101
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
102
|
Lysosomal Calcium Channels in Autophagy and Cancer. Cancers (Basel) 2021; 13:cancers13061299. [PMID: 33803964 PMCID: PMC8001254 DOI: 10.3390/cancers13061299] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a cellular self-eating process that uses lysosome, the waste disposal system of the cell, to degrade and recycle intracellular materials to maintain cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Calcium is an important cellular messenger that regulates the survival of all animal cells. Alterations to calcium homoeostasis are associated with cancer. While it has long been considered as cellular recycling center, the lysosome is now widely known as an intracellular calcium store that regulates autophagy and cancer progression by releasing calcium via some ion channels residing in the lysosomal membrane. In this review, we summarize existing mechanisms of autophagy regulation by lysosomal calcium channels and their implications in cancer development. We hope to guide readers toward a more in-depth understanding of the importance of lysosomal calcium channels in cancer, and potentially facilitate the development of new therapeutics for some cancers. Abstract Ca2+ is pivotal intracellular messenger that coordinates multiple cell functions such as fertilization, growth, differentiation, and viability. Intracellular Ca2+ signaling is regulated by both extracellular Ca2+ entry and Ca2+ release from intracellular stores. Apart from working as the cellular recycling center, the lysosome has been increasingly recognized as a significant intracellular Ca2+ store that provides Ca2+ to regulate many cellular processes. The lysosome also talks to other organelles by releasing and taking up Ca2+. In lysosomal Ca2+-dependent processes, autophagy is particularly important, because it has been implicated in many human diseases including cancer. This review will discuss the major components of lysosomal Ca2+ stores and their roles in autophagy and human cancer progression.
Collapse
|
103
|
Yuan Y, Kilpatrick BS, Gerndt S, Bracher F, Grimm C, Schapira AH, Patel S. The lysosomotrope GPN mobilises Ca 2+ from acidic organelles. J Cell Sci 2021; 134:jcs.256578. [PMID: 33602742 PMCID: PMC7972315 DOI: 10.1242/jcs.256578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Lysosomes are acidic Ca2+ stores often mobilised in conjunction with endoplasmic reticulum (ER) Ca2+ stores. Glycyl-L-phenylalanine 2-naphthylamide (GPN) is a widely used lysosomotropic agent that evokes cytosolic Ca2+ signals in many cells. However, whether these signals are the result of a primary action on lysosomes is unclear in light of recent evidence showing that GPN mediates direct ER Ca2+ release through changes in cytosolic pH. Here, we show that GPN evoked rapid increases in cytosolic pH but slower Ca2+ signals. NH4Cl evoked comparable changes in pH but failed to affect Ca2+. The V-type ATPase inhibitor, bafilomycin A1, increased lysosomal pH over a period of hours. Acute treatment modestly affected lysosomal pH and potentiated Ca2+ signals evoked by GPN. In contrast, chronic treatment led to more profound changes in luminal pH and selectively inhibited GPN action. GPN blocked Ca2+ responses evoked by the novel nicotinic acid adenine dinucleotide phosphate-like agonist, TPC2-A1-N. Therefore, GPN-evoked Ca2+ signals were better correlated with associated pH changes in the lysosome compared to the cytosol, and were coupled to lysosomal Ca2+ release. We conclude that Ca2+ signals evoked by GPN most likely derive from acidic organelles. Summary: Methods of releasing calcium from lysosomes are limited but characterization of the effects of GPN in primary cultured human fibroblasts confirmed that it probably targets acidic organelles.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | | | - Susanne Gerndt
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich 81377, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich 81377, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians University, Munich 80336, Germany
| | - Anthony H Schapira
- Department of Clinical Neurosciences, UCL Institute of Neurology, London NW3 2PF, UK
| | - Sandip Patel
- Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| |
Collapse
|
104
|
Cui W, Sathyanarayan A, Lopresti M, Aghajan M, Chen C, Mashek DG. Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis. Autophagy 2021; 17:690-705. [PMID: 32070194 PMCID: PMC8032247 DOI: 10.1080/15548627.2020.1728097] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic degradation of lipid droplets (LDs), termed lipophagy, is a major mechanism that contributes to lipid turnover in numerous cell types. While numerous factors, including nutrient deprivation or overexpression of PNPLA2/ATGL (patatin-like phospholipase domain containing 2) drive lipophagy, the trafficking of fatty acids (FAs) produced from this pathway is largely unknown. Herein, we show that PNPLA2 and nutrient deprivation promoted the extracellular efflux of FAs. Inhibition of autophagy or lysosomal lipid degradation attenuated FA efflux highlighting a critical role for lipophagy in this process. Rather than direct transport of FAs across the lysosomal membrane, lipophagy-derived FA efflux requires lysosomal fusion to the plasma membrane. The lysosomal Ca2+ channel protein MCOLN1/TRPML1 (mucolipin 1) regulates lysosomal-plasma membrane fusion and its overexpression increased, while inhibition blocked FA efflux. In addition, inhibition of autophagy/lipophagy or MCOLN1, or sequestration of extracellular FAs with BSA attenuated the oxidation and re-esterification of lipophagy-derived FAs. Overall, these studies show that the well-established pathway of lysosomal fusion to the plasma membrane is the primary route for the disposal of FAs derived from lipophagy. Moreover, the efflux of FAs and their reuptake or subsequent extracellular trafficking to adjacent cells may play an important role in cell-to-cell lipid exchange and signaling.Abbreviations: ACTB: beta actin; ADRA1A: adrenergic receptor alpha, 1a; ALB: albumin; ATG5: autophagy related 5; ATG7: autophagy related 7; BafA1: bafilomycin A1; BECN1: beclin 1; BHBA: beta-hydroxybutyrate; BSA: bovine serum albumin; CDH1: e-cadherin; CQ: chloroquine; CTSB: cathepsin B; DGAT: diacylglycerol O-acyltransferase; FA: fatty acid; HFD: high-fat diet; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LIPA/LAL: lysosomal acid lipase A; LLME: Leu-Leu methyl ester hydrobromide; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryo fibroblast; PBS: phosphate-buffered saline; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PLIN: perilipin; PNPLA2/ATGL patatin-like phospholipase domain containing 2; RUBCN (rubicon autophagy regulator); SM: sphingomyelin; TAG: triacylglycerol; TMEM192: transmembrane protein 192; VLDL: very low density lipoprotein.
Collapse
Affiliation(s)
- Wenqi Cui
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Aishwarya Sathyanarayan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Lopresti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
105
|
Machado ER, Annunziata I, van de Vlekkert D, Grosveld GC, d’Azzo A. Lysosomes and Cancer Progression: A Malignant Liaison. Front Cell Dev Biol 2021; 9:642494. [PMID: 33718382 PMCID: PMC7952443 DOI: 10.3389/fcell.2021.642494] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
During primary tumorigenesis isolated cancer cells may undergo genetic or epigenetic changes that render them responsive to additional intrinsic or extrinsic cues, so that they enter a transitional state and eventually acquire an aggressive, metastatic phenotype. Among these changes is the alteration of the cell metabolic/catabolic machinery that creates the most permissive conditions for invasion, dissemination, and survival. The lysosomal system has emerged as a crucial player in this malignant transformation, making this system a potential therapeutic target in cancer. By virtue of their ubiquitous distribution in mammalian cells, their multifaced activities that control catabolic and anabolic processes, and their interplay with other organelles and the plasma membrane (PM), lysosomes function as platforms for inter- and intracellular communication. This is due to their capacity to adapt and sense nutrient availability, to spatially segregate specific functions depending on their position, to fuse with other compartments and with the PM, and to engage in membrane contact sites (MCS) with other organelles. Here we review the latest advances in our understanding of the role of the lysosomal system in cancer progression. We focus on how changes in lysosomal nutrient sensing, as well as lysosomal positioning, exocytosis, and fusion perturb the communication between tumor cells themselves and between tumor cells and their microenvironment. Finally, we describe the potential impact of MCS between lysosomes and other organelles in propelling cancer growth and spread.
Collapse
Affiliation(s)
- Eda R. Machado
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - Gerard C. Grosveld
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
106
|
Nguyen JA, Yates RM. Better Together: Current Insights Into Phagosome-Lysosome Fusion. Front Immunol 2021; 12:636078. [PMID: 33717183 PMCID: PMC7946854 DOI: 10.3389/fimmu.2021.636078] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Following phagocytosis, the nascent phagosome undergoes maturation to become a phagolysosome with an acidic, hydrolytic, and often oxidative lumen that can efficiently kill and digest engulfed microbes, cells, and debris. The fusion of phagosomes with lysosomes is a principal driver of phagosomal maturation and is targeted by several adapted intracellular pathogens. Impairment of this process has significant consequences for microbial infection, tissue inflammation, the onset of adaptive immunity, and disease. Given the importance of phagosome-lysosome fusion to phagocyte function and the many virulence factors that target it, it is unsurprising that multiple molecular pathways have evolved to mediate this essential process. While the full range of these pathways has yet to be fully characterized, several pathways involving proteins such as members of the Rab GTPases, tethering factors and SNAREs have been identified. Here, we summarize the current state of knowledge to clarify the ambiguities in the field and construct a more comprehensive phagolysosome formation model. Lastly, we discuss how other cellular pathways help support phagolysosome biogenesis and, consequently, phagocyte function.
Collapse
Affiliation(s)
- Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Snyder Institute of Chronic Disease, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
107
|
Montaño-Rendón F, Grinstein S, Walpole GFW. Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Front Cell Dev Biol 2021; 9:626136. [PMID: 33614656 PMCID: PMC7890364 DOI: 10.3389/fcell.2021.626136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The dynamic re-organization of cellular membranes in response to extracellular stimuli is fundamental to the cell physiology of myeloid and lymphoid cells of the immune system. In addition to maintaining cellular homeostatic functions, remodeling of the plasmalemma and endomembranes endow leukocytes with the potential to relay extracellular signals across their biological membranes to promote rolling adhesion and diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and effete cells. Phosphoinositides, signaling lipids that control the interface of biological membranes with the external environment, are pivotal to this wealth of functions. Here, we highlight the complex metabolic transitions that occur to phosphoinositides during several stages of the leukocyte lifecycle, namely diapedesis, migration, and phagocytosis. We describe classical and recently developed tools that have aided our understanding of these complex lipids. Finally, major downstream effectors of inositides are highlighted including the cytoskeleton, emphasizing the importance of these rare lipids in immunity and disease.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
108
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|
109
|
Li G, Li PL. Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:275-301. [PMID: 35138619 PMCID: PMC9899368 DOI: 10.1007/978-981-16-4254-8_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysosomal ion channels mediate ion flux from lysosomes and regulate membrane potential across the lysosomal membrane, which are essential for lysosome biogenesis, nutrient sensing, lysosome trafficking, lysosome enzyme activity, and cell membrane repair. As a cation channel, the transient receptor potential mucolipin 1 (TRPML1) channel is mainly expressed on lysosomes and late endosomes. Recently, the normal function of TRPML1 channels has been demonstrated to be important for the maintenance of cardiovascular and renal glomerular homeostasis and thereby involved in the pathogenesis of some cardiovascular and kidney diseases. In arterial myocytes, it has been found that Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP), an intracellular second messenger, can induce Ca2+ release through the lysosomal TRPML1 channel, leading to a global Ca2+ release response from the sarcoplasmic reticulum (SR). In podocytes, it has been demonstrated that lysosomal TRPML1 channels control lysosome trafficking and exosome release, which contribute to the maintenance of podocyte functional integrity. The defect or functional deficiency of lysosomal TRPML1 channels has been shown to critically contribute to the initiation and development of some chronic degeneration or diseases in the cardiovascular system or kidneys. Here we briefly summarize the current evidence demonstrating the regulation of lysosomal TRPML1 channel activity and related signaling mechanisms. We also provide some insights into the canonical and noncanonical roles of TRPML1 channel dysfunction as a potential pathogenic mechanism for certain cardiovascular and kidney diseases and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
110
|
Steinfeld N, Giridharan SSP, Kauffman EJ, Weisman LS. Simultaneous Detection of Phosphoinositide Lipids by Radioactive Metabolic Labeling. Methods Mol Biol 2021; 2251:1-17. [PMID: 33481228 PMCID: PMC8059495 DOI: 10.1007/978-1-0716-1142-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Phosphoinositide (PPI) lipids are a crucial class of low-abundance signaling molecules that regulate many processes within cells. Methods that enable simultaneous detection of all PPI lipid species provide a wholistic snapshot of the PPI profile of cells, which is critical for probing PPI biology. Here we describe a method for the simultaneous measurement of cellular PPI levels by metabolically labeling yeast or mammalian cells with myo-3H-inositol, extracting radiolabeled glycerophosphoinositides, and separating lipid species on an anion exchange column via HPLC.
Collapse
Affiliation(s)
- Noah Steinfeld
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Emily J Kauffman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lois S Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
111
|
Yang Y, Zhai X, El Hiani Y. TRPML1-Emerging Roles in Cancer. Cells 2020; 9:E2682. [PMID: 33322223 PMCID: PMC7763474 DOI: 10.3390/cells9122682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
The mucolipin-1 (TRPML1) channel maintains lysosomal ionic homeostasis and regulates autophagic flux. Defects of TRPML1 lead to lysosomal storage diseases and neurodegeneration. In this report, we discuss emerging evidence pertaining to differential regulation of TRPML1 signaling pathways in cancer progression with the goal of leveraging the oncogenic potential of TRPML1 to inspire therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University Faculty of Medicine, Halifax, NS B3H 4R2, Canada; (Y.Y.); (X.Z.)
| |
Collapse
|
112
|
Tancini B, Buratta S, Delo F, Sagini K, Chiaradia E, Pellegrino RM, Emiliani C, Urbanelli L. Lysosomal Exocytosis: The Extracellular Role of an Intracellular Organelle. MEMBRANES 2020; 10:E406. [PMID: 33316913 PMCID: PMC7764620 DOI: 10.3390/membranes10120406] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes are acidic cell compartments containing a large set of hydrolytic enzymes. These lysosomal hydrolases degrade proteins, lipids, polysaccharides, and nucleic acids into their constituents. Materials to be degraded can reach lysosomes either from inside the cell, by autophagy, or from outside the cell, by different forms of endocytosis. In addition to their degradative functions, lysosomes are also able to extracellularly release their contents by lysosomal exocytosis. These organelles move from the perinuclear region along microtubules towards the proximity of the plasma membrane, then the lysosomal and plasma membrane fuse together via a Ca2+-dependent process. The fusion of the lysosomal membrane with plasma membrane plays an important role in plasma membrane repair, while the secretion of lysosomal content is relevant for the remodelling of extracellular matrix and release of functional substrates. Lysosomal storage disorders (LSDs) and age-related neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, share as a pathological feature the accumulation of undigested material within organelles of the endolysosomal system. Recent studies suggest that lysosomal exocytosis stimulation may have beneficial effects on the accumulation of these unprocessed aggregates, leading to their extracellular elimination. However, many details of the molecular machinery required for lysosomal exocytosis are only beginning to be unravelled. Here, we are going to review the current literature on molecular mechanisms and biological functions underlying lysosomal exocytosis, to shed light on the potential of lysosomal exocytosis stimulation as a therapeutic approach.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy;
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| |
Collapse
|
113
|
Krishnan Y, Zou J, Jani MS. Quantitative Imaging of Biochemistry in Situ and at the Nanoscale. ACS CENTRAL SCIENCE 2020; 6:1938-1954. [PMID: 33274271 PMCID: PMC7706076 DOI: 10.1021/acscentsci.0c01076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 05/12/2023]
Abstract
Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.
Collapse
Affiliation(s)
| | - Junyi Zou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Grossman Institute of Neuroscience,
Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637, United States
| | - Maulik S. Jani
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Grossman Institute of Neuroscience,
Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
114
|
Tang T, Yang ZY, Wang D, Yang XY, Wang J, Li L, Wen Q, Gao L, Bian XW, Yu SC. The role of lysosomes in cancer development and progression. Cell Biosci 2020; 10:131. [PMID: 33292489 PMCID: PMC7677787 DOI: 10.1186/s13578-020-00489-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
Lysosomes are an important component of the inner membrane system and participate in numerous cell biological processes, such as macromolecular degradation, antigen presentation, intracellular pathogen destruction, plasma membrane repair, exosome release, cell adhesion/migration and apoptosis. Thus, lysosomes play important roles in cellular activity. In addition, previous studies have shown that lysosomes may play important roles in cancer development and progression through the abovementioned biological processes and that the functional status and spatial distribution of lysosomes are closely related to cancer cell proliferation, energy metabolism, invasion and metastasis, immune escape and tumor-associated angiogenesis. Therefore, identifying the factors and mechanisms that regulate the functional status and spatial distribution of lysosomes and elucidating the relationship between lysosomes and the development and progression of cancer can provide important information for cancer diagnosis and prognosis prediction and may yield new therapeutic targets. This study briefly reviews the above information and explores the potential value of lysosomes in cancer therapy.
Collapse
Affiliation(s)
- Tao Tang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ze-Yu Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xian-Yan Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lin Li
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Wen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xiu-Wu Bian
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
115
|
Two-pore and TRPML cation channels: Regulators of phagocytosis, autophagy and lysosomal exocytosis. Pharmacol Ther 2020; 220:107713. [PMID: 33141027 DOI: 10.1016/j.pharmthera.2020.107713] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
The old Greek saying "Panta Rhei" ("everything flows") is true for all life and all living things in general. It also becomes nicely evident when looking closely into cells. There, material from the extracellular space is taken up by endocytic processes and transported to endosomes where it is sorted either for recycling or degradation. Cargo is also packaged for export through exocytosis involving the Golgi network, lysosomes and other organelles. Everything in this system is in constant motion and many proteins are necessary to coordinate transport along the different intracellular pathways to avoid chaos. Among these proteins are ion channels., in particular TRPML channels (mucolipins) and two-pore channels (TPCs) which reside on endosomal and lysosomal membranes to speed up movement between organelles, e.g. by regulating fusion and fission; they help readjust pH and osmolarity changes due to such processes, or they promote exocytosis of export material. Pathophysiologically, these channels are involved in neurodegenerative, metabolic, retinal and infectious diseases, cancer, pigmentation defects, and immune cell function, and thus have been proposed as novel pharmacological targets, e.g. for the treatment of lysosomal storage disorders, Duchenne muscular dystrophy, or different types of cancer. Here, we discuss the similarities but also differences of TPCs and TRPMLs in regulating phagocytosis, autophagy and lysosomal exocytosis, and we address the contradictions and open questions in the field relating to the roles TPCs and TRPMLs play in these different processes.
Collapse
|
116
|
Leser C, Keller M, Gerndt S, Urban N, Chen CC, Schaefer M, Grimm C, Bracher F. Chemical and pharmacological characterization of the TRPML calcium channel blockers ML-SI1 and ML-SI3. Eur J Med Chem 2020; 210:112966. [PMID: 33187805 DOI: 10.1016/j.ejmech.2020.112966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 02/02/2023]
Abstract
The members of the TRPML subfamily of non-selective cation channels (TRPML1-3) are involved in the regulation of important lysosomal and endosomal functions, and mutations in TRPML1 are associated with the neurodegenerative lysosomal storage disorder mucolipidosis type IV. For in-depth investigation of functions and (patho)physiological roles of TRPMLs, membrane-permeable chemical tools are urgently needed. But hitherto only two TRPML inhibitors, ML-SI1 and ML-SI3, have been published, albeit without clear information about stereochemical details. In this investigation we developed total syntheses of both inhibitors. ML-SI1 was only obtained as a racemic mixture of inseparable diastereomers and showed activator-dependent inhibitory activity. The more promising tool is ML-SI3, hence ML-SI1 was not further investigated. For ML-SI3 we confirmed by stereoselective synthesis that the trans-isomer is significantly more active than the cis-isomer. Separation of the enantiomers of trans-ML-SI3 further revealed that the (-)-isomer is a potent inhibitor of TRPML1 and TRPML2 (IC50 values 1.6 and 2.3 μM) and a weak inhibitor (IC50 12.5 μM) of TRPML3, whereas the (+)-enantiomer is an inhibitor on TRPML1 (IC50 5.9 μM), but an activator on TRPML 2 and 3. This renders the pure (-)-trans-ML-SI3 more suitable as a chemical tool for the investigation of TRPML1 and 2 than the racemate. The analysis of 12 analogues of ML-SI3 gave first insights into structure-activity relationships in this chemotype, and showed that a broad variety of modifications in both the N-arylpiperazine and the sulfonamide moiety is tolerated. An aromatic analogue of ML-SI3 showed an interesting alternative selectivity profile (strong inhibitor of TRPML1 and strong activator of TRPML2).
Collapse
Affiliation(s)
- Charlotte Leser
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Marco Keller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Susanne Gerndt
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Christian Grimm
- Walther-Straub-Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
117
|
Edwards-Jorquera SS, Bosveld F, Bellaïche YA, Lennon-Duménil AM, Glavic Á. Trpml controls actomyosin contractility and couples migration to phagocytosis in fly macrophages. J Cell Biol 2020; 219:133603. [PMID: 31940424 PMCID: PMC7055000 DOI: 10.1083/jcb.201905228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 12/29/2022] Open
Abstract
Phagocytes use their actomyosin cytoskeleton to migrate as well as to probe their environment by phagocytosis or macropinocytosis. Although migration and extracellular material uptake have been shown to be coupled in some immune cells, the mechanisms involved in such coupling are largely unknown. By combining time-lapse imaging with genetics, we here identify the lysosomal Ca2+ channel Trpml as an essential player in the coupling of cell locomotion and phagocytosis in hemocytes, the Drosophila macrophage-like immune cells. Trpml is needed for both hemocyte migration and phagocytic processing at distinct subcellular localizations: Trpml regulates hemocyte migration by controlling actomyosin contractility at the cell rear, whereas its role in phagocytic processing lies near the phagocytic cup in a myosin-independent fashion. We further highlight that Vamp7 also regulates phagocytic processing and locomotion but uses pathways distinct from those of Trpml. Our results suggest that multiple mechanisms may have emerged during evolution to couple phagocytic processing to cell migration and facilitate space exploration by immune cells.
Collapse
Affiliation(s)
| | - Floris Bosveld
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Yohanns A Bellaïche
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Ana-María Lennon-Duménil
- Institut Curie, PSL Research University, Institut National de la Santé et de la Recherche Médicale U932 Immunité et Cancer, Paris, France
| | - Álvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
118
|
Mepyans M, Andrzejczuk L, Sosa J, Smith S, Herron S, DeRosa S, Slaugenhaupt SA, Misko A, Grishchuk Y, Kiselyov K. Early evidence of delayed oligodendrocyte maturation in the mouse model of mucolipidosis type IV. Dis Model Mech 2020; 13:dmm044230. [PMID: 32586947 PMCID: PMC7406328 DOI: 10.1242/dmm.044230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal disease caused by mutations in the MCOLN1 gene that encodes the endolysosomal transient receptor potential channel mucolipin-1, or TRPML1. MLIV results in developmental delay, motor and cognitive impairments, and vision loss. Brain abnormalities include thinning and malformation of the corpus callosum, white-matter abnormalities, accumulation of undegraded intracellular 'storage' material and cerebellar atrophy in older patients. Identification of the early events in the MLIV course is key to understanding the disease and deploying therapies. The Mcoln1-/- mouse model reproduces all major aspects of the human disease. We have previously reported hypomyelination in the MLIV mouse brain. Here, we investigated the onset of hypomyelination and compared oligodendrocyte maturation between the cortex/forebrain and cerebellum. We found significant delays in expression of mature oligodendrocyte markers Mag, Mbp and Mobp in the Mcoln1-/- cortex, manifesting as early as 10 days after birth and persisting later in life. Such delays were less pronounced in the cerebellum. Despite our previous finding of diminished accumulation of the ferritin-bound iron in the Mcoln1-/- brain, we report no significant changes in expression of the cytosolic iron reporters, suggesting that iron-handling deficits in MLIV occur in the lysosomes and do not involve broad iron deficiency. These data demonstrate very early deficits of oligodendrocyte maturation and critical regional differences in myelination between the forebrain and cerebellum in the mouse model of MLIV. Furthermore, they establish quantitative readouts of the MLIV impact on early brain development, useful to gauge efficacy in pre-clinical trials.
Collapse
Affiliation(s)
- Molly Mepyans
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Livia Andrzejczuk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jahree Sosa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sierra Smith
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Shawn Herron
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Samantha DeRosa
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Albert Misko
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
119
|
Mitochondria-lysosome contacts regulate mitochondrial Ca 2+ dynamics via lysosomal TRPML1. Proc Natl Acad Sci U S A 2020; 117:19266-19275. [PMID: 32703809 DOI: 10.1073/pnas.2003236117] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria and lysosomes are critical for cellular homeostasis, and dysfunction of both organelles has been implicated in numerous diseases. Recently, interorganelle contacts between mitochondria and lysosomes were identified and found to regulate mitochondrial dynamics. However, whether mitochondria-lysosome contacts serve additional functions by facilitating the direct transfer of metabolites or ions between the two organelles has not been elucidated. Here, using high spatial and temporal resolution live-cell microscopy, we identified a role for mitochondria-lysosome contacts in regulating mitochondrial calcium dynamics through the lysosomal calcium efflux channel, transient receptor potential mucolipin 1 (TRPML1). Lysosomal calcium release by TRPML1 promotes calcium transfer to mitochondria, which was mediated by tethering of mitochondria-lysosome contact sites. Moreover, mitochondrial calcium uptake at mitochondria-lysosome contact sites was modulated by the outer and inner mitochondrial membrane channels, voltage-dependent anion channel 1 and the mitochondrial calcium uniporter, respectively. Since loss of TRPML1 function results in the lysosomal storage disorder mucolipidosis type IV (MLIV), we examined MLIV patient fibroblasts and found both altered mitochondria-lysosome contact dynamics and defective contact-dependent mitochondrial calcium uptake. Thus, our work highlights mitochondria-lysosome contacts as key contributors to interorganelle calcium dynamics and their potential role in the pathophysiology of disorders characterized by dysfunctional mitochondria or lysosomes.
Collapse
|
120
|
Davis LC, Morgan AJ, Galione A. NAADP-regulated two-pore channels drive phagocytosis through endo-lysosomal Ca 2+ nanodomains, calcineurin and dynamin. EMBO J 2020; 39:e104058. [PMID: 32510172 PMCID: PMC7360967 DOI: 10.15252/embj.2019104058] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophages clear pathogens by phagocytosis and lysosomes that fuse with phagosomes are traditionally regarded as to a source of membranes and luminal degradative enzymes. Here, we reveal that endo-lysosomes act as platforms for a new phagocytic signalling pathway in which FcγR activation recruits the second messenger NAADP and thereby promotes the opening of Ca2+ -permeable two-pore channels (TPCs). Remarkably, phagocytosis is driven by these local endo-lysosomal Ca2+ nanodomains rather than global cytoplasmic or ER Ca2+ signals. Motile endolysosomes contact nascent phagosomes to promote phagocytosis, whereas endo-lysosome immobilization prevents it. We show that TPC-released Ca2+ rapidly activates calcineurin, which in turn dephosphorylates and activates the GTPase dynamin-2. Finally, we find that different endo-lysosomal Ca2+ channels play diverse roles, with TPCs providing a universal phagocytic signal for a wide range of particles and TRPML1 being only required for phagocytosis of large targets.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
121
|
Lloyd-Evans E, Waller-Evans H. Lysosomal Ca 2+ Homeostasis and Signaling in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035311. [PMID: 31653642 DOI: 10.1101/cshperspect.a035311] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Calcium (Ca2+) signaling is an essential process in all cells that is maintained by a plethora of channels, pumps, transporters, receptors, and intracellular Ca2+ sequestering stores. Changes in cytosolic Ca2+ concentration govern processes as far reaching as fertilization, cell growth, and motility through to cell death. In recent years, lysosomes have emerged as a major intracellular Ca2+ storage organelle with an increasing involvement in triggering or regulating cellular functions such as endocytosis, autophagy, and Ca2+ release from the endoplasmic reticulum. This review will summarize recent work in the area of lysosomal Ca2+ signaling and homeostasis, including newly identified functions, and the involvement of lysosome-derived Ca2+ signals in human disease. In addition, we explore recent controversies in the techniques used for measurement of lysosomal Ca2+ content.
Collapse
Affiliation(s)
- Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Helen Waller-Evans
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
122
|
Santoni G, Morelli MB, Amantini C, Nabissi M, Santoni M, Santoni A. Involvement of the TRPML Mucolipin Channels in Viral Infections and Anti-viral Innate Immune Responses. Front Immunol 2020; 11:739. [PMID: 32425938 PMCID: PMC7212413 DOI: 10.3389/fimmu.2020.00739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022] Open
Abstract
The TRPML channels (TRPML1, TRPML2, and TRPML3), belonging to the mucolipin TRP subfamily, primary localize to a population of membrane-bonded vesicles along the endocytosis, and exocytosis pathways. Human viruses enter host cells by plasma membrane penetration or by receptor-mediated endocytosis. TRPML2 enhances the infectivity of a number of enveloped viruses by promoting virus vesicular trafficking and escape from endosomal compartment. TRPML2 expression is stimulated by interferon and by several toll like receptor (TLR) activators, suggesting a possible role in the activation of the innate immune response. Noteworthy, TRPML1 plays a major role in single strand RNA/DNA trafficking into lysosomes and the lack of TRPML1 impairs the TLR-7 and TLR-9 ligand transportation to lysosomes resulting in decreased dendritic cell maturation/activation and migration to the lymph nodes. TRPML channels are also expressed by natural killer (NK) cells, a subset of innate lymphocytes with an essential role during viral infections; recent findings have indicated a role of TRPML1-mediated modulation of secretory lysosomes in NK cells education. Moreover, as also NK cells express TLR recognizing viral pattern, an increased TLR-mediated activation of cytokine production can be envisaged, suggesting a dual role in the NK cell-mediated antiviral responses. Overall, TRPML channels might play a double-edged sword in resistance to viral infections: on one side they can promote virus cellular entry and infectivity; on the other side, by regulating TLR responses in the various immune cells, they contribute to enhance antiviral innate and possibly adaptive immune responses.
Collapse
Affiliation(s)
- Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Hospital of Macerata, Macerata, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
123
|
Santoni G, Santoni M, Maggi F, Marinelli O, Morelli MB. Emerging Role of Mucolipins TRPML Channels in Cancer. Front Oncol 2020; 10:659. [PMID: 32411610 PMCID: PMC7198773 DOI: 10.3389/fonc.2020.00659] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Giorgio Santoni
- Section of Immunopathology, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Hospital of Macerata, Macerata, Italy
| | - Federica Maggi
- Section of Immunopathology, School of Pharmacy, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, University of Rome Sapienza, Rome, Italy
| | - Oliviero Marinelli
- Section of Immunopathology, School of Pharmacy, University of Camerino, Camerino, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | |
Collapse
|
124
|
Lyu L, Jin X, Li Z, Liu S, Li Y, Su R, Su H. TBBPA regulates calcium-mediated lysosomal exocytosis and thereby promotes invasion and migration in hepatocellular carcinoma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110255. [PMID: 32018154 DOI: 10.1016/j.ecoenv.2020.110255] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and its derivatives are the common flame-retardants that may increase the risk of development of many types of cancers, including liver cancer. However, the effects of TBBPA in the development and progression of liver cancer remains unknown. This study investigated the potential effects of TBBPA on a metastatic phenotype of hepatocellular carcinoma cell line-HepG2. Our results revealed that TBBPA significantly promoted the migration and invasion via affecting the number and distribution of lysosomes in HepG2 cells in a dose-dependent manner. Moreover, TBBPA decreased the intracellular protein levels of Beta-Hexosaminidase (HEXB), Cathepsin B (CTSB) and Cathepsin D (CTSD) while increased the extracellular CTSB and CTSD. It entailed that TBBPA exposure could promote the lysosomal exocytosis in cancer cells. The reversal results were obtained after adding lysosomal exocytosis inhibitor vacuolin-1. Docking results suggested that TBBPA could bind to TRPML1. It was consistent with the binding position of agonist ML-SA1. TRPML1 knockdown significantly decreased the invasion and migration, and the results were reversed when TBBPA was added. The results were indicated that TRPML1 was critical in lysosomal exocytosis. In addition, our results showed that TBBPA-TRPML1 complex regulated the calcium-mediated lysosomal exocytosis, thereby promoting the metastasis in liver cancer cells. It was expected that our data could provide important basis for understanding the molecular mechanism(s) of TBBPA promoting invasion and migration of hepatoma cells and give rise to profound concerns of TBBPA exposure on human health.
Collapse
Affiliation(s)
- Liang Lyu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| | - Xiaoting Jin
- Institutes of Biomedical Sciences, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China; School of Life Science, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Jiefang nan Road 85, Taiyuan Shanxi Prov, 030001, Taiyuan, China.
| | - Yi Li
- Department of Computer Science, Technische Universität Darmstadt, Hochschulstraße 10, 64289, Darmstadt, Germany.
| | - Ruijun Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| | - Huilan Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| |
Collapse
|
125
|
Nanoparticle-Mediated Therapeutic Application for Modulation of Lysosomal Ion Channels and Functions. Pharmaceutics 2020; 12:pharmaceutics12030217. [PMID: 32131531 PMCID: PMC7150957 DOI: 10.3390/pharmaceutics12030217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Applications of nanoparticles in various fields have been addressed. Nanomaterials serve as carriers for transporting conventional drugs or proteins through lysosomes to various cellular targets. The basic function of lysosomes is to trigger degradation of proteins and lipids. Understanding of lysosomal functions is essential for enhancing the efficacy of nanoparticles-mediated therapy and reducing the malfunctions of cellular metabolism. The lysosomal function is modulated by the movement of ions through various ion channels. Thus, in this review, we have focused on the recruited ion channels for lysosomal function, to understand the lysosomal modulation through the nanoparticles and its applications. In the future, lysosomal channels-based targets will expand the therapeutic application of nanoparticles-associated drugs.
Collapse
|
126
|
Spix B, Chao YK, Abrahamian C, Chen CC, Grimm C. TRPML Cation Channels in Inflammation and Immunity. Front Immunol 2020; 11:225. [PMID: 32184778 PMCID: PMC7058977 DOI: 10.3389/fimmu.2020.00225] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background: In 1883, Ilya Mechnikov discovered phagocytes and established the concept of phagocytosis by macrophages. In 1908, he was awarded the Nobel Prize in Physiology/Medicine for his findings, which laid the foundations for today's understanding of the innate immune response. Only in the 1960s, Max Cooper and Robert Good significantly advanced our understanding of the immune system by demonstrating that B- and T-cells cooperate to regulate the adaptive immune response. Both, innate and adaptive immune response are essential to effectively protect the individual against infectious agents, such as viruses, bacterial or insect toxins, or allergens. Innate immune responses occur rapidly upon exposure to noxious or infectious agents or organisms, in contrast to the adaptive immune system that needs days rather than hours to develop and acts primarily on the basis of antigen-specific receptors expressed on the surface of B- and T-lymphocytes. In recent years, it has become evident that endosomes and lysosomes are involved in many aspects of immune cell function, such as phagocytosis, antigen presentation and processing by antigen-presenting cells, release of proinflammatory mediators, e.g., by mast cells, or secretion of the pore-forming protein perforin by cytotoxic T lymphocytes. Several lysosomal storage disorders (LSDs) have been associated with defects in immune system function or immune system hyperactivity, such as Gaucher, Fabry, or Niemann-Pick type C1 disease, mucopolysaccharidoses (MPS), gangliosidosis, or juvenile neuronal ceroid lipofuscinosis (JNCL). Beside accumulating evidence on the importance of endolysosomes in immune cell function, recent results suggest direct roles of endolysosomal ion channels, such as the TRPML channels (mucolipins), which are members of the transient receptor potential (TRP) superfamily of non-selective cation channels, for different aspects of immune cell function. The aim of this review is to discuss the current knowledge about the roles of TRPML channels in inflammation and immunity, and to assess their potential as drug targets to influence immune cell functions. Advances: Examples of recently established roles of TRPML channels in immune system function and immune response include the TRPML1-mediated modulation of secretory lysosomes, granzyme B content, and tuning of effector function in NK cells, TRPML1-dependent directional dendritic cell (DC) migration and DC chemotaxis, and the role of TRPML2 in chemokine release from LPS-stimulated macrophages. Outlook: Although our understanding of the functional roles of TRPML channels in inflammation and immunity is still in its infancy, a few interesting findings have been made in the past years, encouraging further and more detailed work on the role of TRPMLs, e.g., in intracellular trafficking and release of chemokines, cytokines, or granzyme B, or in phagocytosis and bacterial toxin and virus trafficking through the endolysosomal machinery.
Collapse
Affiliation(s)
- Barbara Spix
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Yu-Kai Chao
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Carla Abrahamian
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
127
|
Yu S, Wang Z, Ding L, Yang L. The regulation of TFEB in lipid homeostasis of non-alcoholic fatty liver disease: Molecular mechanism and promising therapeutic targets. Life Sci 2020; 246:117418. [PMID: 32057899 DOI: 10.1016/j.lfs.2020.117418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is characterized by disruption of lipid homeostasis, has been the leading cause of chronic liver disease worldwide. However, currently there is no effective therapy for NAFLD. Consequently, it is extremely urgent to explore the specific and effective target functioned as lipids regulator during the pathological process of NAFLD for the drug development. Transcription factor EB (TFEB) plays a crucial role in the regulation of lipid homeostasis through linking autophagy to energy metabolism at the transcriptional level. In this review, we summarize the currently available information regarding the mediation of TFEB in lipid metabolism during the pathological process of NAFLD, and the specific regulatory mechanism of TFEB activity. We further recapitulate TFEB as a promising therapeutic target for NAFLD, primarily through the regulation of lipid homeostasis, energy metabolism as well as immune defense. A better understanding of these key issues will be helpful to promote the development of therapeutic agents which specifically target TFEB to halt or reverse the pathological progression of NAFLD.
Collapse
Affiliation(s)
- Shenglan Yu
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
128
|
Yu L, Zhang X, Yang Y, Li D, Tang K, Zhao Z, He W, Wang C, Sahoo N, Converso-Baran K, Davis CS, Brooks SV, Bigot A, Calvo R, Martinez NJ, Southall N, Hu X, Marugan J, Ferrer M, Xu H. Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. SCIENCE ADVANCES 2020; 6:eaaz2736. [PMID: 32128386 PMCID: PMC7032923 DOI: 10.1126/sciadv.aaz2736] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease caused by mutations in dystrophin that compromise sarcolemma integrity. Currently, there is no treatment for DMD. Mutations in transient receptor potential mucolipin 1 (ML1), a lysosomal Ca2+ channel required for lysosomal exocytosis, produce a DMD-like phenotype. Here, we show that transgenic overexpression or pharmacological activation of ML1 in vivo facilitates sarcolemma repair and alleviates the dystrophic phenotypes in both skeletal and cardiac muscles of mdx mice (a mouse model of DMD). Hallmark dystrophic features of DMD, including myofiber necrosis, central nucleation, fibrosis, elevated serum creatine kinase levels, reduced muscle force, impaired motor ability, and dilated cardiomyopathies, were all ameliorated by increasing ML1 activity. ML1-dependent activation of transcription factor EB (TFEB) corrects lysosomal insufficiency to diminish muscle damage. Hence, targeting lysosomal Ca2+ channels may represent a promising approach to treat DMD and related muscle diseases.
Collapse
MESH Headings
- Animals
- Biomarkers
- Biopsy
- Disease Models, Animal
- Dystrophin/genetics
- Fluorescent Antibody Technique
- Gene Expression
- Lysosomes/drug effects
- Lysosomes/metabolism
- Mice
- Mice, Inbred mdx
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Transient Receptor Potential Channels/agonists
Collapse
Affiliation(s)
- Lu Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Yexin Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kaiyuan Tang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Zifan Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Wanwan He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ce Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W University Dr., Edinburg, TX 78539, USA
| | - Kimber Converso-Baran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol S. Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan V. Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Bigot
- Sorbonne Université, INSERM, AIM, Center for Research in Myology, UMRS974, GH Pitié-Salpétrière, 75651 Paris Cedex 13, France
| | - Raul Calvo
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | | | - Noel Southall
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Hu
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Juan Marugan
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Corresponding author.
| |
Collapse
|
129
|
A lysosomal K + channel regulates large particle phagocytosis by facilitating lysosome Ca 2+ release. Sci Rep 2020; 10:1038. [PMID: 31974459 PMCID: PMC6978423 DOI: 10.1038/s41598-020-57874-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are highly specialized in removing large particles including dead cells and cellular debris. When stimulated, delivery of the intracellular lysosomal membranes is required for the formation of plasmalemmal pseudopods and phagosomes. As a key lysosomal Ca2+ channel, Transient Receptor Potential Mucolipin-1 (TRPML1) regulates lysosomal exocytosis and subsequent phagosome biogenesis, thereby promoting phagocytosis of large extracellular particles. Recently, we have suggested that TRPML1-mediated lysosomal exocytosis is essentially dependent on lysosomal big conductance Ca2+-activated potassium (BK) channel. Therefore, we predict that lysosomal BK channels regulate large particle phagocytosis. In this study, by using RAW264.7 macrophage cell line and bone marrow-derived macrophages, we show that although BK is dispensable for small particle uptake, loss of BK significantly inhibits the ingestion of large particles whereas activating BK increases the uptake of large particles. BK facilitating effect on large particle ingestion is inhibited by either blocking TRPML1 or suppressing lysosomal exocytosis. Additionally, the increased uptake of large particles by activating TRPML1 is eliminated by inhibiting BK. These data suggest that BK and TRPML1 are functionally coupled to regulate large particle phagocytosis through modulating lysosomal exocytosis.
Collapse
|
130
|
Chao YK, Chang SY, Grimm C. Endo-Lysosomal Cation Channels and Infectious Diseases. Rev Physiol Biochem Pharmacol 2020; 185:259-276. [PMID: 32748124 DOI: 10.1007/112_2020_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Among the infectious diseases caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, the most prevalent ones today are malaria, tuberculosis, influenza, HIV/AIDS, Ebola, dengue fever, and methicillin-resistant Staphylococcus aureus (MRSA) infection, and most recently Covid-19 (SARS-CoV2). Others with a rather devastating history and high fatality rates such as plague, cholera, or typhus seem less threatening today but have not been eradicated, and with a declining efficacy of current antibiotics they ought to be watched carefully. Another emerging issue in this context is health-care associated infection. About 100,000 hospitalized patients in the USA ( www.cdc.gov ) and 33,000 in Europe ( https://www.ecdc.europa.eu ) die each year as a direct consequence of an infection caused by bacteria resistant to antibiotics. Among viral infections, influenza is responsible for about 3-5 million cases of severe illness, and about 250,000 to 500,000 deaths annually ( www.who.int ). About 37 million people are currently living with HIV infection and about one million die from it each year. Coronaviruses such as MERS-CoV, SARS-CoV, but in particular the recent outbreak of Covid-19 (caused by SARS-CoV2) have resulted in large numbers of infections worldwide with an estimated several hundred thousand deaths (anticipated fatality rate: <5%). With a comparatively low mortality rate dengue virus causes between 50 and 100 million infections every year, leading to 50,000 deaths. In contrast, Ebola virus is the causative agent for one of the deadliest viral diseases. The Ebola outbreak in West Africa in 2014 is considered the largest outbreak in history with more than 11,000 deaths. Many of the deadliest pathogens such as Ebola virus, influenza virus, mycobacterium tuberculosis, dengue virus, and cholera exploit the endo-lysosomal trafficking system of host cells for penetration into the cytosol and replication. Defects in endo-lysosomal maturation, trafficking, fusion, or pH homeostasis can efficiently reduce the cytotoxicity caused by these pathogens. Most of these functions critically depend on endo-lysosomal membrane proteins such as transporters and ion channels. In particular, cation channels such as the mucolipins (TRPMLs) or the two-pore channels (TPCs) are involved in all of these aspects of endo-lysosomal integrity. In this review we will discuss the correlations between pathogen toxicity and endo-lysosomal cation channel function, and their potential as drug targets for infectious disease therapy.
Collapse
Affiliation(s)
- Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
131
|
Molecular Mechanisms of Calcium Signaling During Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:103-128. [PMID: 32399828 DOI: 10.1007/978-3-030-40406-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger involved in the regulation of numerous cellular functions including vesicular trafficking, cytoskeletal rearrangements and gene transcription. Both global as well as localized Ca2+ signals occur during phagocytosis, although their functional impact on the phagocytic process has been debated. After nearly 40 years of research, a consensus may now be reached that although not strictly required, Ca2+ signals render phagocytic ingestion and phagosome maturation more efficient, and their manipulation make an attractive avenue for therapeutic interventions. In the last decade many efforts have been made to identify the channels and regulators involved in generating and shaping phagocytic Ca2+ signals. While molecules involved in store-operated calcium entry (SOCE) of the STIM and ORAI family have taken center stage, members of the canonical, melastatin, mucolipin and vanilloid transient receptor potential (TRP), as well as purinergic P2X receptor families are now recognized to play significant roles. In this chapter, we review the recent literature on research that has linked specific Ca2+-permeable channels and regulators to phagocytic function. We highlight the fact that lipid mediators are emerging as important regulators of channel gating and that phagosomal ionic homeostasis and Ca2+ release also play essential parts. We predict that improved methodologies for measuring these factors will be critical for future advances in dissecting the intricate biology of this fascinating immune process.
Collapse
|
132
|
Abstract
Calcium (Ca2+) signalling is of paramount importance to immunity. Regulated increases in cytosolic and organellar Ca2+ concentrations in lymphocytes control complex and crucial effector functions such as metabolism, proliferation, differentiation, antibody and cytokine secretion and cytotoxicity. Altered Ca2+ regulation in lymphocytes leads to various autoimmune, inflammatory and immunodeficiency syndromes. Several types of plasma membrane and organellar Ca2+-permeable channels are functional in T cells. They contribute highly localized spatial and temporal Ca2+ microdomains that are required for achieving functional specificity. While the mechanistic details of these Ca2+ microdomains are only beginning to emerge, it is evident that through crosstalk, synergy and feedback mechanisms, they fine-tune T cell signalling to match complex immune responses. In this article, we review the expression and function of various Ca2+-permeable channels in the plasma membrane, endoplasmic reticulum, mitochondria and endolysosomes of T cells and their role in shaping immunity and the pathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
133
|
Scotto Rosato A, Montefusco S, Soldati C, Di Paola S, Capuozzo A, Monfregola J, Polishchuk E, Amabile A, Grimm C, Lombardo A, De Matteis MA, Ballabio A, Medina DL. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat Commun 2019; 10:5630. [PMID: 31822666 PMCID: PMC6904751 DOI: 10.1038/s41467-019-13572-w] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
The lysosomal calcium channel TRPML1, whose mutations cause the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV), contributes to upregulate autophagic genes by inducing the nuclear translocation of the transcription factor EB (TFEB). Here we show that TRPML1 activation also induces autophagic vesicle (AV) biogenesis through the generation of phosphatidylinositol 3-phosphate (PI3P) and the recruitment of essential PI3P-binding proteins to the nascent phagophore in a TFEB-independent manner. Thus, TRPML1 activation of phagophore formation requires the calcium-dependent kinase CaMKKβ and AMPK, which increase the activation of ULK1 and VPS34 autophagic protein complexes. Consistently, cells from MLIV patients show a reduced recruitment of PI3P-binding proteins to the phagophore during autophagy induction, suggesting that altered AV biogenesis is part of the pathological features of this disease. Together, we show that TRPML1 is a multistep regulator of autophagy that may be targeted for therapeutic purposes to treat LSDs and other autophagic disorders. It was known that prolonged TRMPL1 activation induces TFEB translocation and upregulates autophagic gene regulation. Here, the authors show that acute TRMPL1 activation also induces autophagy through VPS34 and by lysosomal calcium release independent of TFEB.
Collapse
Affiliation(s)
- A Scotto Rosato
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - S Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - C Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - S Di Paola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - A Capuozzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - J Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - E Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - A Amabile
- Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - C Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - A Lombardo
- Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - M A De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - A Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.,Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - D L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy. .,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
134
|
Morgan AJ, Yuan Y, Patel S, Galione A. Does lysosomal rupture evoke Ca 2+ release? A question of pores and stores. Cell Calcium 2019; 86:102139. [PMID: 31881482 DOI: 10.1016/j.ceca.2019.102139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/04/2023]
Abstract
Lysosomotropic agents have been used to permeabilize lysosomes and thereby implicate these organelles in diverse cellular processes. Since lysosomes are Ca2+ stores, this rupturing action, particularly that induced by GPN, has also been used to rapidly release Ca2+ from lysosomes. However, a recent study has questioned the mechanism of action of GPN and concluded that, acutely, it does not permeabilize lysosomes but releases Ca2+ directly from the ER instead. We therefore appraise these provocative findings in the context of the existing literature. We suggest that further work is required to unequivocally rule out lysosomes as contributors to GPN-evoked Ca2+ signals.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
135
|
Yu J, Yang J. Ion channels as potential redox sensors in lysosomes. Channels (Austin) 2019; 13:477-482. [PMID: 31662029 PMCID: PMC6833971 DOI: 10.1080/19336950.2019.1684428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Lysosomes are central organelles that recycle materials and energy to maintain intracellular homeostasis. Lysosomes are capable of sensing environmental cues such as nutrition to regulate their function accordingly. Whether lysosomes can sense redox signaling, however, was unclear. Here in this review, we summarized recent evidence of lysosomal ion channel as redox sensors for this organelle. We also discussed their roles in lysosomal diseases that features imbalanced redox.
Collapse
Affiliation(s)
- Jie Yu
- Sports Science Research Center, Zhejiang College of Sports, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
136
|
Abstract
Lysosomes are membrane-bound organelles with roles in processes involved in degrading and recycling cellular waste, cellular signalling and energy metabolism. Defects in genes encoding lysosomal proteins cause lysosomal storage disorders, in which enzyme replacement therapy has proved successful. Growing evidence also implicates roles for lysosomal dysfunction in more common diseases including inflammatory and autoimmune disorders, neurodegenerative diseases, cancer and metabolic disorders. With a focus on lysosomal dysfunction in autoimmune disorders and neurodegenerative diseases - including lupus, rheumatoid arthritis, multiple sclerosis, Alzheimer disease and Parkinson disease - this Review critically analyses progress and opportunities for therapeutically targeting lysosomal proteins and processes, particularly with small molecules and peptide drugs.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France.
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France.
- University of Strasbourg Institute for Advanced Study, Strasbourg, France.
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
137
|
Jung J, Venkatachalam K. TRPML1 and RAS-driven cancers - exploring a link with great therapeutic potential. Channels (Austin) 2019; 13:374-381. [PMID: 31526156 PMCID: PMC6768051 DOI: 10.1080/19336950.2019.1666457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/05/2022] Open
Abstract
Activating mutations in the RAS family of proto-oncogenes represent some of the leading causes of cancer. Unmitigated proliferation of cells harboring oncogenic RAS mutations is accompanied by a massive increase in cellular bioenergetic demands, which offers unique opportunities for therapeutic intervention. To withstand the steep requirements for metabolic intermediates, RAS-driven cancer cells enhance endolysosome and autophagosome biogenesis. By degrading cellular macromolecules into metabolites that can be used by biosynthetic pathways, endolysosomes permit continued proliferation and survival in otherwise detrimental conditions. We recently showed that human cancers with activating mutations in HRAS elevate the expression of MCOLN1, which encodes an endolysosomal cation channel called TRPML1. Increased TRPML1 activity in HRAS-driven cancer cells is needed for the restoration of plasma membrane cholesterol that gets collaterally internalized during endocytosis. Inhibition of TRPML1 or knockdown of MCOLN1 leads to mislocalization of cholesterol from the plasma membrane to endolysosomes, loss of oncogenic HRAS from the cell surface, and attenuation of downstream signaling. Here, we discuss the implications of our findings and suggest strategies to leverage pathways that impinge upon TRPML1 as novel anti-cancer treatments.
Collapse
Affiliation(s)
- Jewon Jung
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
138
|
Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol 2019; 21:101-118. [DOI: 10.1038/s41580-019-0185-4] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
|
139
|
Structural insights into group II TRP channels. Cell Calcium 2019; 86:102107. [PMID: 31841954 DOI: 10.1016/j.ceca.2019.102107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
The seven members of the TRP channel superfamily are divided into two main groups with five members comprising group I (TRPC/V/M/N/A) and TRPML (TRP MucoLipin) and TRPP (TRP Polycystin) making up group II. Group II channels share a high sequence homology on their transmembrane domains and are distinct from group I members as they contain a large luminal/extracellular domain between transmembrane helix 1 (S1) and S2. Since 2016, there are more than ten research papers reporting various structures of group II channels by either cryo-EM or X-ray crystallography. These studies along with recent functional analysis by the other groups have considerably strengthened our knowledge on TRPML and TRPP channels. In this review, we summarize and discuss these reports providing molecular insights into the group II TRP channel family.
Collapse
|
140
|
Li G, Huang D, Hong J, Bhat OM, Yuan X, Li PL. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. Am J Physiol Cell Physiol 2019; 317:C481-C491. [PMID: 31268777 PMCID: PMC6766620 DOI: 10.1152/ajpcell.00150.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
The transient receptor potential mucolipin 1 (TRPML1) channel has been reported to mediate lysosomal Ca2+ release that is involved in Ca2+-dependent lysosome trafficking and autophagic flux. However, this regulatory mechanism of lysosomal TRPML1 channel activity in podocytes remains poorly understood. In the present study, we tested whether the TRPML1 channel in podocytes mediates lysosome trafficking, which is essential for multivesicular body (MVB) degradation by lysosomes. We first demonstrated the abundant expression of TRPML1 channel in podocytes. By GCaMP3 Ca2+ imaging, we characterized the lysosomal specificity of TRPML1 channel-mediated Ca2+ release in podocytes. Given the important role of acid ceramidase (AC) in lysosome function and podocyte injury, we tested whether AC regulates this TRPML1 channel-mediated Ca2+ release and consequent lysosome-dependent MVB degradation in podocytes. Pharmacologically, it was found that TRPML1 channel activity was remarkably attenuated by the AC inhibitor carmofur. Sphingosine, as an AC product, was demonstrated to induce TRPML1-mediated Ca2+ release, which was inhibited by a TRPML1 blocker, verapamil. Using a Port-a-Patch planar patch-clamp system, we found that AC-associated sphingolipids, sphingomyelin, ceramide, and sphingosine had different effects on TRPML1 channel activity in podocytes. Functionally, the inhibition of AC or blockade of TRPML1 channels was found to suppress the interaction of lysosomes and MVBs, leading to increased exosome release from podocytes. These results suggest that AC is critical for TRPML1 channel-mediated Ca2+ release, which controls lysosome-MVB interaction and exosome release in podocytes.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jinni Hong
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
141
|
Kasitinon SY, Eskiocak U, Martin M, Bezwada D, Khivansara V, Tasdogan A, Zhao Z, Mathews T, Aurora AB, Morrison SJ. TRPML1 Promotes Protein Homeostasis in Melanoma Cells by Negatively Regulating MAPK and mTORC1 Signaling. Cell Rep 2019; 28:2293-2305.e9. [PMID: 31461647 PMCID: PMC6813770 DOI: 10.1016/j.celrep.2019.07.086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
We screen ion channels and transporters throughout the genome to identify those required by human melanoma cells but not by normal human melanocytes. We discover that Mucolipin-1 (MCOLN1), which encodes the lysosomal cation channel TRPML1, is preferentially required for the survival and proliferation of melanoma cells. Loss of MCOLN1/TRPML1 function impairs the growth of patient-derived melanomas in culture and in xenografts but does not affect the growth of human melanocytes. TRPML1 expression and macropinocytosis are elevated in melanoma cells relative to melanocytes. TRPML1 is required in melanoma cells to negatively regulate MAPK pathway and mTORC1 signaling. TRPML1-deficient melanoma cells exhibit decreased survival, proliferation, tumor growth, and macropinocytosis, as well as serine depletion and proteotoxic stress. All of these phenotypes are partially or completely rescued by mTORC1 inhibition. Melanoma cells thus increase TRPML1 expression relative to melanocytes to attenuate MAPK and mTORC1 signaling, to sustain macropinocytosis, and to avoid proteotoxic stress.
Collapse
Affiliation(s)
- Stacy Y Kasitinon
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ugur Eskiocak
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vishal Khivansara
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas Mathews
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arin B Aurora
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
142
|
Cashikar AG, Hanson PI. A cell-based assay for CD63-containing extracellular vesicles. PLoS One 2019; 14:e0220007. [PMID: 31339911 PMCID: PMC6655660 DOI: 10.1371/journal.pone.0220007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are thought to be important in cell-cell communication and have elicited extraordinary interest as potential biomarkers of disease. However, quantitative methods to enable elucidation of mechanisms underlying release are few. Here, we describe a cell-based assay for monitoring EV release using the EV-enriched tetraspanin CD63 fused to the small, ATP-independent reporter enzyme, Nanoluciferase. Release of CD63-containing EVs from stably expressing cell lines was monitored by comparing luciferase activity in culture media to that remaining in cells. HEK293, U2OS, U87 and SKMel28 cells released 0.3%-0.6% of total cellular CD63 in the form of EVs over 5 hrs, varying by cell line. To identify cellular machinery important for secretion of CD63-containing EVs, we performed a screen of biologically active chemicals in HEK293 cells. While a majority of compounds did not significantly affect EV release, treating cells with the plecomacrolides bafilomycin or concanamycin, known to inhibit the V-ATPase, dramatically increased EV release. Interestingly, alkalization of the endosomal lumen using weak bases had no effect, suggesting a pH-independent enhancement of EV release by V-ATPase inhibitors. The ability to quantify EVs in small samples will enable future detailed studies of release kinetics as well as further chemical and genetic screening to define pathways involved in EV secretion.
Collapse
Affiliation(s)
- Anil G. Cashikar
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phyllis I. Hanson
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
143
|
Lu W, Campagno KE, Tso HY, Cenaj A, Laties AM, Carlsson LG, Mitchell CH. Oral Delivery of the P2Y12 Receptor Antagonist Ticagrelor Prevents Loss of Photoreceptors in an ABCA4-/- Mouse Model of Retinal Degeneration. Invest Ophthalmol Vis Sci 2019; 60:3046-3053. [PMID: 31319418 PMCID: PMC6640265 DOI: 10.1167/iovs.19-27241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/10/2019] [Indexed: 01/22/2023] Open
Abstract
Purpose Accumulation of lysosomal waste is linked to neurodegeneration in multiple diseases, and pharmacologic enhancement of lysosomal activity is hypothesized to reduce pathology. An excessive accumulation of lysosomal-associated lipofuscin waste and an elevated lysosomal pH occur in retinal pigment epithelial cells of the ABCA4-/- mouse model of Stargardt's retinal degeneration. As treatment with the P2Y12 receptor antagonist ticagrelor was previously shown to lower lysosomal pH and lipofuscin-like autofluorescence in these cells, we asked whether oral delivery of ticagrelor also prevented photoreceptor loss. Methods Moderate light exposure was used to accelerate photoreceptor loss in albino ABCA4-/- mice as compared to BALB/c controls. Ticagrelor (0.1%-0.15%) was added to mouse chow for between 1 and 10 months. Photoreceptor function was determined with electroretinograms, while cell survival was determined using optical coherence tomography and histology. Results Protection by ticagrelor was demonstrated functionally by using the electroretinogram, as ticagrelor-treated ABCA4-/- mice had increased a- and b-waves compared to untreated mice. Mice receiving ticagrelor treatment had a thicker outer nuclear layer, as measured with both optical coherence tomography and histologic sections. Ticagrelor decreased expression of LAMP1, implicating enhanced lysosomal function. No signs of retinal bleeding were observed after prolonged treatment with ticagrelor. Conclusions Oral treatment with ticagrelor protected photoreceptors in the ABCA4-/- mouse, which is consistent with enhanced lysosomal function. As mouse ticagrelor exposure levels were clinically relevant, the drug may be of benefit in preventing the loss of photoreceptors in Stargardt's disease and other neurodegenerations associated with lysosomal dysfunction.
Collapse
Affiliation(s)
- Wennan Lu
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Keith E. Campagno
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Huen-Yee Tso
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Aurora Cenaj
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alan M. Laties
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Leif G. Carlsson
- Bioscience Cardiovascular Research and Early Development Cardiovascular, Renal and Metabolism BioPhamaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Claire H. Mitchell
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
144
|
Montel L, Pinon L, Fattaccioli J. A Multiparametric and High-Throughput Assay to Quantify the Influence of Target Size on Phagocytosis. Biophys J 2019; 117:408-419. [PMID: 31301802 DOI: 10.1016/j.bpj.2019.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 11/26/2022] Open
Abstract
Phagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. It consists in the uptake of pathogenic or cellular targets larger than 0.5 μm. For the biggest particles, the phagocytic process involves a massive reorganization of membrane and actin cytoskeleton as well as an important intracellular deformation all in a matter of minutes. The study of the role of the size of objects in their phagocytosis has led to contradictory results in the last decades. We designed a method using confocal microscopy, automated image analysis, and databases for fast quantitative analysis of phagocytosis assays. It yields comprehensive data on the cells and targets geometric and fluorescence intensity parameters, automatically discriminates internalized from external targets, and stores the relationship between a cell and the targets it has engulfed. We used two types of targets (solid polystyrene beads and liquid lipid droplets) to investigate the influence of size on the phagocytic uptake of macrophages. The method made it possible not only to perform phagocytic assays with functionalized droplets and beads of different sizes but to use polydisperse particles to further our understanding of the role of size in phagocytosis. The use of monodisperse and polydisperse objects shows that whereas smaller monodisperse objects are internalized in greater numbers, objects of different sizes presented simultaneously are internalized without preferred size. The total surface engulfed by the cell is thus the main factor limiting the uptake of particles, regardless of their nature or size. A meta-analysis of the literature reveals that this dependence in surface is consistently conserved throughout cell types, targets' nature, or activated receptors.
Collapse
Affiliation(s)
- Lorraine Montel
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France; Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France
| | - Léa Pinon
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France; Institut Curie, PSL University, INSERM U932, Paris, France; Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France
| | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France; Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France.
| |
Collapse
|
145
|
Inpanathan S, Botelho RJ. The Lysosome Signaling Platform: Adapting With the Times. Front Cell Dev Biol 2019; 7:113. [PMID: 31281815 PMCID: PMC6595708 DOI: 10.3389/fcell.2019.00113] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are the terminal degradative compartment of autophagy, endocytosis and phagocytosis. What once was viewed as a simple acidic organelle in charge of macromolecular digestion has emerged as a dynamic organelle capable of integrating cellular signals and producing signal outputs. In this review, we focus on the concept that the lysosome surface serves as a platform to assemble major signaling hubs like mTORC1, AMPK, GSK3 and the inflammasome. These molecular assemblies integrate and facilitate cross-talk between signals such as amino acid and energy levels, membrane damage and infection, and ultimately enable responses such as autophagy, cell growth, membrane repair and microbe clearance. In particular, we review how molecular machinery like the vacuolar-ATPase proton pump, sestrins, the GATOR complexes, and the Ragulator, modulate mTORC1, AMPK, GSK3 and inflammation. We then elaborate how these signals control autophagy initiation and resolution, TFEB-mediated lysosome adaptation, lysosome remodeling, antigen presentation, inflammation, membrane damage repair and clearance. Overall, by being at the cross-roads for several membrane pathways, lysosomes have emerged as the ideal surveillance compartment to sense, integrate and elicit cellular behavior and adaptation in response to changing environmental and cellular conditions.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
146
|
Andrews NW. Solving the secretory acid sphingomyelinase puzzle: Insights from lysosome-mediated parasite invasion and plasma membrane repair. Cell Microbiol 2019; 21:e13065. [PMID: 31155842 DOI: 10.1111/cmi.13065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Acid sphingomyelinase (ASM) is a lysosomal enzyme that cleaves the phosphorylcholine head group of sphingomyelin, generating ceramide. Recessive mutations in SMPD1, the gene encoding ASM, cause Niemann-Pick Disease Types A and B. These disorders are attributed not only to lipid accumulation inside lysosomes but also to changes on the outer leaflet of the plasma membrane, highlighting an extracellular role for ASM. Secretion of ASM occurs under physiological conditions, and earlier studies proposed two forms of the enzyme, one resident in lysosomes and another form that would be diverted to the secretory pathway. Such differential intracellular trafficking has been difficult to explain because there is only one SMPD1 transcript that generates an active enzyme, found primarily inside lysosomes. Unexpectedly, studies of cell invasion by the protozoan parasite Trypanosoma cruzi revealed that conventional lysosomes can fuse with the plasma membrane in response to elevations in intracellular Ca2+ , releasing their contents extracellularly. ASM exocytosed from lysosomes remodels the outer leaflet of the plasma membrane, promoting parasite invasion and wound repair. Here, we discuss the possibility that ASM release during lysosomal exocytosis, in response to various forms of stress, may represent a major source of the secretory form of this enzyme.
Collapse
Affiliation(s)
- Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
147
|
Manthe RL, Rappaport JA, Long Y, Solomon M, Veluvolu V, Hildreth M, Gugutkov D, Marugan J, Zheng W, Muro S. δ-Tocopherol Effect on Endocytosis and Its Combination with Enzyme Replacement Therapy for Lysosomal Disorders: A New Type of Drug Interaction? J Pharmacol Exp Ther 2019; 370:823-833. [PMID: 31101681 DOI: 10.1124/jpet.119.257345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Induction of lysosomal exocytosis alleviates lysosomal storage of undigested metabolites in cell models of lysosomal disorders (LDs). However, whether this strategy affects other vesicular compartments, e.g., those involved in endocytosis, is unknown. This is important both to predict side effects and to use this strategy in combination with therapies that require endocytosis for intracellular delivery, such as lysosomal enzyme replacement therapy (ERT). We investigated this using δ-tocopherol as a model previously shown to induce lysosomal exocytosis and cell models of type A Niemann-Pick disease, a LD characterized by acid sphingomyelinase (ASM) deficiency and sphingomyelin storage. δ-Tocopherol and derivative CF3-T reduced net accumulation of fluid phase, ligands, and polymer particles via phagocytic, caveolae-, clathrin-, and cell adhesion molecule (CAM)-mediated pathways, yet the latter route was less affected due to receptor overexpression. In agreement, δ-tocopherol lowered uptake of recombinant ASM by deficient cells (known to occur via the clathrin pathway) and via targeting intercellular adhesion molecule-1 (associated to the CAM pathway). However, the net enzyme activity delivered and lysosomal storage attenuation were greater via the latter route. Data suggest stimulation of exocytosis by tocopherols is not specific of lysosomes and affects endocytic cargo. However, this effect was transient and became unnoticeable several hours after tocopherol removal. Therefore, induction of exocytosis in combination with therapies requiring endocytic uptake, such as ERT, may represent a new type of drug interaction, yet this strategy could be valuable if properly timed for minimal interference.
Collapse
Affiliation(s)
- Rachel L Manthe
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Jeffrey A Rappaport
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Yan Long
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Melani Solomon
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Vinay Veluvolu
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Michael Hildreth
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Dencho Gugutkov
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Juan Marugan
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Wei Zheng
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Silvia Muro
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| |
Collapse
|
148
|
Increased Lysosomal Exocytosis Induced by Lysosomal Ca 2+ Channel Agonists Protects Human Dopaminergic Neurons from α-Synuclein Toxicity. J Neurosci 2019; 39:5760-5772. [PMID: 31097622 DOI: 10.1523/jneurosci.3085-18.2019] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/06/2019] [Accepted: 05/04/2019] [Indexed: 01/08/2023] Open
Abstract
The accumulation of misfolded proteins is a common pathological feature of many neurodegenerative disorders, including synucleinopathies such as Parkinson's disease (PD), which is characterized by the presence of α-synuclein (α-syn)-containing Lewy bodies. However, although recent studies have investigated α-syn accumulation and propagation in neurons, the molecular mechanisms underlying α-syn transmission have been largely unexplored. Here, we examined a monogenic form of synucleinopathy caused by loss-of-function mutations in lysosomal ATP13A2/PARK9. These studies revealed that lysosomal exocytosis regulates intracellular levels of α-syn in human neurons. Loss of PARK9 function in patient-derived dopaminergic neurons disrupted lysosomal Ca2+ homeostasis, reduced lysosomal Ca2+ storage, increased cytosolic Ca2+, and impaired lysosomal exocytosis. Importantly, this dysfunction in lysosomal exocytosis impaired α-syn secretion from both axons and soma, promoting α-syn accumulation. However, activation of the lysosomal Ca2+ channel transient receptor potential mucolipin 1 (TRPML1) was sufficient to upregulate lysosomal exocytosis, rescue defective α-syn secretion, and prevent α-syn accumulation. Together, these results suggest that intracellular α-syn levels are regulated by lysosomal exocytosis in human dopaminergic neurons and may represent a potential therapeutic target for PD and other synucleinopathies.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the second most common neurodegenerative disease linked to the accumulation of α-synuclein (α-syn) in patient neurons. However, it is unclear what the mechanism might be. Here, we demonstrate a novel role for lysosomal exocytosis in clearing intracellular α-syn and show that impairment of this pathway by mutations in the PD-linked gene ATP13A2/PARK9 contributes to α-syn accumulation in human dopaminergic neurons. Importantly, upregulating lysosomal exocytosis by increasing lysosomal Ca2+ levels was sufficient to rescue defective α-syn secretion and accumulation in patient neurons. These studies identify lysosomal exocytosis as a potential therapeutic target in diseases characterized by the accumulation of α-syn, including PD.
Collapse
|
149
|
Westman J, Grinstein S, Maxson ME. Revisiting the role of calcium in phagosome formation and maturation. J Leukoc Biol 2019; 106:837-851. [DOI: 10.1002/jlb.mr1118-444r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Johannes Westman
- Program in Cell BiologyHospital for Sick Children Toronto Ontario Canada
| | - Sergio Grinstein
- Program in Cell BiologyHospital for Sick Children Toronto Ontario Canada
- Department of BiochemistryUniversity of Toronto Toronto Ontario Canada
- Keenan Research Centre of the Li Ka Shing Knowledge InstituteSt. Michael's Hospital Toronto Ontario Canada
| | - Michelle E. Maxson
- Program in Cell BiologyHospital for Sick Children Toronto Ontario Canada
| |
Collapse
|
150
|
Yang Y, Xu M, Zhu X, Yao J, Shen B, Dong XP. Lysosomal Ca 2+ release channel TRPML1 regulates lysosome size by promoting mTORC1 activity. Eur J Cell Biol 2019; 98:116-123. [PMID: 31122790 DOI: 10.1016/j.ejcb.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
Lysosomal Ca2+ release channel TRPML1 has been suggested to regulate lysosome size by activating calmodulin (CaM). To further understand how TRPML1 and CaM regulate lysosome size, in this study, we report that inhibiting mTORC1 causes enlarged lysosomes, and the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. We also show that lysosome vacuolation induced by inhibiting TRPML1 is corrected by mTORC1 upregulation, and the facilitating effect of TRPML1 on the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. In the meantime, lysosome vacuolation induced by inhibiting CaM is corrected by mTORC1 upregulation, and mTORC1 overexpression corrects the inhibitory effect of CaM antagonist on the recovery of enlarged lysosomes. Conversely, the vacuolation induced by suppressing mTORC1 is not corrected by upregulating CaM. These data suggest that mTORC1 functions downstream of TRPML1 and CaM to regulate lysosome size. Together with our recent finding showing that TRPML1, CaM and mTORC1 form a macromolecular complex to control mTORC1 activity, we suggest that TRPML1 and CaM control lysosome fission through regulating mTORC1, identifying an mTORC1-dependent molecular mechanism for lysosomal membrane fission.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada; Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada; Department of Physiology, School of Basic Medicine, Anhui Medical University, Hefei,230032, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jing Yao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing Shen
- Department of Physiology, School of Basic Medicine, Anhui Medical University, Hefei,230032, China
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada; Department of Physiology, School of Basic Medicine, Anhui Medical University, Hefei,230032, China.
| |
Collapse
|