BIOCHEMISTRY (MOSCOW) 2009; 74:1404-8. [PMID: 19961425 DOI: 10.1134/s0006297909120177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A hypothetical mechanism for rapid and nonrandom emergence of evolutionary adaptations is proposed. It is supposed that some transcription factors and transcription regulators that are able to cross membranes can leave the cells of their origin and move within the organism using a specialized transport system when individual development occurs under conditions extreme for the given species. This system, in particular, connects soma with germline. The supply of germline cells with unusual transcription regulators changes the balance of their nuclear regulatory RNAs, thus initiating RNA-dependent epigenetic modifications of the germline genome and therefore changes in phenotypes of the progeny. It is highly probable that some of these phenotypes are adaptive and lay the basis for the origin of the next biological species. The proposed mechanism can serve as a basis for a new theory of the origin of species.
Collapse
Affiliation(s)
- A M Olovnikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
117
|
Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev Biol 2009; 341:114-25. [PMID: 19874815 DOI: 10.1016/j.ydbio.2009.10.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/18/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022]
Abstract
Embryonic development involves global changes in tissue shape and architecture that are driven by cell shape changes and rearrangements within cohesive cell sheets. Morphogenetic changes at the cell and tissue level require that cells generate forces and that these forces are transmitted between the cells of a coherent tissue. Contractile forces generated by the actin-myosin cytoskeleton are critical for morphogenesis, but the cellular and molecular mechanisms of contraction have been elusive for many cell shape changes and movements. Recent studies that have combined live imaging with computational and biophysical approaches have provided new insights into how contractile forces are generated and coordinated between cells and tissues. In this review, we discuss our current understanding of the mechanical forces that shape cells, tissues, and embryos, emphasizing the different modes of actomyosin contraction that generate various temporal and spatial patterns of force generation.
Collapse
|
118
|
Abstract
The migration of single cells and epithelial sheets is of great importance for gastrulation and organ formation in developing embryos and, if misregulated, can have dire consequences e.g. during cancer metastasis. A keystone of cell migration is the regulation of adhesive contacts, which are dynamically assembled and disassembled via endocytosis. Here, we discuss some of the basic concepts about the function of endocytic trafficking during cell migration: transport of integrins from the cell rear to the leading edge in fibroblasts; confinement of signalling to the front of single cells by endocytic transport of growth factors; regulation of movement coherence in multicellular sheets by cadherin turnover; and shaping of extracellular chemokine gradients. Taken together, endocytosis enables migrating cells and tissues to dynamically modulate their adhesion and signalling, allowing them to efficiently migrate through their extracellular environment.
Collapse
Affiliation(s)
- Florian Ulrich
- Skirball Institute of Biomolecular Medicine, New York, USA
| | | |
Collapse
|
119
|
Wang Y, Steinbeisser H. Molecular basis of morphogenesis during vertebrate gastrulation. Cell Mol Life Sci 2009; 66:2263-73. [PMID: 19347571 PMCID: PMC11115717 DOI: 10.1007/s00018-009-0018-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/23/2009] [Accepted: 03/06/2009] [Indexed: 10/20/2022]
Abstract
Gastrulation is a crucial step in early embryogenesis. During gastrulation, a set of morphogenetic processes takes place leading to the establishment of the basic body plan and formation of primary germ layers. A rich body of knowledge about these morphogenetic processes has been accumulated over decades. The understanding of the molecular mechanism that controls the complex cell movement and inductive processes during gastrulation remains a challenge. Substantial progress has been made recently to identify and characterize pathways and molecules implicated in the modulation of morphogenesis during vertebrate gastrulation. Here, we summarize recent findings in the analysis of signaling pathways implicated in gastrulation movements, with the aim to generalize the basic molecular principles of vertebrate morphogenesis.
Collapse
Affiliation(s)
- Yingqun Wang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | | |
Collapse
|
120
|
Martinez-Morales JR, Rembold M, Greger K, Simpson JC, Brown KE, Quiring R, Pepperkok R, Martin-Bermudo MD, Himmelbauer H, Wittbrodt J. ojoplano-mediated basal constriction is essential for optic cup morphogenesis. Development 2009; 136:2165-75. [DOI: 10.1242/dev.033563] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the vertebrate retina is a well-studied paradigm for organogenesis, the morphogenetic mechanisms that carve the architecture of the vertebrate optic cup remain largely unknown. Understanding how the hemispheric shape of an eye is formed requires addressing the fundamental problem of how individual cell behaviour is coordinated to direct epithelial morphogenesis. Here, we analyze the role of ojoplano (opo), an uncharacterized gene whose human ortholog is associated with orofacial clefting syndrome, in the morphogenesis of epithelial tissues. Most notably,when opo is mutated in medaka fish, optic cup folding is impaired. We characterize optic cup morphogenesis in vivo and determine at the cellular level how opo affects this process. opo encodes a developmentally regulated transmembrane protein that localizes to compartments of the secretory pathway and to basal end-feet of the neuroepithelial precursors. We show that Opo regulates the polarized localization of focal adhesion components to the basal cell surface. Furthermore, tissue-specific interference with integrin-adhesive function impairs optic cup folding,resembling the ocular phenotype observed in opo mutants. We propose a model of retinal morphogenesis whereby opo-mediated formation of focal contacts is required to transmit the mechanical tensions that drive the macroscopic folding of the vertebrate optic cup.
Collapse
Affiliation(s)
- Juan Ramon Martinez-Morales
- Developmental unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Centro Andaluz de Biología del Desarrollo (UPO/CSIC), 41013 Sevilla,Spain
| | - Martina Rembold
- Developmental unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Klaus Greger
- Cell Biology unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jeremy C. Simpson
- Cell Biology unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Rebecca Quiring
- Developmental unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Heinz Himmelbauer
- Max-Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin-Dahlem, Germany
| | - Joachim Wittbrodt
- Developmental unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
121
|
Rohrschneider MR, Nance J. Polarity and cell fate specification in the control of Caenorhabditis elegans gastrulation. Dev Dyn 2009; 238:789-96. [PMID: 19253398 DOI: 10.1002/dvdy.21893] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gastrulation is a time during development when cells destined to produce internal tissues and organs move from the surface of the embryo into the interior. It is critical that the cell movements of gastrulation be precisely controlled, and coordinated with cell specification, in order for the embryo to develop normally. Caenorhabditis elegans gastrulation is relatively simple, can be observed easily in the transparent embryo, and can be manipulated genetically to uncover important regulatory mechanisms. Many of these cellular and molecular mechanisms, including cell shape, cytoskeletal, and cell cycle changes, appear to be conserved from flies to vertebrates. Here we review gastrulation in C. elegans, with an emphasis on recent data linking contact-induced cell polarity, PAR proteins, and cell fate specification to gastrulation control.
Collapse
Affiliation(s)
- Monica R Rohrschneider
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine and Helen and Martin Kimmel Center for Biology and Medicine, NYU School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
122
|
Widmann TJ, Dahmann C. Dpp signaling promotes the cuboidal-to-columnar shape transition of Drosophila wing disc epithelia by regulating Rho1. J Cell Sci 2009; 122:1362-73. [DOI: 10.1242/jcs.044271] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Morphogenesis is largely driven by changes in the shape of individual cells. However, how cell shape is regulated in developing animals is not well understood. Here, we show that the onset of TGFβ/Dpp signaling activity correlates with the transition from cuboidal to columnar cell shape in developing Drosophila melanogaster wing disc epithelia. Dpp signaling is necessary for maintaining this elongated columnar cell shape and overactivation of the Dpp signaling pathway results in precocious cell elongation. Moreover, we provide evidence that Dpp signaling controls the subcellular distribution of the activities of the small GTPase Rho1 and the regulatory light chain of non-muscle myosin II (MRLC). Alteration of Rho1 or MRLC activity has a profound effect on apical-basal cell length. Finally, we demonstrate that a decrease in Rho1 or MRLC activity rescues the shortening of cells with compromised Dpp signaling. Our results identify a cell-autonomous role for Dpp signaling in promoting and maintaining the elongated columnar shape of wing disc cells and suggest that Dpp signaling acts by regulating Rho1 and MRLC.
Collapse
Affiliation(s)
- Thomas J. Widmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Christian Dahmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
123
|
Lin F, Chen S, Sepich DS, Panizzi JR, Clendenon SG, Marrs JA, Hamm HE, Solnica-Krezel L. Galpha12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. ACTA ACUST UNITED AC 2009; 184:909-21. [PMID: 19307601 PMCID: PMC2664974 DOI: 10.1083/jcb.200805148] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation, and involves coordinated movements of several cell layers. Although recent studies have begun to elucidate the processes that underlie these epibolic movements, the cellular and molecular mechanisms involved remain to be fully defined. Here, we show that gastrulae with altered Galpha(12/13) signaling display delayed epibolic movement of the deep cells, abnormal movement of dorsal forerunner cells, and dissociation of cells from the blastoderm, phenocopying e-cadherin mutants. Biochemical and genetic studies indicate that Galpha(12/13) regulate epiboly, in part by associating with the cytoplasmic terminus of E-cadherin, and thereby inhibiting E-cadherin activity and cell adhesion. Furthermore, we demonstrate that Galpha(12/13) modulate epibolic movements of the enveloping layer by regulating actin cytoskeleton organization through a RhoGEF/Rho-dependent pathway. These results provide the first in vivo evidence that Galpha(12/13) regulate epiboly through two distinct mechanisms: limiting E-cadherin activity and modulating the organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Fang Lin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Ueki N, Nishii I. Controlled enlargement of the glycoprotein vesicle surrounding a volvox embryo requires the InvB nucleotide-sugar transporter and is required for normal morphogenesis. THE PLANT CELL 2009; 21:1166-81. [PMID: 19346464 PMCID: PMC2685634 DOI: 10.1105/tpc.109.066159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here, we report our analysis of a mutant of Volvox carteri, InvB, whose embryos fail to execute inversion, the process in which each Volvox embryo normally turns itself inside-out at the end of embryogenesis, thereby achieving the adult configuration. The invB gene encodes a nucleotide-sugar transporter that exhibits GDP-mannose transport activity when expressed in yeast. In wild-type embryos, the invB transcript is maximally abundant before and during inversion. A mannoside probe (fluorescent concanavalin A) stains the glycoprotein-rich gonidial vesicle (GV) surrounding wild-type embryos much more strongly than it stains the GV surrounding InvB embryos. Direct measurements revealed that throughout embryogenesis the GV surrounding a wild-type embryo increases in size much more than the GV surrounding an InvB embryo does, and the fully cleaved InvB embryo is much more tightly packed within its GV than a wild-type embryo is. To test the hypothesis that the restraint imposed by a smaller than normal GV directly causes the inversion defect in the mutant, we released InvB embryos from their GVs microsurgically. The resulting embryos inverted normally, demonstrating that controlled enlargement of the GV, by a process in which requires the InvB nucleotide-sugar transporter, is essential to provide the embryo sufficient space to complete inversion.
Collapse
Affiliation(s)
- Noriko Ueki
- Nishii Initiative Research Unit, RIKEN Advanced Science Institute, Wako-shi, 351-0198, Japan.
| | | |
Collapse
|
125
|
Hammerschmidt M, Wedlich D. Regulated adhesion as a driving force of gastrulation movements. Development 2009; 135:3625-41. [PMID: 18952908 DOI: 10.1242/dev.015701] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent data have reinforced the fundamental role of regulated cell adhesion as a force that drives morphogenesis during gastrulation. As we discuss, cell adhesion is required for all modes of gastrulation movements in all organisms. It can even be instructive in nature, but it must be tightly and dynamically regulated. The picture that emerges from the recent findings that we review here is that different modes of gastrulation movements use the same principles of adhesion regulation, while adhesion molecules themselves coordinate the intra- and extracellular changes required for directed cell locomotion.
Collapse
|
126
|
Martín‐Belmonte F, Rodríguez‐Fraticelli AE. Chapter 3 Acquisition of Membrane Polarity in Epithelial Tube Formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:129-82. [DOI: 10.1016/s1937-6448(08)02003-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
127
|
McMahon A, Supatto W, Fraser SE, Stathopoulos A. Dynamic analyses of Drosophila gastrulation provide insights into collective cell migration. Science 2008; 322:1546-50. [PMID: 19056986 DOI: 10.1126/science.1167094] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The concerted movement of cells from different germ layers contributes to morphogenesis during early embryonic development. Using an optimized imaging approach and quantitative methods, we analyzed the trajectories of hundreds of ectodermal cells and internalized mesodermal cells within Drosophila embryos over 2 hours during gastrulation. We found a high level of cellular organization, with mesoderm cell movements correlating with some but not all ectoderm movements. During migration, the mesoderm population underwent two ordered waves of cell division and synchronous cell intercalation, and cells at the leading edge stably maintained position. Fibroblast growth factor (FGF) signaling guides mesodermal cell migration; however, we found some directed dorsal migration in an FGF receptor mutant, which suggests that additional signals are involved. Thus, decomposing complex cellular movements can provide detailed insights into collective cell migration.
Collapse
Affiliation(s)
- Amy McMahon
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
128
|
Abstract
Animal tissue and organ development requires the orchestration of cell movements, including those of interconnected cell groups, termed collective cell movements. Such movements are incredibly diverse. Recent work suggests that two core cellular properties, cell-cell adhesion and contractility, can largely determine geometry, packing, sorting, and rearrangement of epithelial cell layers. Two additional force-generating properties, the ability to generate cell protrusions and cell adhesion to the extracellular matrix, contribute to active motility. These mechanical properties can be regulated independently in cells, suggesting that they can be employed in a combinatorial manner. A small number of properties used in combination could, in principle, generate a diverse array of cell shapes and arrangements and thus orchestrate the varied morphogenetic events observed during metazoan organ development.
Collapse
Affiliation(s)
- Denise J Montell
- Department of Biological Chemistry, Center for Cell Dynamics, Rangos Building, Suite 450, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
129
|
A targeted gain-of-function screen identifies genes affecting salivary gland morphogenesis/tubulogenesis in Drosophila. Genetics 2008; 181:543-65. [PMID: 19064711 DOI: 10.1534/genetics.108.094052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development individual cells in tissues undergo complex cell-shape changes to drive the morphogenetic movements required to form tissues. Cell shape is determined by the cytoskeleton and cell-shape changes critically depend on a tight spatial and temporal control of cytoskeletal behavior. We have used the formation of the salivary glands in the Drosophila embryo, a process of tubulogenesis, as an assay for identifying factors that impinge on cell shape and the cytoskeleton. To this end we have performed a gain-of-function screen in the salivary glands, using a collection of fly lines carrying EP-element insertions that allow the overexpression of downstream-located genes using the UAS-Gal4 system. We used a salivary-gland-specific fork head-Gal4 line to restrict expression to the salivary glands, in combination with reporters of cell shape and the cytoskeleton. We identified a number of genes known to affect salivary gland formation, confirming the effectiveness of the screen. In addition, we found many genes not implicated previously in this process, some having known functions in other tissues. We report the initial characterization of a subset of genes, including chickadee, rhomboid1, egalitarian, bitesize, and capricious, through comparison of gain- and loss-of-function phenotypes.
Collapse
|
130
|
Pulsed contractions of an actin-myosin network drive apical constriction. Nature 2008; 457:495-9. [PMID: 19029882 DOI: 10.1038/nature07522] [Citation(s) in RCA: 875] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/07/2008] [Indexed: 11/08/2022]
Abstract
Apical constriction facilitates epithelial sheet bending and invagination during morphogenesis. Apical constriction is conventionally thought to be driven by the continuous purse-string-like contraction of a circumferential actin and non-muscle myosin-II (myosin) belt underlying adherens junctions. However, it is unclear whether other force-generating mechanisms can drive this process. Here we show, with the use of real-time imaging and quantitative image analysis of Drosophila gastrulation, that the apical constriction of ventral furrow cells is pulsed. Repeated constrictions, which are asynchronous between neighbouring cells, are interrupted by pauses in which the constricted state of the cell apex is maintained. In contrast to the purse-string model, constriction pulses are powered by actin-myosin network contractions that occur at the medial apical cortex and pull discrete adherens junction sites inwards. The transcription factors Twist and Snail differentially regulate pulsed constriction. Expression of snail initiates actin-myosin network contractions, whereas expression of twist stabilizes the constricted state of the cell apex. Our results suggest a new model for apical constriction in which a cortical actin-myosin cytoskeleton functions as a developmentally controlled subcellular ratchet to reduce apical area incrementally.
Collapse
|
131
|
Yakoby N, Bristow CA, Gong D, Schafer X, Lembong J, Zartman JJ, Halfon MS, Schüpbach T, Shvartsman SY. A combinatorial code for pattern formation in Drosophila oogenesis. Dev Cell 2008; 15:725-37. [PMID: 19000837 PMCID: PMC2822874 DOI: 10.1016/j.devcel.2008.09.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/27/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.
Collapse
Affiliation(s)
- Nir Yakoby
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Heisenberg CP, Solnica-Krezel L. Back and forth between cell fate specification and movement during vertebrate gastrulation. Curr Opin Genet Dev 2008; 18:311-6. [PMID: 18721878 DOI: 10.1016/j.gde.2008.07.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/06/2008] [Accepted: 07/21/2008] [Indexed: 11/16/2022]
Abstract
Animal body plan arises during gastrulation and organogenesis by the coordination of inductive events and cell movements. Several signaling pathways, such as BMP, FGF, Hedgehog, Nodal, and Wnt have well-recognized instructive roles in cell fate specification during vertebrate embryogenesis. Growing evidence indicates that BMP, Nodal, and FGF signaling also regulate cell movements, and that they do so through mechanisms distinct from those that specify cell fates. Moreover, pathways controlling cell movements can also indirectly influence cell fate specification by regulating dimensions and relative positions of interacting tissues. The current challenge is to delineate the molecular mechanisms via which the major signaling pathways regulate cell fate specification and movements, and how these two processes are coordinated to ensure normal development.
Collapse
|
133
|
Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U. FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 2008; 135:1761-9. [PMID: 18441276 DOI: 10.1242/dev.020784] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor (FGF) signalling regulates essential developmental processes in vertebrates and invertebrates, but its role during early metazoan evolution remains obscure. Here, we analyse the function of FGF signalling in a non-bilaterian animal, the sea anemone Nematostella vectensis. We identified the complete set of FGF ligands and FGF receptors, of which two paralogous FGFs (NvFGFa1 and NvFGFa2) and one FGF receptor (NvFGFRa) are specifically coexpressed in the developing apical organ, a sensory structure located at the aboral pole of ciliated larvae from various phyla. Morpholino-mediated knockdown experiments reveal that NvFGFa1 and NvFGFRa are required for the formation of the apical organ, whereas NvFGFa2 counteracts NvFGFRa signalling to prevent precocious and ectopic apical organ development. Marker gene expression analysis shows that FGF signalling regulates local patterning in the aboral region. Furthermore, NvFGFa1 activates its own expression and that of the antagonistic NvFGFa2, thereby establishing positive- and negative-feedback loops. Finally, we show that loss of the apical organ upon NvFGFa1 knockdown blocks metamorphosis into polyps. We propose that the control of the development of sensory structures at the apical pole of ciliated larvae is an ancestral function of FGF signalling.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway.
| | | | | | | |
Collapse
|
134
|
Lou X, Li S, Wang J, Ding X. Activin/nodal signaling modulates XPAPC expression during Xenopus gastrulation. Dev Dyn 2008; 237:683-91. [PMID: 18265000 DOI: 10.1002/dvdy.21456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Gastrulation is the first obligatory morphogenesis during vertebrate development, by which the body plan is established. Nodal signaling is a key player in many developmental processes, including gastrulation. XPAPC has been found to exert its biological function through modifying the adhesion property of cells and interacting with other several important molecules in embryos. In this report, we show that nodal signaling is necessary and sufficient for XPAPC expression during Xenopus gastrulation. Furthermore, we isolated 4.8 kb upstream DNA sequence of Xenopus XPAPC, and proved that this 4.8-kb genomic contig is sufficient to recapitulate the expression pattern of XPAPC from gastrula to tail bud stage. Transgene and ChIP assays indicate that Activin/nodal signaling participates in regulation of XPAPC expression through a Smad binding element within the XPAPC promoter. Concomitant investigation suggests that the canonical Wnt pathway-activated XPAPC expression requires nodal signaling.
Collapse
Affiliation(s)
- Xin Lou
- Key Laboratory of Stem Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
135
|
Sevilla LM, Rana AA, Watt FM, Smith JC. KazrinA is required for axial elongation and epidermal integrity inXenopus tropicalis. Dev Dyn 2008; 237:1718-25. [DOI: 10.1002/dvdy.21557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
136
|
Demongeot J, Elena A, Sené S. Robustness in regulatory networks: a multi-disciplinary approach. Acta Biotheor 2008; 56:27-49. [PMID: 18379883 DOI: 10.1007/s10441-008-9029-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
We give in this paper indications about the dynamical impact (as phenotypic changes) coming from the main sources of perturbation in biological regulatory networks. First, we define the boundary of the interaction graph expressing the regulations between the main elements of the network (genes, proteins, metabolites, ...). Then, we search what changes in the state values on the boundary could cause some changes of states in the core of the system (robustness to boundary conditions). After, we analyse the role of the mode of updating (sequential, block sequential or parallel) on the asymptotics of the network, essentially on the occurrence of limit cycles (robustness to updating methods). Finally, we show the influence of some topological changes (e.g. suppression or addition of interactions) on the dynamical behaviour of the system (robustness to topology perturbations).
Collapse
|
137
|
Sudarov A, Joyner AL. Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev 2007; 2:26. [PMID: 18053187 PMCID: PMC2246128 DOI: 10.1186/1749-8104-2-26] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 12/03/2007] [Indexed: 11/23/2022] Open
Abstract
Background The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a broad platform on which the anterior-posterior organization of the sensory-motor circuits of the cerebellum are built, it is important to understand how such complex morphology arises. Results Using a combination of genetic inducible fate mapping, high-resolution cellular analysis and mutant studies in mouse, we demonstrate that a key event in initiation of foliation is the acquisition of a distinct cytoarchitecture in the regions that will become the base of each fissure. We term these regions 'anchoring centers'. We show that the first manifestation of anchoring centers when the cerebellar outer surface is smooth is an increase in proliferation and inward thickening of the granule cell precursors, which likely causes an associated slight invagination of the Purkinje cell layer. Thereafter, granule cell precursors within anchoring centers become distinctly elongated along the axis of the forming fissure. As the outer cerebellar surface begins to fold inwards, Bergmann glial fibers radiate in towards the base of the immature fissure in a fan shape. Once the anchoring center is formed, outgrowth of folia seems to proceed in a self-sustaining manner driven by granule cell migration along Bergmann glial fibers. Finally, by analyzing a cerebellum foliation mutant (Engrailed 2), we demonstrate that changing the timing of anchoring center formation leads to predictable changes in the shape and size of the surrounding folia. Conclusion We present a new cellular model of the initial formation of cerebellar fissures with granule cells providing the driving physical force. Both the precise timing of the appearance of anchoring centers at the prospective base of each fissure and the subsequent coordinated action of granule cells and Bergmann glial fibers within the anchoring centers dictates the shape of the folia.
Collapse
Affiliation(s)
- Anamaria Sudarov
- Developmental Biology Program, Sloan-Kettering Institute, York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
138
|
Wilkins SJ, Yoong S, Verkade H, Mizoguchi T, Plowman SJ, Hancock JF, Kikuchi Y, Heath JK, Perkins AC. Mtx2 directs zebrafish morphogenetic movements during epiboly by regulating microfilament formation. Dev Biol 2007; 314:12-22. [PMID: 18154948 DOI: 10.1016/j.ydbio.2007.10.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 11/16/2022]
Abstract
The homeobox transcription factor Mtx2 is essential for epiboly, the first morphogenetic movement of gastrulation in zebrafish. Morpholino knockdown of Mtx2 results in stalling of epiboly and lysis due to yolk rupture. However, the mechanism of Mtx2 action is unknown. The role of mtx2 is surprising as most mix/bix family genes are thought to have roles in mesendoderm specification. Using a transgenic sox17-promoter driven EGFP line, we show that Mtx2 is not required for endoderm specification but is required for correct morphogenetic movements of endoderm and axial mesoderm. During normal zebrafish development, mtx2 is expressed at both the blastoderm margin and in the zebrafish equivalent of visceral endoderm, the extra-embryonic yolk syncytial layer (YSL). We show that formation of the YSL is not Mtx2 dependent, but that Mtx2 directs spatial arrangement of YSL nuclei. Furthermore, we demonstrate that Mtx2 knockdown results in loss of the YSL F-actin ring, a microfilament structure previously shown to be necessary for epiboly progression. In summary, we propose that Mtx2 acts within the YSL to regulate morphogenetic movements of both embryonic and extra-embryonic tissues, independently of cell fate specification.
Collapse
Affiliation(s)
- Simon J Wilkins
- Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Murray MJ, Saint R. Photoactivatable GFP resolves Drosophila mesoderm migration behaviour. Development 2007; 134:3975-83. [PMID: 17942486 DOI: 10.1242/dev.005389] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesoderm migration is a pivotal event in the early embryonic development of animals. One of the best-studied examples occurs during Drosophila gastrulation. Here, mesodermal cells invaginate, undergo an epithelial-to-mesenchymal transition (EMT), and spread out dorsally over the inner surface of the ectoderm. Although several genes required for spreading have been identified, our inability to visualise mesodermal cells in living embryos has left us to speculate about the cell rearrangements involved. Several mechanisms, such as chemotaxis towards a dorsally expressed attractant, differential affinity between mesodermal cells and the ectoderm, and convergent extension, have been proposed. Here we resolve the behaviour of Drosophila mesodermal cells in live embryos using photoactivatable-GFP fused to alpha-Tubulin (PAGFP-Tub). By photoactivating presumptive mesodermal cells before gastrulation, we could observe their migration over non-fluorescent ectodermal cells. We show that the outermost (outer) cells, which are in contact with the ectoderm, migrate dorsolaterally as a group but can be overtaken by more internal (inner) cells. Using laser-photoactivation of individual cells, we then show that inner cells adjacent to the centre of the furrow migrate dorsolaterally away from the midline to reach dorsal positions, while cells at the centre of the furrow disperse randomly across the mesoderm, before intercalating with outer cells. These movements are dependent on the FGF receptor Heartless. The results indicate that chemotactic movement and differential affinity are the primary drivers of mesodermal cell spreading. These characterisations pave the way for a more detailed analysis of gene function during early mesoderm development.
Collapse
Affiliation(s)
- Michael J Murray
- The ARC Special Research Centre for the Molecular Genetics of Development and Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
140
|
Lee BM, Buck-Koehntop BA, Martinez-Yamout MA, Dyson HJ, Wright PE. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster. J Mol Biol 2007; 371:1274-89. [PMID: 17610897 PMCID: PMC1994575 DOI: 10.1016/j.jmb.2007.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/20/2022]
Abstract
Churchill is a zinc-containing protein that is involved in neural induction during embryogenesis. At the time of its discovery, it was thought on the basis of sequence alignment to contain two zinc fingers of the C4 type. Further, binding of an N-terminal GST-Churchill fusion protein to a particular DNA sequence was demonstrated by immunoprecipitation selection assay, suggesting that Churchill may function as a transcriptional regulator by sequence-specific DNA binding. We show by NMR solution structure determination that, far from containing canonical C4 zinc fingers, the protein contains three bound zinc ions in novel coordination sites, including an unusual binuclear zinc cluster. The secondary structure of Churchill is also unusual, consisting of a highly solvent-exposed single-layer beta-sheet. Hydrogen-deuterium exchange and backbone relaxation measurements reveal that Churchill is unusually dynamic on a number of time scales, with the exception of regions surrounding the zinc coordinating sites, which serve to stabilize the otherwise unstructured N terminus and the single-layer beta-sheet. No binding of Churchill to the previously identified DNA sequence could be detected, and extensive searches using DNA sequence selection techniques could find no other DNA sequence that was bound by Churchill. Since the N-terminal amino acids of Churchill form part of the zinc-binding motif, the addition of a fusion protein at the N terminus causes loss of zinc and unfolding of Churchill. This observation most likely explains the published DNA-binding results, which would arise due to non-specific interaction of the unfolded protein in the immunoprecipitation selection assay. Since Churchill does not appear to bind DNA, we suggest that it may function in embryogenesis as a protein-interaction factor.
Collapse
Affiliation(s)
- Brian M Lee
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
141
|
Iioka H, Iemura SI, Natsume T, Kinoshita N. Wnt signalling regulates paxillin ubiquitination essential for mesodermal cell motility. Nat Cell Biol 2007; 9:813-21. [PMID: 17558393 DOI: 10.1038/ncb1607] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 05/23/2007] [Indexed: 12/28/2022]
Abstract
Gastrulation movements are critical for establishing the three germ layers and the architecture of vertebrate embryos. During Xenopus laevis gastrulation, mesodermal tissue migrates on the blastocoel roof and elongates along the antero-posterior axis. During this process, cells in the dorsal mesoderm are polarized and intercalate with each other, which is defined as convergent extension and is known to be regulated by the non-canonical Wnt pathway. Here, we show that paxillin plays an essential role in this process. Paxillin is a focal-adhesion associated protein implicated in the regulation of actin cytoskeletal organization and cell motility, but its role in Xenopus embryogenesis has not yet been clarified. We demonstrate that the Wnt pathway controls the ubiquitination and stability of paxillin, and that this regulatory mechanism is essential for convergent extension movements. We identified a RING finger protein XRNF185, which physically binds to paxillin and the proteasome. XRNF185 destabilizes paxillin at focal adhesions and promotes mesodermal cell migration during convergent extension. We propose a mechanism to regulate gastrulation movements that involves paxillin ubiquitination and stability controlled by Wnt signalling.
Collapse
Affiliation(s)
- Hidekazu Iioka
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | | | |
Collapse
|
142
|
Zeng XXI, Wilm TP, Sepich DS, Solnica-Krezel L. Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev Cell 2007; 12:391-402. [PMID: 17336905 DOI: 10.1016/j.devcel.2007.01.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 12/16/2006] [Accepted: 01/17/2007] [Indexed: 12/22/2022]
Abstract
The vertebrate heart arises during gastrulation as cardiac precursors converge from the lateral plate mesoderm territories toward the embryonic midline and extend rostrally to form bilateral heart fields. G protein-coupled receptors (GPCRs) mediate functions of the nervous and immune systems; however, their roles in gastrulation remain largely unexplored. Here, we show that the zebrafish homologs of the Agtrl1b receptor and its ligand, Apelin, implicated in physiology and angiogenesis, control heart field formation. Zebrafish gastrulae express agtrl1b in the lateral plate mesoderm, while apelin expression is confined to the midline. Reduced or excess Agtrl1b or Apelin function caused deficiency of cardiac precursors and, subsequently, the heart. In Apelin-deficient gastrulae, the cardiac precursors converged inefficiently to the heart fields and showed ectopic distribution, whereas cardiac precursors overexpressing Apelin exhibited abnormal morphology and rostral migration. Our results implicate GPCR signaling in movements of discrete cell populations that establish organ rudiments during vertebrate gastrulation.
Collapse
Affiliation(s)
- Xin-Xin I Zeng
- Vanderbilt University, Department of Biological Sciences, VU Station B 35-1634, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
143
|
Montell DJ. The social lives of migrating cells in Drosophila. Curr Opin Genet Dev 2006; 16:374-83. [PMID: 16797177 DOI: 10.1016/j.gde.2006.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/09/2006] [Indexed: 11/29/2022]
Abstract
Studies of cell migration in Drosophila are yielding insights into the complex interactions migrating cells have with each other and with the cells in their environment. Intriguing links between factors that promote cell migration and those that control cell survival have been reported recently. For example, migrating germ cells compete with the surrounding somatic tissue for the substrate of the lipid phosphate phosphatases encoded by the genes Wunen and Wunen2. Germ cells take up the dephosphorylated lipid and require it for their survival. In addition, the secreted growth factors called PVFs, previously thought to guide the migrations of hemocytes in the embryo, were found to function instead predominantly as survival factors. And in border cells, DIAP1 and Dronc, two proteins known mainly for their ability to regulate cell death, were found to control cell migration.
Collapse
Affiliation(s)
- Denise J Montell
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| |
Collapse
|
144
|
Solnica-Krezel L. Gastrulation in zebrafish — all just about adhesion? Curr Opin Genet Dev 2006; 16:433-41. [PMID: 16797963 DOI: 10.1016/j.gde.2006.06.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
During vertebrate gastrulation, the evolutionarily conserved morphogenetic movements of epiboly, internalization, convergence and extension cooperate to generate germ layers and to sculpt the body plan. In zebrafish, these movements are driven by a variety of cell behaviors, including slow and fast directed migration, radial and mediolateral intercalation, and cell shape changes. Whereas some signaling pathways are required for a subset of these behaviors, other molecules, such as E-cadherin or Galpha12 and Galpha13 proteins, appear to have a widespread role in different gastrulation cell behaviors.
Collapse
|
145
|
Tassy O, Daian F, Hudson C, Bertrand V, Lemaire P. A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis. Curr Biol 2006; 16:345-58. [PMID: 16488868 DOI: 10.1016/j.cub.2005.12.044] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/23/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The prospects of deciphering the genetic program underlying embryonic development were recently boosted by the generation of large sets of precisely organized quantitative molecular data. In contrast, although the precise arrangement, interactions, and shapes of cells are crucial for the fulfilment of this program, their description remains coarse and qualitative. To bridge this gap, we developed a generic software, 3D Virtual Embryo, to quantify the geometry and interactions of cells in interactive three-dimensional embryo models. We applied this approach to early ascidian embryos, chosen because of their simplicity and their phylogenetic proximity to vertebrates. RESULTS We generated a collection of 19 interactive ascidian embryos between the 2- and 44-cell stages. We characterized the evolution with time, and in different cell lineages, of the volume of cells and of eight mathematical descriptors of their geometry, and we measured the surface of contact between neighboring blastomeres. These analyses first revealed that early embryonic blastomeres adopt a surprising variety of shapes, which appeared to be under strict and dynamic developmental control. Second, we found novel asymmetric cell divisions in the posterior vegetal lineages, which gave birth to sister cells with different fates. Third, during neural induction, differences in the area of contact between individual competent animal cells and inducing vegetal blastomeres appeared important to select the induced cells. CONCLUSIONS In addition to novel insight into both cell-autonomous and inductive processes controlling early ascidian development, we establish a generic conceptual framework for the quantitative analysis of embryo geometry that can be applied to other model organisms.
Collapse
Affiliation(s)
- Olivier Tassy
- IBDM (Institut de Biologie du Développement de Marseille), UMR6216, CNRS-Université de la Méditerranée, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France.
| | | | | | | | | |
Collapse
|
146
|
Beane WS, Gross JM, McClay DR. RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation. Dev Biol 2006; 292:213-25. [PMID: 16458878 DOI: 10.1016/j.ydbio.2005.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/06/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
During gastrulation, the archenteron is formed using cell shape changes, cell rearrangements, filopodial extensions, and convergent extension movements to elongate and shape the nascent gut tube. How these events are coordinated remains unknown, although much has been learned from careful morphological examinations and molecular perturbations. This study reports that RhoA is necessary to trigger archenteron invagination in the sea urchin embryo. Inhibition of RhoA results in a failure to initiate invagination movements, while constitutively active RhoA induces precocious invagination of the archenteron, complete with the actin rearrangements and extracellular matrix secretions that normally accompany the onset of invagination. Although RhoA activity has been reported to control convergent extension movements in vertebrate embryos, experiments herein show that RhoA activity does not regulate convergent extension movements during sea urchin gastrulation. Instead, the results support the hypothesis that RhoA serves as a trigger to initiate invagination, and once initiation occurs, RhoA activity is no longer involved in subsequent gastrulation movements.
Collapse
Affiliation(s)
- Wendy S Beane
- Department of Biology, Developmental, Cell and Molecular Group, Duke University, PO Box 91000, Durham, NC 27708, USA.
| | | | | |
Collapse
|
147
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
148
|
Tyszka JM, Ewald AJ, Wallingford JB, Fraser SE. New tools for visualization and analysis of morphogenesis in spherical embryos. Dev Dyn 2005; 234:974-83. [PMID: 16193511 DOI: 10.1002/dvdy.20561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many classical models of development, including amphibians, fish, and echinoderms, have embryos that are approximately spherical and contain concentric cell layers during early development. Neighbor relationships in such curved cell layers are not conveniently assayed or measured by conventional physical or optical sectioning techniques. To answer these challenges, we have constructed computational methods that correct for spherical distortion in 2D images and that allow extraction of concentric cell layers from 3D digital images. These methods for quantitative analysis and visualization of early development in spherical embryos are introduced by using them for the quantitative analysis of 2D and 3D images of gastrula stage Xenopus laevis.
Collapse
Affiliation(s)
- J Michael Tyszka
- Biological Imaging Center, Division of Biology, California Institute of Technology, Pasadena, 91125, USA.
| | | | | | | |
Collapse
|
149
|
Abstract
During gastrulation of the nematode worm Caenorhabditis elegans, individual cells ingress into a solid ball of cells. Gastrulation in a basal nematode, in contrast, has now been found to occur by invagination into a blastocoel, revealing an unanticipated embryological affinity between nematodes and all other triploblastic metazoans.
Collapse
Affiliation(s)
- Pradeep M Joshi
- Department of MCD Biology, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|